ON A RESULT OF KIYOTA, OKUYAMA AND WADA

John MURRAY

(Received June 26, 2012)

Abstract

M. Kiyota, T. Okuyama and T. Wada recently proved that each 2-block of a symmetric group Σ_{n} contains a unique irreducible Brauer character of height 0 . We present a more conceptual proof of this result.

1. Background on bilinear forms

According to the main result in [6], every 2-block of the symmetric group Σ_{n} has a unique irreducible Brauer character of height 0 . This is not true for an arbitrary 2-block of a finite group. For example, let B be a real non-principal 2-block which is Morita equivalent to the group algebra of A_{4} and which has a Klein-four defect group and a dihedral extended defect group (in the sense of [1]). Then one can show that B has three real irreducible Brauer characters of height 0 . The non-principal 2-block of $\left(\left(C_{2} \times C_{2}\right): C_{9}\right): C_{2}$ is of this type.

In this note we place the results of [6] in a more general context using the approach to bilinear forms developed by R. Gow and W. Willems [2]. We use results and notation from [7] for representation theory, from [5] for symmetric groups, and from [8] for bilinear forms in characteristic 2.

Let G be a finite group and let (K, R, F) be a 2 -modular system for G. So R is a complete discrete valuation ring with field of fractions K of characteristic 0 , and residue field $R / J=F$ of characteristic 2 . Assume that K contains a primitive $|G|-$ th root of unity, and that F is perfect. Then K and F are splitting fields for each subgroup of G.

The anti-isomorphism $g \mapsto g^{-1}$ on G extends to an involutory F-algebra antiautomorphism $\sigma: F G \rightarrow F G$ called the contragredient map. Let V be a right $F G$ module. The linear dual $V^{*}:=\operatorname{Hom}_{F}(V, F)$ is considered as a right $F G$-module via $(f . x)(v):=f\left(v x^{\sigma}\right)$, for $f \in V^{*}, x \in F G$ and all $v \in V$. The Frobenius automorphism $\lambda \mapsto \lambda^{2}$ of the field F induces an automorphism $\left(a_{i j}\right) \mapsto\left(a_{i j}^{2}\right)$ of the group $\mathrm{GL}_{F}(V)$. Composing the module map $G \rightarrow \mathrm{GL}_{F}(V)$ with this automorphism endows V with another $F G$-module structure. This module is called the Frobenius twist of V, and is denoted $V^{(2)}$.

Let $V^{*} \otimes V^{*}$ be the space of bilinear forms on V and let $\Lambda^{2}\left(V^{*}\right)$ be the subspace of symplectic bilinear forms on V; a bilinear form $b: V \times V \rightarrow F$ is symplectic if and only if $b(v, v)=0$, for all $v \in V$. The quotient space $V^{*} \otimes V^{*} / \Lambda^{2}\left(V^{*}\right)$ is called the symmetric square of V^{*} and is denoted $S^{2}\left(V^{*}\right)$.

A quadratic form on V is a map $Q: V \rightarrow F$ such that $Q(\lambda v)=\lambda^{2} Q(v)$ and $(u, v) \mapsto$ $Q(u+v)-Q(u)-Q(v)$ is a bilinear form on V, for all $u, v \in V$ and $\lambda \in F$. Now if b is a bilinear form, its diagonal $\delta(b): v \mapsto b(v, v)$ is a quadratic form. The assignment δ is linear with kernel $\Lambda^{2}\left(V^{*}\right)$. So there is a short exact sequence of vector spaces

$$
\begin{equation*}
0 \rightarrow \Lambda^{2}\left(V^{*}\right) \rightarrow V^{*} \otimes V^{*} \xrightarrow{\delta} S^{2}\left(V^{*}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

We may identify $S^{2}\left(V^{*}\right)$ with the space of quadratic forms on V. If Q is a quadratic form, its polarization is the associated bilinear form $\rho(Q):(u, v) \mapsto Q(u+v)-$ $Q(u)-Q(v)$.

The dual $S^{2}(V)^{*}$ of the symmetric square $S^{2}(V)$ of V is the space of symmetric bilinear forms on V. As $\operatorname{char}(F)=2$, each symplectic form is symmetric. If b is a symmetric bilinear form, $\delta(b)$ is additive and hence can be identified with a linear map $V^{(2)} \rightarrow F$. Thus there is a short exact sequence:

$$
\begin{equation*}
0 \rightarrow \Lambda^{2}\left(V^{*}\right) \rightarrow S^{2}(V)^{*} \xrightarrow{\delta} V^{(2) *} \rightarrow 0 \tag{2}
\end{equation*}
$$

All of these F-spaces are $F G$-modules, and the maps are $F G$-module homomorphisms. It is a singular feature of the characteristic 2-theory that $S^{2}\left(V^{*}\right)$ and $S^{2}(V)^{*}$ need not be isomorphic as $F G$-modules.

Now let b be a bilinear form on V. We say that b is G-invariant if the associated map $v \mapsto b\left(v\right.$,) for $v \in V$, is an $F G$-module map $V \rightarrow V^{*}$. We say that b is nondegenerate if this map is an F-isomorphism. Taking G-fixed points in (2) we get a long exact sequence of the form

$$
0 \rightarrow \Lambda^{2}\left(V^{*}\right)^{G} \rightarrow S^{2}(V)^{* G} \stackrel{\delta}{\rightarrow} V^{(2) * G} \rightarrow H^{1}\left(G, \Lambda^{2}\left(V^{*}\right)\right) \rightarrow \cdots
$$

In particular, if $V^{(2) * G}=0$, then each G-invariant symmetric bilinear form on V is symplectic. Now the trivial $F G$-module equals its Frobenius twist. A simple argument then shows:

Lemma 1. If $V \cong V^{*}$, and V has no trivial G-submodules, then each G-invariant symmetric bilinear form on V is symplectic.

We will make use of Fong's lemma:

Lemma 2. Let V be an absolutely irreducible non-trivial $F G$-module. Then $V \cong$ V^{*} if and only if V affords a nondegenerate G-invariant symplectic bilinear form. In particular $\operatorname{dim}(V)$ is even.

For $h \in G$ define a quadratic form Q_{h} on $F G$ by setting, for $u=\sum_{g \in G} u_{g} g \in F G$

$$
Q_{h}(u)= \begin{cases}\sum_{\{g, h g\} \subseteq G} u_{g} u_{h g}, & \text { if } \tag{3}\\ h^{2}=1, \\ \sum_{g \in G} u_{g} u_{h g}, & \text { if } \\ h^{2} \neq 1 .\end{cases}
$$

Then $Q_{h}=Q_{h^{-1}}$ and $\left\{Q_{h} \mid\left\{h, h^{-1}\right\} \subseteq G\right\}$ is a basis for the space of G-invariant quadratic form on $F G$.

2. Real 2-blocks of defect zero

Assume that G has even order, and that B is a real 2-block of G which has a trivial defect group. Equivalently B is a simple F-algebra which is a σ-invariant $F G \times$ G-direct summand of $F G$. Moreover, B has a unique irreducible K-character χ and a unique simple module S.

Let e_{B} be the identity element (or block idempotent) of B. Then

$$
e_{B}=e_{1}+e_{2}+\cdots+e_{d},
$$

where $d=\operatorname{dim}_{F}(S)$ and the e_{i} are pairwise orthogonal primitive idempotents in $F G$. Each $e_{i} F G$ is isomorphic to S. In particular S is a projective $F G$-module.

Let M be an $R G$-lattice whose character is χ. Then $M / J(R) M \cong S$, as $F G$ modules. Now M has a quadratic geometry because χ has Frobenius-Schur indicator +1 . Thus S has a quadratic geometry.

By [2] there exists an involution t in G such that the restriction of the form Q_{t} of (3) to $e_{1} F G$ is non-degenerate. It follows that e_{1} can be chosen so that $e_{1}=e_{1}^{t \sigma}$ (where $\left.e_{1}^{t \sigma}=\left(t e_{1} t\right)^{\sigma}=t e_{1}^{\sigma} t\right)$. We note that it can be shown that $\langle t\rangle$ is an extended defect group of B and S is a direct summand of the induced module $F_{C_{G}(t)} \uparrow^{G}$.

As $e_{B}=e_{B}^{t \sigma}$, we have $e_{B}=e_{1}+e_{2}^{t \sigma}+\cdots+e_{d}^{t \sigma}$, and each $e_{i}^{t \sigma}$ is primitive in $F G$ and $e_{1} e_{i}^{t \sigma}=0=e_{i}^{t \sigma} e_{1}$, for $i>1$.

Suppose next that V is a B-module, equipped with a (possibly degenerate) G invariant symmetric bilinear form \langle,$\rangle . The G$-invariance is equivalent to $\langle u x, v\rangle=$ $\left\langle u, v x^{\sigma}\right\rangle$, for all $u, v \in V$ and $x \in F G$. Now $e_{1} e_{i}=0$, for $i>1$. So

$$
\left\langle V e_{1}, V e_{i}^{\sigma}\right\rangle=0, \quad \text { for } \quad i>1 .
$$

Following [6], we define a bilinear form b on the F-space $V e_{1}$ by

$$
b\left(u e_{1}, v e_{1}\right):=\left\langle u e_{1}, v e_{1} t\right\rangle, \quad \text { for all } u e_{1}, v e_{1} \in V e_{1} .
$$

Then b is symmetric, as

$$
b\left(u e_{1}, v e_{1}\right)=\left\langle u e_{1} t, v e_{1}\right\rangle=\left\langle v e_{1}, u e_{1} t\right\rangle=b\left(v e_{1}, u e_{1}\right) .
$$

Now consider the radicals of the forms

$$
\begin{aligned}
& \operatorname{rad}(V):=\{u \in V \mid\langle u, v\rangle=0, \forall v \in V\}, \\
& \operatorname{rad}\left(V e_{1}\right):=\left\{u e_{1} \in V e_{1} \mid b\left(u e_{1}, v e_{1}\right)=0, \forall v e_{1} \in V e_{1}\right\} .
\end{aligned}
$$

We include a proof of Lemma 4.5 of [6] for the benefit of the reader:
Lemma 3. $\operatorname{rad}\left(V e_{1}\right)=\operatorname{rad}(V) e_{1}$ and $V e_{1} / \operatorname{rad}\left(V e_{1}\right) \cong(V / \operatorname{rad}(V)) e_{1}$.
Proof. Let $u \in \operatorname{rad}(V)$ and $v e_{1} \in V e_{1}$. Then

$$
b\left(u e_{1}, v e_{1}\right)=\left\langle u e_{1}, v e_{1} t\right\rangle=\left\langle u, v e_{1} t e_{1}^{\sigma}\right\rangle=0 .
$$

So $\operatorname{rad}\left(V e_{1}\right) \supseteq \operatorname{rad}(V) e_{1}$. Now let $u e_{1} \in \operatorname{rad}\left(V e_{1}\right)$ and $v \in V$. Writing $v=\sum_{i=1}^{d} v e_{i}^{\sigma}$, we have

$$
\left\langle u e_{1}, v\right\rangle=\sum_{i=1}^{d}\left\langle u e_{1}, v e_{i}^{\sigma}\right\rangle=\left\langle u e_{1}, v e_{1}^{\sigma}\right\rangle=b\left(u e_{1}, v t e_{1}\right)=0 .
$$

So $\operatorname{rad}\left(V e_{1}\right) \subseteq \operatorname{rad}(V) e_{1}$. The stated equality follows.
We have an F-vector space map $\phi: V e_{1} \rightarrow(V / \operatorname{rad}(V)) e_{1}$ such that $\phi\left(v e_{1}\right)=v e_{1}+$ $\operatorname{rad}(V)$. Now $(v+\operatorname{rad}(V)) e_{1}=v e_{1}+\operatorname{rad}(V)$ as $\operatorname{rad}(V) e_{1} \subseteq \operatorname{rad}(V)$. So ϕ is onto. Moreover, $\operatorname{ker}(\phi)=\operatorname{rad}(V) e_{1}$. The stated isomorphism follows from this.

3. Brauer characters of symmetric groups

Let n be a positive integer. Corresponding to each partition λ of n, there is a Young subgroup Σ_{λ} of Σ_{n} and a permutation $R \Sigma_{n}$-module $M^{\lambda}:=\operatorname{Ind}_{\Sigma_{\lambda}}^{\Sigma_{n}}\left(R_{\Sigma_{\lambda}}\right)$. This module has a Σ_{n}-invariant symmetric bilinear form with respect to which the permutation basis is orthonormal. The Specht lattice S^{λ} is a uniquely determined R-free $R \Sigma_{n}$ submodule of M^{λ} cf. [5, 4.3]. Then $S^{\lambda} \otimes_{R} K$ is an irreducible $K \Sigma_{n}$-module and all irreducible $K \Sigma_{n}$-modules arise in this way.

Now S^{λ} is usually not a self-dual $R \Sigma_{n}$-module; the dual module $S_{\lambda}:=S^{\lambda *}$ is naturally isomorphic to $S^{\left[{ }^{n}\right]} \otimes_{R} S_{R}^{\lambda^{t}}$ where λ^{t} is the transpose partition to λ. Note that $S^{\left[1^{n}\right]}$ is the 1 -dimensional sign module.

Set $\overline{S^{\lambda}}:=S^{\lambda} / J S^{\lambda}$. Then $\overline{S^{\lambda}}$ is a Specht module for $F \Sigma_{n}$. It inherits an Σ_{n}-invariant symmetric bilinear form \langle,$\rangle from S^{\lambda}$. This form is nonzero if and only if λ is 2 -regular (i.e. if λ has different parts).

Suppose that λ is 2 -regular. Then $D^{\lambda}:=\overline{S^{\lambda}} / \operatorname{rad}\left(\overline{S^{\lambda}}\right)$ is a simple $F \Sigma_{n}$-module, and all simple $F \Sigma_{n}$-modules arise uniquely in this way. The D^{λ} are evidently self-dual. Indeed, $\left\langle\right.$,) induces a nondegenerate form on D^{λ}, which by Fong's lemma is symplectic if D^{λ} is non-trivial. Note that $\overline{S^{\left[n^{n}\right]}}$ is the trivial $F \Sigma_{n}$-module, as $\operatorname{char}(F)=2$.

It follows that the dual of a Specht module in characteristic 2 is a Specht module:

$$
\overline{S_{\lambda}} \cong \overline{S^{\lambda^{\prime}}}
$$

Let B be a 2-block of Σ_{n}. Then B is determined by an integer weight w such that $n-2 w$ is a nonnegative triangular number $k(k+1) / 2$. The partition $\delta:=[k, k-1, \ldots$, $2,1]$ is called the 2 -core of B. Each defect group of B is Σ_{n}-conjugate to a Sylow 2-subgroup of $\Sigma_{2 w}$.

Recall that the 2 -core of a partition λ is obtained by successively stripping removable domino shapes from λ. We attach to B all partitions of n which have 2-core δ.

Set $m:=n-2 w$ and identify $\Sigma_{2 w} \times \Sigma_{m}$ with a Young subgroup of Σ_{n}. Now Σ_{m} has a 2-block B_{δ} of weight 0 and 2 -core δ. This block is real and has a trivial defect group. Moreover, $S^{\delta} \otimes_{R} K$ is the unique irreducible $K \Sigma_{m}$-module in B_{δ} and $D^{\delta}=\overline{S^{\delta}}$ is the unique simple B_{δ}-module. It is important to note that D^{δ} is a projective $F \Sigma_{m}$ module and every $F \Sigma_{m}$-module in B_{δ} is semi-simple.

Let e_{δ} be the block idempotent of B_{δ}. Following Section 2, choose an involution $t \in \Sigma_{m}$ and a primitive idempotent e_{1} in $F \Sigma_{m}$ such that $e_{1}=e_{1} e_{\delta}$ and $e_{1}^{t \sigma}=e_{1}$. Note that $\operatorname{dim}_{F}\left(D^{\delta} e_{1}\right)=1$.

Let μ be a 2-regular partition in B. Regard $V:=\overline{S^{\mu}} e_{\delta}$ as an $F \Sigma_{2 w} \times \Sigma_{m}$-module by restriction. Then $V e_{1}$ is an $F \Sigma_{2 w}$-module, as the elements of $\Sigma_{2 w}$ commute with e_{1}. Indeed

$$
V \cong V e_{1} \otimes_{F} D^{\delta} \quad \text { as } \quad F \Sigma_{2 w} \times \Sigma_{m} \text {-modules. }
$$

Now $\overline{S^{\mu}}$ and hence V affords a $\Sigma_{2 w} \times \Sigma_{m}$-invariant symmetric bilinear form \langle,$\rangle such$ that $V / \operatorname{rad}(V)=D^{\mu} e_{\delta}$. It then follows from Lemma 3 that we may use the identity $e_{1}^{t \sigma}=e_{1}$ to construct a symmetric bilinear form b on $V e_{1}$. Moreover, $V e_{1} / \operatorname{rad}\left(V e_{1}\right) \cong$ $D^{\mu} e_{1}$. So the $F \Sigma_{2 w}$-module $D^{\mu} e_{1}$ inherits a nondegenerate symmetric bilinear form b. Reviewing the construction of b from \langle,$\rangle , we see that b$ is $\Sigma_{2 w}$-invariant (as $t \in \Sigma_{m}$ commutes with all elements of $\Sigma_{2 w}$, and \langle,$\rangle is \Sigma_{n}$-invariant).

Lemma 4. Suppose that $\mu \neq[k+2 w, k-1, \ldots, 2,1]$. Then $D^{\mu} e_{1}$ affords a non-degenerate $\Sigma_{2 w}$-invariant symplectic bilinear form.

Proof. In view of Lemma 1 and the discussion above, it is enough to show that $D^{\mu} e_{1}$ has no trivial $F \Sigma_{2 w}$-submodules. Suppose otherwise. Then $F_{\Sigma_{2 w}} \otimes_{F} D^{\delta}$ is a submodule of the restriction of D^{μ} to $\Sigma_{2 w} \times \Sigma_{m}$. But D^{μ} is a submodule of $\overline{S_{\mu}}$. So D^{δ} is a submodule of $\operatorname{Hom}_{F \Sigma_{2 w}}\left(F_{\Sigma_{2 w}}, \overline{S_{\mu}}\right)$ as $F \Sigma_{m}$-modules.

We have F-isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{F \Sigma_{2 w}}\left(F_{\Sigma_{2 w}}, \overline{S_{\mu}}\right) & \cong \operatorname{Hom}_{F \Sigma_{n}}\left(M^{\left[2 w, 1^{m}\right]}, \overline{S_{\mu}}\right), \quad \text { by Eckmann-Shapiro } \\
& \cong \operatorname{Hom}_{F \Sigma_{n}}\left(\overline{S^{\mu}}, M^{\left[2 w, 1^{m}\right]}\right), \quad \text { as } M^{\left[2 w, 1^{m}\right]} \text { is self-dual. }
\end{aligned}
$$

As μ is 2-regular, it follows from [5, 13.13] that $\operatorname{Hom}_{F \Sigma_{n}}\left(\overline{S^{\mu}}, M^{\left[2 w, 1^{m}\right]}\right)$ has a basis of semistandard homomorphisms. The argument of Theorem 4.5 of [4] now applies, and shows that

$$
\operatorname{Hom}_{F \Sigma_{2 w}}\left(F_{\Sigma_{2 w}}, \overline{S_{\mu}}\right) \cong \overline{S^{\mu^{t} \backslash\left[1^{2 w}\right]}} \quad \text { as } F \Sigma_{m} \text {-modules. }
$$

Here $\mu^{t} \backslash\left[1^{2 w}\right]$ is a skew-partition of m; it is empty if $\mu_{1}<2 w$ (in which case $\left.\operatorname{Hom}_{F \Sigma_{2 w}}\left(F_{\Sigma_{2 w}}, \overline{S_{\mu}}\right)=0\right)$. Otherwise its diagram is the set of nodes in the Young diagram of μ^{t} not in the top $2 w$ rows of the first column. Now $\overline{S^{\mu^{t} \backslash\left[1^{2 w]}\right.}}$ has an $F \Sigma_{m^{-}}$ submodule isomorphic to D^{δ} if and only if $S_{K}^{\mu^{\tau} \backslash\left[1^{2 w]}\right.}$ has an $K \Sigma_{m}$-submodule isomorphic to S_{K}^{δ}, as $D^{\delta}=\overline{S^{\delta}}$, and using the projectivity of D^{δ}.

The multiplicity of S_{K}^{δ} in $S_{K}^{\mu^{t} \backslash\left[1^{2 w}\right]}$ is the number of $\mu \backslash[2 w]$-tableau of type $\delta^{t}=\delta$ which are strictly increasing along rows and nondecreasing down columns. Suppose for the sake of contradiction that such a tableau T exists.

We claim that $\mu_{i} \leq k-i+2$ for $i=2, \ldots, k$, and $\mu_{i}=0$ for $i>k+1$. This is true for $i=2$, as the entries in the second row of T are different. Suppose that $i \geq 2$ and $\mu_{i-1} \leq k-i+3$. But $\mu_{i}<\mu_{i-1}$, as μ is 2 -regular. So $\mu_{i} \leq k-i+2$, proving our claim.

On the other hand, $\mu_{i} \geq \delta_{i}=k-i+1$, for $i=1, \ldots, k$, as μ has 2 -core δ. It follows that $\mu \backslash \delta$ consists of the last $\mu_{1}-k$ nodes in the first row of μ, and a subset of the nodes $(2, k),(3, k-1), \ldots,(k, 2),(k+1,1)$. On the other hand, μ has 2 -core δ. So $\mu \backslash \delta$ is a union of domino shapes. It follows that T does not exist if $\mu \neq[k+2 w, k-1, \ldots, 2,1]$. This contradiction completes the proof of the lemma.

Suppose that G is a finite group and that B is a 2-block of G with defect group $P \leq G$. Then it is known that $[G: P]_{2}$ divides the degree of every irreducible Brauer character in B. Recall that a Brauer character in B has height zero if the 2-part of its degree is $[G: P]_{2}$. We now prove the main result of [6].

Theorem 5. Let B be a 2-block of Σ_{n}. Then B contains a unique irreducible Brauer character of height 0 .

Proof. Suppose as above that B has weight w and 2 -core δ, and let θ be a height zero irreducible Brauer character in B. Then θ is the Brauer character of D^{μ} for some 2-regular partition μ of n belonging to B.

Let P be a vertex of D^{μ}. Then P is a defect group of B. We may assume that P is a Sylow 2-subgroup of $\Sigma_{2 w}$. It is easy to show that $N_{\Sigma_{n}}(P)=P \times \Sigma_{m}$, a subgroup of $\Sigma_{2 w} \times \Sigma_{m}$.

Let B_{0} denote the principal 2-block of $\Sigma_{2 w}$. Then $B_{0} \otimes B_{\delta}$ is the Brauer correspondent of B with respect to ($\Sigma_{n}, P, \Sigma_{2 w} \times \Sigma_{m}$). So the Green correspondent of D^{μ} with respect to $\left(\Sigma_{n}, P, \Sigma_{2 w} \times \Sigma_{m}\right)$ has the form $U^{\mu} \otimes D^{\delta}$, where U^{μ} is an indecomposable
$\Sigma_{2 w}$-direct summand of $D^{\mu} e_{1}$ which belongs to B_{0}. Moreover, U^{μ} is the unique component of $D^{\mu} e_{1}$ that has vertex P.

If $\mu=[k+2 w, k-1, \ldots, 2,1]$ it can be shown that U^{μ} is the trivial $F \Sigma_{2 w^{-}}$ module. Suppose that $\mu \neq[k+2 w, k-1, \ldots, 2,1]$. Lemma 4 implies that $D^{\mu} e_{1}$ has a symplectic geometry. It then follows from the first proposition in [3] that U^{μ} has a symplectic geometry. In particular $\operatorname{dim}\left(U^{\mu}\right)$ is even.

Now the 2-part of $\operatorname{dim}\left(U^{\mu} \otimes D^{\delta}\right)$ divides $2\left|\Sigma_{m}\right|_{2}=2\left[\Sigma_{n}: P\right]_{2}$. A standard result on the Green correspondence implies that the 2-part of $\operatorname{dim}\left(D^{\mu}\right)$ divides $2\left[\Sigma_{n}: P\right]_{2}$. This contradicts the assumption that θ has height zero, and completes the proof.

Acknowledgement. B. Külshammer drew my attention to the preprint [6] during a visit to Jena in April 2011. S. Kleshchev suggested I look at the restrictions of dual Specht modules, and D. Hemmer clarified the 'fixed-point functors' used to prove Lemma 4. G. Navarro gave me the example of the group of order 72 which has a 2-block with 3 real irreducible Brauer characters of height 0 .

References

[1] R. Gow: Real 2-blocks of characters of finite groups, Osaka J. Math. 25 (1988), 135-147.
[2] R. Gow and W. Willems: Quadratic geometries, projective modules, and idempotents, J. Algebra 160 (1993), 257-272.
[3] R. Gow and W. Willems: A note on Green correspondence and forms, Comm. Algebra 23 (1995), 1239-1248.
[4] D.J. Hemmer: Fixed-point functors for symmetric groups and Schur algebras, J. Algebra 280 (2004), 295-312.
[5] G.D. James: The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics 682, Springer, Berlin, 1978.
[6] M. Kiyota, T. Okuyama and T. Wada: The heights of irreducible Brauer characters in 2-blocks of the symmetric groups, J. Algebra 368 (2012), 329-344.
[7] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, Boston, MA, 1989.
[8] W. Willems: Duality and forms in representation theory; in Representation Theory of Finite Groups and Finite-Dimensional Algebras (Bielefeld, 1991), Progr. Math. 95, Birkhäuser, Basel, 1991, 509-520.

Department of Mathematics \& Statistics National University of Ireland Maynooth Co. Kildare
Ireland
e-mail: John.Murray@maths.nuim.ie

