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Abstract
In this paper we study involutions on minimal surfaces of general type withpg D

q D 0 and K 2
D 7. We focus on the classification of the birational models of the

quotient surfaces and their branch divisors induced by an involution.

1. Introduction

Algebraic surfaces of general type with vanishing geometric genus have a very old
history and have been studied by many mathematicians. Sincethere are too many to
mention here, we refer a very recent survey [1]. Nonetheless, a classification is still
lacking and it can be considered one of the most difficult current problems in the the-
ory of algebraic surfaces.

In the 1930s Campedelli [5] constructed the first example of aminimal surface
of general type withpg D 0 using a double cover. He used a double cover ofP

2

branched along a degree 10 curve with six points, not lying ona conic, all of which
are a triple point with another infinitely near triple point.After his construction, the
covering method has been one of main tools for constructing new surfaces.

Surfaces of general type withpg D q D 0, K 2
D 1, and with an involution have

studied by Keum and the first named author [11], and completedlater by Calabri,
Ciliberto and Mendes Lopes [3]. Also surfaces of general typewith pg D q D 0,
K 2
D 2, and with an involution have studied by Calabri, Mendes Lopes, and Pardini

[4]. Previous studies motivate the study of surfaces of general type with pg D q D 0,
K 2
D 7, and with an involution.
We know that a minimal surface of general type withpg D q D 0 satisfies 1�

K 2
� 9. One can ask whether there is a minimal surface of general type with pg D qD

0, and with an involution whose quotient is birational to an Enriques surface. Indeed,
there are examples that are minimal surfaces of general typewith pg D q D 0, and
K 2
D 1, 2, 3, 4 constructed by a double cover of an Enriques surfacein [9], [11], [12],

[17]. On the other hand, there is no a minimal surface of general type with pg D q D 0
and K 2

D 9 (resp. 8) having an involution whose quotient is birational to an Enriques
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surface by Theorem 4.3 (resp. 4.4) in [8]. Therefore, it is worth to classify the pos-
sible branch divisors and to find an example whose quotient isbirational to an Enriques
surface in the casesK 2

D 5, 6, 7. We focus on the classification of branch divisors in-
duced by an involution instead of finding examples. We have only two possible cases
by excluding all other cases in the caseK 2

D 7. Precisely, we prove the following in
Section 4.

Theorem. Let S be a minimal surface of general type with pg(S) D q(S) D 0,
K 2

S D 7 having an involution� . Suppose that the quotient S=� is birational to an
Enriques surface. Then the number of fixed points is9, and the fixed divisor is a
curve of genus3 or consists of two curves of genus1 and 3. Furthermore, S has
a 2-torsion element.

Let S be a minimal surface of general type withpg(S) D q(S) D 0 having an
involution � . There is a commutative diagram:

V
�

K

Q�

K

S

�

K

W
�

K6.

In this diagram� is the quotient map induced by the involution� . And � is the blow-
up of S at k isolated fixed points of� . Also, Q� is induced by the quotient map� and
� is the minimal resolution of thek double points made by the quotient map� . And,
there is a fixed divisorR of � on S which is a smooth, possibly reducible, curve. We
set R0 WD �

�(R) and B0 WD Q�(R0). Let 0i be an irreducible component ofB0. When
we write 0i

(m,n), m meanspa(0i ) and n is 02
i .

In the paper, we give the classification of the birational models of the quotient
surfaces and their branch divisors induced by an involutionwhen K 2

S D 7. Precisely,
we have the following table of the classification.

If k D 11, the bicanonical map is composed with the involution. We will omit the
classification ofB0 for k D 11 because there are detailed studies in [2], [3] and [14].

The paper is organized as follows. In Section 3 we provide theclassification of
branch divisorsB0, and birational models of quotient surfacesW for each possiblek.
Our approach follows by the same approach as in [3], [4] and [8]. But we have to face
different problems with respect to previous known results.Section 4 is devoted to the
study whenW is birational to an Enriques surface. Firstly, we see that anEnriques
surfaceW0, obtained by contracting two (�1)-curves fromW, has eight disjoint (�2)-
curves. Then via detailed study of Enriques surfaces with eight (�2)-curves, only two
possible cases of branch divisors are remained by excludingall other cases. Section 5
is devoted to the study of the branch divisors of an example given in [14].
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k K 2
W B0 W

5 2 00
(1,�2) minimal of general type

7 1 00
(3,2) minimal of general type

7 0 00
(2,�2) minimal properly elliptic, or of general

type whose minimal model hasK 2
D 100

(2,0)C
01

(1,�2)

9 �2 00
(4,2)C

01
(0,�4) �(W) � 1, and

if W is birational to an Enriques surface
then B0 D

00
(3,0)C

01
(1,�2) or 00

(3,�2)

00
(3,�2)

00
(4,4)C

01
(1,�2)C

02
(0,�4)

00
(4,4)C

01
(0,�6)

00
(3,0)C

01
(1,�2)

00
(3,2)C

01
(1,�4)

00
(2,�2)C

01
(2,0)

00
(3,2)C

01
(1,�2)C

02
(1,�2)

00
(2,0)C

01
(2,0)C

02
(1,�2)

11 �4 rational surface

Even if we are not able to construct a new example of such surfaces which are double
covers of surfaces birational to an Enriques surface or surfaces of general type, our work
will help to find such an example and to give the classificationof these surfaces.

2. Notation and conventions

In this section we fix the notation which will be used. We work over the field of
complex numbers in this paper.

Let X be a smooth projective surface. Let0 be a curve inX and O0 be the nor-
malization of0. We set:
KX: the canonical divisor ofX;
N S(X): the Néron–Severi group ofX;
�(X): the rank ofN S(X);
�(X): the Kodaira dimension ofX;
q(X): the irregularity of X, that is,h1(X, OX);
pg(X): the geometric genus ofX, that is,h0(X, OX(KX));
pa(0): the arithmetic genus of0, that is,0(0 C KX)=2C 1;
pg(0): the geometric genus of0, that is,h0( O0, O

O

0

(K
O

0

));
�: the linear equivalence of divisors on a surface;
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�: the numerical equivalence of divisors on a surface;
0 W (m, n) or 0

(m,n): m is pa(0) and n is the self intersection number of0;
(�n)-curve: a smooth irreducible rational curve with the self intersection number�n,
in particular we call that a (�2)-curve is nodal.
We usually omit the sign� of the intersection product of two divisors on a surface.

Let S be a minimal surface of general type withpg(S) D q(S) D 0 having an
involution � . Then there is a commutative diagram:

V
�

K

Q�

K

S

�

K

W
�

K6.

In the above diagram� is the quotient map induced by the involution� . And � is the
blowing-up of S at k isolated fixed points arising from the involution� . Also, Q� is
induced by the quotient map� and � is the minimal resolution of thek double points
made by the quotient map� . We denote thek disjoint (�1)-curves onV (resp. thek
disjoint (�2)-curves onW) related to thek disjoint isolated fixed points onS (resp. the
k double points on6) as Ei (resp. Ni ), i D 1, : : : , k. And, there is a fixed divisorR
of � on S which is a smooth, possibly reducible, curve. So we setR0 WD �

�(R) and
B0 WD Q�(R0).

The map Q� is a flat double cover branched onQB WD B0 C
Pk

iD1 Ni . Thus there

exists a divisorL on W such that 2L � QB and

Q�

�

OV D OW �OW(�L).

Moreover, KV � Q�
�(KW C L) and KS� �

�K
6

C R.

3. Classification of branch divisors and quotient surfaces

In this section we focus on the classification of the birational models of the quo-
tient surfaces and their branch divisors induced by an involution.

Since��(2KS)� Q��(2KWCB0), the divisor 2KWCB0 is nef and big, and (2KWC

B0)2
D 2K 2

S. We begin with recalling the results in [3] and [8].

Proposition 3.1 (Proposition 3.3 and Corollary 3.5 in [3]). Let S be a minimal
surface of general type with pg D 0 and let � be an involution of S. Then
(i) k � 4;
(ii) KW L C L2

D �2;
(iii) h0(W, OW(2KW C L)) D K 2

W C KWL;
(iv) K 2

W C KWL � 0;
(v) k D K 2

SC 4� 2h0(W, OW(2KW C L));
(vi) h0(W, OW(2KW C B0)) D K 2

SC 1� h0(W, OW(2KW C L));
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(vii) K 2
W � K 2

V .

Proposition 3.2 (Corollary 3.6 in [3]). Let S be a minimal surface of general type

with pg D 0, let ' W S! P

K 2
S be the bicanonical map of S and let� be an involution of

S. Then the following conditions are equivalent:
(i) ' is composed with� ;
(ii) h0(W, OW(2KW C L)) D 0;
(iii) KW(KW C L) D 0;
(iv) the number of isolated fixed points of� is kD K 2

SC 4.

By (i) and (v) of Proposition 3.1, the possibilities ofk are 5, 7, 9, 11 ifK 2
S D 7.

In particular, if k D 11, the bicanonical map' is composed with the involution, which
is treated by Proposition 3.2.

Lemma 3.3 (Theorem 3.3 in [8]). Let W be a smooth rational surface and let
N1, : : : , Nk � W be disjoint nodal curves. Then
(i) k � �(W) � 1, and equality holds if and only if WD F2;
(ii) if k D �(W) � 2 and �(W) � 5, then k is even.

Lemma 3.4 (Proposition 4.1 in [8] and Remark 4.3 in [10]). Let W be a surface
with pg(W)D q(W)D 0 and�(W) � 0, and let N1, : : : , Nk �W be disjoint nodal curves.
Then
(i) k � �(W) � 2 unless W is a fake projective plane;
(ii) if k D �(W)�2, then W is minimal unless W is the blowing-up of a fake projective
plane at one point or at two infinitely near points.

For simplicity of notation, we letD stand for 2KW C B0.

Theorem 3.5. Let S be a minimal surface of general type with pg(S) D 0 and
K 2

S D 7 having an involution� . Then
(i) D2

D 14;
(ii) if k D 11, then KW D D 0, K 2

W D �4, and W is a rational surface;
(iii) if k D 9, then KW D D 2, K 2

W D �2, and �(W) � 1;
(iv) if k D 7, then KW D D 4, 0 � K 2

W � 1, and �(W) � 1. Furthermore, if W is
properly elliptic then K2

W D 0. If K 2
W D 1 then W is minimal of general type. And

if K 2
W D 0 and W is of general type then K2

W0

D 1 where W0 is the minimal model
of W;
(v) if k D 5, then KW D D 6, K 2

W D 2, and W is minimal of general type.

Proof. (i) This follows by��(2KS) � Q��(D) and K 2
S D 7.

(ii) Firstly, KW D D 2KW(KW C L) D 0 by Proposition 3.2. Secondly,K 2
V D

K 2
S � k D 7� 11D �4. We have thusK 2

W � �4 by (vii) of Proposition 3.1. Finally,
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K 2
W � 0 by the algebraic index theorem becauseKW D D 0 andD is nef and big. Since

KW D D 0, W can be a rational surface or birational to an Enriques surface. Enriques
surface is excluded by Theorem 3 in [19]. Also, by Lemma 3.3k � �(W)�3, and we
have thus�(W) � 14. ThereforeK 2

W D �4.
(iii) Firstly, KW D D 2KW(KWC L) D 2 follows by (iii) and (v) of Proposition 3.1.

Secondly,K 2
V D K 2

S�kD 7�9D�2. We have thusK 2
W � �2 by (vii) of Proposition 3.1.

Finally, the algebraic index theorem yields 0� (7KW � D)2
D 49K 2

W � 14KW DC D2
D

49K 2
W � 14, and we have thusK 2

W � 0.
If W is a rational surface then by Lemma 3.3k � �(W) � 3, and so�(W) � 12.

ThereforeK 2
W D �2. If �(W) � 0 then by Lemma 3.4�(W) � 11. If �(W) D 11 then

W is minimal. It gives a contradiction becauseK 2
W D �1. Therefore�(W) D 12 and

K 2
W D �2.

Moreover,W is not of general type; supposeW is of general type, then we con-
sider a birational morphismt W W ! W0 such thatW0 is the minimal model ofW.
Also, we can writeKW � t�(KW0) C E, E > 0 since K 2

W � 0. Then Dt�(KW0) D 2;
firstly, Dt�(KW0) � 2 because 2D DKW D Dt�(KW0)C DE and D is nef. Secondly,
Dt�(KW0) � 2 follows from thatDt�(KW0) D 2KWt�(KW0)C B0t�(KW0) D 2(t�(KW0)C
E)t�(KW0)C B0t�(KW0) D 2K 2

W0

C B0t�(KW0) � 2 becauseK 2
W0

> 0 and KW0 is nef.
The algebraic index theorem yields 0� (7t�(KW) � D)2

D 49t�(KW0)2
�

14Dt�(KW0) C D2
D 49K 2

W0

� 28 C 14. We have thusK 2
W0

� 0, which gives a
contradiction.

(iv) Since K 2
V D K 2

S� k D 0, K 2
W � 0. KW D D 4 yields K 2

W � 1. K 2
W � 0 and

KW D D 4 imply that W is not birational to an Enriques surface. Againk D 7 implies
that if W is a rational surface thenK 2

W D 0. But thenh0(W, OW(�KW)) > 0 and this
is impossible becauseD is nef.

If W is properly elliptic thenK 2
W D 0. And if K 2

W D 1 then W is a minimal
surface of general type by Lemma 3.4.

Now suppose thatK 2
W D 0 and W is of general type. Then we consider a bi-

rational morphismt W W ! W0 such thatW0 is the minimal model ofW. Suppose
K 2

W0

� 2.
We write KW � t�(KW0) C E, E > 0. Firstly, Dt�(KW0) � 4 becauseKW D D

4. Secondly,Dt�(KW0) � 4: Dt�(KW0) D 2KWt�(KW0) C B0t�(KW0) D 2(t�(KW0) C
E)t�(KW0)C B0t�(KW0) D 2K 2

W0

C B0t�(KW0) � 4 since we supposeK 2
W0

� 2 and KW0

is nef.
ThereforeDt�(KW0) D 4. Then by the algebraic index theorem andD2

D 14, 0�
(7t�(KW0)�2D)2

D 49t�(KW0)2
�28Dt�(KW0)C4D2

D 49K 2
W0

�112C56, which gives
a contradiction.

(v) Since K 2
V D 2, K 2

W � 2 and soW is either a rational surface or a surface of
general type. But if it is a rational surface thenh0(W, OW(�KW)) > 0 gives a contra-
diction. Also, KW D D 6 and the algebraic index theorem implies thatK 2

W � 2.
Now we know thatW is of general type withK 2

W D 2, it is enough to prove that
W is minimal. SupposeW is not minimal. Then we consider a birational morphism
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t W W ! W0 such thatW0 is the minimal model ofW. Also, we can writeKW �

t�(KW0)CE, E > 0. Firstly, Dt�(KW0) � 6 becauseKW D D 6, andK 2
W0

� 3. Secondly,
Dt�(KW0) � 6: Dt�(KW0) D 2KWt�(KW0) C B0t�(KW0) D 2(t�(KW0) C E)t�(KW0) C
B0t�(KW0) D 2K 2

W0

C B0t�(KW0) � 6 sinceK 2
W0

� 3 and KW0 is nef.
ThereforeDt�(KW0) D 6. Then by the algebraic index theorem andD2

D 14, 0�
(7t�(KW0) � 3D)2

D 49t�(KW0)2
� 42Dt�(KW0) C 9D2

D 49K 2
W0

� 252C 126, which
gives a contradiction.

We now study the possibilities of an irreducible component0 � B0 for each num-
ber of isolated fixed points. Let0V be the preimage of0 in the double coverV of W.
We do not consider the casek D 11 because it is already treated in [2], [3] and [14].

Lemma 3.6. For any irreducible component0 � B0 on W, 2KV0V D 0D, where
Q�

�

0 � 20V .

Proof. We have 20D D Q��(0) Q��(D) D 20V�
�(2KS). We have thus0D D

0V�
�(2KS). On the other hand, we know that0V�

�(2KS) D 2KV0V because0V \

(exceptional locus of�) D ¿. Therefore 2KV0V D 0D.

REMARK 3.7. By Lemma 3.6,0D should be even, and if0D D 0 then0 is a
(�4)-curve.

3.1. Classification ofB0 for k D 9. In this case,B0D D 10 becauseB0D D
(D � 2KW)D D 14� 4D 10. So0D D 10, 8, 6, 4, or 2.

1) The case0D D 10. SinceD2
D 14 andD is nef and big, 0� (70 � 5D)2

D

4902
� 700D C 25D2

D 4902
� 350 by the algebraic index theorem. That is,02

� 7.
Thus we get02

V � 3 because 202
V D 0

2. Moreover, we know that 0� pa(0V ) D 1C
(1=2)(02

V C KV0V ) D 1C (1=2)(02
V C 5) by Lemma 3.6. Thus�7 � 02

V � 3. By the
genus formula,02

V D �7,�5,�3,�1, 1, 3.
(1) The case02

V D�7: in this case,pa(0V )D 0. So0W (0,�14). Then if we write that
B0 D 00C01C� � �C0l such that00 D 0 and0i are (�4)-curves for eachi D 1,: : : , l ,
then

6D 2� 2K 2
W D KW(D � 2KW) D KW B0 D 12C 2l .

We get a contradiction becausel D �3.
(2) The cases02

V D �5,�3: similar arguments as the case (1) give contradictions be-
causel < 0.
(3) The case02

V D �1: we get pa(0V ) D 3. So0 W (3,�2) and l D 0.
(4) The case02

V D 1: here, pa(0V ) D 4. So0 W (4, 2) andl D 1.
(5) The case02

V D 3: lastly, pa(0V ) D 5. So0 W (5, 6) andl D 2.
We have thus the following possibilities ofB0 in the case0D D 10.

B0 W
00

(5,6)C
01

(0,�4)C
02

(0,�4),
00

(4,2)C
01

(0,�4),
00

(3,�2).
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REMARK 3.8. 00
(5,6)C

01
(0,�4)C

02
(0,�4) cannot occur by Proposition 2.1.1 of [16] be-

cause a smooth rational curve inB0 corresponds to a smooth rational curve onS.

2) The case00D D 8 and01D D 2. We can use the similar argument as the
above Section 3.1. 1) for each of00D and01D. However, we have to considerB0 D

00 C 01 C 0
0

1 C � � � C 0
0

l to get the possibilities forB0, where00i W (0,�4) for all i 2
{1, 2, : : : , l } if those exist. Then we get the following possible cases.

B0 W
00

(4,4)C
01

(1,�2)C
02

(0,�4),
00

(4,4)C
01

(0,�6),
00

(3,0)C
01

(1,�2).

Now, we give all remaining cases by the similar argument as the above Sec-
tion 3.1. 2).

3) The case00D D 6 and01D D 4.

B0 W
00

(3,2)C
01

(2,0)C
02

(0,�4),
00

(3,2)C
01

(1,�4),
00

(2,�2)C
01

(2,0).

00
(3,2)C

01
(2,0)C

02
(0,�4) cannot happen. Indeed, the intersection number matrix ofKW, 00,

01, and02 is nondegenerate. Thus�(W) � 13 which is a contradiction since�(W) D
12 by K 2

W D �2.
4) The case00D D 6, 01D D 2 and02D D 2.

B0 W
00

(3,2)C
01

(1,�2)C
02

(1,�2).

5) The case00D D 4, 01D D 4 and02D D 2.

B0 W
00

(2,0)C
01

(2,0)C
02

(1,�2).

6) The case00D D 4, 01D D 2, 02D D 2 and03D D 2.
We get a contradiction by the similar argument in Section 3.1. 1) (1).
7) The case00D D 2, 01D D 2, 02D D 2, 03D D 2 and04D D 2.
This case is also ruled out by the similar argument in Section3.1. 1) (1).
By Theorem 3.5 and from the above classification, we get Table1:

3.2. Classification of B0 for k D 7. In this case,B0D D 6. So 0D can be
6, 4, 2. By using similar arguments as the above Section 3.1, we get the following
tables related toK 2

W and B0 for each case of0D.
1) The case0D D 6.

K 2
W B0

1 00
(3,2)

0 00
(3,2)C

01
(0,�4),

00
(2,�2)
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Table 1. Classifications ofK 2
W, B0 and W for k D 9.

K 2
W B0 W

�2 00
(4,2)C

01
(0,�4) �(W) � 1

00
(3,�2)

00
(4,4)C

01
(1,�2)C

02
(0,�4)

00
(4,4)C

01
(0,�6)

00
(3,0)C

01
(1,�2)

00
(3,2)C

01
(1,�4)

00
(2,�2)C

01
(2,0)

00
(3,2)C

01
(1,�2)C

02
(1,�2)

00
(2,0)C

01
(2,0)C

02
(1,�2)

Lemma 3.9. B0 D
00

(3,2)C
01

(0,�4) is not possible.

Proof. By Theorem 3.5,W is minimal properly elliptic, or of general type whose
minimal model W0 has K 2

W0

D 1. If W is minimal properly elliptic, then we get a
contradiction by Miyaoka’s theorem in [16] becauseW has seven disjoint (�2)-curves
and one (�4)-curve.

We now suppose thatW is of general type whose minimal modelW0 hasK 2
W0

D 1.
We consider a birational morphismt W W! W0, and KW � t�(KW0)C E, where E is
the unique (�1)-curve. E cannot meet seven disjointNi becauseKW0 t(Ni ) D �Ni E
and KW0 is nef. And 01E � 1 becauseKW B0 D 4, KW00 D 2, and t�(KW0)01 �

1. Then, Miyaoka’s theorem [16] again gives a contradiction becauseW0 has seven
disjoint (�2)-curves, and one (�4)-curve or one (�3)-curve.

2) The case00D D 4 and01D D 2.

K 2
W B0

0 00
(2,0)C

01
(1,�2)

3) The case00D D 2, 01D D 2 and02D D 2.
This case is not possible by the similar argument in Section 3.1. 1) (1).

3.3. Classification ofB0 for k D 5. In this case,B0D D 2. So0D can be 2.
By using similar arguments as the above Section 3.1, we get the following table related
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Table 2. Classifications ofK 2
W, B0 and W for k D 7.

K 2
W B0 W

1 00
(3,2) minimal of general type

0 00
(2,�2) minimal properly elliptic, or of general

type whose minimal model hasK 2
D 100

(2,0)C
01

(1,�2)

Table 3. Classifications ofK 2
W, B0 and W for k D 5.

K 2
W B0 W

2 00
(1,�2) of general type

to K 2
W and B0 for 0D.

4. Quotient surface birational to an Enriques surface

In this section we treat the case whenW is birational to an Enriques surface.

Theorem 4.1. Let S be a minimal surface of general type with pg(S) D 0 and
K 2

SD 7 having an involution� . If W is birational to an Enriques surface then kD 9,
K 2

W D �2, and the branch divisor B0 D
00

(3,0)C
01

(1,�2) or 00
(3,�2). Furthermore, S has a

2-torsion element.

SupposeW is birational to an Enriques surface. Then by Theorem 3.5, wehave
k D 9 and K 2

W D �2. Consider the contraction maps:

W
'1
�! W1

'2
�! W0,

where NE1 is a (�1)-curve onW, NE2 is a (�1)-curve onW1, 'i is the contraction of
the (�1)-curve NEi , and W0 is an Enriques surface.

Lemma 4.2. i) Ni \ NE1 ¤ ¿ for some i2 {1, 2, : : : , 9}.
ii) N1 NE1 D 1 after relabeling{N1, : : : , N9}.
iii) Ns NE1 D 0 for all s 2 {2, : : : , 9}.

Proof. i) Suppose thatNi \ NE1 D ¿ for all i D 1, : : : , 9. Let A be the number
of disjoint (�2)-curves onW1. Then by Lemma 3.4 (i), 9� A � �(W1)� 2D 9. Thus
AD 9 andW1 should be a minimal surface by Lemma 3.4 (ii). This is a contradiction
becauseW1 is not minimal. HenceNi \ NE1 ¤ ¿ for somei 2 {1, 2, : : : , 9}.
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ii) By part i) we may choose a (�2)-curve N1 such thatN1 NE1 D � > 0. Then
('1(N1))2

D �2C �2 and '1(N1)KW1 D ��. We claim that� must be 1. Indeed, sup-
pose � � 2, then ('1(N1))2

> 0, so '2 Æ '1(N1) is a curve onW0. Moreover,
'2 Æ'1(N1)KW0

� '1(N1)KW1. But the left side is zero because 2KW0

� 0 and the right
side is negative because'1(N1)KW1 D �� by our assumption. This is a contradiction,
thus � D 1.

iii) Suppose thatNs NE1 ¤ 0 for somes 2 {2, : : : , 9}. Then W1 would contain a
pair of (�1)-curves with nonempty intersection. This is impossible becauseKW0 is nef.
HenceNs NE1 D 0 for all s 2 {2, : : : , 9}.

In this situation, consider an irreducible nonsingular curve 0 disjoint to N1 and
such that NE10 D �. Then we obtain the following.

Lemma 4.3. 2pa(0) � 2D 02
C 2�.

Proof. By Lemma 4.2,

KW � '
�

1 (KW1)C NE1 � '
�

1 ('�2 (KW0)C NE2)C NE1 � '
�

1 Æ '
�

2 (KW0)C N1C 2 NE1.

So KW0 D '

�

1 Æ '
�

2 (KW0)0 C N10 C 2 NE10 D 2� since 2KW0

� 0 and N1 and 0 are
disjoint. Thus we get 2pa(0) � 2D 02

C 2�.

By referring to Table 1. of Section 3.1 with respect toK 2
W D �2 and k D 9, we

obtain a list of possible branch curvesB0. Then we can consider0 as one of the
components0i in the B0. The possibilities for0 which we will consider are:

(0,�4), (2,�2), (2, 0), (1,�2), (0,�6), (3, 2), (1,�4).

We treat each case separately.
a) The case0 W (0,�4).

By Lemma 4.3,� D 1. Thus W0 should contain nine disjoint (�2)-curves. This
is a contradiction becauseW0 can contain at most eight disjoint (�2)-curves since it is
an Enriques surface.

From now on, we consider the nodal Enriques surface6

0 obtained by contracting
eight (�2)-curves QNi , i D 2, : : : , 9, where QNi WD '2 Æ'1(Ni ) on W0. The surface60 has
eight nodesqi , i D 2,: : : ,9 and Q0

6

0 which is image ofQ0, where Q0 WD '2Æ'1(0) on W0.
By Theorem 4.1 in [15],60

D D1 � D2=G, where D1 and D2 are elliptic curves and
G is a finite groupZ2

2 or Z3
2. Let p be the quotient mapD1� D2! D1� D2=G D 60.

The map p is étale outside the preimage of nodesqi on 60, and we note thatQ0
6

0

does not meet with any eight nodesqi on 60. We write O0D1�D2 for a component of
p�1( Q0

6

0).
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b) The case0 W (0,�6).
By Lemma 4.3,� D 2. So Q0 is (2, 2). Then the normalizationO0nor of O0D1�D2 is

a smooth rational curve sincepa(0) D 0 and0 is smooth.
Let pri be the projection mapD1 � D2 ! Di . Then this induces morphisms

pi W O0
nor
! Di which factors throughpri j O

0D1�D2
. Then sinceO0D1�D2 is a curve onD1�

D2, pi should be a surjective morphism for somei 2 {1,2}. However, this is impossible
becausepg( O0nor) D 0 and pg(Di ) D 1.
c) The case0 W (1,�4).

By Lemma 4.3,� D 2. So Q0 is (3, 4). Then the normalizationO0nor of O0D1�D2 is

a smooth elliptic curve becausepa(0) D 1 and0 is smooth. ThusO0nor
! D1 � D2 is

a morphism of Abelian varieties and so must be linear, which implies that O0D1�D2 is
smooth. ThusQ0

6

0 is also smooth becauseQ0
6

0 does not meet any of the eight nodes
qi on 60 and p is étale on away from the nodesqi . This is a contradiction since we
assumedQ0

6

0 to be singular.
d) The case00

(3,2)C
01

(1,�2)C
02

(1,�2).

By Lemma 4.3, we haveNE10i D 1 for i D 0, 1, 2. So we getQ00W (3, 4), Q01W (1, 0),
Q

02W (1, 0) and Q0i Q0j D 2 for i ¤ j on the Enriques surfaceW0. Now, we apply Propos-

ition 3.1.2 of [7] to the curveQ02. Then one of the linear systemsj Q02j or j2 Q02j gives
an elliptic fibration f W W0

! P

1. So we have the reducible non-multiple degenerate
fibres QT1 (D QN2 C QN3 C QN4 C QN5 C 2E1) and QT2 (D QN6 C QN7 C QN8 C QN9 C 2E2) of
f by Theorem 5.6.2 of [7], sinceW0 has eight disjoint (�2)-curves. Moreover,f has
two double fibres 2F1 and 2F2 since W0 is an Enriques surface.

(1) Supposej Q02j determines the elliptic fibration. ThenQ02 is a fibre of f . Since
Q

01 Q02 D 2 (they meet at a point with multiplicity 2), 2F1 Q01 D 2, 2F2 Q01 D 2 and
QT i Q01 D 2 for i D 1, 2, we apply Hurwitz’s formula to the coveringf j

Q

01
W

Q

01! P

1

to obtain

0D 2pg( Q01) � 2� 2(�2)C 5D 1,

which is impossible.
(2) Supposej2 Q02j determines the elliptic fibration. Then 2Q02 is a fibre of f . Since
2F1 Q01 (D 2 Q02 Q01) D 4, 2F2 Q01 D 4 and QT i Q01 D 4 for i D 1, 2, we apply Hurwitz’s
formula to the coveringf j

Q

01
W

Q

01! P

1 to obtain

0D 2pg( Q01) � 2� 4(�2)C 3C 2C 2C 2D 1,

which is impossible.
e) The case00

(2,0)C
01

(2,0)C
02

(1,�2).

By Lemma 4.3, NE10i D 1 for i D 0,1,2. So we haveQ00W (2,2), Q01W (2,2), Q02W (1,0)
and Q0i Q0j D 2 for i ¤ j on the Enriques surfaceW0.

Lemma 4.4. h0(W0, OW0 ( Q01)) D 2.
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Proof. Since 2KW0

� 0 and KW0

C

Q

01 is nef and big,

hi (W0, OW0 ( Q01)) D hi (W0, OW0 (2KW0

C

Q

01))

D hi (W0, OW0 (KW0

C (KW0

C

Q

01)))

D 0

for i D 1, 2 by Kawamata–Viehweg Vanishing Theorem. Thus

h0(W0, OW0 ( Q01)) D 2

by Riemann–Roch Theorem.

Lemma 4.5. Let T be a nef and big divisor on W0. Then any divisor U in a
linear systemjT j is connected.

Proof. Consider an exact sequence

0! OW0 (�U )! OW0

! OU ! 0.

Then we getH0(OW0 ) � H0(OU ) by the long exact sequence for cohomology, and so
U is connected.

Now, we apply Proposition 3.1.2 of [7] to the curveQ02. Then one of the linear
systemsj Q02j or j2 Q02j gives an elliptic fibrationf W W0

! P

1. So we have the reducible
non-multiple degenerate fibresQT1 (D QN2C QN3C QN4C QN5C 2E1), QT2 (D QN6C QN7C

QN8C QN9C 2E2) and two double fibres 2F1, 2F2 of the fibration f .
(1) Supposej Q02j determines the elliptic fibration. Consider an exact sequence 0!
OW0( Q01�E1)!OW0( Q01)!OE1( Q01)! 0. If we assumeH0(W0,OW0( Q01�E1))¤ 0,
then Q01 � 2E1C QN2C QN3C QN4C QN5CG � Q02CG for some effective divisorG,
and so pa(G) D 0 becauseQ02G D 2. So there is an irreducible smooth curveC
with pa(C) D 0 (i.e. C is a (�2)-curve) as a component ofG. We claimC QNi D 0
for i D 2, 3, : : : , 9. Indeed, supposeC QNi > 0 for somei , and then 0D G QNi D

(HCC) QNi , whereGD HCC for some effective divisorH . SinceH QNi < 0, QNi is
a component ofH . Thus Q01� Q02� GD QNi C I for some effective divisorI , which
is impossible bypa( Q01) D 2, pa( Q02) D 1, Q02I D 2, QNi I D 2 and connectedness
among Q02, QNi and I induced from Lemma 4.5 sinceQ01 is nef and big. On the other
hand, supposeC QNi < 0 for somei , thenC D QNi becauseC and QNi are irreducible
and reduced. ThusQ01 � Q02 � G D QNi C H for an effective divisorH , which is
impossible bypa( Q01) D 2, pa( Q02) D 1, Q02H D 2 and QNi H D 2 and connectedness
among Q02, QNi and H induced from Lemma 4.5 sinceQ01 is nef and big. Hence we
have nine disjoint (�2)-curvesC, QN2, : : : , QN9, which induce a contradiction on the
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Enriques surfaceW0 by Lemma 3.4. Now, we haveH0(W0, OW0( Q01 � E1)) D 0,
and so

H0(W0, OW0( Q01))! H0(E1, OE1( Q01))

is an injective map.
Sinceh0(W0,OW0 ( Q01))D 2 andh0(E1,OE1( Q01))D 2 (becauseQ01E1 D 1), Q01 �

QN2C Q0
0

1 for some effective divisorQ001; The injectivity of the above map andE1 D

P

1 imply that the linear systemQ01 restricted onE1 should move onE1. Therefore
at least one member of the linear system ofQ01 should meet QN2.

Since Q01 is a smooth projective curve of genus 2 whose self intersection num-
ber is 2, and Q001 QN2 D 2, we have Q0021 D 0 and pa( Q001) D 1. And we note that

h0(W0, OW0 ( Q001)) D 1. Therefore,j2 Q001j gives an elliptic fibration, and the special

member ofj2 Q001j containsE1 becauseQ001E1 D 0. Then this special member also

contains QN3, QN4, QN5 becauseQ001 QNi D 0 for i D 3, 4, 5. Sincej2 Q001j gives an ellip-
tic fibration,

2 Q001 � 2E1C QN3C QN4C QN5C QN,

where QN is a (�2)-curve with QN E1 D 1, QN QN j D 0 for all j D 3, 4, 5, 6, 7, 8, 9.

And we get QN QN2 D 2 becauseQ001 QN2 D 2. Then we see thatj2( QN C QN2)j gives an
elliptic pencil onW0. On the other hand, by the classification of possible singular
fibers on an elliptic pencil onW0 (Theorem 5.6.2 in [7], or [15]), we have that any
elliptic fibration onW0 has no singular fibers of type 2(QNC QN2). We note that QN j

for all j D 3, 4, 5, 6, 7, 8, 9 are also on singular fibers.
(2) Supposej2 Q02j determines the elliptic fibration. Consider an exact sequence

0! OW0( Q01 � E1)! OW0( Q01)! OE1( Q01)! 0.

If we assumeH0(W0,OW0 ( Q01�E1))¤ 0, then Q01� E1C QN2C QN3C QN4C QN5CG for
some effective divisorG by the same reason as the above. Then it is impossible
by pa( Q01) D 2, E1G D 0 and QNi G D 1 for all i D 2, 3, 4, 5 and connectedness
among E1, QN2, QN3, QN4, QN5 and G induced from Lemma 4.5 sinceQ01 is nef and
big. Thus we haveH0(W0, OW0 ( Q01 � E1)) D 0, and so

H0(W0, OW0( Q01))! H0(E1, OE1( Q01))

is an injective map.
Sinceh0(W0,OW0 ( Q01))D 2 andh0(E1,OE1( Q01))D 3 (becauseQ01E1 D 2), Q01 �

QN2C Q0
0

1 for some effective divisorQ001 by the same reason as the above. Then it is
also impossible by the same argument as the above.

f) The case 00
(2,�2)C

01
(2,0).

By Lemma 4.3, NE100 D 2 and NE101 D 1. So we haveQ00 W (4, 6) and Q01 W (2, 2) on
the Enriques surfaceW0.
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Consider an elliptic fibration of Enriques surfacef W W0

! P

1, and assumeQ01F D
2 , where F is a general fibre off . Then  > 0 becauseQ01 cannot occur in a fibre
of f since pa( Q01) D 2. Moreover, consider an exact sequence

0! OW0 ( Q01 � E1)! OW0( Q01)! OE1( Q01)! 0.

If we assumeH0(W0, OW0( Q01 � E1)) ¤ 0, then Q01 � E1 C QN2 C QN3 C QN4 C QN5 C G
for some effective divisorG, which is impossible bypa( Q01) D 2, QNi G D 1 for all i D
2, 3, 4, 5 and connectedness amongE1, QN2, QN3, QN4, QN5 and G induced from Lemma 4.5
since Q01 is nef and big. Now, we haveH0(W0, OW0( Q01 � E1)) D 0, and so

H0(W0, OW0( Q01))! H0(E1, OE1( Q01))

is an injective map. Sinceh0(W0, OW0 ( Q01)) D 2 by Lemma 4.4 andh0(E1, OE1( Q01)) D
 C 1 (becauseQ01E1 D  ), Q01 � QN2 C Q0

0

1 for some effective divisorQ001 by the same
reason as the previous case. Then it is also impossible by thesame argument as the
previous case.

Therefore, all other cases exceptB0 D
00

(3,0)C
01

(1,�2) or 00
(3,�2) are excluded.

Lemma 4.6. If W is birational to an Enriques surface then S has a2-torsion
element.

Proof. If W is birational to an Enriques surface then 2KW can be written as 2A
where A is an effective divisor. Thus 2KV � Q�

�(2A)C2 QR, where QR is the ramification
divisor of Q� . So G D Q��(A) C QR is an effective divisor such thatG � KV but G ¥
KV becauseG is effective andpg(V) D 0. Since 2G � 2KV , G � KV is a 2-torsion
element, and soS has a 2-torsion element.

REMARK 4.7. SupposeB0D
00

(3,0)C
01

(1,�2). By Lemma 4.3, NE100D 2 and NE101D 1.

So we haveQ00 W (5, 8), Q01 W (1, 0) and Q00 Q01 D 4 on the Enriques surfaceW0. We have
h0(W0,OW0( Q00))D 5 sinceQ00W (5,8). However, the intersection numberQ00 Q01D 4 together
with tangency condition gives a six dimensional condition.

By the results in Sections 3 and 4, we have the table of the classification in Intro-
duction.

5. Examples

There is an example of a minimal surfaceS of general type withpg(S) D q(S) D
0, K 2

SD 7 with an involution. Such an example can be found in Example 4.1 of [13].
Since the surfaceS is constructed by bidouble cover (i.e.Z2

2-cover), there are three
involutions1, 2 and3 on S. The bicanonical map' is composed with the involution
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1 but not with 2 and 3. Thus the pair (S, 1) has k D 11 by Proposition 3.2, and
then W1 is rational andK 2

W1
D �4 by Theorem 3.5 (ii), whereW1 is the blowing-up of

all the nodes inS=1. On the other hand, we cannot see directly aboutk, K 2 and the
Kodaira dimension of the quotients in the case (S, 2) and (S, 3). We use the notation
of Example 4.1 in [13], butP denotes6. Moreover,Wi comes from the blowing-up
at all the nodes of6i WD S=i for i D 1, 2, 3.

We now observe thatWi is constructed by using a double coveringTi of a ra-
tional surfaceP with a branch divisor related toL i . The surfaceP is obtained as the
blowing-up at six points on a configuration of lines inP2. The surfaceWi is obtained
by examining (�1) and (�2)-curves onTi and contracting some of them.

We will now explain this examination in more details for eachcase. Firstly, for
i D 1, then K 2

T1
D �6 since KT1 � �

�

1 (K P C L1), where�1 W T1 ! P is the double
cover. We observe that there are only two (�1)-curves onT1 becauseS3, S4 are on
the branch locus of�1. So K 2

W1
D K 2

61
D �6C 2D �4. On the other hand, we also

observe that there are only seven nodes and four (�2)-curves onT1 becauseD2D3 D

7 and S1 and S2 do not contain inD2 C D3. So 61 has k D 11 nodes. Moreover,
H0(T1, OT1(2KT1)) D H0(P, OP(2K P C 2L1))� H0(P, OP(2K P C L1)) since 2KT1 �

�

�

1 (2K P C 2L1) and �1
�

(OT1) D OP � OP(�L1). So H0(T1, OT1(2KT1)) D 0 because
2K P C 2L1 D 4l � 2e2 � 4e4 � 2e5 � 2e6 and 2K P C L1 D �l C e1 C e3 � e4. This
means thatT1 is rational, and thereforeW1 is rational. For the branch divisorB0, we
observe f2 and 11 in D1. Since f2D2 D 4 and f2D3 D 4, f2(D2 C D3) D 8. By
Hurwitz’s formula, 2pg(00)� 2D 2(2pg( f2)� 2)C 8, and sopg(00) D 3 becausef2 is
rational, and moreover02

0 D 0 becausef 2
2 D 0. This means00W (3, 0). Similarly, since

11D2 D 1 and11D3 D 5, 11(D2 C D3) D 6. By Hurwitz’s formula, 2pg(01) � 2 D
2(2pg(11)� 2)C 6, and sopg(01) D 2 because11 is rational, and moreover02

1 D �2
because12

1 D �1. This means01 W (2,�2), thus B0 D
00

(3,0)C
01

(2,�2).

Secondly, in the casei D 2, we calculateK 2
T2
D�6. We observe that there are only

four (�1)-curves onT2 becauseS1, S2, S3, S4 are on the branch locus. SoK 2
W2
D K 2

62
D

�6C4D �2. On the other hand, we also observe that there are only nine nodes onT2

becauseD1D3 D 9. So62 hask D 9 nodes. Chen [6] shows thatH0(T2,OT2(2KT2)) D
1 and thatW2 is birational to an Enriques surface. For the branch divisorB0, we ob-
serve f3 and12 in D2. Since f3D1 D 2 and f3D3 D 6, pg(00) D 3 becausef3 is ra-
tional, and02

0 D 0 becausef 2
3 D 0. This means00 W (3, 0). Moreover, since12D1 D 3

and12D3 D 1, pg(01) D 1 because12 is rational, and02
1 D �2 because12

2 D �1.
This means01 W (1,�2), thus B0 D

00
(3,0)C

01
(1,�2).

Lastly, for i D 3, we getK 2
T3
D �4. There are only two (�1)-curves onT3 because

S1, S2 are on the branch locus. SoK 2
W3
D K 2

63
D �4C 2 D �2. On the other hand,

there are only nine nodes onT3 becauseD1D2 D 5 and S3 and S4 do not contain in
D1C D2. So62 hask D 9 nodes. Also,H0(T3,OT3(2KT3)) D 0 by a similar argument
to the casei D 1. So W3 is rational. For the branch divisorB0, we observe f1, f 01
and13 in D3. Since f1D1 D 4 and f1D2 D 2, pg(00) D 2 becausef1 is rational, and
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0

2
0 D 0 becausef 2

1 D 0. This means00 W (2, 0), and01 related to f 01 is also of type
(2, 0). Moreover, since13D1 D 1 and13D2 D 3, pg(02) D 1 because13 is rational,
and02

2 D �2 because12
3 D �1. This means02 W (1,�2), thus B0 D

00
(2,0)C

01
(2,0)C

02
(1,�2).

The following table summaries the above computation:

k K 2
Wi

B0 Wi

(S, 1) 11 �4 00
(3,0)C

01
(2,�2) rational

(S, 2) 9 �2 00
(3,0)C

01
(1,�2) birational to an Enriques surface

(S, 3) 9 �2 00
(2,0)C

01
(2,0)C

02
(1,�2) rational

REMARK . In the pre-version of the paper, the 3 quotients of Inoue’s example
were claimed rational surfaces. And we raised the question for the existence of a min-
imal smooth projective surface of general type withpg D 0 and K 2

D 7 which is a
double cover of a surface birational to an Enriques surface or a surface of general type.
Rito [18] constructed an example whose quotient is birational to an Enriques surface.
Later Chen [6] showed that Rito’s example is the Inoue’s one,and Rito pointed out
that one of quotients is not rational but is birational to an Enriques surface.
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