Murai, M. Osaka J. Math. **50** (2013), 1007–1020

ON BLOCKS OF NORMAL SUBGROUPS OF FINITE GROUPS

MASAFUMI MURAI

(Received November 16, 2011, revised March 19, 2012)

Abstract

For a block b of a normal subgroup of a finite group G, E.C. Dade has defined a subgroup G[b] of G. We give a character-theoretical interpretation of his result on G[b]. In the course of proofs we determine a defect group of a block of G[b]covering b. We also consider character-theoretical characterizations of isomorphic blocks with respect to normal subgroups.

Introduction

Let *G* be a finite group and *p* a prime. Let (\mathcal{K}, R, k) be a *p*-modular system. We assume that \mathcal{K} is sufficiently large for *G*. In this paper a block of *G* means a block ideal of *RG*. For a normal subgroup *K* of *G* and a block *b* of *K*, Dade [3] has defined a normal subgroup *G*[*b*] of the inertial group of *b* in *G* such that *G*[*b*] $\geq K$. More precisely put $C = C_{RG}(K)$. We have $C = \bigoplus_{\bar{x} \in \bar{G}} C_{\bar{x}}$, where $\bar{G} = G/K$ and $C_{\bar{x}} = C \cap RKx$. Let e_b be the block idempotent of *b*. The subgroup *G*[*b*] is defined by

$$G[b] = \{ x \in G \mid (e_b C_{\bar{x}})(e_b C_{\bar{x}^{-1}}) = e_b C_{\bar{1}} \}.$$

(Strictly speaking, Dade defines a subgroup (G/K)[b] of G/K. The subgroup G[b] is the preimage of (G/K)[b] in G.) In [3, Corollary 12.6] Dade has determined G[b] in terms of $C_G(Q)$ and a root of b in $C_K(Q)$, where Q is a defect group of b. In Section 3 we shall give a character-theoretical characterization of elements of G[b] and give a character-theoretical interpretation of Dade's result above. In the course of proofs we determine a defect group of a block of G[b] covering b, which is a refinement of a result in [9]. In Section 1, we shall consider weakly regular and regular blocks with respect to normal subgroups. In Section 4, character-theoretical characterizations of isomorphic blocks with respect to normal subgroups which involve G[b] will be obtained. More applications of G[b] will be given in a separate paper [11].

Notation

Let *B* be a block of *G*. The block idempotent of *B* will be denoted by e_B . For an irreducible character χ in *B*, put $\omega_B(z) = \omega_{\chi}(z)$, $z \in Z(RG)$. For a subset *S* of

²⁰¹⁰ Mathematics Subject Classification. 20C20.

G, let $\hat{S} = \sum_{x \in S} s \in RG$. For $x \in G$, let K_x be the conjugacy class of *G* containing *x*, and so \hat{K}_x is the class sum of K_x . Let $D(K_x)$ be a defect group of K_x . Let $e_B = \sum_y a_B(K_y)\hat{K}_y$, where *y* runs through a set of representatives of conjugacy classes of *G*.

Let $B_0(G)$ be the principal block of G. Let Irr(B) be the set of irreducible characters in B. Let $Irr_0(B)$ be the set of irreducible characters of height 0 in B. d(B) is the defect of B. For a block b of a normal subgroup K of G, let G_b be the inertial group of b in G and let BL(G | b) be the set of blocks of G covering b. For an irreducible character ξ of K and a block B of G, let $Irr(B | \xi)$ be the set of irreducible characters in B lying over ξ . Put

$$\operatorname{Irr}_{0}(B \mid \xi) = \{ \chi \in \operatorname{Irr}(B \mid \xi) \mid \operatorname{ht}(\chi) = \operatorname{ht}(\xi) \},\$$

where $ht(\chi)$ is the height of χ . Let *: $R \to k$ be the natural map. For a function $\varphi: S \to R$ defined on a set S, the function $\varphi^*: S \to k$ is defined by $\varphi^*(s) = \varphi(s)^*$, $s \in S$. Let ν be the valuation of \mathcal{K} normalized so that $\nu(p) = 1$.

1. Weakly regular and regular blocks with respect to normal subgroups

In this section we strengthen Theorem 2.1 of [9].

Proposition 1.1. Let N be a normal subgroup of G. Let b be a block of N covered by a block B of G. Let D be a defect group of B. The following conditions are equivalent.

(i) B is a unique weakly regular block of G covering b.

(ii) For a block \hat{b} of DN, we have $\hat{b}^G = B$.

(iii) For any p'-element x of G satisfying $\omega_B^*(\hat{K}_x) \neq 0$, we have $x \in N$.

(iv) For any p'-element x of G satisfying $\omega_B^*(\hat{K}_x) \neq 0$ and $D(K_x) =_G D$, we have $x \in N$.

(v) For any $x \in G$ satisfying $a_B(K_x)^* \neq 0$ and $D(K_x) =_G D$, we have $x \in N$.

Proof. (i) \Rightarrow (ii). By replacing *D* by a conjugate, we may assume *D* is a defect group of the Fong–Reynolds correspondent of *B* over *b* in the inertial group of *b* in *G*. Let \hat{b} be a unique block of *DN* covering *b*. Then $\hat{b}^G = B$, see the proof of Theorem 2.1 of [9].

(ii) \Rightarrow (iii). This is easy to see.

(iii) \Rightarrow (iv). This is trivial.

(iv) \Rightarrow (v). Since $a_B(K_x)^* \neq 0$, x is a p'-element. Let $\{\varphi_i\}$ be the set of irreducible Brauer characters in B. Let Φ_i be the principal indecomposable character corresponding to φ_i . Let $\{\chi_i\}$ be the set of irreducible characters in B. Put

$$\varphi_i = \sum_j n_{ij} \chi_j$$
 (on the set of p'-elements of G),

where n_{ij} are integers. Then

$$a_B(K_x) = \frac{1}{|G|} \sum_i \Phi_i(1)\varphi_i(x^{-1})$$

= $\sum_i \frac{\Phi_i(1)}{|G|} \sum_j n_{ij}\omega_{\chi_j}(\hat{K}_{x^{-1}})\frac{\chi_j(1)}{|K_x|}.$

Since $\Phi_i(1)/|G|$ and $\chi_j(1)/|K_x|$ lie in R for any i and j, we obtain

$$a_B(K_x) \equiv \omega_B(\hat{K}_{x^{-1}}) \sum_i \frac{\Phi_i(1)\varphi_i(1)}{|G| |K_x|} \mod \mathcal{J}(R).$$

Since $\Phi_i(1)\varphi_i(1)/(|G||K_x|)$ lies in R for any i, $a_B(K_x)^* \neq 0$ implies $\omega_B^*(\hat{K}_{x^{-1}}) \neq 0$. Hence $x \in N$ by (iv).

(v) ⇒ (i). Let K_s be a defect class for B ([12, p. 311]). Then $K_s \,\subset N$ by (v). Since $\omega_B^*(\hat{K}_s) \neq 0$ and $D(K_s) =_G D$, B is weakly regular with respect to N by definition ([12, p. 344]). Let B_1 be any weakly regular block of G covering b. Put $e_B = s_N(e_B) + a$, where $s_N(e_B) = \sum_{K_y \subset N} a_B(K_y)\hat{K}_y$. We claim $\omega_{B_1}^*(a) = 0$. Assume this were false. Then there would be an element $x \notin N$ such that $a_B(K_x)^*\omega_{B_1}^*(\hat{K}_x) \neq 0$. Since $a_B(K_x)^* \neq 0$, $D(K_x) \leq_G D$. Since $\omega_{B_1}^*(\hat{K}_x) \neq 0$, $D(K_x) \leq_G D_1$, where D_1 is a defect group of B_1 . By Fong's theorem $D =_G D_1$. Thus $D(K_x) =_G D$. So $x \in N$ by (v), a contradiction, and the claim follows. Now $\omega_{B_1}^*(e_B) = \omega_{B_1}^*(s_N(e_B)) = \omega_b^*(s_N(e_B))$ by [12, Theorem 5.5.5]. Since B is weakly regular, $\omega_b^*(s_N(e_B)) = \omega_b^*(s_N(e_B)e_b \neq 0$ by [9, Theorem 1.10]. Thus $\omega_{B_1}^*(e_B) \neq 0$. Hence $B_1 = B$ and (i) follows. The proof is complete.

REMARK 1.2. The equivalence of (i) and (ii) is proved in [4, Theorem 2.4].

Theorem 1.3. Let N be a normal subgroup of G. Let b be a block of N covered by a block B of G. Let D be a defect group of B. The following conditions are equivalent. (i) B is a unique weakly regular block of G covering b and $Z(D) \leq N$.

- (ii) $B = b^G$.
- (iii) For any $x \in G$ satisfying $\omega_B^*(\hat{K}_x) \neq 0$ and $D(K_x) =_G D$, we have $x \in N$.
- (iv) (iv a) For any p'-element x of G satisfying $\omega_B^*(\hat{K}_x) \neq 0$ and $D(K_x) =_G D$, we have $x \in N$, and
 - (iv b) $Z(D) \leq N$.
- (v) (v a) For any $x \in G$ satisfying $a_B(K_x)^* \neq 0$ and $D(K_x) =_G D$, we have $x \in N$, and

(v b)
$$Z(D) \leq N$$
.

Proof. (i) \Leftrightarrow (ii). This is Theorem 2.1 of [9]. (ii) \Rightarrow (iii). This is trivial.

M. MURAI

(iii) \Rightarrow (iv). (iv a) is trivial. Let K_s be a defect class for B ([12, p. 311]). So s is a p'-element. We may assume D is a Sylow p-subgroup of $C_G(s)$. Let $u \in Z(D)$. Then, as in [13, Lemma 5.15], $D(K_{us}) =_G D$ and $\omega_B^*(\hat{K}_{us}) \neq 0$. Then $us \in N$ by (iii). So $u \in N$, and $Z(D) \leq N$.

(iv) \Rightarrow (v). This follows from (iv) \Rightarrow (v) of Proposition 1.1.

 $(v) \Rightarrow (i)$. This follows from $(v) \Rightarrow (i)$ of Proposition 1.1.

 \square

REMARK 1.4. The equivalences of (i), (ii), (v) have been proved in Fan [4, Theorem 2.3] in a different way.

2. A lemma on G[b]

In the rest of this paper, K is a normal subgroup of a group G, and b is a block of K with a defect group Q. The following lemma is certainly well-known. We give a proof for completeness sake. We shall use this lemma without explicit reference.

Lemma 2.1. Let x be an element of G. The following are equivalent.

- (i) $x \in G[b]$; that is, $(e_b C_{\bar{x}})(e_b C_{\bar{x}^{-1}}) = e_b C_{\bar{1}}$.
- (ii) $e_b C_{\bar{x}}$ contains a unit of $e_b C$.
- (iii) ([6, p.210]) $x \in G_b$ and x induces an inner automorphism of b.

Proof. (i) \Rightarrow (ii). This follows from [15, p. 551, ll. 5–7]¹.

(ii) \Rightarrow (iii). This follows from [3, Proposition 2.17] and [15, p. 551, ll. 7–9]².

(iii) \Rightarrow (i). Let *u* be a unit of *b* such that $v^x = v^u$ for all $v \in b$. We claim $ux^{-1} \in e_b C_{\bar{x}^{-1}}$. Indeed, $(ux^{-1})v = v(ux^{-1})$ for all $v \in b$. Let *b'* be any block of *K* with $b' \neq b$. Let $v' \in b'$. Then $(ux^{-1})v' = uv'^x x^{-1} = 0 = v'(ux^{-1})$. So $ux^{-1} \in C$. Then the claim follows. Let *u'* be an element of *b* such that $uu' = u'u = e_b$. Then we obtain similarly that $xu' \in e_b C_{\bar{x}}$. We have $(xu')(ux^{-1}) = e_b$. So $(e_b C_{\bar{x}})(e_b C_{\bar{x}^{-1}}) \ni e_b$, which implies $(e_b C_{\bar{x}})(e_b C_{\bar{x}^{-1}}) = e_b C_{\bar{1}}$. The proof is complete.

REMARK 2.2. See Hida–Koshitani [5, Lemma 3.2] for a module-theoretical reformulation of the definition of G[b].

3. The subgroup *G*[*b*]

Navarro [14] has obtained a relative version of a well-known theorem of Burnside as follows (letting K = 1, we recover the original theorem of Burnside):

Lemma 3.1 (Navarro [14, Theorem A]). Let χ be an irreducible character of *G*. The following are equivalent.

¹Note that $e_b C_1 = Z(b)$ is a local *R*-algebra.

²In 1.9 $\mathfrak{O}G$ should be $e\mathfrak{O}G$.

(i) χ_K is irreducible.

(ii) For any $x \in G$, there is an element y in xK such that $\chi(y) \neq 0$.

Proposition 3.2. Assume that G/K is abelian. Let B be a block of G covering b. The following are equivalent.

(i) G = G[b] and for any irreducible character χ in B, χ_K is irreducible.

(ii) For any $x \in G$, there is an element y in xK such that $\omega_B^*(\hat{K}_y) \neq 0$.

Proof. In both cases, the following holds:

(*) For any irreducible character χ in B, χ_K is irreducible.

Indeed, if (i) holds, trivially (*) holds. Assume (ii) holds. Let χ be an irreducible character in *B*. Since $\omega_B^*(\hat{K}_y) \neq 0$, we have $\chi(y) \neq 0$. Then, by Lemma 3.1, χ_K is irreducible.

Let $\{B_i\}$ be the set of blocks of *G* covering *b*. We show that (*) implies the following:

(**) For any irreducible character χ in B_i for any i, χ_K is an irreducible character in b.

Indeed, let $\xi \in \operatorname{Irr}(b)$ be an irreducible constituent of χ_K . Let ζ be an irreducible character in *B* lying over ξ . By (*), $\zeta_K = \xi$. Hence $\chi = \zeta \otimes \theta$ for some $\theta \in \operatorname{Irr}(G/K)$. Since G/K is abelian, we have $\chi_K = \xi$. Hence (**) holds. Thus for the proof of proposition we may assume (**) holds.

Recall that $C = C_{RG}(K)$. We claim the following:

 $(***) e_b C = Z(Gb) = \bigoplus_i Z(B_i),$

where $Gb = RGe_b$. By (**), *b* is *G*-invariant. This yields the second equality. We prove the first equality. Clearly $Z(Gb) \subseteq e_bC$. To prove the reverse containment, let $a \in e_bC$ and $v \in \mathcal{K}Gb$, where $\mathcal{K}Gb = \mathcal{K}Ge_b$. Let *T* be any irreducible matrix representation of $\mathcal{K}Gb$. By (**), restriction of *T* to $\mathcal{K}b$ is irreducible, where $\mathcal{K}b = \mathcal{K}Ke_b$. Since $e_bC \subseteq \mathcal{K}Gb \cap C(\mathcal{K}b)$, T(a) is a scalar matrix by Schur's lemma. So T(av - va) = 0. It follows that av - va = 0, since $\mathcal{K}Gb$ is semi-simple. Therefore, $e_bC \subseteq Z(\mathcal{K}Gb) \cap RG = Z(Gb)$. (***) is proved.

(i) \Rightarrow (ii). Let $x \in G$. By (i), there exists a unit u of e_bC in $e_bC_{\bar{x}}$. Then, by (***), $\omega_B^*(u) \neq 0$. Since $u \in Z(RG)$ by (***) and $u \in RKx$, u is an R-linear combination of \hat{K}_z for $z \in xK$. Thus there is some $y \in xK$ such that $\omega_B^*(\hat{K}_y) \neq 0$. Thus (ii) follows.

(ii) \Rightarrow (i). The latter part follows from (**). Let ξ be an irreducible character in *b*. Then, by (**), any irreducible character of *G* lying over ξ is an extension of ξ . Therefore for any *i*, there is a linear character $\lambda_i : G/K \to k^*$, where k^* is the multiplicative group of *k*, such that $\omega_{B_i}^*(\hat{K}_g) = \omega_B^*(\hat{K}_g)\lambda_i(gK)$ for any $g \in G$. Let $x \in$ *G* and let *y* be as in (ii). Then $\omega_{B_i}^*(e_b\hat{K}_y) = \omega_{B_i}^*(\hat{K}_y) = \omega_B^*(\hat{K}_y)\lambda_i(yK) \neq 0$. Therefore, by (***), $e_b\hat{K}_y$ is a unit of e_bC . Since G/K is abelian, $e_b\hat{K}_y$ lies in $e_bC_{\bar{x}}$. Thus we obtain G = G[b]. The proof is complete. The following corollary will be used repeatedly.

Corollary 3.3. Assume that G/K is cyclic, and let $G = \langle x, K \rangle$ for an element $x \in G$. Let B be a block of G covering b. The following are equivalent. (i) $x \in G[b]$; that is, G = G[b].

(ii) There exists an element y in xK such that $\omega_B^*(\hat{K}_y) \neq 0$.

Proof. (i) \Rightarrow (ii). *G* induces inner automorphisms of *b*, so any irreducible character in *b* is *G*-invariant. Then, since *G*/*K* is cyclic, any irreducible character in *B* restricts irreducibly to *K*. Thus (ii) holds by Proposition 3.2.

(ii) \Rightarrow (i). For any positive integer i, $\omega_B^*((\hat{K}_y)^i) \neq 0$. Since $y \in xK$, $(\hat{K}_y)^i$ is an integral combination of \hat{K}_z with $z \in x^i K$. So $\omega_B^*(\hat{K}_z) \neq 0$ for some $z \in x^i K$. Thus (i) holds by Proposition 3.2. The proof is complete.

Proposition 3.4. Assume that G/K is a cyclic p-group. Let b be G-invariant. Let B be a unique block of G covering b. The following are equivalent.

(i) G = G[b].

(ii) For any defect group S of B with $S \ge Q$, S = Z(S)Q.

(ii)' For some defect group S of B, S = Z(S)Q.

(iii) For any defect group S of B with $S \ge Q$, $S = C_S(Q)Q$; that is, S induces inner automorphisms of Q.

(iii)' For some defect group S of B, $S = C_S(Q)Q$.

Proof. The assertion is trivial if G = K. So we assume $G \neq K$. Put $G = \langle x, K \rangle$. Let β be a block of $\langle x^p, K \rangle$ covered by B.

(i) \Rightarrow (ii). Assume $S \neq Z(S)Q$. Since *b* is *G*-invariant, G = SK. So $S/Q \simeq G/K$ is cyclic. Therefore $Z(S) \leq \langle x^p, K \rangle$. Then $B = \beta^G$ by Theorem 1.3. Thus $\omega_B^*(K_y) = 0$ for all $y \in xK$. Then $x \notin G[b]$ by Corollary 3.3, a contradiction.

(ii) \Rightarrow (i). Assume $x \notin G[b]$. Then $x^i \notin G[b]$ for any p'-integer *i*. Thus $\omega_B^*(\hat{K}_y) = 0$ for any $y \in G - \langle x^p, K \rangle$ by Corollary 3.3. Hence $B = \beta^G$. Then $Z(S) \leq \langle x^p, K \rangle$ by Theorem 1.3. Since *b* is *G*-invariant, G = SK. Therefore $G = SK = Z(S)QK \leq \langle x^p, K \rangle < G$, a contradiction. Thus $x \in G[b]$, and G = G[b].

(ii) \Rightarrow (iii). Trivial.

(iii) \Rightarrow (ii). Since *b* is *G*-invariant, G = SK. So $G/K \simeq S/Q \simeq C_S(Q)/Z(Q)$ is cyclic. Hence $C_S(Q)$ is abelian, and $C_S(Q) \leq Z(S)$. Thus S = Z(S)Q.

(iii) \Rightarrow (iii)'. Trivial.

(iii)' \Rightarrow (iii). Let U be any defect group of B with $U \ge Q$. We have $U = S^g$ for some $g \in G$. Then $Q = U \cap K = S^g \cap K = (S \cap K)^g = Q^g$. So $Q = Q^g$. Then $C_U(Q)Q = C_{S^g}(Q^g)Q^g = S^g = U$.

(ii) \Leftrightarrow (ii)'. This is proved similarly.

This completes the proof.

Theorem 3.5. Let b be G-invariant. Let B be a block of G covering b. We choose a block B' of G[b] so that B covers B' (and B' covers b). Let D, S be defect groups of B, B', respectively, such that $Q \le S \le D$. The following holds. (i) $B = B'^G$. In particular, B is a unique block of G that covers B'. (ii) $S = QC_D(Q)$.

Proof. We first note that $G[b] \lhd G$, so the statement makes sense.

(i) We show $B = B'^G$. By Theorem 1.3, it suffices to show the following: (*) For any $x \in G$ satisfying $\omega_B^*(\hat{K}_x) \neq 0$ and $D(K_x) =_G D$, we have $x \in G[b]$. We may assume D is a Sylow p-subgroup of $C_G(x)$. Let χ be an irreducible character of height 0 in B. Put $\chi_{\langle x, K \rangle} = \sum_i n_i \zeta_i$, where ζ_i are distinct irreducible characters of $\langle x, K \rangle$ and n_i are positive integers. Then

$$\omega_{\chi}(\hat{K}_{x}) = \sum_{i} n_{i} \omega_{\zeta_{i}}(\hat{L}_{x}) \frac{\zeta_{i}(1)|G| |C_{K}(x)|}{\chi(1)|K| |C_{G}(x)|},$$

where L_x is the conjugacy class of $\langle x, K \rangle$ containing x. For any i, let b_i be the block of $\langle x, K \rangle$ containing ζ_i . Then b_i covers b. We claim $d(b_i) - d(b) = \nu(|\langle x, K \rangle|) - \nu(|K|)$. Indeed, let H/K be a (normal) Sylow p-subgroup of $\langle x, K \rangle/K$. Let \hat{b} be a unique block of H covering b. Then, since b_i covers \hat{b} , $d(b_i) = d(\hat{b})$. Furthermore, $d(\hat{b}) - d(b) = \nu(|H|) - \nu(|K|)$. Thus the claim follows. On the other hand, since D is a Sylow p-subgroup of $C_G(x)$, $D \cap K$ is a Sylow p-subgroup of $C_K(x)$. Furthermore $D \cap K$ is a defect group of b. Thus

$$\begin{split} \nu \bigg(\frac{\zeta_i(1)|G| |C_K(x)|}{\chi(1)|K| |C_G(x)|} \bigg) &= \nu(|\langle x, K \rangle|) - d(b_i) + ht(\zeta_i) + \nu(|G|) + \nu(|C_K(x)|) \\ &- \{\nu(|G|) - d(B) + \nu(|K|) + \nu(|C_G(x)|)\} \\ &= \nu(|\langle x, K \rangle|) - \nu(|K|) - d(b_i) + d(b) + ht(\zeta_i) \\ &= ht(\zeta_i) \ge 0. \end{split}$$

Since $\omega_{\chi}^*(\hat{K}_x) \neq 0$, there exists *i* such that $\omega_{\zeta_i}^*(\hat{L}_x) \neq 0$. Then $x \in \langle x, K \rangle [b]$ by Corollary 3.3, and $x \in G[b]$. Thus (*) follows and $B = B'^G$.

If B_1 is another block of G covering B', then similarly $B_1 = B'^G$. So $B_1 = B$. (ii) Since $Q = D \cap K$, Q is a normal subgroup of D. Put

 $I = \{u \in D \mid u \text{ induces an inner automorphism of } Q\}.$

Clearly $I = QC_D(Q)$, so it suffices to show I = S. For any $u \in D$, put $Q_u = \langle u, Q \rangle$. If b_u is a unique block of $Q_u K$ covering b, then Q_u is a defect group of b_u , cf. Lemma 4.13 of [9].

Let $u \in I$. Then Q_u induces inner automorphisms of Q. Since $Q_u K = \langle u, K \rangle$, $Q_u K = (Q_u K)[b] \leq G[b]$ by Proposition 3.4. So $u \in G[b]$, and $I \leq G[b] \cap D = S$. Conversely let $u \in S$. Then, since $u \in G[b]$ and $Q_u K = \langle u, K \rangle$, we have $Q_u K = (Q_u K)[b]$. Thus Q_u induces inner automorphisms of Q by Proposition 3.4. So $u \in I$, and $S \leq I$. Thus I = S. The proof is complete.

REMARK 3.6. (1) Theorem 3.5 sharpens Lemma 4.14 of [9].

(2) Theorem 3.5 (i) is implicit in [3]. It follows from Lemma 3.3 and Proposition 1.9 of [3].

(3) Proposition 3.1 of [1] follows immediately from Theorem 3.5 (ii). (The assumption made there that c is nilpotent is unnecessary.)

The following extends Proposition 3.4.

Corollary 3.7. Assume that G/K is a p-group. Let B be a unique block of G covering b. Let D be a defect group of B such that $D \ge Q$. Then the following are equivalent.

(i) G = G[b].

(ii) b is G-invariant and $D = QC_D(Q)$.

In particular, if D is abelian and b is G-invariant, then G = G[b].

Proof. (i) \Rightarrow (ii). This follows from Theorem 3.5.

(ii) \Rightarrow (i). Let B' be a block of G[b] such that B covers B' and that $S := D \cap G[b]$ is a defect group of B'. Then B' covers b. Since b is G-invariant, G = DK and G[b] = SK. By Theorem 3.5, $S = QC_D(Q) = D$. Therefore G = G[b].

REMARK 3.8. The last statement of Corollary 3.7 is implicit in the proof of Theorem of [7].

Proposition 3.9. Assume that G/K is a cyclic p'-group. The following are equivalent.

(i) G = G[b].

(ii) |BL(G | b)| = |G/K|.

Proof. (i) \Rightarrow (ii). Put $G = \langle x, K \rangle$. Let *B* be a block of *G* covering *b*. By Corollary 3.3, there exists some *y* in *xK* such that $\omega_B^*(K_y) \neq 0$. Let χ be an irreducible character in *B*. Let λ be any linear character of G/K. Assume that $\chi \otimes \lambda$ lies in *B*. Then $\omega_{\chi \otimes \lambda}^*(\hat{K}_y) = \omega_{\chi}^*(\hat{K}_y)$, which implies $\lambda^*(y) = 1$. Since G/K is a *p'*-group, we see that λ is a trivial character. Therefore we obtain $|\text{BL}(G \mid b)| \geq |G/K|$. To prove the reverse inequality, let $\xi \in \text{Irr}(b)$. Let *m* be the number of irreducible characters of *G* lying over ξ . Any block of *G* covering *b* contains an irreducible character lying over ξ , so $|\text{BL}(G \mid b)| \leq m$. On the other hand, $m \leq (\xi^G, \xi^G)_G = ((\xi^G)_K, \xi)_K \leq |G/K|$. Thus $|\text{BL}(G \mid b)| \leq |G/K|$, and (ii) follows.

(ii) \Rightarrow (i). We claim that any block *B* in BL(*G* | *b*) is induced from a block in BL(*G*[*b*] | *b*). To see this, let \tilde{B} be the Fong–Reynolds correspondent of *B* in *G*_b. Choose a block *B'* of *G*[*b*] such that \tilde{B} covers *B'* and *B'* covers *b*. Then $\tilde{B} = B'^{G_b}$ by Theorem 3.5. So $B = \tilde{B}^G = (B'^{G_b})^G = B'^G$. Thus the claim is proved. Then $|BL(G[b] | b)| \ge |BL(G | b)|$. Since $|BL(G[b] | b)| \le |G[b]/K|$ (as above), it follows that $|G/K| \le |G[b]/K|$. Thus G = G[b]. The proof is complete.

REMARK 3.10. Application of Theorem 3.7 of [3] would shorten the proof of Proposition 3.9.

The following gives a necessary and sufficient condition for G to coincide with G[b] when G/K is an arbitrary group.

Theorem 3.11. Let B_w be a weakly regular block of G covering b. Let D_w be a defect group of B_w such that $D_w \ge Q$. The following are equivalent. (i) G = G[b].

(ii) (ii a) b is G-invariant;
(ii b) For any subgroup L of G such that L ≥ K and that L/K is a cyclic p'-group, it holds that |BL(L | b)| = |L/K|; and
(ii c) D_w = QC_{D_w}(Q).

Proof. (i) \Rightarrow (ii). This follows from Proposition 3.9 and Theorem 3.5.

(ii) \Rightarrow (i). Let x be a p'-element of G and put $H = \langle x, K \rangle$. By (ii b) and Proposition 3.9, $x \in H = H[b]$. So $x \in G[b]$. Let x be a p-element of G. By (ii a) and Fong's theorem $D_w K/K$ is a Sylow p-subgroup of G/K. So $x^g \in D_w K$ for some $g \in G$. By (ii a) and [9, Lemma 2.2], D_w is a defect group of a unique block of $D_w K$ covering b. So by (ii c) and Corollary 3.7, $(D_w K)[b] = D_w K$. Thus $x^g \in G[b]$. Since $G[b] \triangleleft G$ by (ii a), $x \in G[b]$. Hence G = G[b].

We introduce some notation. Let \tilde{b} be the Brauer correspondent of b in $N_K(Q)$ and let β be a block of $QC_K(Q)$ covered by \tilde{b} . Put $L_0 = QC_K(Q)$. Let β_0 be a block of $C_K(Q)$ covered by β . Let θ be the canonical character of β and let φ be the restriction of θ to $C_K(Q)$. So φ is the canonical character of β_0 . Let $S = N_G(Q)_\beta$ and $T = N_K(Q)_\beta$. So T is the inertial group of β_0 in $N_K(Q)$. Put $L = QC_G(Q)$ and $C = C_G(Q)$.

Noting that T and L_{β} are normal subgroups of S, we have $[T, L_{\beta}] \leq L_{\beta} \cap T = L_0$. So we can define (after Isaacs [6, Section 2]) $\langle \langle t, x \rangle \rangle_{\theta} \in \mathcal{K}^*$ for $(t, x) \in T \times L_{\beta}$, where \mathcal{K}^* is the multiplicative group of \mathcal{K} . The definition is as follows: let $x \in L_{\beta}$ and let $\hat{\theta}$ be an extension of θ to $\langle x, L_0 \rangle$. Let $t \in T$. Then, since $\hat{\theta}^t$ is also an extension of θ to $\langle x, L_0 \rangle$, there exists a unique linear character λ_t of $\langle x, L_0 \rangle / L_0$ such that $\hat{\theta}^t = \hat{\theta} \otimes \lambda_t$. Then put $\langle \langle t, x \rangle \rangle_{\theta} = \lambda_t(x)$. This definition is independent of the choice of $\hat{\theta}$. It is bilinear in the sense that $\langle \langle ts, x \rangle \rangle_{\theta} = \langle \langle t, x \rangle \rangle_{\theta} \langle \langle s, x \rangle \rangle_{\theta}$ for $t, s \in T$ and $x \in L_{\beta}$ M. MURAI

and $\langle \langle t, xy \rangle \rangle_{\theta} = \langle \langle t, x \rangle \rangle_{\theta} \langle \langle t, y \rangle \rangle_{\theta}$ for $t \in T$ and $x, y \in L_{\beta}$, see [6, Lemma 2.1 and Theorem 2.3]. Similarly we can define $\langle \langle t, x \rangle \rangle_{\varphi} \in \mathcal{K}^*$ for $(t, x) \in T \times C_{\beta_0}$. It is also bilinear. Define

$$L_{\omega} = \{ x \in L_{\beta} \mid \langle \langle t, x \rangle \rangle_{\theta} = 1 \text{ for all } t \in T \},\$$
$$C_{\omega} = \{ x \in C_{\beta_0} \mid \langle \langle t, x \rangle \rangle_{\varphi} = 1 \text{ for all } t \in T \}.$$

By definition, we see that for $x \in L_{\beta}$, the condition that $x \in L_{\omega}$ is equivalent to the condition that any (equivalently, some) extension of θ to $\langle x, L_0 \rangle$ is *T*-invariant.

Lemma 3.12. (i) L_{ω} is a normal subgroup of L_{β} such that L_{β}/L_{ω} is a p'-group. (ii) $L_{\omega}K = C_{\omega}K$.

Proof. (i) Put $\alpha_x(t) = \langle \langle t, x \rangle \rangle_{\theta}$ for $(t, x) \in T \times L_{\beta}$. Since $\alpha_x(t) = 1$ for $t \in L_0$, α_x may be regarded as an element of Hom $(T/L_0, \mathcal{K}^*)$. Then the map α sending x to α_x is a group homomorphism from L_{β} to Hom $(T/L_0, \mathcal{K}^*)$. Since Ker $\alpha = L_{\omega}$ and T/L_0 is a p'-group, the result follows.

(ii) We have $L_{\beta} = C_{\beta_0}L_0$. So $L_{\omega} = (L_{\omega} \cap C_{\beta_0})L_0$. It is easy to see $\langle \langle t, x \rangle \rangle_{\varphi} = \langle \langle t, x \rangle \rangle_{\theta}$ for $t \in T$ and $x \in C_{\beta_0}$. So $L_{\omega} \cap C_{\beta_0} = C_{\omega}$. Thus $L_{\omega} = C_{\omega}L_0$, and hence $L_{\omega}K = C_{\omega}K$.

Theorem 3.13. We have $G[b] = C_{\omega}K$.

Proof. By Lemma 3.12 it suffices to show $G[b] = L_{\omega}K$. We fix a block B of G covering b. Let \tilde{B} be the Harris–Knörr correspondent of B over b in $N_G(Q)$.

We first claim $G[b] \leq L_{\beta}K$. Let $x \in G[b]$. Put $G_x = \langle x, K \rangle$ and $L_x = L \cap G_x$. Then $L_x = QC_{G_x}(Q)$. Since the condition that $x \in G[b]$ is equivalent to the condition that b is $\langle x \rangle$ -invariant and $\langle x \rangle$ acts on b as inner automorphisms, $x \in G[b]$ if and only if $x \in G_x[b]$. Thus it suffices to show $G_x[b] \leq (L_x)_{\beta}K$, where $(L_x)_{\beta}$ is the inertial group of β in L_x . Thus we may assume $G = G_x = \langle x, K \rangle$. By Corollary 3.3, there is some $y \in xK$ such that $\omega_B^*(\hat{K}_y) \neq 0$. Since \tilde{B} covers \tilde{b} , \tilde{B} covers β . So there is a block B' of L such that \tilde{B} covers B' and B' covers β . Let β' be the Fong–Reynolds correspondent of B' over β in L_{β} . Since a defect group of B' contains Q, we have $B'^H = \tilde{B}$. This implies $B = \beta'^G$. So $\omega_B^*(\hat{K}_y) = \omega_{\beta'}^*(\widehat{K_y \cap L_{\beta}})$. Thus there is $g \in G$ such that $y^g \in L_{\beta} \leq L_{\beta}K$. Then $y \in L_{\beta}K$, since G/K is abelian. Thus $x \in L_{\beta}K$, and the claim is proved.

Then $G[b] = (L_{\beta} \cap G[b])K$. Therefore it suffices to prove $L_{\beta} \cap G[b] = L_{\omega}$. We shall show both sides contain the same *p*-elements and *p'*-elements. It suffices to show that under the assumption that *x* is either a *p*-element or a *p'*-element, it holds that $x \in L_{\beta} \cap G[b]$ if and only if $x \in L_{\omega}$. Since $x \in L_{\beta} \cap G[b]$ if and only if $x \in (L_x)_{\beta} \cap G_x[b]$ and $x \in L_{\omega}$ if and only if $x \in (L_x)_{\omega}$ (here $(L_x)_{\omega}$ is defined in a manner similar to L_{ω}), we may assume $G = G_x$.

Let x be a p-element. If $x \in L_{\beta} \cap G[b]$, then $x \in L_{\omega}$, since L_{β}/L_{ω} is a p'-group by Lemma 3.12. Conversely let $x \in L_{\omega}$. Then $L = \langle x, L_0 \rangle$. So $L = L_{\beta} \leq S$. Then $S = \langle x, T \rangle = LT$. Thus $S/L \simeq T/L_0$, and S/L is a p'-group. Let B_1 be the Fong–Reynolds correspondent of \tilde{B} over β in S. Let D be a defect group of B_1 . Then $D \geq Q$. Since S/L is a p'-group, $D \leq L$. So $D = QC_D(Q)$. By the Fong–Reynolds theorem, D is a defect group of \tilde{B} . So D is a defect group of B. Since β is $\langle x \rangle$ -invariant, $b = \beta^K$ is G-invariant. Therefore, G = G[b] by Proposition 3.4, and $x \in L_{\beta} \cap G[b]$. The proof is complete in this case.

Let x be a p'-element. It suffices to show that under the assumption that $x \in L_{\beta}$, $x \in G[b]$ if and only if $x \in L_{\omega}$. Assume $x \in L_{\beta}$. Then $L = \langle x, L_0 \rangle = L_{\beta}$. We have

 $|BL(G | b)| = |BL(N_G(Q) | \tilde{b})|$ (by the Harris–Knörr theorem) = $|BL(N_G(Q) | \beta)|$ (since \tilde{b} is a unique block of $N_K(Q)$ covering β) = $|BL(S | \beta)|$ (by the Fong–Reynolds theorem).

Since β is *S*-invariant, if $B_1 \in BL(S \mid \beta)$ covers a block B' of *L*, then $B' \in BL(L \mid \beta)$. If $B' \in BL(L \mid \beta)$ and a block B_1 of *S* covers B', then $B_1 \in BL(S \mid \beta)$. Further in this case *B'* is determined up to *S*-conjugacy by B_1 and $B_1 = B'^S$, since $L = QC_G(Q)$. Thus $|BL(S \mid \beta)| = |BL(L \mid \beta)/S|$, where $BL(L \mid \beta)/S$ is a set of representatives of *S*-conjugacy classes of $BL(L \mid \beta)$. Since $G = \langle x, K \rangle$, we have $S = \langle x, T \rangle$. So $|BL(L \mid \beta)/S| = |BL(L \mid \beta)/T| \le |BL(L \mid \beta)|$.

Since L/L_0 is cyclic and θ is *L*-invariant, there is an extension of θ to *L*. Let \mathcal{E} be the set of such extensions. We show there is a bijection of $BL(L \mid \beta)$ onto \mathcal{E} . For any $B' \in BL(L \mid \beta)$, B' contains an irreducible character $\hat{\theta}$ lying over θ . Then $\hat{\theta} \in \mathcal{E}$. Since L/L_0 is a p'-group, B' has defect group Q. Therefore $\hat{\theta}$ is the canonical character of B' and $\hat{\theta}$ is uniquely determined. Of course any $\hat{\theta} \in \mathcal{E}$ is contained in some $B' \in$ $BL(L \mid \beta)$. Therefore the map $B' \mapsto \hat{\theta}$ is the required bijection. So $|BL(L \mid \beta)| =$ $|\mathcal{E}| = |L/L_0|$.

Since $|L/L_0| = |G/K|$, we obtain $|BL(G | b)| \le |G/K|$. By Proposition 3.9, $x \in G[b]$ if and only if the equality holds here. The last condition is equivalent to the condition that any extension of θ to L is T-invariant. Thus it is equivalent to the condition that $x \in L_{\omega}$, since $L = \langle x, L_0 \rangle$. Thus $x \in G[b]$ if and only if $x \in L_{\omega}$. This completes the proof.

Corollary 3.14. Our C_{ω} in Theorem 3.13 is the same as C_{ω} (= $C(D \text{ in } H)_{\omega}$ in Dade's notation) appearing in Corollary 12.6 of [3].

Proof. If we denote by C'_{ω} the group C_{ω} defined above, then Theorem 3.13 becomes $G[b] = C'_{\omega}K$. Then $C'_{\omega} = C \cap G[b]$. From Dade's theorem that $G[b] = C_{\omega}K$ [3, Corollary 12.6], we also obtain $C_{\omega} = C \cap G[b]$. Thus (our) $C_{\omega} = C'_{\omega} =$ (Dade's) C_{ω} .

Corollary 3.15 (Külshammer [8, Proposition 9]). $G[b] = N_G(Q)[\tilde{b}]K$.

Proof. Use Theorem 3.13 to G[b] and $N_G(Q)[b]$.

4. Isomorphic blocks

The following theorem gives characterizations of isomorphic blocks with respect to normal subgroups. For isomorphic blocks, see [5, Section 4] and references therein.

Theorem 4.1. Let *B* be a block of *G* covering *b*. The following are equivalent. (i) G = G[b], d(B) = d(b) and for some irreducible character χ in *B*, χ_K is irreducible.

(ii) G/K is a p'-group and for any $x \in G$, there is an element y in xK such that $\omega_R^*(\hat{K}_y) \neq 0$.

(iii) The restriction $\chi \mapsto \chi_K$ is a bijection of Irr(B) onto Irr(b).

(iv) The restriction $\chi \mapsto \chi_K$ is a bijection of $Irr_0(B)$ onto $Irr_0(b)$.

(v) For some character $\xi \in Irr(b)$, we have $Irr(B \mid \xi) = \{\chi\}$ with $\chi_K = \xi$.

(vi) For some character $\xi \in Irr(b)$, we have $Irr_0(B \mid \xi) = \{\chi\}$ with $\chi_K = \xi$.

Proof. (i) \Rightarrow (ii). Since $\chi = \chi \otimes 1_{G/K}$, we see $B_0(G/K)$ is χ -dominated by B (for χ -domination see [10, p. 35]). So a defect group of $B_0(G/K)$ is contained in QK/K = 1 by [10, Corollary 1.5]. Thus G/K is a p'-group.

Let $x \in G$ and put $H = \langle x, K \rangle$. Since H = H[b], by Corollary 3.3, there is some $y \in xK$ such that $\omega_{\chi}^*(\hat{L}_y) \neq 0$, where L_y is the conjugacy class of H containing y. Now $C_G(y)$ normalizes H. So $C_G(y)H$ is a subgroup of G containing K. Thus $|G : C_G(y)H|$ is a p'-integer. On the other hand, we have $\omega_{\chi}(\hat{K}_y) = \omega_{\chi}(\hat{L}_y)|G : C_G(y)H|$. Therefore $\omega_{\chi}^*(\hat{K}_y) \neq 0$.

(ii) \Rightarrow (iii). Let $\chi \in \operatorname{Irr}(B)$. For any $x \in G$, there is an element $y \in xK$ such that $\chi(y) \neq 0$ by (ii). Then, by Lemma 3.1, χ_K is irreducible and $\chi_K \in \operatorname{Irr}(b)$. Of course, then the restriction is surjective. Let $\chi' \in \operatorname{Irr}(B)$ such that $\chi_K = \chi'_K$. Then $\chi' = \chi \otimes \theta$ for a linear character θ of G/K. For any $x \in G$, let $y \in xK$ be such that $\omega^*_{\chi}(\hat{K}_y) \neq 0$. We have

$$\omega_{\chi}^*(\hat{K}_y) = \omega_{\chi'}^*(\hat{K}_y) = \omega_{\chi}^*(\hat{K}_y)\theta(x)^*.$$

So $\theta(x)^* = 1$. Since G/K is a p'-group, we see that θ is the trivial character. Thus $\chi' = \chi$.

(iii) \Rightarrow (iv). Put a = v(|G|) and a' = v(|K|). We have $a - d(B) + ht(\chi) = a' - d(b) + ht(\chi_K)$ for all $\chi \in Irr(B)$. If $ht(\chi) = 0$, we obtain $a - d(B) \ge a' - d(b)$. If $ht(\chi_K) = 0$, we obtain $a' - d(b) \ge a - d(B)$. Thus a - d(B) = a' - d(b). Hence $ht(\chi) = ht(\chi_K)$ for all $\chi \in Irr(B)$. Thus (iv) follows.

(iii) \Rightarrow (v). This is trivial.

(iv) \Rightarrow (vi). This is trivial.

(v) \Rightarrow (vi). Let *a* and *a'* be as above. We have $a - d(B) + ht(\chi) = a' - d(b) + ht(\xi)$. Let B_w be a weakly regular block of *G* covering *b*. Since *b* is *G*-invariant, we have $a - d(B_w) = a' - d(b)$. Thus $a - d(B) \ge a - d(B_w) = a' - d(b)$. On the other hand, we have $ht(\chi) \ge ht(\xi)$ by [10, Lemma 2.2]. Thus equality holds throughout and $ht(\chi) = ht(\xi)$. So $Irr_0(B | \xi) = \{\chi\}$.

(vi) \Rightarrow (i). Let θ be an irreducible character of p'-degree in $B_0(G/K)$. Then $\chi \otimes \theta \in \operatorname{Irr}(B \mid \xi)$. We have $\operatorname{ht}(\chi \otimes \theta) = \operatorname{ht}(\chi) = \operatorname{ht}(\xi)$. Thus $\chi \otimes \theta = \chi$, and θ is the trivial character. So $B_0(G/K)$ has defect 0 by the Cliff–Plesken–Weiss theorem [2, Proposition 3.3] ([13, Problem 3.11]), and G/K is a p'-group. So d(B) = d(b). Put $\zeta = \chi_{G[b]}$. We claim $\operatorname{Irr}(G \mid \zeta) = \{\chi\}$. Let $\chi' \in \operatorname{Irr}(G \mid \zeta)$. Then $\nu(\chi'(1)) = \nu(\zeta(1)) = \nu(\chi(1))$. Since χ' lies in B by Theorem 3.5, $\operatorname{ht}(\chi') = \operatorname{ht}(\chi)$. Therefore $\chi' = \chi$ by assumption, and the claim follows. Then, by Frobenius reciprocity, $\zeta^G = \chi$. Since $\zeta(1) = \chi(1)$, we obtain G = G[b].

The proof is complete.

REMARK 4.2. The equivalence of (i) and (iii) in Theorem 4.1 follows from [5, Proposition 2.6, Theorem 3.5, and Theorem 4.1].

ACKNOWLEDGEMENT. The author would like to express his thanks to the referee for pointing out an error in an earlier version of the manuscript and for valuable suggestions.

References

- D.A. Craven, C.W. Eaton, R. Kessar and M. Linckelmann: The structure of blocks with a Klein four defect group, Math. Z. 268 (2011), 441–476.
- [2] G.H. Cliff, W. Plesken and A. Weiss: Order-theoretic properties of the center of a block; in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math. 47, Part 1, Amer. Math. Soc., Providence, RI, 1987, 413–420.
- [3] E.C. Dade: Block extensions, Illinois J. Math. 17 (1973), 198-272.
- [4] Y. Fan: Remarks on Brauer correspondences, J. Algebra 157 (1993), 213–223.
- [5] A. Hida and S. Koshitani: Morita equivalent blocks in non-normal subgroups and p-radical blocks in finite groups, J. London Math. Soc. (2) 59 (1999), 541–556.
- [6] I.M. Isaacs: Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594–635.
- [7] S. Koshitani and B. Külshammer: A splitting theorem for blocks, Osaka J. Math. 33 (1996), 343–346.
- [8] B. Külshammer: Morita equivalent blocks in Clifford theory of finite groups, Astérisque 181– 182 (1990), 209–215.
- [9] M. Murai: Block induction, normal subgroups and characters of height zero, Osaka J. Math. 31 (1994), 9–25.
- [10] M. Murai: Normal subgroups and heights of characters, J. Math. Kyoto Univ. 36 (1996), 31-43.
- [11] M. Murai: Blocks of normal subgroups, automorphisms of groups and the Alperin–McKay conjecture, preprint.

M. MURAI

- [12] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, Boston, MA, 1989.
- [13] G. Navarro: Characters and Blocks of Finite Groups, Cambridge Univ. Press, Cambridge, 1998.
- [14] G. Navarro: Irreducible restriction and zeros of characters, Proc. Amer. Math. Soc. 129 (2001), 1643–1645.
- [15] A. Watanabe: The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra 216 (1999), 548–565.

Meiji-machi 2-27 Izumi Toki-shi Gifu 509-5146 Japan e-mail: m.murai@train.ocn.ne.jp Passed away on July 2012