
Murai, M.
Osaka J. Math.
50 (2013), 1007–1020

ON BLOCKS OF NORMAL SUBGROUPS OF FINITE GROUPS

MASAFUMI MURAI

(Received November 16, 2011, revised March 19, 2012)

Abstract
For a blockb of a normal subgroup of a finite groupG, E.C. Dade has defined

a subgroupG[b] of G. We give a character-theoretical interpretation of his result
on G[b]. In the course of proofs we determine a defect group of a block of G[b]
covering b. We also consider character-theoretical characterizations of isomorphic
blocks with respect to normal subgroups.

Introduction

Let G be a finite group andp a prime. Let (K, R, k) be a p-modular system.
We assume thatK is sufficiently large forG. In this paper a block ofG means a
block ideal of RG. For a normal subgroupK of G and a blockb of K , Dade [3] has
defined a normal subgroupG[b] of the inertial group ofb in G such thatG[b] � K .
More precisely putC D CRG(K ). We haveC D

L

Nx2 NG C
Nx, where NG D G=K andC

Nx D

C \ RK x. Let eb be the block idempotent ofb. The subgroupG[b] is defined by

G[b] D {x 2 G j (ebC
Nx)(ebC

Nx�1) D ebC
N1}.

(Strictly speaking, Dade defines a subgroup (G=K )[b] of G=K . The subgroupG[b]
is the preimage of (G=K )[b] in G.) In [3, Corollary 12.6] Dade has determinedG[b]
in terms of CG(Q) and a root ofb in CK (Q), where Q is a defect group ofb. In
Section 3 we shall give a character-theoretical characterization of elements ofG[b]
and give a character-theoretical interpretation of Dade’sresult above. In the course of
proofs we determine a defect group of a block ofG[b] covering b, which is a refine-
ment of a result in [9]. In Section 1, we shall consider weaklyregular and regular
blocks with respect to normal subgroups. In Section 4, character-theoretical characteri-
zations of isomorphic blocks with respect to normal subgroups which involveG[b] will
be obtained. More applications ofG[b] will be given in a separate paper [11].

Notation

Let B be a block ofG. The block idempotent ofB will be denoted byeB. For
an irreducible character� in B, put !B(z) D !

�

(z), z 2 Z(RG). For a subsetS of
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G, let OSD
P

s2S s 2 RG. For x 2 G, let Kx be the conjugacy class ofG containing

x, and so OKx is the class sum ofKx. Let D(Kx) be a defect group ofKx. Let eB D
P

yaB(Ky) OK y, wherey runs through a set of representatives of conjugacy classes of G.
Let B0(G) be the principal block ofG. Let Irr(B) be the set of irreducible charac-

ters in B. Let Irr0(B) be the set of irreducible characters of height 0 inB. d(B) is the
defect of B. For a blockb of a normal subgroupK of G, let Gb be the inertial group
of b in G and let BL(G j b) be the set of blocks ofG coveringb. For an irreducible
character� of K and a blockB of G, let Irr(B j � ) be the set of irreducible characters
in B lying over � . Put

Irr0(B j � ) D {� 2 Irr(B j � ) j ht(�) D ht(� )},

where ht(�) is the height of� . Let �

W R! k be the natural map. For a function
' W S! R defined on a setS, the function'� W S! k is defined by'�(s) D '(s)�,
s 2 S. Let � be the valuation ofK normalized so that�(p) D 1.

1. Weakly regular and regular blocks with respect to normal subgroups

In this section we strengthen Theorem 2.1 of [9].

Proposition 1.1. Let N be a normal subgroup of G. Let b be a block of N
covered by a block B of G. Let D be a defect group of B. The following conditions
are equivalent.
(i) B is a unique weakly regular block of G covering b.
(ii) For a block Ob of DN, we haveObG

D B.
(iii) For any p0-element x of G satisfying!�B( OKx) ¤ 0, we have x2 N.

(iv) For any p0-element x of G satisfying!�B( OKx) ¤ 0 and D(Kx) DG D, we have
x 2 N.
(v) For any x2 G satisfying aB(Kx)� ¤ 0 and D(Kx) DG D, we have x2 N.

Proof. (i)) (ii). By replacing D by a conjugate, we may assumeD is a de-
fect group of the Fong–Reynolds correspondent ofB over b in the inertial group of
b in G. Let Ob be a unique block ofDN covering b. Then ObG

D B, see the proof of
Theorem 2.1 of [9].

(ii) ) (iii). This is easy to see.
(iii) ) (iv). This is trivial.
(iv) ) (v). Since aB(Kx)� ¤ 0, x is a p0-element. Let{'i } be the set of ir-

reducible Brauer characters inB. Let 8i be the principal indecomposable character
corresponding to'i . Let {� j } be the set of irreducible characters inB. Put

'i D
X

j

ni j � j (on the set ofp0-elements ofG),
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whereni j are integers. Then

aB(Kx) D
1

jGj

X

i

8i (1)'i (x
�1)

D

X

i

8i (1)

jGj

X

j

ni j!� j ( OKx�1)
� j (1)

jKxj
.

Since8i (1)=jGj and � j (1)=jKxj lie in R for any i and j , we obtain

aB(Kx) � !B( OKx�1)
X

i

8i (1)'i (1)

jGj jKxj
mod J(R).

Since8i (1)'i (1)=(jGj jKxj) lies in R for any i , aB(Kx)� ¤ 0 implies !�B( OKx�1) ¤ 0.
Hencex 2 N by (iv).

(v) ) (i). Let Ks be a defect class forB ([12, p. 311]). ThenKs � N by (v).
Since!�B( OKs)¤ 0 andD(Ks)DG D, B is weakly regular with respect toN by definition
([12, p. 344]). LetB1 be any weakly regular block ofG coveringb. PuteB D sN(eB)Ca,
wheresN(eB)D

P

Ky�N aB(Ky) OK y. We claim!�B1
(a)D 0. Assume this were false. Then

there would be an elementx � N such thataB(Kx)�!�B1
( OKx) ¤ 0. SinceaB(Kx)� ¤ 0,

D(Kx) �G D. Since!�B1
( OKx)¤ 0, D(Kx) �G D1, whereD1 is a defect group ofB1. By

Fong’s theoremD DG D1. Thus D(Kx) DG D. So x 2 N by (v), a contradiction, and
the claim follows. Now!�B1

(eB) D !

�

B1
(sN(eB)) D !

�

b(sN(eB)) by [12, Theorem 5.5.5].
SinceB is weakly regular,!�b(sN(eB)) D !�b(sN(eB)eb) ¤ 0 by [9, Theorem 1.10]. Thus
!

�

B1
(eB) ¤ 0. HenceB1 D B and (i) follows. The proof is complete.

REMARK 1.2. The equivalence of (i) and (ii) is proved in [4, Theorem 2.4].

Theorem 1.3. Let N be a normal subgroup of G. Let b be a block of N covered
by a block B of G. Let D be a defect group of B. The following conditions are equivalent.
(i) B is a unique weakly regular block of G covering b and Z(D) � N.
(ii) B D bG.
(iii) For any x2 G satisfying!�B( OKx) ¤ 0 and D(Kx) DG D, we have x2 N.
(iv) (iv a) For any p0-element x of G satisfying!�B( OKx) ¤ 0 and D(Kx) DG D, we

have x2 N, and
(iv b) Z(D) � N.

(v) (v a) For any x2 G satisfying aB(Kx)� ¤ 0 and D(Kx) DG D, we have x2 N,
and
(v b) Z(D) � N.

Proof. (i), (ii). This is Theorem 2.1 of [9].
(ii) ) (iii). This is trivial.
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(iii) ) (iv). (iv a) is trivial. Let Ks be a defect class forB ([12, p. 311]). Sos
is a p0-element. We may assumeD is a Sylow p-subgroup ofCG(s). Let u 2 Z(D).
Then, as in [13, Lemma 5.15],D(Kus) DG D and!�B( OKus) ¤ 0. Thenus2 N by (iii).
So u 2 N, and Z(D) � N.

(iv) ) (v). This follows from (iv)) (v) of Proposition 1.1.
(v) ) (i). This follows from (v)) (i) of Proposition 1.1.

REMARK 1.4. The equivalences of (i), (ii), (v) have been proved in Fan [4, The-
orem 2.3] in a different way.

2. A lemma on G[b]

In the rest of this paper,K is a normal subgroup of a groupG, and b is a block
of K with a defect groupQ. The following lemma is certainly well-known. We give
a proof for completeness sake. We shall use this lemma without explicit reference.

Lemma 2.1. Let x be an element of G. The following are equivalent.
(i) x 2 G[b]; that is, (ebC

Nx)(ebC
Nx�1) D ebC

N1.
(ii) ebC

Nx contains a unit of ebC.
(iii) ([6, p.210]) x 2 Gb and x induces an inner automorphism of b.

Proof. (i)) (ii). This follows from [15, p. 551, ll. 5–7]1.
(ii) ) (iii). This follows from [3, Proposition 2.17] and [15, p. 551, ll. 7–9]2.
(iii) ) (i). Let u be a unit of b such thatvx

D v

u for all v 2 b. We claim
ux�1

2 ebC
Nx�1. Indeed, (ux�1)v D v(ux�1) for all v 2 b. Let b0 be any block ofK

with b0 ¤ b. Let v0 2 b0. Then (ux�1)v0 D uv0xx�1
D 0 D v

0(ux�1). So ux�1
2 C.

Then the claim follows. Letu0 be an element ofb such thatuu0 D u0u D eb. Then we
obtain similarly thatxu0 2 ebC

Nx. We have (xu0)(ux�1) D eb. So (ebC
Nx)(ebC

Nx�1) 3 eb,
which implies (ebC

Nx)(ebC
Nx�1) D ebC

N1. The proof is complete.

REMARK 2.2. See Hida–Koshitani [5, Lemma 3.2] for a module-theoretical re-
formulation of the definition ofG[b].

3. The subgroup G[b]

Navarro [14] has obtained a relative version of a well-knowntheorem of Burnside
as follows (lettingK D 1, we recover the original theorem of Burnside):

Lemma 3.1 (Navarro [14, Theorem A]). Let � be an irreducible character of G.
The following are equivalent.

1Note thatebC
N1 D Z(b) is a local R-algebra.

2In l. 9 OG should beeOG.
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(i) �K is irreducible.
(ii) For any x2 G, there is an element y in x K such that�(y) ¤ 0.

Proposition 3.2. Assume that G=K is abelian. Let B be a block of G covering
b. The following are equivalent.
(i) G D G[b] and for any irreducible character� in B, �K is irreducible.
(ii) For any x2 G, there is an element y in xK such that!�B( OK y) ¤ 0.

Proof. In both cases, the following holds:
(�) For any irreducible character� in B, �K is irreducible.
Indeed, if (i) holds, trivially (�) holds. Assume (ii) holds. Let� be an irreducible
character inB. Since!�B( OK y) ¤ 0, we have�(y) ¤ 0. Then, by Lemma 3.1,�K

is irreducible.
Let {Bi } be the set of blocks ofG covering b. We show that (�) implies the

following:
(��) For any irreducible character� in Bi for any i , �K is an irreducible character
in b.
Indeed, let� 2 Irr(b) be an irreducible constituent of�K . Let � be an irreducible char-
acter in B lying over � . By (�), �K D � . Hence� D � 
 � for some� 2 Irr(G=K ).
Since G=K is abelian, we have�K D � . Hence (��) holds. Thus for the proof of
proposition we may assume (��) holds.

Recall thatC D CRG(K ). We claim the following:
(���) ebC D Z(Gb) D

L

i Z(Bi ),
where GbD RGeb. By (��), b is G-invariant. This yields the second equality. We
prove the first equality. ClearlyZ(Gb) � ebC. To prove the reverse containment, let
a 2 ebC and v 2 KGb, whereKGbD KGeb. Let T be any irreducible matrix repre-
sentation ofKGb. By (��), restriction ofT to Kb is irreducible, whereKbD KKeb.
Since ebC � KGb\ C(Kb), T(a) is a scalar matrix by Schur’s lemma. SoT(av �
va) D 0. It follows that av � va D 0, sinceKGb is semi-simple. Therefore,ebC �
Z(KGb) \ RGD Z(Gb). (���) is proved.

(i) ) (ii). Let x 2 G. By (i), there exists a unitu of ebC in ebC
Nx. Then, by

(���), !�B(u) ¤ 0. Sinceu 2 Z(RG) by (���) and u 2 RK x, u is an R-linear com-

bination of OKz for z 2 x K. Thus there is somey 2 x K such that!�B( OK y) ¤ 0. Thus
(ii) follows.

(ii) ) (i). The latter part follows from (��). Let � be an irreducible character
in b. Then, by (��), any irreducible character ofG lying over � is an extension of
� . Therefore for anyi , there is a linear character�i W G=K ! k�, where k� is the
multiplicative group ofk, such that!�Bi

( OKg) D !�B( OKg)�i (gK) for any g 2 G. Let x 2

G and lety be as in (ii). Then!�Bi
(eb OK y)D !�Bi

( OK y)D !�B( OK y)�i (yK)¤ 0. Therefore,

by (���), eb OK y is a unit of ebC. SinceG=K is abelian,eb OK y lies in ebC
Nx. Thus we

obtain G D G[b]. The proof is complete.
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The following corollary will be used repeatedly.

Corollary 3.3. Assume that G/K is cyclic, and let GD hx, K i for an element
x 2 G. Let B be a block of G covering b. The following are equivalent.
(i) x 2 G[b]; that is, G D G[b].
(ii) There exists an element y in x K such that!

�

B( OK y) ¤ 0.

Proof. (i)) (ii). G induces inner automorphisms ofb, so any irreducible char-
acter in b is G-invariant. Then, sinceG=K is cyclic, any irreducible character inB
restricts irreducibly toK . Thus (ii) holds by Proposition 3.2.

(ii) ) (i). For any positive integeri , !�B(( OK y)i ) ¤ 0. Sincey 2 x K, ( OK y)i is an

integral combination of OKz with z 2 xi K . So !�B( OKz) ¤ 0 for somez 2 xi K . Thus (i)
holds by Proposition 3.2. The proof is complete.

Proposition 3.4. Assume that G=K is a cyclic p-group. Let b be G-invariant.
Let B be a unique block of G covering b. The following are equivalent.
(i) G D G[b].
(ii) For any defect group S of B with S� Q, SD Z(S)Q.
(ii) 0 For some defect group S of B, SD Z(S)Q.
(iii) For any defect group S of B with S� Q, SD CS(Q)Q; that is, S induces inner
automorphisms of Q.
(iii) 0 For some defect group S of B, SD CS(Q)Q.

Proof. The assertion is trivial ifG D K . So we assumeG ¤ K . Put G D hx, K i.
Let � be a block ofhxp, K i covered byB.

(i) ) (ii). Assume S¤ Z(S)Q. Since b is G-invariant, G D SK. So S=Q '
G=K is cyclic. ThereforeZ(S) � hxp, K i. Then B D �

G by Theorem 1.3. Thus
!

�

B(Ky) D 0 for all y 2 x K. Then x � G[b] by Corollary 3.3, a contradiction.

(ii) ) (i). Assumex � G[b]. Thenxi
� G[b] for any p0-integeri . Thus!�B( OK y)D

0 for any y 2 G � hxp, K i by Corollary 3.3. HenceB D �

G. Then Z(S) � hxp, K i
by Theorem 1.3. Sinceb is G-invariant, G D SK. ThereforeG D SK D Z(S)QK �
hxp, K i < G, a contradiction. Thusx 2 G[b], and G D G[b].

(ii) ) (iii). Trivial.
(iii) ) (ii). Since b is G-invariant, G D SK. So G=K ' S=Q ' CS(Q)=Z(Q)

is cyclic. HenceCS(Q) is abelian, andCS(Q) � Z(S). Thus SD Z(S)Q.
(iii) ) (iii) 0. Trivial.
(iii) 0 ) (iii). Let U be any defect group ofB with U � Q. We haveU D Sg

for someg 2 G. Then Q D U \ K D Sg
\ K D (S\ K )g

D Qg. So Q D Qg. Then
CU (Q)Q D CSg(Qg)Qg

D Sg
D U .

(ii) , (ii) 0. This is proved similarly.
This completes the proof.



BLOCKS OF NORMAL SUBGROUPS 1013

Theorem 3.5. Let b be G-invariant. Let B be a block of G covering b. We
choose a block B0 of G[b] so that B covers B0 (and B0 covers b). Let D, S be defect
groups of B, B0, respectively, such that Q� S� D. The following holds.
(i) B D B0G. In particular, B is a unique block of G that covers B0.
(ii) SD QCD(Q).

Proof. We first note thatG[b] C G, so the statement makes sense.
(i) We show B D B0G. By Theorem 1.3, it suffices to show the following:

(�) For any x 2 G satisfying!�B( OKx) ¤ 0 and D(Kx) DG D, we havex 2 G[b].
We may assumeD is a Sylow p-subgroup ofCG(x). Let � be an irreducible character
of height 0 in B. Put �

hx,K i D
P

i ni �i , where�i are distinct irreducible characters of
hx, K i and ni are positive integers. Then

!

�

( OKx) D
X

i

ni!�i ( OLx)
�i (1)jGj jCK (x)j

�(1)jK j jCG(x)j
,

where Lx is the conjugacy class ofhx, K i containingx. For any i , let bi be the block
of hx, K i containing �i . Then bi covers b. We claim d(bi ) � d(b) D �(jhx, K ij) �
�(jK j). Indeed, letH=K be a (normal) Sylowp-subgroup ofhx, K i=K . Let Ob be a
unique block of H covering b. Then, sincebi covers Ob, d(bi ) D d(Ob). Furthermore,
d(Ob) � d(b) D �(jH j) � �(jK j). Thus the claim follows. On the other hand, sinceD is
a Sylow p-subgroup ofCG(x), D \ K is a Sylow p-subgroup ofCK (x). Furthermore
D \ K is a defect group ofb. Thus

�

�

�i (1)jGj jCK (x)j

�(1)jK j jCG(x)j

�

D �(jhx, K ij) � d(bi )C ht(�i )C �(jGj)C �(jCK (x)j)

� {�(jGj) � d(B)C �(jK j)C �(jCG(x)j)}

D �(jhx, K ij) � �(jK j) � d(bi )C d(b)C ht(�i )

D ht(�i ) � 0.

Since!�
�

( OKx) ¤ 0, there existsi such that!�
�i

( OLx) ¤ 0. Thenx 2 hx, K i[b] by Corol-

lary 3.3, andx 2 G[b]. Thus (�) follows and B D B0G.
If B1 is another block ofG covering B0, then similarly B1 D B0G. So B1 D B.
(ii) Since Q D D \ K , Q is a normal subgroup ofD. Put

I D {u 2 D j u induces an inner automorphism ofQ}.

Clearly I D QCD(Q), so it suffices to showI D S. For anyu 2 D, put Qu D hu, Qi. If
bu is a unique block ofQuK coveringb, thenQu is a defect group ofbu, cf. Lemma 4.13
of [9].

Let u 2 I . Then Qu induces inner automorphisms ofQ. Since QuK D hu, K i,
QuK D (QuK )[b] � G[b] by Proposition 3.4. Sou 2 G[b], and I � G[b] \ D D S.
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Conversely letu 2 S. Then, sinceu 2 G[b] and QuK D hu, K i, we haveQuK D
(QuK )[b]. Thus Qu induces inner automorphisms ofQ by Proposition 3.4. Sou 2 I ,
and S� I . Thus I D S. The proof is complete.

REMARK 3.6. (1) Theorem 3.5 sharpens Lemma 4.14 of [9].
(2) Theorem 3.5 (i) is implicit in [3]. It follows from Lemma 3.3 and Proposition 1.9
of [3].
(3) Proposition 3.1 of [1] follows immediately from Theorem3.5 (ii). (The assumption
made there thatc is nilpotent is unnecessary.)

The following extends Proposition 3.4.

Corollary 3.7. Assume that G=K is a p-group. Let B be a unique block of G
covering b. Let D be a defect group of B such that D� Q. Then the following
are equivalent.
(i) G D G[b].
(ii) b is G-invariant and DD QCD(Q).
In particular, if D is abelian and b is G-invariant, then GD G[b].

Proof. (i)) (ii). This follows from Theorem 3.5.
(ii) ) (i). Let B0 be a block ofG[b] such thatB covers B0 and thatS WD D \

G[b] is a defect group ofB0. Then B0 coversb. Sinceb is G-invariant, G D DK and
G[b] D SK. By Theorem 3.5,SD QCD(Q) D D. ThereforeG D G[b].

REMARK 3.8. The last statement of Corollary 3.7 is implicit in the proof of The-
orem of [7].

Proposition 3.9. Assume that G=K is a cyclic p0-group. The following are
equivalent.
(i) G D G[b].
(ii) jBL(G j b)j D jG=K j.

Proof. (i) ) (ii). Put G D hx, K i. Let B be a block ofG covering b. By
Corollary 3.3, there exists somey in x K such that!�B(Ky) ¤ 0. Let � be an irredu-
cible character inB. Let � be any linear character ofG=K . Assume that� 
� lies in
B. Then!�

�
�

( OK y) D !�
�

( OK y), which implies��(y) D 1. SinceG=K is a p0-group, we
see that� is a trivial character. Therefore we obtainjBL(G j b)j � jG=K j. To prove
the reverse inequality, let� 2 Irr(b). Let m be the number of irreducible characters
of G lying over � . Any block of G coveringb contains an irreducible character lying
over � , so jBL(G j b)j �m. On the other hand,m� (�G,�G)G D ((�G)K ,� )K � jG=K j.
Thus jBL(G j b)j � jG=K j, and (ii) follows.
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(ii) ) (i). We claim that any blockB in BL(G j b) is induced from a block in
BL(G[b] j b). To see this, let QB be the Fong–Reynolds correspondent ofB in Gb.
Choose a blockB0 of G[b] such that QB covers B0 and B0 coversb. Then QB D B0Gb

by Theorem 3.5. SoB D QBG
D (B0Gb)G

D B0G. Thus the claim is proved. Then
jBL(G[b] j b)j � jBL(G j b)j. Since jBL(G[b] j b)j � jG[b]=K j (as above), it follows
that jG=K j � jG[b]=K j. Thus G D G[b]. The proof is complete.

REMARK 3.10. Application of Theorem 3.7 of [3] would shorten the proof of
Proposition 3.9.

The following gives a necessary and sufficient condition forG to coincide with
G[b] when G=K is an arbitrary group.

Theorem 3.11. Let B
w

be a weakly regular block of G covering b. Let D
w

be a
defect group of B

w

such that D
w

� Q. The following are equivalent.
(i) G D G[b].
(ii) (ii a) b is G-invariant;

(ii b) For any subgroup L of G such that L� K and that L/K is a cyclic p0-group,
it holds that jBL(L j b)j D jL=K j; and
(ii c) D

w

D QCD
w

(Q).

Proof. (i)) (ii). This follows from Proposition 3.9 and Theorem 3.5.
(ii) ) (i). Let x be a p0-element ofG and putH D hx, K i. By (ii b) and Prop-

osition 3.9, x 2 H D H [b]. So x 2 G[b]. Let x be a p-element ofG. By (ii a)
and Fong’s theoremD

w

K=K is a Sylow p-subgroup ofG=K . So xg
2 D

w

K for some
g 2 G. By (ii a) and [9, Lemma 2.2],D

w

is a defect group of a unique block ofD
w

K
coveringb. So by (ii c) and Corollary 3.7, (D

w

K )[b] D D
w

K . Thus xg
2 G[b]. Since

G[b] C G by (ii a), x 2 G[b]. HenceG D G[b].

We introduce some notation. LetQb be the Brauer correspondent ofb in NK (Q)
and let � be a block of QCK (Q) covered by Qb. Put L0 D QCK (Q). Let �0 be a
block of CK (Q) covered by�. Let � be the canonical character of� and let' be the
restriction of � to CK (Q). So ' is the canonical character of�0. Let SD NG(Q)

�

and T D NK (Q)
�

. So T is the inertial group of�0 in NK (Q). Put L D QCG(Q) and
C D CG(Q).

Noting thatT and L
�

are normal subgroups ofS, we have [T, L
�

] � L
�

\T D L0.
So we can define (after Isaacs [6, Section 2])hht, xii

�

2 K� for (t, x) 2 T � L
�

, where
K� is the multiplicative group ofK. The definition is as follows: letx 2 L

�

and let
O

� be an extension of� to hx, L0i. Let t 2 T . Then, sinceO� t is also an extension of
� to hx, L0i, there exists a unique linear character�t of hx, L0i=L0 such that O� t

D

O

� 
 �t . Then puthht, xii
�

D �t (x). This definition is independent of the choice ofO� .
It is bilinear in the sense thathhts, xii

�

D hht, xii
�

hhs, xii
�

for t, s 2 T and x 2 L
�
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and hht, xyii
�

D hht, xii
�

hht, yii
�

for t 2 T and x, y 2 L
�

, see [6, Lemma 2.1 and
Theorem 2.3]. Similarly we can definehht, xii

'

2 K� for (t, x) 2 T � C
�0. It is also

bilinear. Define

L
!

D {x 2 L
�

j hht, xii
�

D 1 for all t 2 T},

C
!

D {x 2 C
�0 j hht, xii

'

D 1 for all t 2 T}.

By definition, we see that forx 2 L
�

, the condition thatx 2 L
!

is equivalent to
the condition that any (equivalently, some) extension of� to hx, L0i is T-invariant.

Lemma 3.12. (i) L
!

is a normal subgroup of L
�

such that L
�

=L
!

is a p0-group.
(ii) L

!

K D C
!

K.

Proof. (i) Put�x(t) D hht, xii
�

for (t, x) 2 T � L
�

. Since�x(t) D 1 for t 2 L0,
�x may be regarded as an element of Hom(T=L0, K�). Then the map� sendingx
to �x is a group homomorphism fromL

�

to Hom(T=L0, K�). Since Ker� D L
!

and
T=L0 is a p0-group, the result follows.

(ii) We have L
�

D C
�0 L0. So L

!

D (L
!

\ C
�0)L0. It is easy to seehht, xii

'

D

hht, xii
�

for t 2 T and x 2 C
�0. So L

!

\ C
�0 D C

!

. Thus L
!

D C
!

L0, and hence
L
!

K D C
!

K .

Theorem 3.13. We have G[b] D C
!

K.

Proof. By Lemma 3.12 it suffices to showG[b] D L
!

K . We fix a block B of G
coveringb. Let QB be the Harris–Knörr correspondent ofB over b in NG(Q).

We first claim G[b] � L
�

K . Let x 2 G[b]. Put Gx D hx, K i and Lx D L \ Gx.
Then Lx D QCGx (Q). Since the condition thatx 2 G[b] is equivalent to the condition
that b is hxi-invariant andhxi acts onb as inner automorphisms,x 2 G[b] if and only
if x 2 Gx[b]. Thus it suffices to showGx[b] � (Lx)

�

K , where (Lx)
�

is the inertial
group of � in Lx. Thus we may assumeG D Gx D hx, K i. By Corollary 3.3, there
is somey 2 x K such that!�B( OK y) ¤ 0. Since QB covers Qb, QB covers�. So there is a

block B0 of L such that QB covers B0 and B0 covers�. Let � 0 be the Fong–Reynolds
correspondent ofB0 over � in L

�

. Since a defect group ofB0 containsQ, we have

B0H
D

QB. This implies B D �

0G. So !�B( OK y) D !

�

�

0

(3Ky \ L
�

). Thus there isg 2 G
such thatyg

2 L
�

� L
�

K . Then y 2 L
�

K , sinceG=K is abelian. Thusx 2 L
�

K , and
the claim is proved.

Then G[b] D (L
�

\ G[b])K . Therefore it suffices to proveL
�

\ G[b] D L
!

. We
shall show both sides contain the samep-elements andp0-elements. It suffices to show
that under the assumption thatx is either ap-element or ap0-element, it holds thatx 2
L
�

\G[b] if and only if x 2 L
!

. Sincex 2 L
�

\G[b] if and only if x 2 (Lx)
�

\Gx[b]
and x 2 L

!

if and only if x 2 (Lx)
!

(here (Lx)
!

is defined in a manner similar toL
!

),
we may assumeG D Gx.
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Let x be a p-element. Ifx 2 L
�

\G[b], then x 2 L
!

, since L
�

=L
!

is a p0-group
by Lemma 3.12. Conversely letx 2 L

!

. Then L D hx, L0i. So L D L
�

� S. Then SD
hx,Ti D LT . ThusS=L ' T=L0, andS=L is a p0-group. LetB1 be the Fong–Reynolds
correspondent ofQB over � in S. Let D be a defect group ofB1. Then D � Q. Since
S=L is a p0-group, D � L. So D D QCD(Q). By the Fong–Reynolds theorem,D is a
defect group of QB. So D is a defect group ofB. Since� is hxi-invariant, bD �K is
G-invariant. Therefore,G D G[b] by Proposition 3.4, andx 2 L

�

\ G[b]. The proof
is complete in this case.

Let x be a p0-element. It suffices to show that under the assumption thatx 2 L
�

,
x 2 G[b] if and only if x 2 L

!

. Assumex 2 L
�

. Then L D hx, L0i D L
�

. We have

jBL(G j b)j D jBL(NG(Q) j Qb)j (by the Harris–Knörr theorem)

D jBL(NG(Q) j �)j (since Qb is a unique block ofNK (Q) covering�)

D jBL(S j �)j (by the Fong–Reynolds theorem).

Since� is S-invariant, if B1 2 BL(S j �) covers a blockB0 of L, then B0

2 BL(L j �).
If B0

2 BL(L j �) and a blockB1 of S coversB0, then B1 2 BL(S j �). Further in this
caseB0 is determined up toS-conjugacy byB1 and B1 D B0S, sinceL D QCG(Q). Thus
jBL(S j �)j D jBL(L j �)=Sj, where BL(L j �)=S is a set of representatives ofS-conjugacy
classes of BL(L j �). SinceG D hx, K i, we haveS D hx, Ti. So jBL(L j �)=Sj D
jBL(L j �)=T j � jBL(L j �)j.

SinceL=L0 is cyclic and� is L-invariant, there is an extension of� to L. Let E be
the set of such extensions. We show there is a bijection of BL(L j �) onto E . For any
B0

2 BL(L j �), B0 contains an irreducible characterO� lying over � . Then O� 2 E . Since
L=L0 is a p0-group, B0 has defect groupQ. Therefore O� is the canonical character of
B0 and O� is uniquely determined. Of course anyO� 2 E is contained in someB0

2

BL(L j �). Therefore the mapB0

7!

O

� is the required bijection. SojBL(L j �)j D
jE j D jL=L0j.

Since jL=L0j D jG=K j, we obtainjBL(G j b)j � jG=K j. By Proposition 3.9,x 2
G[b] if and only if the equality holds here. The last condition isequivalent to the con-
dition that any extension of� to L is T-invariant. Thus it is equivalent to the condition
that x 2 L

!

, since L D hx, L0i. Thus x 2 G[b] if and only if x 2 L
!

. This completes
the proof.

Corollary 3.14. Our C
!

in Theorem 3.13is the same as C
!

(D C(D in H )
!

in
Dade’s notation) appearing inCorollary 12.6of [3].

Proof. If we denote byC0

!

the groupC
!

defined above, then Theorem 3.13 be-
comesG[b] D C0

!

K . ThenC0

!

D C\G[b]. From Dade’s theorem thatG[b] D C
!

K [3,
Corollary 12.6], we also obtainC

!

D C \G[b]. Thus (our)C
!

D C0

!

D (Dade’s)C
!

.
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Corollary 3.15 (Külshammer [8, Proposition 9]). G[b] D NG(Q)[ Qb]K.

Proof. Use Theorem 3.13 toG[b] and NG(Q)[ Qb].

4. Isomorphic blocks

The following theorem gives characterizations of isomorphic blocks with respect
to normal subgroups. For isomorphic blocks, see [5, Section4] and references therein.

Theorem 4.1. Let B be a block of G covering b. The following are equivalent.
(i) G D G[b], d(B) D d(b) and for some irreducible character� in B, �K is
irreducible.
(ii) G=K is a p0-group and for any x2 G, there is an element y in xK such that
!

�

B( OK y) ¤ 0.
(iii) The restriction� 7! �K is a bijection ofIrr(B) onto Irr(b).
(iv) The restriction� 7! �K is a bijection ofIrr0(B) onto Irr0(b).
(v) For some character� 2 Irr(b), we haveIrr(B j � ) D {�} with �K D � .
(vi) For some character� 2 Irr(b), we haveIrr0(B j � ) D {�} with �K D � .

Proof. (i) ) (ii). Since � D � 
 1G=K , we seeB0(G=K ) is �-dominated by
B (for �-domination see [10, p. 35]). So a defect group ofB0(G=K ) is contained in
QK=K D 1 by [10, Corollary 1.5]. ThusG=K is a p0-group.

Let x 2 G and putH D hx, K i. SinceH D H [b], by Corollary 3.3, there is some
y 2 x K such that!�

�

( OL y)¤ 0, whereL y is the conjugacy class ofH containingy. Now
CG(y) normalizesH . SoCG(y)H is a subgroup ofG containingK . ThusjG W CG(y)H j
is a p0-integer. On the other hand, we have!

�

( OK y) D !
�

( OL y)jG W CG(y)H j. Therefore

!

�

�

( OK y) ¤ 0.
(ii) ) (iii). Let � 2 Irr(B). For anyx 2 G, there is an elementy 2 x K such that

�(y) ¤ 0 by (ii). Then, by Lemma 3.1,�K is irreducible and�K 2 Irr(b). Of course,
then the restriction is surjective. Let� 0 2 Irr(B) such that�K D �

0

K . Then� 0 D � 
 �

for a linear character� of G=K . For anyx 2 G, let y 2 x K be such that!�
�

( OK y) ¤ 0.
We have

!

�

�

( OK y) D !�
�

0

( OK y) D !�
�

( OK y)�(x)�.

So �(x)� D 1. SinceG=K is a p0-group, we see that� is the trivial character. Thus
�

0

D � .
(iii) ) (iv). Put a D �(jGj) and a0 D �(jK j). We havea � d(B)C ht(�) D a0 �

d(b) C ht(�K ) for all � 2 Irr(B). If ht(�) D 0, we obtaina � d(B) � a0 � d(b). If
ht(�K ) D 0, we obtaina0�d(b) � a�d(B). Thusa�d(B) D a0�d(b). Hence ht(�) D
ht(�K ) for all � 2 Irr(B). Thus (iv) follows.

(iii) ) (v). This is trivial.
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(iv) ) (vi). This is trivial.
(v) ) (vi). Let a and a0 be as above. We havea � d(B)C ht(�) D a0 � d(b)C

ht(� ). Let B
w

be a weakly regular block ofG coveringb. Sinceb is G-invariant, we
have a � d(B

w

) D a0 � d(b). Thus a � d(B) � a � d(B
w

) D a0 � d(b). On the other
hand, we have ht(�) � ht(� ) by [10, Lemma 2.2]. Thus equality holds throughout and
ht(�) D ht(� ). So Irr0(B j � ) D {�}.

(vi) ) (i). Let � be an irreducible character ofp0-degree inB0(G=K ). Then
� 
 � 2 Irr(B j � ). We have ht(� 
 �) D ht(�) D ht(� ). Thus � 
 � D � , and � is
the trivial character. SoB0(G=K ) has defect 0 by the Cliff–Plesken–Weiss theorem [2,
Proposition 3.3] ([13, Problem 3.11]), andG=K is a p0-group. So d(B) D d(b). Put
� D �G[b] . We claim Irr(G j � ) D {�}. Let � 0 2 Irr(G j � ). Then �(� 0(1))D �(� (1))D
�(�(1)). Since� 0 lies in B by Theorem 3.5, ht(� 0) D ht(�). Therefore� 0 D � by
assumption, and the claim follows. Then, by Frobenius reciprocity, �G

D � . Since
� (1)D �(1), we obtainG D G[b].

The proof is complete.

REMARK 4.2. The equivalence of (i) and (iii) in Theorem 4.1 follows from [5,
Proposition 2.6, Theorem 3.5, and Theorem 4.1].
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