
Ganguli, S. and Poddar, M.
Osaka J. Math.
50 (2013), 977–1005

ALMOST COMPLEX STRUCTURE,
BLOWDOWNS AND McKAY CORRESPONDENCE IN

QUASITORIC ORBIFOLDS

SAIBAL GANGULI and MAINAK PODDAR

(Received March 12, 2012)

Abstract
We prove the existence of invariant almost complex structure on any positively

omnioriented quasitoric orbifold. We construct blowdowns. We define Chen–Ruan
cohomology ring for any omnioriented quasitoric orbifold.We prove that the Euler
characteristic of this cohomology is preserved by a crepantblowdown. We prove
that the Betti numbers are also preserved if dimension is less or equal to six. In
particular, our work reveals a new form of McKay correspondence for orbifold toric
varieties that are not Gorenstein. We illustrate with an example.

1. Introduction

McKay correspondence [16] has been studied widely for complex algebraic vari-
eties with only Gorenstein orSL orbifold singularities. A cohomological version of this
correspondence says that the Hodge numbers (and Betti numbers) of Chen–Ruan co-
homology (with compact support) [5] are preserved under crepant blowup. This was
proved in [12] and [17] for complete algebraic varieties with SL quotient singularities
following fundamental work of [3] and [8] in the local case. It makes sense to ask if
such a correspondence holds for Betti numbers when the orbifold has almost complex
structure only. However the main ingredients in the algebraic proof, namely motivic
integration and Hodge structure, may no longer be available.

From a different perspective, the topological properties of quasitoric spaces intro-
duced by Davis and Januskiewicz [6], have been studied extensively. However not
much attention has been given to the study of equivariant maps between them. In
this article, which is a sequel to [9], we construct equivariant blowdown maps be-
tween primitive omnioriented quasitoric orbifolds and prove certain McKay type cor-
respondence for them. These spaces do not have complex or almost complex structure
in general.

Quasitoric orbifolds [15] are topological generalizations of projective simplicial toric
varieties or symplectic toric orbifolds [11]. They are evendimensional spaces with ac-
tion of the compact torus of half dimension such that the orbit space has the structure
of a simple polytope. We only work with primitive quasitoricorbifolds. The orbifold
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singularities of these spaces correspond to analytic singularities. An omniorientation is a
choice of orientation for the quasitoric orbifold as well asfor each invariant suborbifold
of codimension two. When these orientations are compatiblethe quasitoric orbifold is
called positively omnioriented, see Section 2.9 for details. We prove the existence of
invariant almost complex structure on positively omnioriented quasitoric orbifolds (The-
orem 3.1) by adapting the technique of Kustarev [10] for quasitoric manifolds. We also
build a stronger version of Kustarev’s result: Theorem 3.2 and Corollary 3.3. These may
be of use to even those who are mainly interested in quasitoric manifolds.

Chen–Ruan cohomology was originally defined for almost complex orbifolds in
[5]. There the almost complex structure on normal bundles ofsingular strata is used to
determine the grading of the cohomology. An omniorientation, together with the torus
action, determines a complex structure on the normal bundleof every invariant sub-
orbifold of a quasitoric orbifold. Moreover the singular locus is a subset of the union
of invariant suborbifolds. Thus we can define Chen–Ruan cohomology groups for any
omnioriented quasitoric orbifold, see Section 7. We also define a ring structure for this
cohomology in Section 9 following the approach of [4]. The Chen–Ruan cohomology
of the same quasitoric orbifold is in general different for different omniorientations.
For a positively omnioriented quasitoric orbifold with thealmost complex structure of
Theorem 3.1, our definition of Chen–Ruan cohomology ring agrees with that of [5].

The blowdown maps are continuous, and they are diffeomorphism of orbifolds away
from the exceptional set. They are not morphisms of orbifolds (see [1] for definition).
In some cases they are analytic near the exceptional set, seeLemma 5.1. (In these cases
they are pseudoholomorphic in a natural sense, see Definition 5.1.) For these we can
compute the pull-back of the canonical sheaf and test if the blowdown is crepant in the
sense of complex geometry: The pull back of the canonical sheaf of the blowdown is the
canonical sheaf of the blowup. However the combinatorial condition this corresponds to,
makes sense in general and may be applied to an arbitrary blowdown. We work with this
generalized notion of crepant blowdown, see Section 6.

We prove the conservation of Betti numbers of Chen–Ruan cohomology under
crepant blowdowns when the quasitoric orbifold has dimension less than or equal to
six (Theorem 8.4). We also prove the conservation of Euler characteristic of this co-
homology under crepant blowdowns in arbitrary dimension (Theorem 8.3). This im-
plies that the rational orbifoldK -groups [2] are also preserved, see Section 8.2. These
statements hold under the condition that the omnioriented quasitoric orbifolds are
quasi-SL, a generalization ofSL; see Definition 8.1.

The validity of McKay correspondence for Betti numbers remains an interesting open
problem in higher dimensions. One might try to make use of thelocal results from mo-
tivic integration, namely correspondence of Betti numbersof Chen–Ruan cohomology
with compact support for crepant blowup of a Gorentstein quotient singularityCn

=G
[3, 8]. However such efforts are impeded by the fact that the correspondence obtained
from motivic integration is not natural. However, we prove avery basic inequality about
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the behavior of the second Betti number under crepant blowupin Lemma 8.5. We also
give an example of McKay correspondence for Betti numbers when dimension is eight
in Section 8.4. This example is particularly interesting asit corresponds to the weighted
projective spaceP (1, 1, 3, 3, 3) which is not a Gorenstein orSL orbifold. Hence McKay
correspondence as studied in complex algebraic geometry does not apply to it. However
under suitable choice of omniorientation it is quasi-SLand McKay correspondence holds.
Note that the blowup is not a toric blowup in the sense of algebraic geometry.

In [9], we constructed examples of four dimensional quasitoric orbifolds that are
not toric varieties. We also constructed pseudoholomorphic blowdowns between them.
Our brief study of pseudo-holomorphicity of blowdowns in Section 5 shows that every
primitive positively omnioriented quasitoric orbifold ofdimension four has a pseudo-
holomorphic resolution of singularities, see Theorem 5.4.The result may hold in di-
mension six as well, but developing pseudoholomorphic blowdowns in dimension six
and higher would need further work.

2. Quasitoric orbifolds

In this section we review the combinatorial construction ofquasitoric orbifolds. We
also construct an explicit orbifold atlas for them and list afew important properties.
The notations established here will be important for the rest of the article.

2.1. Construction. Fix a copy N of Zn and let TN WD (N 

Z

R)=N � R

n
=N

be the correspondingn-dimensional torus. A primitive vector inN, modulo sign, cor-
responds to a circle subgroup. ofTN . More generally, supposeM is a submodule of
N of rank m. Then

(2.1) TM WD (M 

Z

R)=M

is a torus of dimensionm. Moreover there is a natural homomorphism of Lie groups
�M W TM ! TN induced by the inclusionM ,! N.

DEFINITION 2.1. Define T(M) to be the image ofTM under�M . If M is gener-
ated by a vector� 2 N, denoteTM and T(M) by T

�

and T(�) respectively.

Usually a polytope is defined to be the convex hull of a finite set of points in
R

n. To keep our notation manageable, we will take a more liberalinterpretation of the
term polytope.

DEFINITION 2.2. A polytopeP will denote a subset ofRn which is diffeomorphic,
as manifold with corners, to the convex hullQ of a finite number of points inRn. Faces
of P are the images of the faces ofQ under the diffeomorphism.
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Let P be a simple polytope inRn, i.e. every vertex ofP is the intersection of
exactly n codimension one faces (facets). Consequently everyk-dimensional faceF of
P is the intersection of a unique collection ofn� k facets. LetF WD {F1, : : : , Fm} be
the set of facets ofP.

DEFINITION 2.3. A function3W F ! N is called a characteristic function forP
if 3(Fi1), : : : ,3(Fik ) are linearly independent wheneverFi1, : : : , Fik intersect at a face
in P. We write �i for 3(Fi ) and call it a characteristic vector.

REMARK 2.1. In this article we assume that all characteristic vectors are primi-
tive. Corresponding quasitoric orbifolds have been termedprimitive quasitoric orbifold
in [15]. They are characterized by the codimension of singular locus being greater than
or equal to four.

DEFINITION 2.4. For any faceF of P, let I(F) D {i W F � Fi }. Let 3 be a
characteristic function forP. Let N(F) be the submodule ofN generated by{�i W i 2
I(F)}. Note thatI(P) is empty andN(P) D {0}.

For any pointp 2 P, denote byF(p) the face ofP whose relative interior contains
p. Define an equivalence relation� on the spaceP � TN by

(2.2) (p, t) � (q, s) if and only if p D q and s�1t 2 T(N(F(p))).

Then the quotient spaceX WD P�TN=� can be given the structure of a 2n-dimensional
quasitoric orbifold. Moreover any 2n-dimensional primitive quasitoric orbifold may be
obtained in this way, see [15]. We refer to the pair (P,3) as a model for the quasitoric
orbifold. The spaceX inherits an action ofTN with orbit spaceP from the natural
action on P � TN . Let � W X ! P be the associated quotient map.

The spaceX is a manifold if the characteristic vectors�i1, : : : , �ik generate a uni-
modular subspace ofN whenever the facetsFi1, : : : , Fik intersect. The points��1(v) 2
X, wherev is any vertex ofP, are fixed by the action ofTN . For simplicity we will
denote the point��1(v) by v when there is no confusion.

2.2. Orbifold charts. Consider open neighborhoodsU
v

� P of the verticesv
such thatU

v

is the complement inP of all edges that do not containv. Let

(2.3) X
v

WD �

�1(U
v

) D U
v

� TN=�.

For a faceF of P containingv there is a natural inclusion ofN(F) in N(v). It induces
an injective homomorphismTN(F) ! TN(v) since a basis ofN(F) extends to a basis
of N(v). We will regard TN(F) as a subgroup ofTN(v) without confusion. Define an
equivalence relation�

v

on U
v

� TN(v) by (p, t) �
v

(q, s) if p D q and s�1t 2 TN(F)
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where F is the face whose relative interior containsp. Then the space

(2.4) QX
v

WD U
v

� TN(v)=�v

is �-equivariantly diffeomorphic to an open set inCn, where� W TN(v) ! U (1)n is an

isomorphism, see [6]. This means that there exists a diffeomorphism f W QX
v

! B � Cn

such that f (t � x) D �(t) � f (x) for all x 2 QX
v

. This will be evident from the sub-
sequent discussion.

The map�N(v)W TN(v)! TN induces a map�
v

W

QX
v

! X
v

defined by�
v

([( p, t)]�v )D
[( p, �N(v)(t))]� on equivalence classes. The kernel of�N(v), G

v

D N=N(v), is a finite
subgroup ofTN(v) and therefore has a natural smooth, free action onTN(v) induced by

the group operation. This induces smooth action ofG
v

on QX
v

. This action is not free
in general. SinceTN � TN(v)=Gv

, X
v

is homeomorphic to the quotient spaceQX
v

=G
v

.

An orbifold chart (or uniformizing system) onX
v

is given by (QX
v

, G
v

, �
v

).
Let (p1, : : : , pn) denote the standard coordinates onRn

� P. Let (q1, : : : ,qn) be the
coordinates onN 
R that correspond to the standard basis ofN. Let {u1, : : : , un} be
the standard basis ofN. Suppose the characteristic vectorsui are assigned to the facets
pi D 0 of the coneRn

�

. In this case there is a homeomorphism�W (Rn
�

�TN=�)! R

2n

given by

(2.5) xi D
p

pi cos(2�qi ), yi D
p

pi sin(2�qi ) where i D 1, : : : , n.

REMARK 2.2. The square root overpi is necessary to ensure that the orbit map
� W R

2n
! R

n
�

is smooth.

We define a homeomorphism�
v

W

QX
v

! R

2n as follows. Assume without loss of
generality thatF1, : : : , Fn are the facets ofU

v

. Let the equation ofFi be pi ,v D 0.
Assume thatpi ,v > 0 in the interior ofU

v

for every i . Let 3
v

be the corresponding
matrix of characteristic vectors

(2.6) 3

v

D [�1: : : �n].

If q
v

D (q1,v, : : : , qn,v)t are angular coordinates of an element ofTN with respect
to the basis{�1, : : : , �n} of N 
 R, then the standard coordinatesq D (q1, : : : , qn)t

may be expressed as

(2.7) q D 3
v

q
v

.

Then define the homeomorphism�
v

W

QX
v

! R

2n by

(2.8) xi D xi ,v WD
p

pi ,v cos(2�qi ,v), yi D yi ,v WD
p

pi ,v sin(2�qi ,v) for i D 1,: : : ,n.
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We write

(2.9) zi D xi C
p

�1yi and zi ,v D xi ,v C
p

�1yi ,v.

Now consider the action ofG
v

D N=N(v) on QX
v

. An elementg of G
v

is repre-
sented by a vector

Pn
iD1 ai�i in N where eachai 2 Q. The action ofg transforms the

coordinatesqi ,v to qi ,v C ai . Therefore

(2.10) g � (z1,v, : : : , zn,v) D (e2�
p

�1a1z1,v, : : : , e2�
p

�1an zn,v).

We may identifyG
v

with the cokernel of the linear map3
v

W N! N. Then stand-
ard arguments using the Smith normal form of the matrix3

v

imply that

(2.11) o(G
v

) D jdet3
v

j.

2.3. Compatibility of charts. We show the compatibility of the charts
( QX

v

, G
v

, �
v

). Let v1 and v2 be two vertices so that the minimal faceS of P containing
both has dimensions � 1. Then X

v1 \ X
v2 is nonempty. Assume facets (F1, : : : , Fs,

FsC1, : : : , Fn) meet at vertexv1 and facets (FnC1, : : : , FnCs, FsC1, : : : , Fn) meet atv2.
We take

(2.12)
3

v1 D [�1, : : : , �s, �sC1, : : : , �n] and

3

v2 D [�nC1, : : : , �nCs, �sC1, : : : , �n].

Then

(2.13) q
v2
D 3

�1
v2
3

v1qv1
.

Suppose

(2.14) �k D

nCs
X

jDsC1

c j ,k� j , 1� k � s.

Then by (2.13),

(2.15)

q j ,v2 D

s
X

kD1

cnC j ,kqk,v1 if 1 � j � s,

q j ,v2 D

s
X

kD1

c j ,kqk,v1 C q j ,v1 if sC 1� j � n.

Let the facetsF j , j D 1, : : : , n C s, be defined by Opj D 0 such that Opj > 0 in

the interior of the polytopeP. Then the coordinates (2.8) onQX
v2 and QX

v1 are related
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as follows.

(2.16)

zj ,v2 D

s
Y

kD1

z
cnC j ,k

k,v1

v

u

u

t

OpnC j

s
Y

kD1

Op
�cnC j ,k

k if 1 � j � s,

zj ,v2 D zj ,v1

s
Y

kD1

z
c j ,k

k,v1

v

u

u

t

s
Y

kD1

Op
�c j ,k

k if sC 1� j � n.

Take any pointx 2 X
v1 \ X

v2. Let Qx be a preimage ofx with respect to�
v1.

Suppose�(x) belongs to the relative interior of the faceF � S. SupposeF is the
intersection of facetsFi1, : : : , Fi t wheresC 1� i1 < � � � < i t � n. Then the coordinate
zj ,v1( Qx) is zero if and only if j 2 I(F) D {i1, : : : , i t }. Consider the isotropy subgroup
Gx of Qx in G

v1. It consists of all elements that do not affect the nonzero coordinates
of Qx,

(2.17) Gx D {g 2 G
v1 W g � zj ,v1 D zj ,v1 if j � I(F)}.

It is clear thatGx is independent of the choice ofQx and

(2.18) Gx D

8

<

:

[�] 2 N=N(v1) W � D
X

j2I(F)

a j� j

9

=

;

.

Note that j 2 I(F) if and only if � j 2 N(F). It follows from the linear independence
of �1, : : : , �n that

(2.19) Gx � GF WD ((N(F)

Z

Q) \ N)=N(F).

Note thatGP is the trivial group.
Choose a small ballB( Qx, r ) around Qx such that (g � B( Qx, r ))\ B( Qx, r ) is empty for

all g 2 G
v1 �Gx. Then B( Qx, r ) is stable under the action ofGx and (B( Qx, r ), Gx, �

v1)
is an orbifold chart aroundx induced by (QX

v1, G
v1, �v1). We show that for sufficiently

small value ofr , this chart embeds into (QX
v2, G

v2, �v2) as well.
Note that the rational numbersc j ,k in (2.14) are integer multiples of 1=1 where

1 D det(3
v2). Choose a branch ofz1=1

k,v1
for each 1� k � s, so that the branch cut

does not intersectB( Qx, r ). Assumer to be small enough so that the functionsz
c j ,k

k,v1
are

one-to-one onB( Qx, r ) for eachsC 1� j � nC s and 1� k � s. Then equation (2.16)
defines a smooth embedding of B( Qx, r ) into QX

v2. Note that Opk, 1� k � s, and OpnC j ,
1� j � s are smooth non-vanishing functions on��1

v1
(X

v1\X
v2). Let i

v2W Gx ! G
v2 be

the natural inclusion obtained using equation (2.19). Then( , i
v2)W (B( Qx, r ), Gx, �

v1)!
( QX

v2, G
v2, �v2) is an embedding of orbifold charts.
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We denote the spaceX with the above orbifold structure byX. In general we will
use a boldface letter to denote an orbifold and the same letter in normal font to denote
the underlying topological space.

2.4. Independence of shape of polytope.

Lemma 2.3. SupposeX and Y are quasitoric orbifolds whose orbit spaces P
and Q are diffeomorphic and the characteristic vector of anyedge of P matches with
the characteristic vector of the corresponding edge of Q. Then X and Y are equi-
variantly diffeomorphic.

Proof. Pick any vertexv of P. For simplicity we will write pi for pi ,v, and qi

for qi ,v. Suppose the diffeomorphismf W P1! P2 is given nearv by f (p1, p2,:::, pn)D
( f1, f2, : : : , fn). It induces a map of local chartsQX

v

!

QY f (v) by
(2.20)
(
p

pi cos(2�qi ),
p

pi sin(2�qi )) 7! (
p

fi cos(2�qi ),
p

fi sin(2�qi )) for i D 1, : : : , n.

This is a smooth map if the functions
p

fi =pi are smooth functions ofp1, : : : , pn.
Without loss of generality let us consider the case of

p

f1=p1. We may write

(2.21) f1(p1, p2, : : : pn) D f1(0, p2, : : : pn)C p1
� f1
� p1

(0, p2, : : : pn)C p2
1g(p1, p2, : : : pn)

whereg is smooth, see Section 8.14 of [7]. Note thatf1(0, p2, : : : , pn) D 0 as f maps
the facetp1 D 0 to the facet f1 D 0. Then it follows from equation (2.21) thatf1=p1

is smooth. We have

(2.22) f1=p1 D
� f1

� p1
(0, p2, : : : , pn)C p1g(p1, p2, : : : , pn).

Note that f1=p1 is nonvanishing away fromp1 D 0. Moreover we have

(2.23)
f1

p1
D

� f1

� p1
(0, p2, : : : , pn) when p1 D 0.

Since f1(0,p2,:::, pn) is identically zero, (� f1=� p j )(0,p2,:::, pn)D 0 for each 2� j � n.
As the Jacobian off is nonsingular we must have

(2.24)
� f1

� p1
(0, p2, : : : , pn) ¤ 0.

Thus f1=p1 is nonvanishing even whenp1D 0. Consequently
p

f1=p1 is smooth. There-
fore the map (2.20) is smooth and induces an isomorphism of orbifold charts.



QUASITORIC ORBIFOLDS 985

2.5. Torus action. An action of a groupH on an orbifoldY is an action of
H on the underlying spaceY with some extra conditions. In particular for every suffi-
ciently small H -stable neighborhoodU in Y with uniformizing system (W, G, �), the
action should lift to an action ofH on W that commutes with the action ofG. The
TN-action on the underlying topological space of a quasitoricorbifold does not lift to
an action on the orbifold in general.

2.6. Metric. By a torus invariant metric onX we will mean a metric onX which
is TN(F)-invariant in some uniformizing neighborhood ofx for any pointx 2 ��1(FÆ).

Any cover of X by TN-stable open sets induces an open cover ofP. Choose a
smooth partition of unity on the polytopeP subordinate to this induced cover. Com-
posing with the projection map� W X ! P we obtain a partition of unity onX sub-
ordinate to the given cover, which isTN-invariant. Such a partition of unity is smooth
as the map� is smooth, being locally given by mapsp j D x2

j C y2
j . For instance,

choose aTN(v)-invariant metric on eachQX
v

. Then using a partition of unity as above
we can define an invariant metric onX.

2.7. Invariant suborbifolds. The TN-invariant subsetX(F)D ��1(F), whereF
is a face ofP, has a natural structure of a quasitoric orbifold [15]. Thisstructure is
obtained by takingF as the polytope forX(F) and projecting the characteristic vec-
tors to N=N�(F) where N�(F) D (N(F) 


Z

Q) \ N. With this structureX(F) is a
suborbifold of X. It is called a characteristic suborbifold ifF is a facet. Suppose�
is the characteristic vector attached to the facetF . Then ��1(F) is fixed by the cir-
cle subgroupT(�) of TN . We denote the relative interior of a faceF by FÆ and the
corresponding invariant space��1(FÆ) by X(FÆ). Note thatvÆ D v if v is a vertex.

2.8. Orientation. Note that for any vertexv, dpi ,v^dqi ,v D dxi ,v^dyi ,v. There-
fore !

v

WD dp1,v^� � �^dpn,v^dq1,v^� � �^dqn,v equalsdx1,v^� � �^dxn,v^dy1,v^� � �^

dyn,v. The standard coordinates (p1, : : : , pn) are related to (p1,v, : : : , pn,v) by a diffeo-
morphism. The same holds forq and q

v

. Therefore! WD dp1^ � � � ^ dpn ^ dq1^ � � � ^

dqn is a nonzero multiple of each!
v

. The action ofG
v

on QX
v

, see equation (2.10),
preserves!

v

for each vertexv asdxi ,v^dyi ,v D (
p

�1=2)dzi ,v^dNzi ,v. The action ofG
v

affects only the angular coordinates. Sincedq1^ � � � ^dqn D det(3
v

) dq1,v ^ � � � ^dqn,v

and the right hand side isG
v

-invariant, we conclude that! is G
v

-invariant. There-
fore ! defines a nonvanishing 2n-form on X. Consequently a choice of orientations
for P � Rn and TN induces an orientation forX.

2.9. Omniorientation. An omniorientation is a choice of orientation for the orbi-
fold as well as an orientation for each characteristic suborbifold. For any vertexv, there
is a representation ofG

v

on the tangent spaceT0 QXv

. This representation splits into the
direct sum ofn representations corresponding to the normal spaces ofzi ,v D 0. Thus we
have a decomposition of the orbifold tangent spaceT

v

X as a direct sum of the normal
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spaces of the characteristic suborbifolds that meet atv. Given an omniorientation, we
say that the sign of a vertexv is positive if the orientations ofT

v

(X) determined by the
orientation ofX and orientations of characteristic suborbifolds coincide. Otherwise we
say that sign ofv is negative. An omniorientation is then said to be positive if each
vertex has positive sign.

It is easy to verify that reversing the sign of any number of characteristic vectors
does not affect the topology or differentiable structure ofthe quasitoric orbifold. There
is a circle action ofT

�i on the normal bundle ofX(Fi ) producing a complex structure
and orientation on it. This action and orientation varies with the sign of�i . Therefore,
given an orientation onX, omniorientations correspond bijectively to choices of signs
for the characteristic vectors. We will assume the standardorientations onP and Tn

so that omniorientations will be solely determined by signsof characteristic vectors.
At any vertexv, we may order the incident facets in such a way that their inward

normal vectors form a positively oriented basis ofRn
� P. Facets at a vertex ordered

in this way will be called positively ordered. We denote the matrix of characteristic
vectors ordered accordingly by3(v). Then the sign ofv equals the sign of det(3(v)).

3. Almost complex structure

Let X be a positively omnioriented primitive quasitoric orbifold.

DEFINITION 3.1. We say that an almost complex structure onX torus invariant
if it is TN(F)-invariant in some uniformizing neighborhood of each pointx 2 X(FÆ).

Theorem 3.1. Let X be a positively omnioriented quasitoric orbifold and� an
invariant metric on it. Then there exists an orthogonal invariant almost complex struc-
ture on X that respects the omniorientation.

Proof. Consider the subsetR
v

�

QX
v

consisting of points whose coordinates (2.9)
are real and nonnegative,

(3.1) R
v

D {x 2 QX
v

W zj ,v(x) 2 R
�

, 81� j � n}.

In other words,

(3.2) R
v

D {x 2 QX
v

W zj ,v(x) D
p

p j ,v(x), j D 1, : : : , n}.

We glue the spacesR
v

according to the transition maps (2.16), choosing the branches
uniformly as�� < qk,v < � . We obtain a manifold with boundaryR.

Let x be any point inR
v1 such that�

v1(x) 2 X
v1 \ X

v2. Then the transition maps
(2.16), with above choice of cuts, define a local diffeomorphism �12 from a neighbor-
hood of x in QX

v1 to a neighborhood of the image ofx in QX
v2.
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Let E
v

denote the restriction ofT QX
v

to R
v

. The last paragraph shows that these
bundles glue to form a smooth rank 2n real vector bundleE on R. The metric� on
T X induces a metric on the bundleE .

The restriction of the quotient map�
v

jR
v

W R
v

! X
v

is a homeomorphism onto its
image. As a result the spaceR is homeomorphic to the subspace�(P) of X used by
Kustarev [10]. The map� W P ! X is a homeomorphism given by the composition

P
i
�! P�TN

j
�! X where i is the inclusion given byi (p1, : : : , pn)D (p1, : : : , pn, 1,: : : , 1)

and j is the quotient map that definesX. For any faceF of P we denote its image
in R under the composition of above homeomorphisms asR(F). The restriction of
this homeomorphism to the relative interior ofF is smooth, and we denote the image
by R(FÆ).

Let QX
v

(F) be the preimage ofX(F) in QX
v

. If F is the intersection of facets
Fi1, : : : , Fi t , then QX

v

(F) is the submanifold of QX
v

defined by the equationszi j ,v D

0, 1 � j � t . Then arguments similar to the case ofE show that the restrictions
T QX

v

(F)jR
v

\R(F) glue together to produce a subbundleEF of E jR(F).
It is easy to check from (2.16) that

(3.3)
�

�zi j ,v1

�

�

�

�

x

D

�

�zi j ,v2

�

�

�

�

x

at any pointx in R
v1 \ R

v2 \ R(F). Therefore we obtain a subbundleNF of E jR(F)

corresponding to the normal bundles ofQXF,v in QX
v

. The bundleNF obviously splits
into the direct sum of the rank 2 bundlesNFk wherek 2 I(F) WD {i1, : : : , i t }.

Recall the torusTN(F) corresponding to the faceF of P from equation (2.1) and
Definition 2.1. For any vertexv of F , the moduleN(F) is a direct summand of the
module N(v). Consequently,TN(F) injects into TN(v). Supposex is a point in R(FÆ).

Then TN(F) is the stabilizer of any preimage ofx in QX
v

.
TN(F) is the product of the circlesT

�k , k 2 I(F). The circle T
�k acts nontrivially

on NFk and induces an almost complex structure on it correspondingto rotation by
�=2. Note that this structure depends on the sign of�k or, in other words, the specific
omniorientation. Thus theTN(F) action induces an almost complex structure onNF .

Using the method of Kustarev [10] it is possible to constructan orthogonal almost
complex structureJ on E that satisfies the following condition:
(?) For any faceF of P of dimension less thann, the restriction ofJ to NF jR(FÆ)

agrees with the complex structure induced by theTN(F) action and the omniorientation.
For future use, we give a brief outline of the proof of existence of such a structure.

The details may be found in [10]. In our case, the bundlesEF andNFk play the roles
of the bundles� (MF ) and �k in [10].

An orthogonal almost complex structure onE may be regarded as a mapJ W R!
SO(2n)=U (n). We proceed by induction. Letski (R) denote the union of alli -dimensional
faces ofR. For i D 0, existence ofJ is trivial. Extension tosk1(R) is possible due to
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positivity of omniorientation. Fori � 2, supposeJ is a structure onski�1(R) satisfying
the condition (?). ThenJ may be regarded as a map fromski�1(R) to SO(2i �2)=U (i �1)
as it is fixed in the normal directions by the torus action. Construct a cellular cochain
�

i
J 2 Ci (R, �i�1(SO(2i )=U (i )) by defining the value of� i

J on an i -dimensional face of
R to be the homotopy class of the value ofJ on the boundary of the face, composed
with a canonical isomorphism between�i�1(SO(2i �2)=U (i �1)) and�i�1(SO(2i )=U (i )).
J extends toski (R) if and only if � i

J D 0. Following [10], one proves that� i
J is a co-

cycle. Therefore, by contractibility ofR it is a coboundary. Suppose� i
J D Æ�, where� 2

Ci�1(R,�i�1(SO(2i )=U (i )). Note thatÆ�(Q) D �
P

G��Q �(G). For eachH 2 ski�1(R),

one perturbsJ in the interior ofH by a factor of��(H ). This makes� i
J D 0. (Note that

if �(H )D 0, no change is required for faceH . This will be used crucially in Lemma 3.2.)
By (?) the structureJ on E

v

is invariant under the action of isotropy groups. We
can therefore use the action ofTN(v) to produce an invariant almost complex structure

on T QX
v

as follows,

(3.4) J(t � x) D dt Æ J(x) Æ dt�1, 8x 2 R
v

, and8t 2 TN(v).

The local groupG
v

of orbifold chart (QX
v

, G
v

, �
v

) is a subgroup ofTN(v). Thus J is

G
v

-invariant on QX
v

.
The compatibility of J across charts may be verified as follows. Take any point

x 2 X
v1 \ X

v2. Let Qx 2 QX
v1 be a preimage ofx under�

v1. SupposeQx D t1 � x0 where
x0 2 R and t1 2 TN(v1). Choose an embeddingQ�12 of a smallGx-stable neighborhood of

Qx into QX
v2 as outlined in Section 2.3. SupposeQ�12( Qx) D t2 � x0 wheret2 2 TN(v2). Then

(3.5) Q

�12D t2 Æ �12 Æ t1
�1.

By construction ofJ on E , J commutes withd�12jR. J commutes withdti and dt�1
i

by its construction onQX
vi . ThereforeJ commutes withd Q�12, as desired.

Theorem 3.2. Suppose an orthogonal invariant almost complex structure is given
on a characteristic suborbifoldX(F). Then it can be extended toX.

Proof. We follow the notation of the previous theorem.J has been already spec-
ified on X(F) where dim(F) D n � 1. This determinesJ on the subbundleEF of E

over R(F). We use the torus action and omniorientation to extendJ to E jR(F).
We construct an extension ofJ to R skeleton-wise. Extension up tosk1(R)[ F is

achieved using positivity of omniorientation. For extension to higher skeletons we need
to use obstruction theory. We need to take care so thatJ is preserved on sub-faces of
F . We use induction. SupposeJ has been extended toskd�1(R) [ F , where d < n.
(We will deal with thed D n case separately.)
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Let � d
2 Cd(R,�d�1(SO(2d)=U (d))) be the obstruction cocycle. Leti W R(F) ,! R

be inclusion map. Restriction toF produces a cochain

i �(� d) 2 Cd(R(F), �d�1(SO(2d)=U (d))).

Then i �(� d) D 0 since we know thatJ extends toR(F). Since� d
D Æ�, i �(�) is a

cocycle. As R(F) is contractiblei �(�) is a coboundary. Leti �(�) D Æ�1 where�1 2

Cd�2(R(F)). Define a chain�2 2 Cd�2(R) such that

(3.6) �2(H ) D

�

�1(H ) for any (d � 2) face H � R(F),
0 otherwise.

Then define�3 D � � Æ(�2). This new cochain has the property thatÆ(�3) D �

d

and its action (d � 1)-dimensional faces ofR(F) is zero. So we can now extend the
structure toskd [R(F) without affecting the sub-faces ofR(F).

By induction, we may assume thatJ has been extended toskn�1(R) [ R(F). Let
�

n
2 Cn(R, �n�1(SO(2n)=U (n)) be the corresponding obstruction cochain for extension

to skn. Since R is contractible we have� n
D Æ�. We modify � as follows. Suppose

K is a facet adjacent toF . Define� 0 2 Cn�1 as follows.

(3.7) �

0(H ) D

8

<

:

0 if H D R(F),
�(R(F))C �(R(K )) if H D R(K ),
�(H ) otherwise.

Then Æ� 0 D Æ� D � n and � 0(R(F)) D 0. So we may extendJ to R without changing
it on R(F).

Corollary 3.3. Suppose an orthogonal invariant almost complex structure is given
on a suborbifoldX(F) where F is any face of P. Then it can be extended toX.

Proof. Consider a nested sequence of facesF D H0 � H1 � � � � Hk D P where
dim(Hi ) D dim(F)C i . Extend the structure inductively fromX(Hi ) to X(HiC1) using
Theorem 3.2.

4. Blowdowns

Topologically the blowup will correspond to replacing an invariant suborbifold by
the projectivization of its normal bundle. Combinatorially we replace a face by a facet
with a new characteristic vector. SupposeF is a face ofP. We choose a hyperplane
H D { Op0 D 0} such that Op0 is negative onF and OP WD { Op0 > 0} \ P is a simple
polytope having one more facet thanP. SupposeF1,:::,Fm are the facets ofP. Denote
the facetsFi \ OP by Fi without confusion. Denote the extra facetH \ P by F0.
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Without loss of generality letF D
Tk

jD1 F j . Suppose there exists a primitive vector
�0 2 N such that

(4.1) �0 D

k
X

jD1

b j� j , b j > 0, 8 j .

Then the assignmentF0 7! �0 extends the characteristic function ofP to a character-
istic function O3 on OP. Denote the omnioriented quasitoric orbifold derived fromthe
model (OP, O3) by Y.

Consider a small open neighborhoodU WD {x 2 PW Op0(x)< �} of the faceF , where
0< � < 1. DenoteU \ OP by OU . By Lemma 2.3 we may assume that

(4.2) f W U D F � [0, 1)k.

We also assume without loss of generality that the defining function Opj of the facetF j

equals thej -th coordinatep j of Rn on U , for each 1� j � k.
Choose small positive numbers�1 < �2 < � and a smooth non-decreasing function

Æ W [0,1)! R such that

(4.3) Æ(t) D

�

t if t < �1,
1 if t > �2.

Then define� W OP! P to be the map given by

(4.4) � (p1, : : : , pk, pkC1, : : : , pn) D (Æ( Op0)b1 p1, : : : , Æ( Op0)bk pk, pkC1, : : : , pn).

The blow down map� W ( OP � TN=�)! (P � TN=�) is defined by

(4.5) �(p, q) D (� (p), q).

Since Æ D 1 if Op0 > �2, � is a diffeomorphism of orbifolds away from a tubular
neighborhood ofX(F). We study the map� near X(F).

Let w D
Tn

jD1 F j be a vertex ofF . Supposev be a vertex ofF0 such that� (v) D
w. Then the edge joiningv andw is the intersection ofn� 1 facets common to both
which must includeFkC1, : : : , Fn. Therefore there arek choices forv, namelyvi D
T

0� j¤i�n F j with 1� i � k.
Let Opj D 0 be the defining equation of the facetF j for k C 1 � j � n. Order

the facets atw as F1, : : : , Fn, and those atvi as F1, : : : , Fi�1, F0, FiC1, : : : , Fn. Let
zj ,w and zj ,vi be the coordinates onQX

w

and QY
vi defined according to (2.8) and (2.9).

Then by using a process similar to the one used for (2.16), we obtain the following
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description of� nearY
vi ,

(4.6)

zi ,w Æ � D zbi
i ,vi

p

pi Æ( Op0)bi ( Op0)�bi ,

zj ,w Æ � D z
b j

i ,vi
zj ,vi

p

Æ( Op0)b j ( Op0)�b j if 1 � j ¤ i � k,

zj ,w Æ � D zj ,vi if kC 1� j � n.

We define a new coordinate system onQY
vi , for each 1� i � k, as follows.

(4.7)

z0i ,vi
D zi ,vi (

p

pi )
1=bi
p

Æ( Op0)( Op0)�1,

z0j ,vi
D zj ,vi (

p

pi )
�b j =bi if 1 � j ¤ i � k,

z0j ,vi
D zj ,vi if kC 1� j � n.

This is a valid change of coordinates aspi is positive on QY
vi and Æ( Op0)( Op0)�1 is iden-

tically one near Op0 D 0.
In these new coordinates,� can be expressed as

(4.8)

zi ,w Æ � D (z0i ,vi
)bi ,

zj ,w Æ � D (z0i ,vi
)b j z0j ,vi

if 1 � j ¤ i � k,

zj ,w Æ � D z0j ,vi
if kC 1� j � n.

Lemma 4.1. The restriction� W Y � Y(F0) ! X � X(F) is a diffeomorphism of
orbifolds.

Proof. This is obvious outside��1(U ). On ��1(U ) � X(F), by formula (4.8),
� is locally equivalent to a blowup in complex geometry. Therefore � is an analytic
isomorphism on��1(U )� X(F). However since our quasitoric orbifolds are primitive,
there is no complex reflection in our orbifold groups. Hence using the results of [13],
analytic isomorphism yields diffeomorphism of orbifolds.

Lemma 4.2. If X is positively omnioriented, then so is a blowupY.

Proof. Recall the positive ordering of facets at a vertexv in Section 2.9 to define
the matrix3(v) whose determinant has the same sign as sign ofv.

Let w be any vertex ofF andvi be any vertex in��1(w). Let F1, : : : , Fn be posi-
tively ordered facets atw. An inward normal vector toF0 is a positive linear combin-
ation of the inward normal vectors toF1, : : : , Fk. ThereforeF1, : : : , Fi�1, F0, FiC1, : : : , Fn

are positively ordered for eachi D 1, : : : , k. So the matrix3(vi ) is obtained by replac-

ing the i -th column of3(w), namely �i , by �0 D
Pk

jD1 b j� j . Therefore det3(vi ) D

bi det3(w). The lemma follows.
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DEFINITION 4.1. A blowdown� is said to be a resolution if for any vertexw
of the exceptional faceF and any vertexvi 2 �

�1(F) we haveo(G
vi ) < o(G

w

).

Lemma 4.3. A blowdown� is a resolution if bi < 1 for each i.

Proof. The lemma holds since by (2.11) we haveo(G
vi )D jdet3

vi j D bi jdet3
w

j D

bi o(G
w

).

5. Pseudoholomorphic blowdowns

Lemma 5.1. Let � W Y ! X be a blowdown along a subset X(F). Suppose there
exist holomorphic coordinate systems z�

1,w, : : : , z�n,w on the uniformizing chartQX
w

for

every vertexw of F, which produce an analytic structure on a neighborhood��1(U ) of
X(F). Assume further that this analytic structure extends to an almost complex structure
on X. Then the blowup induces an almost complex structure onY which is analytic
near the exceptional set Y(F0). Moreover, with respect to these structures� is analytic
near Y(F0) and an almost complex diffeomorphism of orbifolds away fromY(F0).

Proof. Note that for two verticesw1, w2 of F , the coordinates must be related as

(5.1) z�j ,w2
D

n
Y

iD1

(z�i ,w1
)di j

where thedi j s are rational numbers determined from the matrix3�1
w2
3

w1, see (2.13)
and (2.16).

Also the coordinatesz�j ,w have to relate to the coordinates defined in (2.8) and (2.9)
as follows,

(5.2) z�j ,w D zj ,w f j , 1� j � n

where eachf j is smooth and non-vanishing onQX
w

. For eachvi 2 �
�1(w) we define

coordinates in its neighborhood, by modifying the coordinates of (4.7) as follows,

(5.3)

z�i ,vi
D z0i ,vi

( fi Æ � )1=bi ,

z�j ,vi
D z0j ,vi

( f j Æ � )( fi Æ � )�b j =bi if 1 � j ¤ i � k,

z�j ,vi
D z0j ,vi

if kC 1� j � n.

In these coordinates� takes the following form nearvi ,

(5.4)

z�i ,w Æ � D (z�i ,vi
)bi ,

z�j ,w Æ � D (z�i ,vi
)b j z�j ,vi

if 1 � j ¤ i � k,

z�j ,w Æ � D z�j ,vi
if kC 1� j � n.
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We define an almost complex structureOJ on Y by defining the coordinatesz�j ,vi
to be

holomorphic nearY(F) and by OJ D d��1
Æ J Æ d� away from it. This is consistent as

� is a diffeomorphism of orbifolds on the complement ofYF .
By (5.1) and (5.4), for any two verticesu1 and u2 of F0, we have

(5.5) z�j ,u2
D

n
Y

iD1

(z�i ,u1
)ei j

for some rational numbersei j . But these numbers are determined by the matrix3

�1
u2
3u1.

It is then obvious from the arguments about compatibility ofcharts in Section 2.2 that
the patching of the chartsYu1 andYu2 is holomorphic.

Examples of blowdowns that satisfy the hypothesis of Lemma 5.1 include blow-
downs of four dimensional positively omnioriented quasitoric orbifolds constructed in
[9] and toric blow-ups of simplicial toric varieties.

DEFINITION 5.1 ([9]). A function f on X is said to be smooth iff Æ� is smooth
for every uniformizing system (QU , G, � ). A complex valued smooth functionf on an
almost complex orbifold (X, J) is said to beJ-holomorphic if the differentiald( f Æ � )
commutes withJ for every chart (QU , G, � ). We denote the sheaf ofJ-holomorphic
functions onX by �0

J,X . A continuous map� W Y! X between almost complex orbi-

folds (Y, J2) and (X, J1) is said to be pseudo-holomorphic iff Æ� 2 �0
J2,Y(��1(U )) for

every f 2 �0
J1,X(U ) for any open setU � X; that is,� pulls back pseudo-holomorphic

functions to pseudo-holomorphic functions.

Lemma 5.2. Blowdowns that satisfy the hypothesis ofLemma 5.1are pseudo-
holomorphic.

Proof. Suppose� W Y ! X is such a blowdown. Since� is an almost complex
diffeomorphism of orbifolds away from the exceptional setY(F0), it suffices to check
the statement nearY(F0). Pick any vertexw of F . Define W D X

w

\ �

�1(U ). For
any vertexvi 2 �

�1(w), let Vi D Y
vi \ �

�1(��1(U )). We will denote the characteristic

vectors atvi by O� j , j D 1, : : : , n. Note that

(5.6) O

� j D

�

� j if j ¤ i ,
�0 if j D i .

The ring�0
J1,X(W) is the G

w

-invariant subring of convergent power series in vari-
ablesz�j ,w. It is generated by monomials of the form

(5.7) f D
n
Y

jD1

(z�j ,w)d j
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where thed j s are integers such that
P

a j d j is an integer whenever the vector
P

a j� j 2

N. This last condition follows from invariance under action of the elementg 2 G
w

corresponding to
P

a j� j .
Using (5.4) and�0 D

Pn
jD1 b j� j with b j D 0 for j � kC 1, we get

(5.8) f Æ � D (z�i ,vi
)
P

b j d j
Y

j¤i

(z�j ,vi
)d j .

Take any elementh in G
vi . Supposeh is represented by

P

c j O� j 2 N. The action

of h on f Æ � is multiplication bye2�
p

�1�, where

(5.9) � D ci

X

j

b j d j C
X

j¤i

c j d j D ci bi di C
X

j¤i

(c j C ci b j )d j .

Note that� WD ci bi�i C
P

j¤i (c j C ci b j )� j D ci
P

j b j� j C
P

j¤i c j� j D
P

c j O� j .
Hence this is an element ofN.

Suppose f is a generator of�0
J1,X(W) as in (5.7). Consider the action of the

element ofG
w

corresponding to� on f . It is multiplication by e2�
p

�1�. Since f
is G

w

-invariant, � is an integer. Hencef Æ � is G
vi invariant. The ring�0

J1,Y(Vi )
is the G

vi -invariant subring of convergent power series in variablesz�j ,vi
. Therefore

f Æ � 2 �0
J1,Y(Vi ).

The proof of the following corollary of Lemma 5.1 is straightforward.

Corollary 5.3. Consider a sequence of blowups�i W Yi ! Yi�1 where 1 � i �
r and �1 satisfies the hypothesis ofLemma 5.1. Assume that the locus of the i-th
blowup is contained in the exceptional set of the(i � 1)-st blowup for every i . Then
we can inductively choose almost complex structures so thateach blowdown map in
the sequence is pseudoholomorphic.

Theorem 5.4. There exists a pseudoholomorphic resolution of singularity for any
primitive positively omnioriented four dimensional quasitoric orbifold.

Proof. For any primitive positively omnioriented four dimensional quasitoric orbi-
fold, Theorem 3.1 of [9] produces an almost complex structure that satisfies the hypoth-
esis of Lemma 5.1 for every vertex. The singularities are allcyclic. We can resolve
them by applying a sequence of blow-ups as in Corollary 5.3.

6. Crepant blowdowns

DEFINITION 6.1. A blowdown is called crepant if
P

b j D 1.

This has the following geometric interpretation.
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DEFINITION 6.2. Given an almost complex 2n-dimensional orbifold (X, J), we
define the canonical sheafKX to be the sheaf of continuous (n, 0)-forms onX; that is,

for any orbifold chart (QU , G, � ) over an open setU � X, KX(U ) D 0
�

Vn
T 1,0( QU )�

�G

where0 is the functor that takes continuous sections.

An almost complex orbifold is called Gorenstein orSL orbifold if the linearization
of every local group elementg belongs toSL(n,C). For anSL-orbifold X, the canonical
sheaf is a complex line bundle overX.

Lemma 6.1. Suppose� W Y! X is a pseudoholomorphic blowdown of SL quasi-
toric orbifolds along a face F satisfying the hypothesis ofLemma 5.1. Then � is
crepant if and only if��KX D KY.

Proof. We consider the canonical sheafKX as a sheaf of modules over the sheaf
of continuous functionsC0

X. Since� is an almost complex diffeomorphism away from
the exceptional set it suffices to check the equality of the�

�KY and KX on the neigh-
borhood��1(��1(U )) � Y of the exceptional set. Choose any vertexw of F . On X

w

\

�

�1(U ), the sheafKX is generated over the sheafC0
X by the formdz�1,w ^ � � � ^ dz�n,w,

see (5.2). Letvi be any preimage ofw under�. Similarly on Y
vi \ �

�1(��1(U )), KY

is generated over the sheafC0
Y by the formdz�1,vi

^ � � � ^ dz�n,vi
.

Using (5.4) we have

(6.1)

�

� dz�i ,w D bi (z
�

i ,vi
)bi�1 dz�i ,vi

,

�

� dz�j ,w D (z�i ,vi
)b j dz�j ,vi

C b j (z
�

i ,vi
)b j�1z�j ,vi

dz�i ,vi
if 1 � j ¤ i � k,

�

� dz�j ,w D dz�j ,vi
if kC 1� j � n.

Therefore we have

(6.2) �

�(dz�1,w ^ � � � ^ dz�n,w) D bi (z
�

i ,vi
)b1C���Cbk�1 dz�1,vi

^ � � � ^ dz�n,vi
.

The lemma follows.

7. Chen–Ruan Cohomology

The Chen–Ruan cohomology group is built out of the ordinary cohomology of cer-
tain copies of singular strata of an orbifold called twistedsectors. The twisted sectors
of orbifold toric varieties was computed in [14]. The determination of such sectors
for quasitoric orbifolds is similar in essence. Another important feature of Chen–Ruan
cohomology is the grading which is rational in general. In our case the grading will
depend on the omniorientation.

Let X be an omnioriented quasitoric orbifold. Consider any element g of the group
GF (2.19). Theng may be represented by a vector

P

j2I(F) a j� j . We may restricta j
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to [0, 1)\Q. Then the above representation is unique. Then define the degree shifting
number or age ofg to be

(7.1) �(g) D
X

a j .

For facesF and H of P we write F � H if F is a sub-face ofH , and F < H if
it is a proper sub-face. IfF � H we have a natural inclusion ofGH into GF induced
by the inclusion ofN(H ) into N(F). Therefore we may regardGH as a subgroup of
GF . Define the set

(7.2) GÆ

F D GF �
[

F<H

GH .

Note thatGÆ

F D
{
P

j2I(F) a j� j W 0< a j < 1
}

\ N, and GÆ

P D GP D {0}.

DEFINITION 7.1. We define the Chen–Ruan orbifold cohomology of an omni-
oriented quasitoric orbifoldX to be

H�

CR(X, R) D
M

F�P

M

g2GÆ

F

H��2�(g)(X(F), R).

Here H� refers to singular cohomology or equivalently to de Rham cohomology of
invariant forms whenX(F) is considered as the orbifoldX(F). The pairs (X(F), g)
where F < P and g 2 GÆ

F are called twisted sectors ofX. The pair (X(P), 1), i.e. the
underlying spaceX, is called the untwisted sector. We denote the Betti number
rank(Hd

CR(X)) by hd
CR.

Note that ifX is a manifold then its Chen–Ruan cohomology is same as its singu-
lar cohomology.

7.1. Poincaré duality. Poincaré duality is established in a similar fashion as for
compact almost complex orbifolds. We need to distinguish the copies ofX(F) corres-
ponding to different twisted sectors. Therefore forg 2 GÆ

F , we define the space

(7.3) S(F, g) D {(x, g) W x 2 X(F)}.

Of courseS(F, g) is homeomorphic toX(F). It is denoted byS(F, g) when endowed
with an orbifold structure which is the structure ofX(F) with an additional trivial ac-
tion of GF at each point. With this structure, it is a suborbifold ofX in a natural way.
The untwisted sector is denoted byS(P, 1). In this notation the Chen–Ruan groups
may be written as

(7.4) H�

CR(X, R) D
M

F�P

M

g2GÆ

F

H��2�(g)(S(F, g), R).
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Lemma 7.1. Suppose g2 GÆ

F . Then2�(g)C 2�(g�1) D 2n� dim(X(F)).

Proof. WhenF D P, GÆ

P D {0} and the result is obvious. SupposeF D
Tk

iD1 Fi .

Then g D
Pk

iD1 ai�i where each 0< ai < 1. Then g�1 is represented by the vector
Pk

iD1 �ai �i in N modulo N(F). Thereforeg�1 may be identified with the vector
Pk

iD1(1 � ai )�i . Note that 0< 1 � ai < 1 for each i . Therefore the age ofg�1,

�(g�1) D
Pk

iD1(1� ai ). Hence 2�(g) C 2�(g�1) D 2
Pk

iD1 ai C 2
Pk

iD1(1� ai ) D 2k D
2n� dim(X(F)).

For any compact orientable orbifold, there exists a notion of orbifold integration
R orb for invariant top dimensional forms which gives Poincaré duality for the de Rham

cohomology of the orbifold, see [5]. For a chartU D ( QU , G, � ) orbifold integration for
an invariant form! on QU is defined by

(7.5)
Z orb

U
! D

1

o(G)

Z

QU
!.

Let I W S(F,g)! S(F,g�1) be the diffeomorphism of orbifolds defined byI (x,g)D
(x, g�1). We define a bilinear pairing

(7.6) h , iorb
(F,g) W Hd�2�(g)(S(F, g)) � H2n�d�2�(g�1)(S(F, g�1))! R

for every 0� d � 2n by

(7.7) h�, �iorb
(F,g) D

Z orb

S(F,g)
� ^ I �(�).

This pairing is nondegenerate because of Lemma 7.1. By taking a direct sum of the
pairing (7.6) over all pairs of sectors ((F, g), (F, g�1)) for F � P, we get a nonsingular
pairing for each 0� d � 2n

(7.8) h , iorb
W Hd

CR(X) � H2n�d
CR (X)! R.

8. McKay correspondence

First we introduce some notation. Consider a codimensionk face F D F1\� � �\Fk

of P wherek � 1. Define ak-dimensional coneCF in N 
 R as follows,

(8.1) CF D

8

<

:

k
X

jD1

a j� j W a j � 0

9

=

;

.
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The groupGF can be identified with the subsetBoxF of CF , where

(8.2) BoxF WD

8

<

:

k
X

jD1

a j� j W 0� a j < 1

9

=

;

\ N.

Consequently the setGÆ

F is identified with the subset

(8.3) BoxÆF WD

8

<

:

k
X

jD1

a j� j W 0< a j < 1

9

=

;

\ N

of the interior ofCF . We defineBoxP D BoxÆP D {0}.
Supposev D F1\� � �\Fn is a vertex ofP. ThenBox

v

D

F

v�F BoxÆF . This implies

(8.4) G
v

D

G

v�F

GÆ

F .

8.1. Euler characteristic. An almost complex orbifold isSL if the linearization
of each g is in SL(n, C). This is equivalent to�(g) being integral for every twisted
sector. Therefore, to suit our purposes, we make the following definition.

DEFINITION 8.1. An omnioriented quasitoric orbifold is said to be quasi-SL if
the age of every twisted sector is an integer.

Lemma 8.1. SupposeX is a quasi-SL quasitoric orbifold. Then the Chen–Ruan
Euler characteristic ofX is given by

�CR(X) D
X

v

o(G
v

)

wherev varies over all vertices of P.

Proof. Note that eachX(F) is a quasitoric orbifold. So its cohomology is con-
centrated in even degrees, see [15]. SinceX is quasi-SL, the shifts 2�(g) in grading
are also even integers. Therefore the Euler characteristicof Chen–Ruan cohomology is
given by

(8.5) �CR(X) D
X

F�P

�(X(F)) � o(GÆ

F ).

Each X(F) admits a decomposition into even dimensional strata as follows

(8.6) X(F) D
G

H�F

X(H Æ)
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where H Æ is the relative interior ofH and X(H Æ) D ��1(H Æ). We have

(8.7) �(X(F)) D
X

H�F

�(X(H Æ)).

However X(H Æ) is homeomorphic to the product ofH Æ with (S1)dim(H ). Therefore
�(X(H Æ)) D 0unlessH is a vertex. Hence

(8.8) �(X(F)) D number of vertices ofF .

This formula also follows from the description of the homology groups of a quasitoric
orbifold in [15].

Using (8.4), (8.5) and (8.8), we have the desired formula for�CR(X).

Lemma 8.2. The crepant blowup of a quasi-SL quasitoric orbifold is quasi-SL.

Proof. Suppose the blowup is along a faceF D F1 \ � � � \ Fk. The new sectors
that appear correspond toGÆ

H where H < F0. Take any vertexv in H . Supposev
projects to the vertexw of F under the blowdown. Without loss of generality assume
w D

Tn
jD1 F j . Then v D

T

0� j¤i�n F j for some 1� i � k. Without loss of generality
assumei D 1. Sincev � H , I(H ) � {0, 2, : : : , n}. Therefore anyg 2 GÆ

H may be
represented by an element� D c0�0C

Pn
jD2 c j� j of N where eachc j 2 [0, 1)\Q. We

need to show that the age ofg, namelyc0C
Pn

jD2 c j , is an integer.

But using�0 D
Pk

jD1 b j� j we get that� 2 C
w

. In fact

(8.9) � D c0b1�1C

k
X

jD2

(c0b j C c j )� j C

n
X

jDkC1

c j� j .

We may write� D
Pn

jD1(m jCa j )� j where eachm j is an integer and eacha j 2 [0,1)\

Q. Then
Pn

jD1 a j� j corresponds to an element ofG
w

. SinceX is quasi-SL,
Pn

jD1 a j

must be an integer. Therefore
Pn

jD1(m j Ca j ) is an integer. Hencec0b1C
Pk

jD2(c0b j C

c j ) C
Pn

jDkC1 c j is an integer. Using
Pk

jD1 b j D 1, this yields thatc0 C
Pn

jD2 c j is
an integer.

Theorem 8.3. The Euler characteristic of Chen–Ruan cohomology is preserved
under a crepant blowup of a quasi-SL quasitoric orbifold.

Proof. Let � W Y ! X be a crepant blowdown along a faceF D
Tk

jD1 F j of P.

Let w be any vertex ofP and letv1, : : : , vk be the vertices ofOP such that�(vi ) D w.
Supposew D

T

1� j�n F j . Then vi D F0 \
T

1� j¤i�n F j .
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The contribution ofw to �CR(X) is o(G
w

) D jdet3
w

j, see (2.11). The contribution
of eachvi to �CR(Y) is o(G

vi ) D jdet3
vi j D bi jdet3

w

j D bi o(G
w

). As the blowdown

is crepant, we haveo(G
w

) D
Pk

iD1 o(G
vi ). The theorem follows.

8.2. Orbifold K -groups. Orbifold K -theory is theK -theory of orbifold vector
bundles. Adem and Ruan [2] proved that there is an isomorphism of groups between
orbifold K -theory andZ2-graded orbifold cohomology theory of any reduced differ-
entiable orbifold, with field coefficients. Almost complex structure is not necessary for
this result as the grading for orbifold cohomology is the ordinary grading. For a quasi-
SL quasitoric orbifold, since the degrees of cohomology classes as well degree shifting
numbers are even integers,K 0

orb has rank same as the Euler characteristic of Chen–
Ruan cohomology andK 1

orb is trivial. Hence by Theorem 8.3, the orbifoldK -groups
are preserved under crepant blowup of quasi-SL quasitoric orbifolds.

8.3. Betti numbers. We prove a stronger version of McKay correspondence,
namely the invariance of Betti numbers of Chen–Ruan cohomology under crepant blow-
down, when dimension ofX is less or equal to six. A more restrictive result was proved
for dimension four in [9].

Theorem 8.4. Suppose� W Y! X is a crepant blowdown of quasi-SL quasitoric
orbifolds of dimension� 6. Then the Betti numbers of Chen–Ruan cohomology ofX
and Y are equal.

Proof. Assume that dim(X) D 6. Note that there are no facet sectors as every
characteristic vector is primitive. Therefore the twistedsectors correspond to either ver-
tices or edges. The age of a vertex sector is either 1 or 2 and such a sector contributes
a generator toH2

CR or H4
CR respectively. An edge sector always has age 1. Since such

a sector is a sphere it contributes a generator toH2
CR as well asH4

CR. There is only
one generator inH0

CR and H6
CR coming from the untwisted sector. Thereforeh0

CR and
h6

CR are unchanged under blowup. Ifh2
CR changes under blowup then by Poincaré du-

ality, h4
CR must change by the same amount. That would contradict the conservation of

Euler characteristic. Therefore all Betti numbers are unchanged.
The proof for dimension four is similar.

Lemma 8.5. Suppose� W Y ! X is a crepant blowdown of quasi-SL quasitoric
orbifolds of dimension� 8. Then h2CR(Y) � h2

CR(X).

Proof. The sectors that contribute toh2
CR are the untwisted sector and twisted sec-

tors of age one. Each age one sector contributes one toh2
CR. The untwisted sector con-

tributesh2. It is proved in [15] thath2
D m� n wherem is the number of facets and

n is the dimension of the polytope.
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Suppose the blowup is along a faceF . The twisted sectors that may get affected
by the blowup are the ones that intersectX(F). These must be of the form (S, g)
whereg belongs to

S

w

G
w

wherew varies over vertices ofF . Consider any suchw.
Suppose�1, : : : , �n are the corresponding characteristic vectors. Note that the age one
sectors ofX coming from G

w

belong to the set

(8.10) A
w

D

8

<

:

n
X

jD1

a j� j W

n
X

jD1

a j D 1

9

=

;

.

Since�1, : : : , �n are linearly independent, there exists a unique vectorv such that the
dot producth�i , vi D 1 for eachi . HenceA

w

is a hyperplane given by

(8.11) A
w

D {x 2 N 
 R W hx, vi D 1}.

Note that since the blowup is crepant,�0 2 A
w

\CF\N. The sector corresponding
to �0 is lost under the blowup. However the loss inh2

CR because of it is compensated
by the contribution from the untwisted sector on account of the new facetF0.

Consider any other age one sectorg of X in G
w

. C
w

is partitioned inton sub-
cones by the introduction of�0. Accordingly g may be represented by

P

0� j¤i�n c j� j

with each c j � 0, for some 1� i � n. This means thatg becomes a sector ofY
coming fromG

vi wherevi D
T

0� j¤i�n F j . Now g 2 A
w

as it is an age one sector of
X. Also each� j 2 A

w

. Therefore by (8.11),
P

0� j¤i�n c j D 1. This implies that each
0� c j < 1 and age ofg as a sector ofY is one as well. The lemma follows.

8.4. Example. We will consider the weighted projective spaceX D P (1,3,3,3,1)
which is a toric variety. The generators of the one dimensional cones of the fan of
X are e1 D (1, 0, 0, 0),e2 D (0, 1, 0, 0),e3 D (0, 0, 1, 0),e4 D (0, 0, 0, 1) ande5 D

(�1, �3,�3,�3). X may be realized as a quasitoric orbifold with the 4-dimensional
simplex as the polytope and theei s as characteristic vectors. HoweverP (1, 3, 3, 3, 1)
is not an SL orbifold and this choice of characteristic vectors coming from the fan
does not make it an omnioriented quasi-SL quasitoric orbifold. So we choose a differ-
ent omniorientation.

To be precise, by the correspondence established in [11], wecan considerX as a
symplectic toric orbifold with a simple rational moment polytope P whose facets have
inward normal vectorse1, : : : , e5. The moment polytope may be identified with the
orbit space of the torus action. The denominations of the polytope are related to the
choice of the symplectic form and is not important for us. Denote the facet ofP with
normal vectorei by Fi . We assign the characteristic vectors as follows

(8.12) �i D

�

ei if 1 � i � 4,
�e5 if i D 5.
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The singular locus ofX is the subsetX(F) where F D F1\ F5. The groupGF is
isomorphic toZ3 and

(8.13) GÆ

F D

�

g D
2

3
�1C

1

3
�5, g2

D

1

3
�1C

2

3
�5

�

D {(1, 1, 1, 1), (1, 2, 2, 2)}.

Thus there are only two twisted sectorsS(F, g) and S(F, g2), each of age one. Since
F is a triangle, the 4-dimensional quasitoric orbifoldX(F) has h0

D h2
D h4

D 1.
Therefore each twisted sector contributes one tohk

CR(X) for k D 2, 4, 6.
We consider a crepant blowupY of X along X(F) with �0 D (1, 1, 1, 1). The

singular locus ofY equalsY(H ) where H D F0 \ F5. GH � Z2 and GÆ

H D {h D
(1=2)�0C (1=2)�5} D {(1, 2, 2, 2)}. The age one twisted sectorS(H, h) contributes one
to hk

CR(Y) for k D 2, 4, 6. But h2
CR(Y) also has an additional contribution from the

new facet. Thereforeh2
CR(Y) D h2

CR(X). Then by Poincaré duality,h6
CR are also equal.

Finally by conservation of Euler characteristic we get equality of h4
CR.

It is also possible to directly ascertain the change in the ordinary Betti numbers
due to blowup. The new facetF0 is diffeomorphic toF � [0, 1]. So the new polytope
has three extra vertices. We can arrange them to have indices1, 2, 3 and keep indices
of other vertices unchanged, see [15] for definition of index. This means that ordinary
homology, and therefore cohomology, ofY is richer than that ofX by a generator in
degrees 2, 4, 6.

If we perform a further blowup ofY along H with (1,2,2,2) as the new character-
istic vector, we obtain a quasitoric manifoldZ. It is easy to observe that Betti numbers
of Chen–Ruan cohomologies ofY and Z are equal. If we switched the choice of char-
acteristic vectors for the two blowups, McKay correspondence for Betti numbers would
still hold.

Finally consider other choices of omniorientation that could make X quasi-SL.
Switching the sign(s) of�2, �3 or �4 does not affect quasi-SLness or the calculations
of Betti numbers. Another option is to take�1 D �e1 and �5 D e5. The calculations
for this choice are analogous to the ones above.

9. Ring structure of Chen–Ruan cohomology

We will follow [4] and define the structure of an associative ring on Chen–Ruan
cohomology of an omnioriented quasitoric orbifold.

The normal bundle of a characteristic suborbifold has an almost complex structure
determined by the omniorientation. More generally supposeF D

Tk
iD1 Fi is an arbitrary

face of P. The normal bundle of the suborbifoldS(F, g), see Section 7.1, decomposes
into the direct sum of complex orbifold line bundlesL i which are restrictions of the
normal bundles corresponding to facetsFi that containF . Each of these line bundles
L i have a Thom form�i . (Note that the Thom forms ofX(F) and S(F, g) in X may
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differ at most by a constant factor.) For anygD
P

0�i�k ai�i 2 BoxÆF define the formal
form (twist factor)

(9.1) t(g) D
Y

1�i�k

�

ai
i .

The order of the�i s in the above product is not important. The degree oft(g) is de-
fined to be 2�(g). For any invariant form! on S(F, g) define a corresponding twisted
form !t(g). Define the degree of!t(g) to be the sum of the degrees of! and t(g).
Define

(9.2) �

p
CR(F, g) D {!t(g) W ! 2 ��(S(F, g)), deg(!t(g)) D p}.

Define the de Rham complex of twisted forms by

(9.3) �

p
CR D

M

F�P,g2BoxÆF

�

p
CR(F, g)

with differential

(9.4) d
�

X

!i t(gi )
�

D

X

d(!i )t(gi ).

It is easy to see that the cohomology of this complex coincides with the Chen–Ruan
cohomology defined in Section 7.

Now we define a product? W �p1
CR(K1, g1) � �p2

CR(K2, g2) ! �

p1Cp2
CR (K , g1g2) of

twisted forms as follows,

(9.5) !1t(g1) ? !2t(g2) D i �1!1 ^ i �2!2 ^2(g1, g2)t(g1g2).

Here K is the unique face such that (K1 \ K2) � K and g1g2 2 GÆ

K . The mapi j is
the inclusion ofX(K1 \ K2) in X(K j ). The form2(g1, g2) is obtained as follows.

Consider the productt(g1)t(g2). We can think of theg j s as elements ofBox
v

where v is a vertex ofK1 \ K2. Write g j D
Pn

iD1 ai j �i . Write the twist factort(g j )
as
Q

1�i�n �
ai j

i . A term in the productt(g1)t(g2) looks �ai 1Cai 2
i . We may ignore thei ’s

for which bothai 1 and ai 2 are zero. Then there can be three cases:
(1) ai 1C ai 2 < 1. Then�ai 1Cai 2

i contributes tot(g1g2).

(2) ai 1C ai 2 > 1. Then fractional part�ai 1Cai 2�1
i contributes tot(g1g2) and the integral

part is the Thom form�i which contributes as an invariant 2-form to2(g1, g2).
(3) ai 1 C ai 2 D 1. When this happensg1g2 2 BoxÆK where (K1 \ K2) < K and �i

contributes to2(g1, g2).
If case (3) does not occur for anyi , then K D K1\K2 and i �1!1^ i �2!2^2(g1,g2)

restricts toS(K ,g1g2) without problem. If case (3) occurs for somei ’s then the product
of the restrictions of corresponding�i s to X(K ) is, up to a constant factor, the Thom
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form of the normal bundle ofX(K1 \ K2) in X(K ). The wedge of this Thom form
with i �1!1^ i �2!2 and the restriction of the contributions from case (2) toX(K ) defines
a form onX(K ). Thus the star product is well-defined.

We extend the star product to a product on��

CR by bilinearity. The differential
acts on the star product as follows,

(9.6) d(!1t(g1)?!2t(g2))D d(!1t(g1))?!2t(g2)C(�1)deg(!1)Cdeg(!2)
!1t(g1)?d(!2t(g2)).

Hence the star product induces a product on the Chen–Ruan cohomology.
Observe that the formi �1!1^ i �2!2^2(g1,g2) is supported in a small neighborhood

of X(K1 \ K2). Therefore the star product of three forms!i t(gi ) 2 �
pi

CR(K i , gi ), 1�
i � 3, is nonzero only ifK1 \ K2 \ K3 is nonempty. Now it is fairly straightforward
to check that the star product is associative.
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