REPRESENTATION THEOREM FOR HARMONIC BERGMAN AND BLOCH FUNCTIONS

Kiyoki TANAKA

(Received March 6, 2012)

Abstract

In this paper, we give the representation theorem for harmonic Bergman functions and harmonic Bloch functions on smooth bounded domains. As an application, we discuss Toeplitz operators.

1. Introduction

Let Ω be a smooth bounded domain in the n-dimensional Euclidean space \mathbb{R}^{n}, i.e., for every boundary point $\eta \in \partial \Omega$, there exist a neighborhood V of η in \mathbb{R}^{n} and a C^{∞} diffeomorphism $f: V \rightarrow f(V) \subset \mathbb{R}^{n}$ such that $f(\eta)=0$ and $f(\Omega \cap V)=\left\{\left(y_{1}, \ldots, y_{n}\right) \in\right.$ $\left.\mathbb{R}^{n} ; y_{n}>0\right\} \cap f(V)$. For $1 \leq p<\infty$, we denote by $b^{p}=b^{p}(\Omega)$ the harmonic Bergman space on Ω, i.e., the set of all real-valued harmonic functions f on Ω such that $\|f\|_{p}:=$ $\left(\int_{\Omega}|f|^{p} d x\right)^{1 / p}<\infty$, where $d x$ denotes the usual n-dimensional Lebesgue measure on Ω. As is well-known, b^{p} is a closed subspace of $L^{p}=L^{p}(\Omega)$ and hence, b^{p} is a Banach space (for example see [1]). Especially, when $p=2, b^{2}$ is a Hilbert space, which has the reproducing kernel, i.e., there exists a unique symmetric function $R(\cdot, \cdot)$ on $\Omega \times \Omega$ such that for any $f \in b^{2}$ and any $x \in \Omega$,

$$
\begin{equation*}
f(x)=\int_{\Omega} R(x, y) f(y) d y \tag{1}
\end{equation*}
$$

The function $R(\cdot, \cdot)$ is called the harmonic Bergman kernel of Ω. When Ω is the open unit ball B, an explicit form is known:

$$
R(x, y)=R_{B}(x, y)=\frac{(n-4)|x|^{4}|y|^{4}+(8 x \cdot y-2 n-4)|x|^{2}|y|^{2}+n}{n|B|\left(1-2 x \cdot y+|x|^{2}|y|^{2}\right)^{1+n / 2}}
$$

where $x \cdot y$ denotes the Euclidean inner product in \mathbb{R}^{n} and $|B|$ is the Lebesgue measure

[^0]of B. We denote by P the corresponding integral operator
\[

$$
\begin{equation*}
P \psi(x):=\int_{\Omega} R(x, y) \psi(y) d y \tag{2}
\end{equation*}
$$

\]

for $x \in \Omega$. It is known that $P: L^{p} \rightarrow b^{p}$ is bounded for $1<p<\infty$; see Theorem 4.2 in [6].

The following result is shown in [8].

Theorem A. Let $1<p<\infty$ and let Ω be a smooth bounded domain. Then we can choose a sequence $\left\{\lambda_{i}\right\}$ in Ω satisfying the following property: For any $f \in b^{p}(\Omega)$, there exists a sequence $\left\{a_{i}\right\} \in l^{p}$ such that

$$
\begin{equation*}
f(x)=\sum_{i=1}^{\infty} a_{i} R\left(x, \lambda_{i}\right) r\left(\lambda_{i}\right)^{(1-1 / p) n} \tag{3}
\end{equation*}
$$

where $r(x)$ denotes the distance between x and $\partial \Omega$.
The equation (3) is called an atomic decomposition of f. The above theorem shows the existence of a sequence $\left\{\lambda_{i}\right\} \subset \Omega$ permitting an atomic decomposition for every $f \in b^{p}$.

Theorem A does not refer to the case $p=1$. This deeply comes from the fact that $P: L^{1} \rightarrow b^{1}$ is not bounded. In the present paper, we give an atomic decomposition for $p=1$ by using a modified reproducing kernel $R_{1}(\cdot, \cdot)$, introduced in [3].

Theorem 1. Let $1 \leq p<\infty$ and let Ω be a smooth bounded domain. Then we can choose a sequence $\left\{\lambda_{i}\right\}$ in Ω satisfying the following property: For any $f \in b^{p}(\Omega)$, there exists a sequence $\left\{a_{i}\right\} \in l^{p}$ such that

$$
f(x)=\sum_{i=1}^{\infty} a_{i} R_{1}\left(x, \lambda_{i}\right) r\left(\lambda_{i}\right)^{(1-1 / p) n}
$$

Also, we consider the harmonic Bloch space. We define the harmonic Bloch space \mathcal{B} by

$$
\mathcal{B}:=\left\{f: \Omega \rightarrow \mathbb{R}: f \text { is harmonic and }\|f\|_{\mathcal{B}}<\infty\right\}
$$

where

$$
\|f\|_{\mathcal{B}}:=\sup \{r(x)|\nabla f(x)|: x \in \Omega\}
$$

and ∇ denotes the gradient operator $\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right)$. Note that $\|\cdot\|_{\mathcal{B}}$ is a seminorm on \mathcal{B}. We fix a reference point $x_{0} \in \Omega . \mathcal{B}$ can be made into a Banach space by introducing the norm

$$
\|f\|:=\left|f\left(x_{0}\right)\right|+\|f\|_{\mathcal{B}}
$$

Also, $\tilde{\mathcal{B}}$ denotes the space of all Bloch functions f such that $f\left(x_{0}\right)=0$. Then, $\left(\tilde{\mathcal{B}},\|\cdot\|_{\mathcal{B}}\right)$ is a Banach space. Using a kernel

$$
\tilde{R}_{1}(x, y)=R_{1}(x, y)-R_{1}\left(x_{0}, y\right)
$$

we have the following theorem.
Theorem 2. Let Ω be a smooth bounded domain. Then we can choose a sequence $\left\{\lambda_{i}\right\}$ in Ω satisfying the following property: For any $f \in \tilde{\mathcal{B}}$, there exists a sequence $\left\{a_{i}\right\} \in$ l^{∞} such that

$$
f(x)=\sum_{j=1}^{\infty} a_{j} \tilde{R}_{1}\left(x, \lambda_{j}\right) r\left(\lambda_{j}\right)^{n} .
$$

In case that a domain Ω is the unit ball or the upper half space, preceding results are obtained in [5] and [4].

We often abbreviate inessential constants involved in inequalities by writing $X \lesssim$ Y, if there exists an absolute constant $C>0$ such that $X \leq C Y$.

2. Preliminaries

In this section, we will introduce some results in [6] and [3]. Those results play important roles in this paper.

First, we introduce some estimates for the harmonic Bergman kernel. These estimates are obtained by H. Kang and H. Koo [6]. We use the following notations. We put $d(x, y):=r(x)+r(y)+|x-y|$ for $x, y \in \Omega$, where $r(x)$ denotes the distance between x and $\partial \Omega$. For an n-tuple $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of nonnegative integers, called a multi-index, we denote $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$ and $D_{x}^{\alpha}:=\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}$. We also use $D_{i}:=\partial / \partial x_{i}$ and $D_{i j}:=\partial^{2} / \partial x_{i} \partial x_{j}$.

Theorem B (H. Kang and H. Koo [6]). Let α, β be multi-indices.
(1) There exists a constant $C>0$ such that

$$
\left|D_{x}^{\alpha} D_{y}^{\beta} R(x, y)\right| \leq \frac{C}{d(x, y)^{n+|\alpha|+|\beta|}}
$$

for every $x, y \in \Omega$.
(2) There exists a constant $C>0$ such that

$$
R(x, x) \geq \frac{C}{r(x)^{n}}
$$

for every $x \in \Omega$.

Second, we explain the modified reproducing kernel $R_{1}(x, y)$ introduced by B.R. Choe, H. Koo and H. Yi [3]. We call $\eta \in C^{\infty}(\bar{\Omega})$ a defining function if η satisfies the conditions that

$$
\Omega=\left\{x \in \mathbb{R}^{n} \mid \eta(x)>0\right\}, \quad \partial \Omega=\left\{x \in \mathbb{R}^{n} \mid \eta(x)=0\right\}
$$

and $\nabla \eta$ does not vanish on $\partial \Omega$. Here, we choose a defining function η with condition that

$$
\begin{equation*}
|\nabla \eta|^{2}=1+\eta \omega \tag{4}
\end{equation*}
$$

for some $\omega \in C^{\infty}(\bar{\Omega})$. We can easily construct the above defining function, because $\partial \Omega$ is smooth. Remark that $r(x)$ is comparable to $\eta(x)$.

We define a differential operator K_{1} by

$$
\begin{equation*}
K_{1} f:=f-\frac{1}{2} \Delta\left(\eta^{2} f\right) \tag{5}
\end{equation*}
$$

for $f \in C^{\infty}$. We also define a kernel $R_{1}(x, y)$ by

$$
R_{1}(x, y):=K_{1}\left(R_{x}\right)(y)
$$

for $x, y \in \Omega$, where $R_{x}(y):=R(x, y)$, and denote by P_{1} the corresponding integral operator

$$
P_{1} f(x):=\int_{\Omega} R_{1}(x, y) f(y) d y
$$

We call $R_{1}(x, y)$ the modified reproducing kernel. This kernel satisfies the reproducing property and has the following estimates.

Theorem C (B.R. Choe, H. Koo and H. Yi [3]). Let Ω be a smooth bounded domain. Then
(1) R_{1} has the reproducing property, i.e., $P_{1} f=f$ for $f \in b^{1}$.
(2) Let α be multi-index. Then there exists $C>0$ such that for $x, y \in \Omega$

$$
\begin{equation*}
\left|D_{x}^{\alpha} R_{1}(x, y)\right| \leq C \frac{r(y)}{d(x, y)^{n+1+|\alpha|}} \tag{6}
\end{equation*}
$$

and
(7)

$$
\left|\nabla_{y} R_{1}(x, y)\right| \leq \frac{C}{d(x, y)^{n+1}}
$$

(3) $P_{1}: L^{p} \rightarrow b^{p}$ is bounded for $1 \leq p<\infty$.

Finally, we prepare some lemmas.
Lemma 2.1 (Lemma 4.1 in [6]). Let s be a nonnegative real number and $t<1$. If $s+t>0$, then there exists a constant $C>0$ such that

$$
\int_{\Omega} \frac{d y}{d(x, y)^{n+s} r(y)^{t}} \leq \frac{C}{r(x)^{s+t}}
$$

for every $x \in \Omega$.
We define the associated integral operator I_{s} by

$$
I_{s} f(x):=\int_{\Omega} \frac{r(y)^{s}}{d(x, y)^{n+s}} f(y) d y
$$

Lemma 2.2. If $s=0$, then $I_{s}: L^{p} \rightarrow L^{p}$ is bounded for $1<p<\infty$ and if $s>0$, then $I_{s}: L^{p} \rightarrow L^{p}$ is bounded for $1 \leq p<\infty$.

Proof. When $s \geq 0$ and $1<p<\infty$, the L^{p}-boundedness of I_{s} is shown by Schur's test; see Lemma 2.6 in [8]. We have only to show that $I_{s}: L^{1} \rightarrow L^{1}$ is bounded for $s>0$. By Lemma 2.1, we have

$$
\begin{aligned}
\left\|I_{s} f\right\|_{L^{1}} & \leq \int_{\Omega} \int_{\Omega} \frac{r(y)^{s}}{d(x, y)^{n+s}}|f(y)| d y d x \\
& \leq \int_{\Omega}|f(y)| r(y)^{s} \int_{\Omega} \frac{1}{d(x, y)^{n+s}} d x d y \\
& \leq C\|f\|_{L^{1}}
\end{aligned}
$$

This completes the proof.

3. Representation theorem for harmonic Bergman functions

In this section, we give a proof of Theorem 1 . We need to take sequences $\left\{\lambda_{i}\right\}_{i} \subset$ Ω with the following property in the same similar way in [8].

Lemma 3.1. There exists a number $c>0$ such that for each $0<\delta<1 / 4$, we can choose a sequence $\left\{\lambda_{i}\right\}_{i} \subset \Omega$ and a disjoint covering $\left\{E_{i}\right\}_{i}$ of Ω satisfying the following conditions:
(a) E_{i} is measurable for each $i \in \mathbb{N}$ and $\left\{E_{i}\right\}_{i}$ are mutually disjoint;
(b) $B\left(\lambda_{i}, c \delta r\left(\lambda_{i}\right)\right) \subset E_{i} \subset B\left(\lambda_{i}, \delta r\left(\lambda_{i}\right)\right)$ for each $i \in \mathbb{N}$.

In what follow, $\left\{\lambda_{i}\right\}_{i},\left\{E_{i}\right\}_{i}$ are taken in Lemma 3.1. We define operators A, U and S as follows:

$$
\begin{align*}
& A\left\{a_{i}\right\}(x):=\sum_{i=1}^{\infty} a_{i} R_{1}\left(x, \lambda_{i}\right) r\left(\lambda_{i}\right)^{(1-1 / p) n}, \tag{8}\\
& U f:=\left\{\left|E_{i}\right| f\left(\lambda_{i}\right) r\left(\lambda_{i}\right)^{-(1-1 / p) n}\right\}_{i}, \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
S f(x):=\sum_{i=1}^{\infty} R_{1}\left(x, \lambda_{i}\right) f\left(\lambda_{i}\right)\left|E_{i}\right| . \tag{10}
\end{equation*}
$$

Theorem 1 means that $A: l^{p} \rightarrow b^{p}$ is onto for $1 \leq \infty$. First, we show the boundedness of the operators A, U and S.

Lemma 3.2. Let $1 \leq p<\infty$. Then $U: b^{p} \rightarrow l^{p}, A: l^{p} \rightarrow b^{p}$ and $S: b^{p} \rightarrow b^{p}$ are bounded.

Proof. First, we show that U is bounded. For any $f \in b^{p}$, by using the condition (b) in Lemma 3.1, we have

$$
\begin{aligned}
\|U f\|_{l^{p}}^{p} & =\sum_{i=1}^{\infty}| | E_{i}\left|f\left(\lambda_{i}\right) r\left(\lambda_{i}\right)^{-(1-1 / p) n}\right|^{p} \\
& \lesssim \sum_{i=1}^{\infty}\left|f\left(\lambda_{i}\right)\right|^{p} r\left(\lambda_{i}\right)^{n} \\
& \lesssim \sum_{i=1}^{\infty} \int_{E_{i}}\left|f\left(\lambda_{i}\right)\right|^{p} d y \\
& \lesssim \sum_{i=1}^{\infty} \int_{E_{i}}|f(y)|^{p} d y=\|f\|_{p}^{p}
\end{aligned}
$$

Next, we show that A is bounded. For any $\left\{a_{i}\right\} \in l^{p}$ and any $x \in \Omega$, by Theorem C, we have

$$
\begin{aligned}
\left|A\left\{a_{i}\right\}(x)\right| & \lesssim \sum_{i}\left|a_{i}\right| r\left(\lambda_{i}\right)^{(1-1 / p) n} \frac{r\left(\lambda_{i}\right)}{d\left(x, \lambda_{i}\right)^{n+1}} \\
& =\sum_{i}\left|a_{i}\right| r\left(\lambda_{i}\right)^{(1-1 / p) n}\left|E_{i}\right|^{-1} \int_{E_{i}} \frac{r\left(\lambda_{i}\right)}{d\left(x, \lambda_{i}\right)^{n+1}} d y \\
& \lesssim \sum_{i}\left|a_{i}\right| r\left(\lambda_{i}\right)^{(1-1 / p) n}\left|E_{i}\right|^{-1} \int_{E_{i}} \frac{r(y)}{d(x, y)^{n+1}} d y \\
& =I_{1} g(x),
\end{aligned}
$$

where $g(x):=\sum_{i}\left|a_{i}\right| r\left(\lambda_{i}\right)^{(1-1 / p) n}\left|E_{i}\right|^{-1} \chi_{E_{i}}(x)$ and $\chi_{E_{i}}$ denotes the characteristic function of E_{i}. Since $B\left(\lambda_{i}, c \delta r\left(\lambda_{i}\right)\right) \subset E_{i}$, we have

$$
\begin{equation*}
r\left(\lambda_{i}\right)^{(1-1 / p) n}\left|E_{i}\right|^{-1} \leq \frac{1}{(c \delta)^{n}}\left|E_{i}\right|^{-1 / p} . \tag{11}
\end{equation*}
$$

Hence, we have

$$
\|g\|_{L^{p}}^{p} \lesssim \int_{\Omega} \sum_{i}\left|a_{i}\right|^{p}\left|E_{i}\right|^{-1} \chi_{E_{i}}(x) d x \leq\left\|\left\{a_{i}\right\}\right\|_{l^{p}}^{p} .
$$

Therefore, by Lemma 2.1, we have

$$
\left\|A\left\{a_{i}\right\}\right\|_{b^{p}} \lesssim\left\|I_{1} g\right\|_{L^{p}} \lesssim\left\|\left\{a_{i}\right\}\right\|_{l^{p}} .
$$

S is bounded, because $S=A \circ U$. This completes the proof.
The next lemma is essential for the proof of main theorem.
Lemma 3.3. Let $1 \leq p<\infty$. Then there exist $\left\{\lambda_{i}\right\}_{i} \subset \Omega$ and $\left\{E_{i}\right\}_{i}$ such that $S: b^{p} \rightarrow b^{p}$ is bijective.

Proof. For $0<\delta<1 / 4$, we take $\left\{\lambda_{i}\right\}_{i}$ and $\left\{E_{i}\right\}$ in Lemma 3.1. We have only to show that $\|I-S\|<1$ for a sufficiently small $\delta>0$. By the condition of $\left\{E_{i}\right\}$, for $f \in b^{p}$ we have

$$
\begin{aligned}
(I-S) f(x)= & \int_{\Omega} f(y) R_{1}(x, y) d y-\sum_{i=1}^{\infty} R_{1}\left(x, \lambda_{i}\right) f\left(\lambda_{i}\right)\left|E_{i}\right| \\
= & \sum_{i=1}^{\infty} \int_{E_{i}} f(y)\left(R_{1}(x, y)-R_{1}\left(x, \lambda_{i}\right)\right) d y \\
& +\sum_{i=1}^{\infty} \int_{E_{i}}\left(f(y)-f\left(\lambda_{i}\right)\right) R_{1}\left(x, \lambda_{i}\right) d y \\
= & F_{1}(x)+F_{2}(x) \quad \text { say. }
\end{aligned}
$$

First, we estimate $F_{1}(x)$. By (7), we have

$$
\begin{aligned}
\left|F_{1}(x)\right| & \lesssim \sum_{i=1}^{\infty} \int_{E_{i}}|f(y)|\left|y-\lambda_{i}\right|\left|\nabla_{y} R_{1}(x, \bar{y})\right| d y \\
& \lesssim \delta \sum_{i=1}^{\infty} \int_{E_{i}}|f(y)| r\left(\lambda_{i}\right) \frac{1}{d(x, \bar{y})^{n+1}} d y
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim \delta \sum_{i=1}^{\infty} \int_{E_{i}} \frac{r(y)}{d(x, y)^{n+1}}|f(y)| d y \\
& =\delta I_{1}|f|(x) .
\end{aligned}
$$

Next, we estimate $F_{2}(x)$. For any $y \in E_{i}$, by the mean-value property, we have

$$
\begin{equation*}
\left|R_{1}(y, z)-R_{1}\left(\lambda_{i}, z\right)\right| \leq \delta r\left(\lambda_{i}\right)\left|\nabla_{x} R_{1}(\bar{y}, z)\right| \tag{12}
\end{equation*}
$$

for some \bar{y} on the line segment between y and λ_{i}. Therefore, by (12) and (6), we have

$$
\begin{aligned}
\left|f(y)-f\left(\lambda_{i}\right)\right| & \leq \int_{\Omega}\left|R_{1}(y, z)-R_{1}\left(\lambda_{i}, z\right)\right||f(z)| d z \\
& \lesssim \delta \int_{\Omega} \frac{r\left(\lambda_{i}\right) r(z)}{d(\bar{y}, z)^{n+2}}|f(z)| d z \\
& \lesssim \delta I_{1}|f|(y)
\end{aligned}
$$

Hence, by Theorem C, we have

$$
\begin{aligned}
\left|F_{2}(x)\right| & \leq \sum_{i=1}^{\infty} \int_{E_{i}}\left|f(y)-f\left(\lambda_{i}\right)\right|\left|R_{1}\left(x, \lambda_{i}\right)\right| d y \\
& \lesssim \delta \int_{E_{i}} \frac{r(y)}{d(x, y)^{n+1}} I_{1}|f|(y) d y \\
& =\delta \int_{\Omega} \frac{r(y)}{d(x, y)^{n+1}} I_{1}|f|(y) d y \\
& =\delta I_{1} \circ I_{1}|f|(x)
\end{aligned}
$$

By Lemma 2.2, we have $\|(I-S) f\|_{b^{p}} \leq \delta C\|f\|_{b^{p}}$. Remark that this constant C is independent of δ. Hence, if we choose $\delta<C^{-1}$, then we obtain $\|(I-S)\|<1$. This completes the proof.

Proof of Theorem 1. By Lemma 3.3, we choose a sequence $\left\{\lambda_{j}\right\}$ such that $S: b^{p} \rightarrow b^{p}$ is bijective. Hence, $A: l^{p} \rightarrow b^{p}$ is onto, which implies Theorem 1.

4. Representation theorem for harmonic Bloch functions

In this section, we give a proof of Theorem 2 . We need to recall a pointwise estimate for \mathcal{B} (see [3]):

$$
\begin{equation*}
|f(x)| \lesssim\|f\|_{\mathcal{B}}\left(1+\log ^{+} r(x)^{-1}\right) \tag{13}
\end{equation*}
$$

for any $x \in \Omega$ and any $f \in \mathcal{B}$. We need some operators discussed in [3]. Let \mathcal{F}_{1} denote the class of all differential operators F of form

$$
\begin{equation*}
F=\omega_{0}+\sum_{i=1}^{n} \omega_{i} \eta D_{i} \tag{14}
\end{equation*}
$$

for some real functions $\omega_{i} \in C^{\infty}(\bar{\Omega})$. We put

$$
F(x, y):=F\left(R_{x}\right)(y)
$$

for $F \in \mathcal{F}_{1}$. The following theorem is shown [3].

Theorem D. For $c_{1}>0$ and $F_{1} \in \mathcal{F}_{1}$, we put $H_{1}:=c_{1}\left(K_{1}-G_{1}\right)$, where K_{1} is the differential operator defined in (5) and $G_{1} \psi(x):=(1 / 4) \int_{\Omega} \psi(y) F_{1}(x, y) \eta(y) d y$. We can choose a constant $c_{1}>0$ and $F_{1} \in \mathcal{F}_{1}$ with the following properties:
(a) $H_{1}: b^{p} \rightarrow L^{p}$ is bounded for each $1 \leq p<\infty$;
(b) $H_{1}: \mathcal{B} \rightarrow L^{\infty}$ is bounded and $H_{1}\left(\mathcal{B}_{0}\right) \subset C_{0}+\mathcal{B}_{0} \cap b^{\infty}$;
(c) $P_{1} H_{1} f=f$ for $f \in b^{1}$.

REMARK. Recall $R_{1}(x, y)=R_{1}(x, y)-R_{1}\left(x_{0}, y\right)$ where x_{0} is a fixed reference point. Denote by \tilde{P}_{1} the corresponding operator $\tilde{P}_{1} f(x):=\int_{\Omega} \tilde{R}_{1}(x, y) f(y) d y$. From Theorem D, we easily have

$$
\begin{equation*}
\tilde{P}_{1} H_{1} f=f \tag{15}
\end{equation*}
$$

for any $f \in \tilde{B}$.
We give the estimates for H_{1}.
Lemma 4.1. Let $0<\delta<1$ and $x \in \Omega$. Then

$$
\begin{equation*}
\left|H_{1} f(y)-H_{1} f(x)\right| \lesssim \delta\|f\|_{\mathcal{B}} \tag{16}
\end{equation*}
$$

for any $f \in \mathcal{B}$ and $y \in B(x, \delta r(x))$.
Proof. To obtain the estimate for H_{1}, we show the properties on \mathcal{F}_{1} and G_{1}. First, we give the estimate for \mathcal{F}_{1}.

Step 1. Let $F \in \mathcal{F}_{1}, f \in \mathcal{B}$ and $x \in \Omega$. Then

$$
\begin{equation*}
|F f(x)-F f(y)| \lesssim \delta\|f\|_{\mathcal{B}} \tag{17}
\end{equation*}
$$

for $0<\delta<1$ and $y \in B(x, \delta r(x))$.

Proof of Step 1. Let $f \in \mathcal{B}$. By the mean-value property, for $y \in B(x, \delta r(x))$ we have

$$
\begin{aligned}
|F f(y)-F f(x)| & \leq\left|\omega_{0}\right||f(y)-f(x)|+\sum_{i=1}^{n}\left|\omega_{i}\right| \eta\left|D_{i}(f(y)-f(x))\right| \\
& \lesssim\left|\omega_{0}\right| \delta r(\bar{y})|\nabla f(\bar{y})|+\sum_{i=1}^{n}\left|\omega_{i}\right| \delta r(\bar{y})^{2}\left|\nabla D_{i} f(\bar{y})\right| \\
& \lesssim \delta\|f\|_{\mathcal{B}} .
\end{aligned}
$$

The proof of Step 1 finished.

We put $\tilde{K}_{1} f=-2(\Delta \eta+\omega) \eta f-4 \eta \nabla \eta \cdot \nabla f$. Then, $\tilde{K}_{1} \in \mathcal{F}_{1}$ and $K_{1} f=\tilde{K}_{1} f$ for any harmonic function f. In particular, we have

$$
\begin{equation*}
\left|K_{1} f(y)-K_{1} f(x)\right| \lesssim \delta\|f\|_{\mathcal{B}} \tag{18}
\end{equation*}
$$

for any $f \in \mathcal{B}, x \in \Omega$ and $y \in B(x, \delta r(x))$.
STEP 2. Let F_{1} and G_{1} satisfy the conditions of Theorem D. Then

$$
\begin{equation*}
\left|G_{1} f(y)-G_{1} f(x)\right| \lesssim \delta\|f\|_{\mathcal{B}} \tag{19}
\end{equation*}
$$

for any $f \in \mathcal{B}, x \in \Omega$ and $y \in B(x, \delta r(x))$.

Proof of Step 2. For $f \in \mathcal{B}$, by the mean-value property, for $y \in B(x, \delta r(x))$ we have

$$
\left|G_{1} f(y)-G_{1} f(x)\right| \lesssim \int_{\Omega}|f(z)| r(z)|y-x|\left|\nabla F_{1} R_{\bar{y}}(z)\right| d z
$$

for some \bar{y} on the line segment between x and y. Because $r(x)$ comparable to $r(\bar{y})$, by (6) and (13), we have

$$
\begin{aligned}
\left|G_{1} f(y)-G_{1} f(x)\right| & \lesssim \int_{\Omega}|f(z)| r(z)|y-x|\left|\nabla F_{1} R_{\bar{y}}(z)\right| d z \\
& \lesssim \delta\|f\|_{\mathcal{B}} \int_{\Omega} r(\bar{y}) \frac{1}{d(\bar{y}, z)^{n+1}} d z \\
& \lesssim \delta\|f\|_{\mathcal{B}} .
\end{aligned}
$$

The proof of Step 2 finished. By (18) and Step 2, we obtain Lemma 4.1.

Again, for $0<\delta<1 / 4$ we choose a sequence $\left\{\lambda_{j}\right\}$ in Ω and a disjoint covering $\left\{E_{j}\right\}$ of Ω obtained by Lemma 3.1. We define the operators $\tilde{A}: l^{\infty} \rightarrow \tilde{\mathcal{B}}, \tilde{S}: \tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}$
and $\tilde{U}: \tilde{\mathcal{B}} \rightarrow l^{\infty}$ by

$$
\begin{align*}
& \tilde{A}\left\{a_{i}\right\}(x):=\sum_{j=1}^{\infty} a_{j} \tilde{R}_{1}\left(x, \lambda_{j}\right)\left|E_{j}\right|, \tag{20}\\
& \tilde{S} f(x):=\sum_{j=1}^{\infty} H_{1} f\left(\lambda_{j}\right) \tilde{R}_{1}\left(x, \lambda_{j}\right)\left|E_{j}\right|, \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{U} f:=\left\{H_{1} f\left(\lambda_{j}\right)\right\}_{j} . \tag{22}
\end{equation*}
$$

In the similar manner as in the proof of Theorem 1. We begin with showing that \tilde{A}, \tilde{U} and \tilde{S} are bounded.

Lemma 4.2. $\tilde{A}: l^{\infty} \rightarrow \tilde{\mathcal{B}}, \tilde{U}: \tilde{\mathcal{B}} \rightarrow l^{\infty}$ and $\tilde{S}: \tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}$ are bounded.
Proof. It is obvious that $\tilde{U}: \tilde{\mathcal{B}} \rightarrow l^{\infty}$ is bounded by Theorem D. Since $\tilde{S}=\tilde{A} \tilde{U}$, we have only to show that $\tilde{A}: l^{\infty} \rightarrow \tilde{\mathcal{B}}$ is bounded. Taking $\left\{a_{i}\right\} \in l^{\infty}$, by (6) and Lemma 2.1, we have

$$
\begin{aligned}
\left|r(x) \nabla\left(\tilde{A}\left\{a_{i}\right\}\right)(x)\right| & =r(x)\left|\sum_{j=1}^{\infty} a_{j} \nabla_{x} \tilde{R}_{1}\left(x, \lambda_{j}\right)\right| E_{j}| | \\
& \lesssim\left\|\left\{a_{i}\right\}\right\|_{l^{\infty}} \sum_{j=1}^{\infty} r(x) \frac{r\left(\lambda_{j}\right)}{d\left(x, \lambda_{j}\right)^{n+1}}\left|E_{j}\right| \\
& =\left\|\left\{a_{i}\right\}\right\|_{l \infty} \int_{\Omega} \frac{r(x) r(y)}{d(x, y)^{n+2}} d y \\
& \lesssim\left\|\left\{a_{i}\right\}\right\|_{l^{\infty}},
\end{aligned}
$$

which implies $\tilde{A}: l^{\infty} \rightarrow \tilde{\mathcal{B}}$ is bounded.
Finally, we state an important lemma for the representation theorem.
Lemma 4.3. There exists $\left\{\lambda_{i}\right\}_{i} \subset \Omega$ and $\left\{E_{i}\right\}_{i}$ such that $\tilde{S}: \tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}$ is bijective.
Proof. For $0<\delta<1 / 4$, we take $\left\{\lambda_{i}\right\}_{i}$ and $\left\{E_{i}\right\}$ in Lemma 3.1. We show that $\|I-\tilde{S}\|<1$ for a sufficiently small $\delta>0$. By Theorem D , we have

$$
\begin{aligned}
(I-\tilde{S}) f(x)= & \sum_{j=1}^{\infty} \int_{E_{j}} H_{1} f(y) \tilde{R}_{1}(x, y) d y-\sum_{j=1}^{\infty} \int_{E_{j}} H_{1} f\left(\lambda_{j}\right) \tilde{R}_{1}\left(x, \lambda_{j}\right) d y \\
= & \sum_{j=1}^{\infty} \int_{E_{j}} \tilde{R}_{1}(x, y)\left(H_{1} f(y)-H_{1} f\left(\lambda_{j}\right)\right) d y \\
& +\sum_{j=1}^{\infty} \int_{E_{j}} H_{1} f\left(\lambda_{j}\right)\left(\tilde{R}_{1}(x, y)-\tilde{R}_{1}\left(x, \lambda_{j}\right)\right) d y .
\end{aligned}
$$

We calculate $r(x)|\nabla(I-\tilde{S}) f(x)|$ to estimate the Bloch norm.

$$
\begin{aligned}
r(x)|\nabla(I-\tilde{S}) f(x)| \leq & r(x)\left|\nabla_{x} \sum_{j=1}^{\infty} \int_{E_{j}} \tilde{R}_{1}(x, y)\left(H_{1} f(y)-H_{1} f\left(\lambda_{j}\right)\right) d y\right| \\
& +r(x)\left|\nabla_{x} \sum_{j=1}^{\infty} \int_{E_{j}} H_{1} f\left(\lambda_{j}\right)\left(\tilde{R}_{1}(x, y)-\tilde{R}_{1}\left(x, \lambda_{j}\right)\right) d y\right| .
\end{aligned}
$$

Because $\nabla_{x} \tilde{R}_{1}(x, y)=\nabla_{x} R_{1}(x, y)$, Lemma 4.1 shows that the first term is bounded by

$$
\delta\|f\|_{\mathcal{B}} r(x) \sum_{j=1}^{\infty} \int_{E_{j}}\left|\nabla_{x} \tilde{R}_{1}(x, y)\right| d y \lesssim \delta\|f\|_{\mathcal{B}} r(x) \int_{\Omega} \frac{r(y)}{d(x, y)^{n+2}} d y \lesssim \delta\|f\|_{\mathcal{B}} .
$$

The second term can be estimated by

$$
\begin{aligned}
r(x)\left\|H_{1} f\right\|_{L^{\infty}} \sum_{j=1}^{\infty} \int_{E_{j}}\left|\nabla_{x} R_{1}(x, y)-\nabla_{x} R_{1}\left(x, \lambda_{j}\right)\right| d y & \lesssim \delta\|f\|_{\mathcal{B}} r(x) \int_{\Omega} \frac{r(y)}{d(x, y)^{n+2}} d y \\
& \lesssim \delta\|f\|_{\mathcal{B}} .
\end{aligned}
$$

Thus, there exist a constant $C>0$ such that $\|(I-\tilde{S}) f\|_{\mathcal{B}} \leq C \delta\|f\|_{\mathcal{B}}$. Hence, if we take $\delta<C^{-1}$, then $\tilde{S}: \tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}$ is bijective. This completes the proof.

Finally, we give a proof of Theorem 2.
Proof of Theorem 2. We put $f \in \tilde{\mathcal{B}}$. By Lemma 4.3, we can choose a constant $\delta>0$ such that $\tilde{S}: \tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}$ is bijective. This implies $\tilde{A}: l^{\infty} \rightarrow \tilde{\mathcal{B}}$ is surjective. Hence, for any $f \in \tilde{\mathcal{B}}$, we can find a sequence $\left\{a_{i}^{\prime}\right\} \in l^{\infty}$ such that $\tilde{A}\left\{a_{i}^{\prime}\right\}=f$. Therefore, if we put $a_{j}:=a_{j}^{\prime} E_{j} / r\left(\lambda_{j}\right)^{n}$, then $\left\{a_{i}\right\}$ is in l^{∞} and satisfies $f(x)=\sum_{j=1}^{\infty} a_{j} R\left(x, \lambda_{j}\right) r\left(\lambda_{j}\right)^{n}$. This completes the proof.

5. Application

In this section, we analyze positive Toeplitz operators on b^{2} by using Theorem 1 . We define several operators and functions. $M(\Omega)$ denotes the space of all complex Berel measures on Ω. For $\mu \in M(\Omega)$, the corresponding Toeplitz operator T_{μ} with symbol μ is defined by

$$
\begin{equation*}
T_{\mu} f(x):=\int_{\Omega} R(x, y) f(y) d \mu(y) \quad(x \in \Omega) \tag{23}
\end{equation*}
$$

Let μ be a finite positive Borel measure. For $\delta \in(0,1)$, the averaging function $\hat{\mu}_{\delta}$ is defined by

$$
\begin{equation*}
\hat{\mu}_{\delta}(x):=\frac{\mu(B(x, \delta r(x)))}{V(B(x, \delta r(x)))} \quad(x \in \Omega) . \tag{24}
\end{equation*}
$$

We recall Schatten σ-class operators. A compact operator T on a separable Hilbert space is called Schatten σ-class operator, if the following norm is finite;

$$
\begin{equation*}
\|T\|_{S_{\sigma}(X)}:=\left(\sum_{m=1}^{\infty}\left|s_{m}(T)\right|^{\sigma}\right)^{1 / \sigma} \tag{25}
\end{equation*}
$$

where $\left\{s_{m}(T)\right\}_{m}$ is the sequence of all singular value of T. Let S_{σ} be the space of all Schatten σ-class operators on b^{2}. In [2], B.R. Choe, Y.J. Lee and K. Na studied conditions that positive Toeplitz operators are bounded, compact and in Schatten σ class on b^{2} for $1 \leq \sigma<\infty$. We would like to discuss a condition that positive Toeplitz operators are in Schatten σ-class on b^{2}.

Theorem 3. Let $2(n-1) /(n+2)<\sigma$ and μ be a finite positive Borel measure. Choose a sequence $\left\{\lambda_{j}\right\}$ in Theorem 1. Then, if $\sum_{j=1}^{\infty} \hat{\mu}_{\delta}\left(\lambda_{j}\right)^{\sigma}<\infty$, then $T_{\mu} \in S_{\sigma}$.

We recall a general property; see for example [7].
Lemma 5.1 ([7]). If T is a compact operator on a Hilbert space H and $0<\sigma \leq$ 2 , then for any orthonormal basis $\left\{e_{n}\right\}$, we have

$$
\begin{equation*}
\|T\|_{S_{\sigma}(H)}^{\sigma} \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|\left\langle T e_{n}, e_{k}\right\rangle\right|^{\sigma} . \tag{26}
\end{equation*}
$$

Proof of Theorem 3. When $1 \leq \sigma<\infty$, the statement of Theorem 3 is shown in [2]. Hence, we assume $\sigma<1$. We put a sequence $\left\{\lambda_{j}\right\}$ satisfying the assumption of Theorem 3. We show the following inequality

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|\left\langle A^{*} T_{\mu} A e_{i}, e_{j}\right\rangle\right|^{\sigma} \lesssim \sum_{j=1}^{\infty} \hat{\mu}_{\delta}\left(\lambda_{j}\right)^{\sigma}, \tag{27}
\end{equation*}
$$

where $\left\{e_{n}\right\}$ is an orthonormal basis for l^{2} and A is the operator of the atomic decomposition obtained by Theorem 1. First, we calculate $\left\langle A^{*} T_{\mu} A e_{i}, e_{j}\right\rangle$.

$$
A e_{i}(x)=R_{1}\left(x, \lambda_{i}\right) r\left(\lambda_{i}\right)^{n / 2}
$$

and

$$
T_{\mu} A e_{i}(x)=r\left(\lambda_{i}\right)^{n / 2} \int_{\Omega} R(x, y) R_{1}\left(y, \lambda_{i}\right) d \mu(y) .
$$

Therefore, we have

$$
\left\langle A^{*} T_{\mu} A e_{i}, e_{j}\right\rangle=r\left(\lambda_{i}\right)^{n / 2} r\left(\lambda_{j}\right)^{n / 2} \int_{\Omega} R_{1}\left(y, \lambda_{i}\right) R_{1}\left(y, \lambda_{j}\right) d \mu(y) .
$$

Then, we have

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|\left\langle A^{*} T_{\mu} A e_{i}, e_{j}\right\rangle\right|^{\sigma} \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|r\left(\lambda_{i}\right)^{n / 2} r\left(\lambda_{j}\right)^{n / 2} \int_{\Omega} R_{1}\left(x, \lambda_{i}\right) R_{1}\left(x, \lambda_{j}\right) d \mu(x)\right|^{\sigma} \\
& \lesssim \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} r\left(\lambda_{i}\right)^{n \sigma / 2} r\left(\lambda_{j}\right)^{n \sigma / 2}\left(\sum_{k=1}^{\infty} \int_{B\left(\lambda_{k}, \delta r\left(\lambda_{k}\right)\right)} \frac{r\left(\lambda_{i}\right)}{d\left(x, \lambda_{i}\right)^{n+1}} \frac{r\left(\lambda_{j}\right)}{d\left(x, \lambda_{j}\right)^{n+1}} d|\mu|(x)\right)^{\sigma} \\
& \lesssim \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} r\left(\lambda_{i}\right)^{n \sigma / 2} r\left(\lambda_{j}\right)^{n \sigma / 2}\left(\sum_{k=1}^{\infty}|\mu|\left(B\left(\lambda_{k}, \delta r\left(\lambda_{k}\right)\right)\right) \frac{r\left(\lambda_{i}\right)}{d\left(\lambda_{k}, \lambda_{i}\right)^{n+1}} \frac{r\left(\lambda_{j}\right)}{d\left(\lambda_{k}, \lambda_{j}\right)^{n+1}}\right)^{\sigma} .
\end{aligned}
$$

By $\sigma<1$, we have

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} r\left(\lambda_{i}\right)^{n \sigma / 2} r\left(\lambda_{j}\right)^{n \sigma / 2}\left(\sum_{k=1}^{\infty}|\mu|\left(B\left(\lambda_{k}, \delta r\left(\lambda_{k}\right)\right)\right) \frac{r\left(\lambda_{i}\right)}{d\left(\lambda_{k}, \lambda_{i}\right)^{n+1}} \frac{r\left(\lambda_{j}\right)}{d\left(\lambda_{k}, \lambda_{j}\right)^{n+1}}\right)^{\sigma} \\
& \lesssim \sum_{k=1}^{\infty} \hat{\mu}_{\delta}\left(\lambda_{k}\right)^{\sigma} r\left(\lambda_{k}\right)^{n \sigma}\left(\sum_{i=1}^{\infty} \frac{r\left(\lambda_{i}\right)^{n \sigma / 2+\sigma}}{d\left(\lambda_{k}, \lambda_{i}\right)^{(n+1) \sigma}}\right)^{2} \\
& =\sum_{k=1}^{\infty} \hat{\mu}_{\delta}\left(\lambda_{k}\right)^{\sigma}\left(\sum_{i=1}^{\infty} \frac{r\left(\lambda_{k}\right)^{n \sigma / 2} r\left(\lambda_{i}\right)^{n \sigma / 2+\sigma}}{d\left(\lambda_{k}, \lambda_{i}\right)^{(n+1) \sigma}}\right)^{2}
\end{aligned}
$$

By Lemma 2.1 and the condition of σ, we have

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{r\left(\lambda_{k}\right)^{n \sigma / 2} r\left(\lambda_{i}\right)^{n \sigma / 2+\sigma}}{d\left(\lambda_{k}, \lambda_{i}\right)^{(n+1) \sigma}} & \lesssim \sum_{i=1}^{\infty} \int_{B\left(\lambda_{i}, \delta \lambda_{i}\right)} \frac{r\left(\lambda_{k}\right)^{n \sigma / 2} r\left(\lambda_{i}\right)^{n \sigma / 2+\sigma-n}}{d\left(\lambda_{k}, \lambda_{i}\right)^{n+(n+1) \sigma-n}} d y \\
& \lesssim \int_{\Omega} \frac{r\left(\lambda_{k}\right)^{n \sigma / 2} r(y)^{n \sigma / 2+\sigma-n}}{d\left(\lambda_{k}, y\right)^{n+(n+1) \sigma-n}} d y \lesssim 1
\end{aligned}
$$

By an estimate (26) and Lemma 5.1, we obtained $A^{*} T_{\mu} A \in S_{\sigma}$. By Lemma 3.3, there exists $S^{-1}: b^{2} \rightarrow b^{2}$ and S^{-1} is bounded. Because $T_{\mu}=\left(U S^{-1}\right)^{*} A^{*} T_{\mu} A\left(U S^{-1}\right)$, we obtain $T_{\mu} \in S_{\sigma}$. This completes the proof.

Acknowledgements. This work was done during my visit to Korea University. I am grateful to Professor Hyungwoon Koo and Professor Boo Rim Choe for their hospitalities and suggestions.

References

[1] S. Axler, P. Bourdon and W. Ramey: Harmonic Function Theory, Springer, New York, 1992.
[2] B.R. Choe, Y.J. Lee and K. Na: Toeplitz operators on harmonic Bergman spaces, Nagoya Math. J. 174 (2004), 165-186.
[3] B.R. Choe, H. Koo and H. Yi: Projections for harmonic Bergman spaces and applications, J. Funct. Anal. 216 (2004), 388-421.
[4] B.R. Choe and H. Yi: Representations and interpolations of harmonic Bergman functions on half-spaces, Nagoya Math. J. 151 (1998), 51-89.
[5] R.R. Coifman and R. Rochberg: Representation theorems for holomorphic and harmonic functions in L^{p} : in Representation Theorems for Hardy Spaces, Astérisque 77, Soc. Math. France, Paris, 1980, 11-66.
[6] H. Kang and H. Koo: Estimates of the harmonic Bergman kernel on smooth domains, J. Funct. Anal. 185 (2001), 220-239.
[7] D.H. Luecking: Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), 345-368.
[8] K. Tanaka: Atomic decomposition of harmonic Bergman functions, Hiroshima Math. J. 42 (2012), 143-160.

Department of Mathematics
Graduate School of Science Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-8585
Japan

[^0]: 2000 Mathematics Subject Classification. Primary 46E15; Secondary 31B05, 47B35.
 This work is partially supported by the JSPS Institutional Program for Young Researcher Overseas Visits "Promoting international young researchers in mathematics and mathematical sciences led by OCAMI".

