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Abstract
We introduce an algebraic version of the translation algebra of a group. We prove

that a quasi-isometry of two finitely generated groups induces Morita equivalence of
their algebraic translation algebras.

1. Introduction

Ring theoretic approaches for a quasi-isometry of groups were started by Shalom
and Sauer [20], [18]. Shalom proved quasi-isometry invariance of the cohomological di-
mensions of finitely generated amenable groups, and of theR-Betti numbers of finitely
generated nilpotent groups. In his proof, it was important that there exists a good topo-
logical coupling induced by a quasi-isometry. Sauer refineda part of Shalom’s argu-
ment. He showed that a good topological coupling induces a Morita equivalence between
Sauer rings of the coupled group actions (see Section 3). He applied this result to quasi-
isometry invariance of the (co)homological dimensions of finitely generated groups with
finite dimensions, and of theR-cohomology rings of finitely generated nilpotent groups.

Morita theory of Sauer rings is important for classifying groups by quasi-isometry.
However, Sauer rings of the same group are not always Morita equivalent. In order to
study ring theoretic invariants we should determine a ring for each finitely generated
group. We propose considering the rings as follows: Letk be a ring with the multi-
plicative identity element 1, andG a finitely generated group. We consider the skew
group ringG � l f (G, k), wherel f (G, k) is the ring of functions with finite image. We
denote this ring byR(G, k), and call it an algebraic translation algebra ofG with the
coefficient k. In the case wherek D Q or C, we see thatR(G, k) is a subring of
Roe’s translation algebra [17, p. 68]. In fact,R(G, k) is isomorphic to the Sauer ring
of a natural action ofG on �G, where�G is the Stone–̌Cech compactification ofG
endowed with the discrete topology (see Lemma 3.2). We have the main theorem:

Theorem 1. If finitely generated groups G and G0 are quasi-isometric, then
R(G, k) and R(G0, k) are Morita equivalent.
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Two groups always have a good topological coupling such thattheir Stone–̌Cech
compactifications are coupled (see Section 3). Therefore Theorem 1 is the special case
of [18]. Without using a topological coupling and [18], we prove this result in Sec-
tion 4. The cores of a quasi-isometry (see Definition 2.1) play important roles.

Morita invariants ofR(G, k) are quasi-isometry invariants by Theorem 1. In Sec-
tion 5, we give a formula to calculate the global dimension and the weak global di-
mension ofR(G, k). They are well-known Morita invariants. The global dimension
of R(G, k) is estimated by the cohomological dimension ofG and the global dimen-
sion of l f (G, k). The same result is true for the weak global dimension. It should be
noted that some of well-known Morita invariants are trivial.For example, the center
of R(G, k) coincides with that ofk (see Lemma 2.4).

The Morita equivalence in the proof of Theorem 1 preserves some special modules
(see Theorem 4.7). For example,l f (G, k) and lc(G, k) are preserved. The coarse co-
homology Hn(G, Gk) is isomorphic to ExtnR(G,k) (l f (G, k), lc(G, k)) (see Section 4.3),
and hence the coarse cohomology is a quasi-isometry invariant as already known. The
coarsel p-cohomology ([6]) is also obtained in this way.

If G is not amenable, then the Morita equivalence of Theorem 1 can be replaced
by a ring isomorphism. It is proved in Corollary 4.5. In this case, isomorphism in-
variants of rings are also quasi-isometry invariants.

In Section 6, a geometric description ofR(G, k) is given by Modk(G Ë �G) by
using [4]. Indeed,R(G, k)-Mod is additively equivalent to Modk(G Ë �G) (see The-
orem 6.6). From this we can constructR(G, k)-modules by the geometry of Stone–
Čech compactification. In Appendix 7.1, we give an alternative proof of Theorem 1
using the result in Section 6.

2. Preliminaries

2.1. Geometric group theory. We recall the basic notion of geometric group
theory and cores of a quasi-isometry [8, 0.2.C. p. 4, 5].

Let G be a finitely generated group with a finite generating systemS. G has a
metric d(G,S) defined by

d(G,S)(x, y) D

�

min{n 2 N j x D si1
1 � � � s

in
n y, sk 2 S, ik 2 {�1, 1}} if x ¤ y,

0 if x D y,

which is called the word metric with respect toS.
Let Z be a metric space. ForW � Z and a real numberK � 0, NK (W) D {z 2

Z j 9w 2 W s.t. d(z, w) � K } is called aK -neighborhood ofW. If NK (W) D Z, the
subspaceW is said to beK -coarsely dense inZ.

A quasi-isometry is a mapf W X ! Y between metric spaces such that for some
real numberK � 1, f satisfies
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(1) (1=K ) d(x, x0) � K � d( f (x), f (x0)) � K d(x, x0)C K for every x, x0 2 X,
(2) f (X) is K -coarsely dense inY.

Two metric spaces are quasi-isometric if there exists a quasi-isometry between them.
This gives an equivalence relation for metric spaces. IfS and S0 are finite generating
systems ofG, then (G, d(G,S)) and (G, d(G,S0)) are quasi-isometric.

The definition of cores of a quasi-isometry is as follows:

DEFINITION 2.1. Let f W X ! Y be a quasi-isometry.A � X and B � Y are
called cores off if there exists a real numberK � 0 such thatNK (A)D X, NK (B)D Y,
f (A) D B and f jA is a bijective quasi-isometry.

For every quasi-isometryf W X! Y there exist cores off . Indeed, we can define a
core B to be f (X), and A to be{xb 2 X j b 2 B} by choosingxb 2 f �1(b) for eachb.

2.2. Algebraic translation algebra. Let G be a group, andR a ring with the
multiplicative identity element 1 on whichG acts from the right. Forr 2 R and g 2 G
this action is denoted byr g. The skew group ringG � R is a free rightR-module on
G with the multiplication given by

(gr1)(hr2) D (gh)(r h
1 r2) for every g, h 2 G, r1, r2 2 R.

If G acts onR trivially, then we especially writeG�R by G R. It is an ordinary group
ring (see [16] about skew group rings).

DEFINITION 2.2. (1) LetG be a group andk a ring with the multiplicative iden-
tity element 1.

l f (G, k) D {F W G! k j ℄(Im F) <1}

is a ring with the following sum and multiplication:

(F1C F2)(x) D F1(x)C F2(x),

(F1F2)(x) D F1(x)F2(x)

for every F1, F2 2 l f (G, k) and x 2 G.
(2) G acts onl f (G, k) from the right by

Fg(x) D F(gx) for every g 2 G, x 2 G.

(3) We denoteG � l f (G, k) by R(G, k). It is called an algebraic translation algebra
of G with the coefficientk.

The multiplicative identity element ofl f (G, k) is the constant function 1. Since
k � l f (G, k) as constant functions, a group ringGk is a subring ofR(G, k). e � 1 is
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the multiplicative identity element ofR(G, k), wheree is the identity element ofG. k
is regarded as a leftGk-module bygkD k (g 2 G, k 2 k).

For S� G the characteristic function

�S(x) D

�

1 if x 2 S,
0 if x � S

is an element ofl f (G, k).
In the case wherek D Z, Q or C, we see thatR(G, k) is a subring of Roe’s

translation algebra [17, p. 68].

2.3. Morita theory. We give the basic notion of Morita theory [1]. LetR and
S be rings. R-Mod (Mod-R) is the category of left (right) modules overR. A left R
and right S-module M is called a left R-right S-bimodule if r (ms) D (rm)s (r 2 R,
s 2 S, m 2 M). RM meansM is a left R-module, MR meansM is a right R-module,
and RMS meansM is a left R-right S-bimodule.

Let F1, F2 W B! C be functors, a set{�B 2 Hom(F1(B), F2(B)) j B 2 Ob(B)} is
called a natural equivalence ifF2( f ) Æ �B D �B0 Æ F1( f ) ( f 2 Hom(B, B0)) and �B is
an isomorphism for everyB 2 Ob(B). ThenF1 ' F2 if there exists a natural equiva-
lence. A functorF W R-Mod! S-Mod is called an additive functor if Hom(A, B)!
Hom(F (A), F (B)) defined by f 7! F ( f ) is a homomorphism. An additive functor
F1W R-Mod! S-Mod is called an additive equivalence if there exists an additive func-
tor F2 W S-Mod! R-Mod such thatF2 Æ F1 ' id and F1 Æ F2 ' id. A functor F2 is
called an inverse equivalence ofF1.

R and S are said to beMorita equivalentif there exists an additive equivalence be-
tween R-Mod andS-Mod. Let M be a left (right)R-module. The moduleM is said to
be finitely generatedif there existn 2 N and a surjective homomorphismf W Rn

! M.
M is called a (finite) generator if there existn 2 N and a surjective homomorphism
f W Mn

! R. M is said to beprojective if it is a direct summand of a free left (right)
R-module. A generator is called aprogeneratorif it is finitely generated and project-
ive. End(M) D { f W M ! M j f is a left (right) R-homomorphism} is called the endo-
morphism ring. The multiplication is the opposite composition (ordinary composition)
of maps.

e2 R is called an idempotent ife2
D e. If R has the multiplicative identity element

1, theneReD {ere2 R j r 2 R} is a ring with the multiplicative identity elemente.
Re is a left R-module, and End(Re) is isomorphic toeRe. eR is a right R-module,
and End(eR) is also isomorphic toeRe.

Theorem 2.3. [1, Corollary 22.5, p. 265]Let R be a ring. If PR is a progenerator,
then R and SD End(PR) are Morita equivalent. Indeed, if P~

D HomR(PR, R), then

SPR and RP~

S are bimodules and(P
R�) W R-Mod! S-Mod, (P~


S�) W S-Mod!
R-Mod are inverse equivalences.
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If PR D eR is a progenerator, thenSD eRe, SPR D eReeRR and RP~

eReD RReeRe.
If R and S are isomorphic, thenR and S are Morita equivalent. Indeed, let

8 W S! R be a ring isomorphism. SinceS ' R ' End(RR), an additive equiva-
lence (SRR 
R �) W R-Mod! S-Mod is obtained. RM is mapped toSM satisfying
smD 8(s)m (s 2 S, m 2 M). We use the notation Res8 D (SRR
R �).

2.4. The center ofR(G,kkk). The center of a ringR is Cen(R) D {r 2 R j r x D
xr (8x 2 R)}. If rings R and S are Morita equivalent, then Cen(R) and Cen(S) are
isomorphic [1, Proposition 21.10, p. 258].

Lemma 2.4. Cen(R(G, k)) D Cen(k).

Proof. Let � 2 Cen(R(G, k)). For eachx ¤ e 2 G there exists noF ¤ 0 2
l f (G,k) such that for everyg 2 G, �gx F D x F�g is satisfied, and hence� 2 e�l f (G,k).
Since for everyg 2 G we haveg� D �g, � is a constant function.k� D �k is satisfied
for every k 2 k, and hence� 2 Cen(k).

2.5. Transformation groupoids. Let G0, G1 be topological spaces, andsW G1!

G0, t W G1 ! G0, mW G1 �G0 G1 D {(g1, g2) 2 G1 � G1 j s(g1) D t(g2)} ! G1 continuous
maps. We consider the following three conditions:
(1) m(m(g1, g2), g3) D m(g1, m(g2, g3)) ((g1, g2), (g2, g3) 2 G1 �G0 G1),
(2) there exists a continuous mapu W G0 ! G1 such thats(u(x)) D t(u(x)) D x and
m(u(x), g) D g, m(g0, u(x)) D g0 (x 2 G0, g, g0 2 G1 with t(g) D x D s(g0)),
(3) there exists a continuous mapI W G1 ! G1 such that m(g, I (g)) D u(t(g)),
m(I (g), g) D u(s(g)) (g 2 G1).
G D (G0,G1,s, t,m,u, I ) satisfying the conditions above is called atopological groupoid.
We use the notationg1 � g2 D m(g1, g2) ((g1, g2) 2 G1 �G0 G1), ex D u(x) (x 2 G0) and
g�1
D I (g) (g 2 G1). A topological groupoidG D (G0,G1, s, t, m, u, I ) is called anétale

groupoid if s and t are surjective local homeomorphisms (see [14, Section 5] for more
on étale groupoids).

Let G be a finitely generated group, andG acts on a topological spaceX from
the left. We define atransformation groupoid GË X by the following data:

(G Ë X)0 D X, (G Ë X)1 D G � X,

where G is regarded as a discrete space.

s(g, x) D x (g 2 G, x 2 X), t(g, x) D gx (g 2 G, x 2 X),

(g, x) � (g0, x0) D (gg0, x0) (g, g0 2 G, x, x0 2 X satisfying x D g0x0),

u(x) D (e, x) (x 2 X),

wheree is the identity element ofG.

I (g, x) D (g�1, gx) (g 2 G, x 2 X).

G Ë X is an étale groupoid.
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2.6. Stone–̌Cech compactifications. We recall the Stone–̌Cech compactifications
for discrete spaces [9]. LetD be a set.U � 2D is called a filter onD if the following
conditions are satisfied.
(0) D 2 U ,
(1) ; � U ,
(2) if A1, A2 2 U , then A1 \ A2 2 U ,
(3) if A 2 U , B 2 2D and A � B, then B 2 U .
In addition,U is called an ultra filter ifU satisfies
(4) if D D A1 t � � � t An, then there exists the unique 1� i � n such thatAi 2 U .
The set of ultra filters onD is denoted by�D. For A � D we use the notationOAD
{U 2 �D j A 2 U}. O is a topology onD generated by an open base{ OA j A 2 2D}.
(�D,O) is called theStone–̌Cech compactificationof D. Let G be a finitely generated
group. �G has a naturalG-action from the left. Indeed, forU 2 �G and g 2 G,
gU D {gA j A 2 U} 2 �G. This action is a homeomorphic action.

Lemma 2.5. (1) �D is compact and Hausdorff. D is identified with a dense

subset of�D by an injection eW D ! �D satisfying{e(d)} D 
{d} for every d2 D.

(2) For A 2 2D,2D � A D �D � OA. Therefore the topology of�D is generated by
clopen (closed and open) sets.
(3) If O is a clopen set of�D, then there exists A2 2D such that OD OA.

Proof. The proof of (1) is in [9, Theorem 3.18 (a) and (c)], andthe proof of (2)
is in [9, Theorem 3.17 (c)]. IfO is a clopen set of�D, then there existsAx 2 2D for
eachx 2 O such thatx 2 Ax and O D

S

x2O
OAx. SinceO is a closed set of Hausdorff

space,O is compact. Therefore there exists{xi 2 O}n
iD1 such thatO D

Sn
iD1
OAxi . By

[9, Theorem 3.17 (b)] we haveO D3
Sn

iD1 Axi .

2.7. Definition of Modkkk (G). Let G be an étale groupoid. In [4], the abelian cat-
egory associated toG was considered to study a homology theory forG ([21, Appendix
A] is a good reference for abelian categories). This category is denoted by Modk(G).
In Section 6, we describe Modk(GË �G) and discuss a relation to the algebraic trans-
lation algebra.

First, we recall the definition of Sh(G). A left étaleG-space XD (X, p0, p1) is
a topological space with continuous mapsp0 W X ! G0 and p1 W G1 �p0 X D {(g, x) j
s(g) D p0(x)} ! X such that
(0) p0 is a surjective local homeomorphism,
(1) p0(p1(g, x)) D t(g) ((g, x) 2 G1 �p0 X),
(2) p1(h � g, x) D p1(h, p1(g, x)) ((g, x) 2 G1 �p0 X, (h, g) 2 G1 �G0 G1),
(3) p1(ep0(x), x) D x (x 2 X).
p1 is usually denoted by� . Let X D (X, p0, p1) and Y D (Y, q0, q1) be left étale
G-spaces. A continuous map8 W X ! Y is said to beequivariant if
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(1) q0 Æ8 D p0,
(2) 8(p1(g, x)) D q1(g, 8(x)) ((g, x) 2 G1 �p0 X)
are satisfied. Sh(G) is the category of which objects are left étaleG-spaces and mor-
phisms are equivariant maps. Sh(G) is called the category of left étaleG-spaces.

Second, we recall the definition of Modk(G). Let X D (X, p0, p1) andY D (Y,q0,q1)
be left étaleG-spaces. We define a finite product of Sh(G): X�Y D (X �G0 Y, r0, r1) by
X �G0 Y D {(x, y) 2 X �Y j p0(x) D q0(y)}, r0W X �G0 Y! G0 with r0(x, y) D p0(x) D
q0(y) andr1W G1�r0 (X�G0 Y)! X�G0 Y with r1(g,(x,y))D (p1(g,x),q1(g,y)). 2D G0D

(G0, idW G0! G0, t ÆPr1W G1�G0 G0! G0) is a left étaleG-space and Hom(X,G0) D {p0}.
2 is a terminal object.k is regarded as a constant left étaleG-spacek D (k � G0, p00 D
Pr2, p01) by p01(g, (k, z)) D (k, t(g)). k has a natural structure of a ring. We considerk-
module objects of (Sh(G), �, 2): A D (A, M, U , v, M) is called ak-module objectof
(Sh(G),�,2) if morphismsM W A� A! A, U W 2! A, v W A! A andM W k � A!
A satisfy
(1) (M, U , v) is an usual additive group structure onA,
(2) M is an usualk-action giving ak-module structure on (A, M, U , v).
M is usually denoted byC, U by 0, v by � and M by � . Morphisms betweenk-
module objectsA and B of (Sh(G), �, 2) are morphisms of Sh(G) preserving struc-
tures M, U , v andM. Thereforek-module objects form a category. It is denoted by
Modk(G). Modk(G) is an abelian category.2 D G0 is the zero object 0.

Modk(G) always has an infinite coproduct. Such a category is called an A.B.3
category [21, A.4]. An infinite coproduct exists as follows:For {A

�

2 Ob(Modk(G)) j
� 2 3}, A

�

gives a presheaf ofk-modulesFA
�

on G0 by O 7! 0(O, A
�

) D { f W O!
A
�

j f is continuous andp0,� Æ f D idO} for every open setO � G0. Therefore for
presheaf

L

�23

FA
�

W O 7!
L

�23

FA
�

(O) its sheaf spaceEL
�23

FA
�

has a natural struc-
ture of ak-module object of (Sh(G),�,2) (about the relation of a presheaf and a sheaf
space see [2, 2.3]). ThisEL

�23

FA
�

is an infinite coproduct. Therefore Modk(G) is an
A.B.3 category.

3. Proof of quasi-isometry invariance of the algebraic translation algebra
using a topological coupling

We recall the definition of Sauer rings. LetG acts on a compact Hausdorff space
X from the left. F (X, k) D {F W X ! k j F�1(k) is clopen for everyk 2 k} has the
right action of G induced by the left action ofG on X. In the paper [18], the skew
group ringG�F (X,k) was considered. We call this ringthe Sauer ring of G-space X.

Theorem 3.1 ([18]). If two finitely generated groups G and G0 are quasi-isometric,
then there exist compact Hausdorff spaces Y1 on which G acts from the left and Y2 on
which G0 acts from the left such that their Sauer rings G� F (Y1, k) and G0

� F (Y2, k)
are Morita equivalent. A good topological coupling� always gives such Y1 D �=G0 and
Y2 D �=G, where a topological coupling� is said to be good if it has a compact clopen
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fundamental domain for each action.

We relate Sauer rings and our algebraic translation algebras.

Lemma 3.2. Let G be a finitely generated group.

R(G, k) ' G � F (�G, k).

Proof. ForF 2 F (�G,k), �GD
F

k2k F�1(k). Since�G is compact and for each
k, F�1(k) is open, and hence there existk1, : : : , kn 2 k such that�G D

Fn
iD1 F�1(ki ).

For eachi , F�1(ki ) is clopen, and hence by Lemma 2.5 (3) there existA1, : : : , An �

G such thatF�1(ki ) D OAi . We define� W F (�G, k) ! l f (G, k) by �(F) D F jG D
Pn

iD1 ki�Ai . � is a bijective homomorphism and preserves the action ofG. Every func-
tion in l f (G, k) has an expression

Pn
iD1 ki�Ai , and hence� is surjective. This� is

extended toR(G, k) ' G � F (�G, k).

By Lemma 3.2 if we have a good topological coupling such thatY1 D �G and
Y2 D �G0, then Theorem 1 is the special case of [18]. Indeed, we have the follow-
ing theorem:

Theorem 3.3. Two quasi-isometric finitely generated groups G and G0 always have
a good topological coupling such that their Stone–Čech compactifications are coupled.

Proof. In the proof of Theorem 7.1 in Appendix, we have essential morphisms
GË�G!G(jGjtjG0

j) G0

Ë�G0 (see [19, Section 3.4]). We take the weak pullback
G of this morphisms, and hence surjective essential morphisms G Ë �G G ! G0

Ë

�G0 are obtained (see [14, Exercise 5.22 (1)]).G0 has a natural (G � G0)-action. G0

is a topological coupling such thatG0=G0

D �G and G0=G D �G0. Since surjective
essential morphisms above are étale and the topologies of�G and �G0 are generated
by clopen sets, we can construct a compact clopen fundamental domain for each action.
As a result,G0 is a good topological coupling.

We have the main theorem by Lemma 3.2, Theorems 3.1 and 3.3:

Theorem 1. If finitely generated groups G and G0 are quasi-isometric, then
R(G, k) and R(G0, k) are Morita equivalent.

4. Proof of quasi-isometry invariance of the algebraic translation algebra
without using a topological coupling

The proof is obtained by elementary argument: cores of a quasi-isometry and basic
Morita theory (see Sections 2.1 and 2.3).
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4.1. Some lemmas. In order to prove quasi-isometry invariance of the algebraic
translation algebra, we need Lemmas 4.1 and 4.4.

Lemma 4.1. Let H be a finitely generated group. For Z� H if there exists a
real number K� 0 such that Z is K -coarsely dense in H, then a rightR(H,k)-module
I Z D �ZR(H, k) is a progenerator.

Proof. SinceR(H, k) D I Z � I H�Z , I Z is finitely generated and projective.
We prove thatI Z is a generator: For the identity elemente 2 H , NK (e) is finite,

and hence we have an expressionNK (e)D {h0D e,h1,: : : ,hn}. We defineZ0,: : : , Zn by

Z0 D Z,

Z1 D h1Z � Z,

Z2 D h2Z � h1Z � Z,

� � �

Zn D hnZ � hn�1Z � � � � � Z.

Z0 t � � � t Zn D H and h�1
i Zi � Z are satisfied. We definepi W I Z ! R(H, k) by

pi (�Z
 )D �Zi hi 
 for every
 2R(H,k) and 0� i � n. They are well-defined as follows:
For every
 , 
 0 2 R(H, k) satisfying�Z
 D �Z


0, by multiplying�Zi hi to this equation
from the left, we have�Zi hi�Z
 D �Zi hi�Z


0. This implies�Zi �hi Zhi 
 D �Zi �hi Zhi 

0.

Thus h�1
i Zi � Z shows that�Zi hi 
 D �Zi hi 


0, and hencepi is a well-defined homo-
morphism. As a result, we have a homomorphismp D

Ln
iD1 pi W I n

Z ! R(H, k). For
eachh 2 H and F 2 l f (H, k) we havehF D

Pn
iD0 �Zi hF D

Pn
iD0 �Zi (hi h�1

i )hF D
Pn

iD0 �Zi hi (h�1
i hF) D

Pn
iD0 pi (�Zh�1

i hF) D p(�Zh�1
0 hF, : : : , �Zh�1

n hF). Thereforep
is surjective.

Let H be a group andZ � H . MH is the endomorphism ring of the right free
k-module on{Æh j h 2 H}. MZ is the subring ofMH generated on{Æz j z 2 Z}. We
consider a map� D �(H,Z) W H � H ! k satisfying

�(h, z) D �h�1Z\Z(z) D

�

1 if z 2 h�1Z \ Z,
0 if z � h�1Z \ Z

for every h, z 2 H . By using�, an injective homomorphismi Z W �ZR(H, k)�Z !MZ

can be defined by

i Z(�Z��Z)Æz D

n
X

iD1

Æhi z�(hi , z)Fi (z)

for every � D
Pn

iD1 hi Fi 2 R(H, k), hi 2 H , Fi 2 l f (H, k) and z 2 Z. This is shown
in the next lemma.
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Lemma 4.2. i Z is well-defined, a homomorphism and injective.

Proof. For everyh 2 H and z 2 Z if hz � Z is satisfied, thenÆhz�(h, z) D 0.
Therefore we havei Z(�Z��Z) 2MZ . Sincei Z preserves the sum, to provei Z is well-
defined we will prove that for every� D

Pn
iD1 hi Fi 2 R(H, k) if �Z��Z D 0, then

i Z(�Z��Z)D 0. �Z��Z D
Pn

iD1hi�h�1
i Z\Z Fi D 0 implies

P

hDhi
�h�1

i Z\Z Fi D 0 for each

h 2 H , and hence
P

hDhi
�(hi ,z)Fi (z)D 0 for everyz2 Z. This showsi Z(�Z��Z)ÆzD 0.

In order to provei Z is a homomorphism, we only have to check thati Z preserves
the multiplication for generators about the sum sincei Z preserves the sum and the iden-
tity element.�ZR(H, k)�Z is generated by�Z Hl f (H, k)�Z as an additive group, and
hence forg, h 2 H , F1, F2 2 l f (H, k), and z 2 Z

i Z(�ZgF1�Z) Æ i Z(�ZhF2�Z)Æz

D i Z(�ZgF1�Z)(Æhz�(h, z)F2(z))

D Æghz�(g, hz)F1(hz)�(h, z)F2(z)

D Æghz�(g, hz)�(h, z)F1(hz)F2(z)

D Æghz�h�1g�1Z\h�1Z(z)�h�1Z\Z(z)Fh
1 (z)F2(z)

D Æghz�(gh)�1Z\Z(z)(�h�1Z Fh
1 F2)(z)

D i Z(�Zgh�h�1Z Fh
1 F2�Z)Æz

D i Z(�ZgF1�Z�ZhF2�Z)Æz.

This implies i Z is a homomorphism.
In order to prove i Z is injective we will check that for every� 2 R(H, k),

i Z(�Z��Z) D 0 implies �Z��Z D 0. We have an expression� D
Pn

iD1 hi Fi for some
hi 2 H and Fi 2 l f (H, k), where we can assume thath1, : : : , hn are different from
each other.i Z(�Z��Z) D 0 implies

i Z(�Z��Z)Æz D

n
X

iD1

Æhi z�(hi , z)Fi (z) D
n
X

iD1

Æhi z�h�1
i Z\Z(z)Fi (z) D 0

for every z 2 Z. This shows that�h�1
i Z Fi�Z D 0 for every i . Thus

�Z��Z D

n
X

iD1

hi�h�1
i Z Fi�Z D 0.

Let G and G0 be finitely generated groups,X � G, Y � G0 and f W X! Y a bijec-
tive quasi-isometry. Sincef is bijective, f induces a natural isomorphismQf WMX !

MY as follows. For everyA 2 MX and x 2 X we have an expressionA(Æx) D
Pn

iD1 Æxi (x)ai (x) by somexi (x) 2 X and ai (x) 2 k. Thus by using this expression of

A(Æx), Qf satisfies

Qf (A)(Æy) D
n
X

iD1

Æ f (xi (( f �1(y))))ai ( f �1(y))
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for every y 2 Y. By Lemma 4.2 we have injective homomorphismsi XW �XR(G,k)�X!

MX and iY W �YR(G0, k)�Y !MY.

Lemma 4.3.

Qf Æ i X(�XR(G, k)�X) � iY(�YR(G0, k)�Y).

Proof. For everyg 2 G and y 2 Y we have

Qf Æ i X(�Xg�X)(Æy) D

�

Æ f (g f�1(y))�(G,X)(g, f �1(y)) if g f �1(y) 2 X,
0 otherwise

since

i X(�Xg�X)(Æ f �1(y)) D Æg f�1(y)�(G,X)(g, f �1(y)).

Since f is a quasi-isometry,L D { f (g f �1(y))y�1
j y 2 Y and g f �1(y) 2 X} is a fi-

nite set. Therefore we have an expressionL D {h1, : : : , hm}. We haveSi D {y 2
Y j g f �1(y) 2 X and f (g f �1(y))y�1

D hi }. S1, : : : , Sm are disjoint for each other. If
g f �1(y) 2 X, then there exists 1� j � m such that f (g f �1(y))y�1

D h j and

Æ f (g f�1(y))�(G,X)(g, f �1(y)) D Æ f (g f�1(y))y�1y�(G,X)(g, f �1(y))

D Æh j y�(G,X)(g, f �1(y))

D Æh j y

 

m
X

iD1

�(G0,Y)(hi , y)�Si (y)

!

�(G,X)(g, f �1(y))

D

m
X

iD1

Æhi y�(G0,Y)(hi , y)�Si (y)�(G,X)(g, f �1(y))

D iY

 

�Y

m
X

iD1

hi�Si �(G,X)(g, f �1( � ))�Y

!

(Æy),

where�(G,X)(g, f �1( � ))�Y 2 l f (G0, k). This shows that Qf Æ i X(�Xg�X) is in the image
of iY.

On the other hand, for everyF 2 l f (G, k) and y 2 Y we have

Qf Æ i X(�X F�X)(Æy) D ÆyF( f �1(y))

D iY(�Y(F Æ f �1)�Y)(Æy),

where (F Æ f �1)�Y 2 l f (G0, k). This shows that Qf Æ i X(�X F�X) is in the image ofiY.
�XR(G, k)�X is generated by�XG�X and�Xl f (G, k)�X as a ring. Therefore we

have Qf Æ i X(�XR(G, k)�X) � iY(�YR(G0, k)�Y).
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By Lemma 4.3 we have a homomorphism8W �XR(G, k)�X ! �YR(G0, k)�Y with
iY Æ8 D Qf Æ i X . Similarly, we have9 W �YR(G0, k)�Y ! �XR(G, k)�X with i X Æ9 D

Qf �1
Æ iY. Therefore8 Æ9 D id and9 Æ8 D id.
We summarize the discussion above as follows:

Lemma 4.4. Let G and G0 be finitely generated groups, X � G, and Y� G0.
If a bijective quasi-isometry fW X ! Y exists, then �XR(G)�X and �YR(G0)�Y are
isomorphic. The isomorphism8 D 8 f W �XR(G, k)�X ! �YR(G0, k)�Y is given by

8(�Xg�X) D �Y

m
X

iD1

hi�Si �(G,X)(g, f �1( � ))�Y (g 2 G),

8(�X F�X) D �Y(F Æ f �1)�Y (F 2 l f (G, k)),

where{ f (g f �1(y))y�1
j y 2 Y and g f�1(y) 2 X} D {h1, : : : , hm} (m, hi depend on g)

and Si D {y 2 Y j g f �1(y) 2 X and f(g f �1(y))y�1
D hi }.

Given two quasi-isometric non-amenable finitely generatedgroups, we can find a
bijective quasi-isometry between them [5, Proposition p. 104], and hence by combining
this fact and Lemma 4.4, we have

Corollary 4.5. If non-amenable finitely generated groups G and G0 are quasi-
isometric, then (R(G),l f (G,k)) and (R(G0),l f (G0,k)) are isomorphic as pairs of rings.

4.2. The proof of the main theorem. Let G andG0 be finitely generated groups,
and f W G ! G0 a quasi-isometry. There exist cores off W X � G and Y � G0. By
Lemma 4.1I X D �XR(G, k) is a progenerator. By Theorem 2.3R(G, k) and End(I X)
are Morita equivalent. Since�X is an idempotent, End(I X) ' �XR(G, k)�X . Therefore
R(G, k) and�XR(G, k)�X are Morita equivalent. Furthermore, by Theorem 2.3

�XR(G,k)�X�XR(G, k)R(G,k),

R(G,k)R(G, k)�X
�XR(G,k)�X

are bimodules, and

(�XR(G, k)
R(G,k) �) W R(G, k)-Mod! �XR(G, k)�X-Mod,

(R(G, k)�X 
�XR(G,k)�X �) W �XR(G, k)�X-Mod! R(G, k)-Mod

are inverse equivalences. Similarly,R(G0, k) and�YR(G0, k)�Y are Morita equivalent.
Furthermore, by Theorem 2.3

�YR(G0,k)�Y�YR(G0, k)R(G0,k),

R(G0,k)R(G0, k)�Y
�YR(G0,k)�Y
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are bimodules, and

(�YR(G0, k)
R(G0,k) �) W R(G0, k)-Mod! �YR(G0, k)�Y-Mod,

(R(G0, k)�Y 
�YR(G0,k)�Y �) W �YR(G0, k)�Y-Mod! R(G0, k)-Mod

are inverse equivalences.
Since f jX is a bijective quasi-isometry, by Lemma 4.4�XR(G, k)�X and

�YR(G0, k)�Y are isomorphic.8 D 8 f jX W �XR(G, k)�X ! �YR(G0, k)�Y is the iso-
morphism, and hence

Res8 W �YR(G0, k)�Y-Mod! �XR(G, k)�X-Mod,

Res(8�1) W �XR(G, k)�X-Mod! �YR(G0, k)�Y-Mod

are inverse equivalences. Therefore

F1 D (R(G0, k)�Y 
�YR(G0,k)�Y �) Æ Res(8�1) Æ (�XR(G, k)
R(G,k) �),

F2 D (R(G, k)�X 
�XR(G,k)�X �) Æ Res8 Æ (�YR(G0, k)
R(G0,k) �)

are inverse equivalences. As a result, we obtain the main theorem:

Theorem 1. If finitely generated groups G and G0 are quasi-isometric, then
R(G, k) and R(G0, k) are Morita equivalent.

4.3. On some characteristic modules. Let H be a finitely generated group.
There exist characteristicR(H, k)-modules of functions onH preserved byF1 of the
previous subsection. In this subsection, we use the notation of Section 4.2.

We consider a leftR(H, k)-module l (H, k) D {F W H ! k} with an action

(hF1)F D Fh�1

1 Fh�1
(hF1 2 R(H, k), F 2 l (H, k)).

l f (H, k) or lc(H, k) D {F W H ! k j #(supp(F)) <1} are submodules ofl (H, k).
For Z � H a left �ZR(H, k)�Z-module�ZR(H, k) 
R(H,k) l (H, k) is isomorphic to
the left �ZR(H, k)�Z-module l (Z, k) with an action

(�ZhF1�Z)F D �Z Fh�1

1 �hZFh�1
(�ZhF1�Z 2 �ZR(H, k)�Z , F 2 l (Z, k)).

Lemma 4.6. Under the notation ofSection 4.2

(Res8) Æ (�YR(G0, k)
R(G0,k) �)(l (G0, k)) ' (�XR(G, k)
R(G,k) �)(l (G, k)).
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Proof. By Lemma 4.4 (Res8) Æ (�YR(G0, k) 
R(G0,k) �)(l (G0, k)) is isomorphic
to the left �XR(G, k)�X-module l (Y, k) with an action

(�Xg�X)F D (8 f jX )(�Xg�X)F

D

 

�Y

m
X

iD1

hi�Si �(G,X)(g, f jX
�1( � ))�Y

!

F

D �Y

m
X

iD1

�hi Si �(G,X)(g, f jX
�1( � ))h�1

i
�hi Y Fh�1

i

for every g 2 G and F 2 l (Y, k), and also

(�X F1�X)F D (8 f jX )(�X F1�X)F

D (�Y(F1 Æ ( f jX)�1)�Y)F

D �Y(F1 Æ ( f jX)�1)�Y F

for every F1 2 l f (G, k) and F 2 l (Y, k). We define� W l (Y, k)! l (X, k) by F 7! F Æ
f jX. We will prove that� is a left �XR(G, k)�X-isomorphism. Since� is a bijective
additive group homomorphism, we only have to check that the action is preserved. For
every g 2 G, F 2 l (Y, k) and x 2 X, under the notation of Lemma 4.4, ifx 2 gX, then
there exists the onlyh j such that f (x) 2 h j Sj , and also ifx � gX, then there exists
no h j such that f (x) 2 h j Sj . Therefore

�((�Xg�X)F)(x) D (8 f jX (�Xg�X)F)( f (x))

D

 

�Y

m
X

iD1

�hi Si �(G,X)(g, f jX
�1( � ))h�1

i
�hi Y Fh�1

i

!

( f (x))

D

(

Fh j
�1

( f (x)) if x 2 gX,
0 if x � gX

D

�

F Æ f (g�1x) if x 2 gX,
0 if x � gX

D ((�Xg�X)�(F))(x).

For everyF1 2 l f (G, k), F 2 l (Y, k) and x 2 X

�((�X F1�X)F)(x) D (8 f jX (�X F1�X)F)( f (x))

D (�Y(F1 Æ ( f jX)�1)�Y F)( f (x))

D F1(F Æ f )(x)

D ((�X F1�X)�(F))(x).
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Theorem 4.7. Under the notation ofSection 4.2
(1) F1(l (G, k)) ' l (G0, k), F2(l (G0, k)) ' l (G, k),
(2) F1(l f (G, k)) ' l f (G0, k), F2(l f (G0, k)) ' l f (G, k),
(3) F1(lc(G, k)) ' lc(G0, k), F2(lc(G0, k)) ' lc(G, k).

Proof. (1) We send the equation of Lemma 4.6 by (R(G, k)�X 
�XR(G,k)�X �).
Therefore we haveF2(l (G0,k))' l (G,k). We also send this equation byF1, and hence
F1(l (G, k)) ' l (G0, k). Since� of the proof of Lemma 4.6 is an isomorphism onl f

and lc, (2) and (3) are also proved.

We have a leftR(H,k)-moduleT D TH D T(H,k) DR(H,k)
Hk k. TH is isomorphic

to l f (H, k). Indeed,� W TH ! l f (H, k) defined by�
�

Pn
iD1 gnFn 
 k

�

D

Pn
iD1 Fgn

�1

n k
(
Pn

iD1 gnFn 2 R(H, k), k 2 k) gives an isomorphism. LetM be a leftR(H, k)-module.
Since Hk is a subring ofR(H, k), M is regarded as a leftHk-module. By the flatness
of R(H, k)Hk (see Lemma 5.1 of the next section), we have Extn

R(H,k)(l
f (H, k), M) D

ExtnR(H,k)(TH , M) D ExtnHk(k, M) D Hn(H, M). Since lc(H, k) is isomorphic toHk,
Hn(H, lc(H, k)) D Hn(H, Hk). This cohomology group is the coarse cohomology (see
[7]). By Theorem 4.7 Hn(H, Hk) is a quasi-isometry invariant.

In the case ofk D C (or R) for 0< p�1 we have a module ofp-summable func-
tions l p(G, C) � l (G, C). We can also proveF1(l p(G, C)) ' l p(G0, C), F2(l p(G0, C)) '
l p(G, C). Therefore ExtnR(H,k)(l

f (H, C), l p(H, C)) is a quasi-isometry invariant. This co-
homology group is isomorphic to Hn(H, l p(H, C)): the coarsel p-cohomology (see [6]).

5. The global dimension and the weak global dimension of algebraic trans-
lation algebras

Let G be a finitely generated group. We see thatR(G, k)Gk is a flat Gk-module.
Let 3 D

{

SD {S1, : : : , SnS} Si � G,
FnS

iD1 Si D G
}

be the set of finite decom-
positions of G. For � and � 2 3 we denote� < � if � is a refinement of�. Let
L
�

D

Ln
�

iD1(Gk) be a right freeGk-module. If � < �, then for each 1� k � n
�

there
exists 1� ik � n

�

such that�k � �ik . Let f
��

W L
�

! L
�

be aGk-homomorphism such
that f

��

(x1,:::,xn
�

)D
�

xi1,:::,xin
�

�

(xk 2 Gk). These data define a direct system of right

Gk-modules, and hence we have a rightGk-module lim
!

L
�

. lim
!

L
�

D

�

L

�23

L
�

�

=N,

whereN is a submodule of
L

�23

L
�

generated by{�
�

Æ f
��

(x)��
�

(x) j � < �, x 2 L
�

}.
�

�

and �
�

are injections to
L

�23

L
�

.

Lemma 5.1. R(G, k)Gk is a direct limit of flat Gk-modules:

lim
!

L
�

' R(G, k)Gk .

ThereforeR(G, k)Gk is a flat Gk-module, and the functorR(G, k)
Gk �W Gk-Mod!
R(G, k)-Mod is exact.
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Proof. We definet
�

W L
�

! R(G, k) by t
�

(x1, : : : , xn
�

) D
Pn

�

iD1 ��i xi (xi 2 Gk).
The direct sum of{t

�

j � 2 3} defines an isomorphism.

We recall the definitions of some homological dimensions. Let R be a ring, and
M a left R-module.
(1) fdR(M) D sup{n j 9a right R-module N with TorR

n (N, M) ¤ 0}. This number is
equal to the minimal numbern such that there exists ann-length flat resolution ofM.
(2) pdR(M)D sup{n j 9a left R-module N with ExtnR(M, N)¤ 0}. This number is also
equal to the minimal numbern such that there exists ann-length projective resolution
of M.
(3) wd(R) D sup{fdR(M) j M is a left R-module}.
(4) l.gl.dim(R) D sup{pdR(M) j M is a left R-module} ([21, Section 3, 4] is a good
reference for Tor or Ext and homological dimensions).
wd and l.gl.dim are Morita invariants. We discuss l.gl.dim(R(G, k)) and wd(R(G, k)).

Lemma 5.2. Let G be a finitely generated group, and l a ring containingk as
a subring. We assume that G acts on l from the right trivially on k. Let R D G � l ,
and TD R
Gk k. For every leftR-module A and B, and anR-projective resolution
C of A we have a spectral sequence

ExtpR(T, Hq(eHoml (C, B))))p ExtnR(A, B),

where for a leftR-module C, eHoml (C, B) D Homl (C, B) is a left module with a left
action ofR defined by

(gF)'(x) D Fg�1
g'(g�1x)

for every' 2 eHoml (C,B), g 2 G, F 2 l and x2 C. The notation of a spectral sequence
is that of [3, Chapter XV].

Proof. This spectral sequence is obtained by modifying a spectral sequence of
Cartan and Leray [3, Proposition 8.2].

First, we prove ExtpR(T, eHoml (R, B)) D 0 (if p > 0) by direct calculation. Since

R D
L

g2G l � g and' 2 eHoml (R, B) is decided by'(g) 2 B, we haveeHoml (R, B) D
Q

g2G Bg, where Bg is a copy of B. For (bg)g2G 2
Q

g2G Bg, the R-action is given

by (x F)(bg)g2G D (F x�1
xbx�1g)g2G (x 2 G, F 2 l ). We consider free rightk-modules

I p D {(�0, : : : , �p) j �i 2 G}k and 'p�1(�0, : : : , �p) D
Pp

iD0(�1)i (�0, : : : , L�i , : : : , �p).

I D {I p, 'p} is the Gk-standard resolution ofk. Then QI D R
Gk I is anR-projective

resolution ofT . Since f 2 Hom(QI p,eHoml (R, B)) is decided byf (1,�1, : : : ,�p)(g) 2 Bg,
we have

Hom(QI p, eHoml (R, B)) D
Y

�1,:::,�p,g2G

B
�1,:::,�p,g,
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where B
�1,:::,�p,g is a copy of B. �p D Hom(Q' p, eHoml (R, B)) satisfies

�p((b
�1,:::,�p,g)

�1,:::,�p,g2G)

D

 

�1b
�

�1
1 �2,:::,��1

1 �pC1,��1
1 g C

pC1
X

iD1

(�1)i b
�1,:::, L�i ,:::,�pC1,g

!

�1,:::,�pC1,g2G

.
(i)

By the definition of Ext, ExtpR(T, eHoml (R, B)) D Ker�p=Im �p�1. For every
(b

�1,:::,�p,g)
�1,:::,�p,g2G 2 Ker�p and in the case ofp � 1, we have c

�1,:::,�p�1,g D

(�1)pb
�1,:::,�p�1,g,g. This satisfies

�p�1(c
�1,:::,�p�1,g)

�1,:::,�p�1,g2G D (b
�1,:::,�p,g)

�1,:::,�p,g2G.(ii)

In fact,

�p�1(c
�1,:::,�p�1,g)

�1,:::,�p�1,g2G

D

 

�1c
�

�1
1 �2,:::,��1

1 �p,��1
1 g C

p
X

iD1

(�1)i c
�1,:::, L�i ,:::,�p,g

!

�1,:::,�p,g2G

D

 

(�1)p
�1b

�

�1
1 �2,:::,��1

1 �p,��1
1 g,��1

1 g C

p
X

iD1

(�1)pCi b
�1,:::, L�i ,:::,�p,g,g

!

�1,:::,�p,g2G

.

(iii)

By substitutingg for �pC1 in (i), we have

�1b
�

�1
1 �2,:::,��1

1 �p,��1
1 g,��1

1 g C

p
X

iD1

(�1)i b
�1,:::, L�i ,:::,�p,g,g C (�1)pC1b

�1,:::,�p,g D 0.(iv)

(ii) is obtained by (iii) and (iv). Therefore Extp
R(T, eHoml (R, B)) D 0 (if p > 0) is

proved. This shows Extp
R(T, eHoml (P, B)) D 0 (if p > 0) for every projective left

R-module P.
Second, for leftR-modulesX and Y, � W HomR(T, eHoml (X, Y))! HomR(X, Y)

defined by f 7! f (1) is an isomorphism.
Let X be a projective resolution ofT and Y D eHoml (C, B). HomR(X, Y) is a

double complex, and hence we have two spectral sequences with the same limit:

I p,q
2 D Hp(Hq(HomR(X, Y))))p Totn(HomR(X, Y)),

II p,q
2 D Hq(Hp(HomR(X, Y))))q Totn(HomR(X, Y)).

By the first assertion above Hp(HomR(X, Y)) D HomR(T, Y) (if p D 0) and
Hp(HomR(X, Y)) D 0 (otherwise). We have IIp,q

2 D Hq(HomR(T, Y)) D Hq(C, B) D
ExtqR(A, B) (if pD 0) and IIp,q

2 D 0 (otherwise) by the second assertion above. There-
fore Totn(HomR(X, Y)) D ExtnR(A, B). Since each termXp of X is projective,
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HomR(Xp, �) is exact.

Hq(HomR(Xp, Y)) D Hq(HomR(Xp, eHoml (C, B)))

D HomR(Xp, Hq(eHoml (C, B)))

shows that Ip,q
2 D ExtpR(T, Hq(eHoml (C, B))).

Corollary 5.3.

pdR(G,k)(T) � l.gl.dim(R(G, k)) � pdR(G,k)(T)C l.gl.dim(l f (G, k)).

We can also prove theTor version of Lemma 5.2,and hence

fdR(G,k)(T) � wd(R(G, k)) � fdR(G,k)(T)C wd(l f (G, k)).

We estimate pdR(G,k)(T) and fdR(G,k)(T) by the homological dimensions ofG.

Lemma 5.4. (1) pdR(G,k)(T) � cdk(G), wherecdk(G) D pdGk(k).
(2) fdR(G,k)(T) � hdk(G), wherehdk(G) D fdGk(k).
(3) If cdk(G) <1, then cdk(G) D pdR(G,k)(T).
(4) If hdk(G) <1, then hdk(G) D fdR(G,k)(T).

Proof. Since the functorR(G,k)
Gk� is exact by Lemma 5.1, a projective reso-
lution (flat resolution) ofk is mapped to a projective resolution (flat resolution) ofT
by R(G, k)
Gk �. Therefore (1) and (2) are obtained.

(3) and (4) are proved by the same argument as [18, Section 4].

We estimate l.gl.dim(l f (G, k)) and wd(l f (G, k)).

Lemma 5.5. Let 1 be a countably infinite set.
(1) If k is a field, then wd(l f (1, k)) D 0.
(2) If k is Z, then wd(l f (1, k)) D 1.

If the continuum hypothesis is true, then
(3) if k is a field, then l.gl.dim(l f (1, k)) D 2,
(4) if k is Z, then l.gl.dim(l f (1, k)) � 3.

Proof. (1) We see that for everyF 2 l f (1, k), F 2 F � l f (1, k) � F is satisfied.
Thereforel f (1,k) is von-Neumann regular [11, xviii, the third paragraph]. This implies
that wd(l f (1, k)) D 0 [11, (5.62a) p. 185].

(2) l f (1, k) is not von-Neumann regular since 2� 2 � l f (1, k) � 2. Every ideal of
l f (1, k) is generated by projective modules with the forml f (1, k) � �Xn, and hence
every ideal ofl f (1, k) is flat. This implies wd(l f (1, k)) D 1 [11, (5.69) p. 187].
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(3) By the theorem of Osofsky [15, Corollary 2.47] for every ring R if every left
ideal of R is generated by�h elements, then

l.gl.dim(R) � wd(R)C hC 1.

Every ideal ofl f (1, k) is generated by characteristic functions on1. Therefore if the
continuum hypothesis is true, then l.gl.dim(l f (1, k)) � 2. Since l f (1, k) has a non-
projective ideal (l f (1, k) is not semi-simple and not hereditary), l.gl.dim(l f (1, k)) D 2
[11, (5.14) p. 169].

(4) It is proved by the theorem of Osofsky and (2).

We remark that wd(l1(1, C)) � 1. Indeed, fors1, : : : , sn, : : : 2 1 there exists a
function f 2 l1(G, C) such that f (sn) D exp(�n), and f � f � l1(1, C) � f .

Theorem 5.6. If k is a field, then
(1) if hdk(G) <1, then wd(R(G, k)) D hdk(G),
and if the continuum hypothesis is true, then
(2) if cdk(G) <1, then cdk(G) � l.gl.dim(R(G, k)) � cdk(G)C 2.

Proof. The assertions (1) and (2) follow from Corollary 5.3,Lemmas 5.4 and 5.5.

6. Geometric description ofR(G, kkk)

In this section, we need some theorems of groupoid theory andcategory theory.
Everything needed in this section is in Sections 2.5, 2.6 and2.7. Let G be a finitely
generated group with the identity elemente, andG D G Ë �G an étale groupoid. We
consider Modk(G). We define the characteristic objectU 2 Modk(G).

DEFINITION 6.1. We defineU D �G�Gk, whereGk has the discrete topology.
An element (x, �) 2 �G � Gk is denoted byx(�). We also define

p0 W U ! �G by p0(x(�)) D x,

p1 W (G Ë �G) �p0 U ! U by p1((g, x), x(�)) D gx(g�),

M W U �U ! U by M(x(�), x(�)) D x(� C �) (x 2 �G),

U W 2! U by U (x) D x(0) (x 2 �G),

v W U ! U by v(x(�)) D x(��) (x 2 �G),

M W k �U ! U by M(k, x(�)) D x(k�) (x 2 �G).

U D ((U, p0, p1), M, U , v, M) is an object of Modk(G). p0, p1, M, U , v andM are
open maps.{x(e) j x 2 �G} can be identified with�G by p0.
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A morphism from the characteristic objectU is determined on�G � U :

Lemma 6.2. For every object SD ((S, q0, q1), MS, US, vS, MS) of Modk(G) a
continuous mapw W �G ! S satisfying q0 Æ w D id

�G defines the unique morphism
f W U ! S such that fj

�G D w.

Proof. We define f by f
�

x
�

Pn
iD1 gi ki

��

D

Pn
iD1 ki � (gi , gi

�1x) � w(gi
�1x(e)) for

every x 2 �G, gi 2 G and ki 2 k. Therefore if f is a morphism, thenf is uniquely
defined. Sinceq0Æw D id

�G, f satisfiesq0Æ f D p0. In order to provef is a morphism
we may prove thatf is continuous, but this is a routine.

Let A be an A.B.3 category.U 2 Ob(A) is called aprojective objectif for every
epi b 2 Hom(B, C) and morphisma 2 Hom(U, C) there existsc 2 Hom(U, B) such
that a D bÆ c. A projective objectU 2 Ob(A) is called aprojective generatorif every
non-zeroA 2 Ob(A) satisfies Hom(U, A) ¤ 0. U 2 Ob(A) is said to besmall if every
morphism fromU into a coproductsW U !

L

�23

A
�

factors asU !
L

�2J A
�

!

L

�23

A
�

where J is a finite subset of3 and morphism between the coproducts is the
one which preserves injections.

Theorem 6.3([12, Theorem 3.1, p. 631]). LetA be anA.B.3 category with a small
projective generator U andEndA(U ) denote the endomorphism ring of U. Then the func-
tor T W A! Mod-EndA(U ) defined by T(A) D Hom(U, A) is an additive equivalence.

To see that Theorem 6.3 is applied to Modk(G) we prove that the characteristic
object U is a small projective generator of Modk(G).

Lemma 6.4. (1) U 2 Ob(Modk(G)) is a projective object.
(2) U 2 Ob(Modk(G)) is a projective generator.
(3) U 2 Ob(Modk(G)) is small.

Proof. (1) For everyB D (B, p0,B, p1,B), C D (C, p0,C, p1,C) 2 Ob(Modk(G)), a
morphismaW U ! C and an epibW B! C there exists an open setVx � C such that
a(x(e)) 2 Vx and p0,CjVx is a homeomorphism for eachx 2 �G. SincebW B! C is an
epi, b is surjective. Therefore there existsyx 2 B such thatb(yx) D a(x(e)). b is con-
tinuous, and henceyx 2 b�1(Vx) is open. We have an open setL 0

x � b�1(Vx) such that
yx 2 L 0

x and p0,BjL 0x is a homeomorphism. We also have a clopen setL 00

x � p0,B(L 0

x)\
p0,C(Vx) since the topology of�G is generated by clopen sets (Lemma 2.5 (2)).b sat-
isfies p0,C Æ bD p0,B, and henceLx D (p0,BjL 0x )

�1(L 00

x) satisfiesLx � b�1(Vx), yx 2 Lx

and bjLx is a homeomorphism. Clopen setsWx D a�1(b(Lx)) satisfy
S

x2�G Wx D �G.

�G is compact, and hence
Sm

jD1Wx j D �G. We have a refinement{Ai }
n
iD1 of {Wx j }

m
jD1

such that�G D
Fn

iD1 Ai . We can choseki for eachi such thatAi � Wxki
, and hence
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we define a continuous mapw by wjAi D

�

bjLxki

�

�1
Æ ajAi . By Lemma 6.2 there exists

a morphismc such thatcj
�G D w. This c satisfiesb Æ cD a.

(2) By (1) U is a projective object. We will prove that every non-zero object
AD (A, p0,A, p1,A) 2 Ob(Modk(G)) satisfies Hom(U, A)¤ 0. SinceA is non-zero, there
existsa ¤ 0 2 A. For x D p0,A(a) 2 �G since p0,A is a local homeomorphism and by
Lemma 2.5 (2) the topology of�G is generated by clopen sets, there exists clopen
Wx � A such thata 2 Wx and p0,AjWx is a homeomorphism. We define a continuous
mapw by wjp0,A(Wx) D (p0,AjWx )

�1 andwj
�G�p0,A(Wx ) D 0. By Lemma 6.2 there exists

a morphism f such that f j
�G D w. f (x) D a ¤ 0 shows that Hom(U, A) ¤ 0.

(3) For every morphism fromU into a coproductsW U !
L

�23

A
�

there exists a
finite set3x �3 such thats(x) 2

L

�23x
A
�

�

L

�23

A
�

for eachx 2 �G.
L

�23x
A
�

is
open in

L

�23

A
�

. s is continuous and the topology of�G is generated by clopen sets
(Lemma 2.5 (2)), and hence there exists clopenWx � �G such thats(Wx) �

L

�23x
A
�

and x 2 Wx. �G is compact, and hence there existx1, : : : , xm such that
Sm

jD1 Wx j D

�G. Therefores(�G) �
L

�2

Sm
jD1 3x j

A
�

. This shows thatsW U !
L

�23

A
�

factors

as U !
L

�2J A
�

!

L

�23

A
�

, where J D
Sm

jD1 3x j and morphism between the co-
products is the one which preserves injections.

SinceU is a small projective generator, by Theorem 6.3 the functorT W Modk(G)!
Mod-EndModk (G)(U ) defined byT(A) D Hom(U, A) is an additive equivalence. We de-
scribe the ring EndModk (G)(U ).

Lemma 6.5. (1) A morphism fW U ! U is determined by a finite decomposition
G D

Fn
iD1 L i and �i 2 Gk such that f(x(e)) D x(�i ) for every x2 OL i .

(2) EndModk (G)(U ) is isomorphic to the ringR(G, k)op.

Proof. (1) By Lemma 6.2 a continuous mapw D f j
�G W �G! U uniquely de-

fines f . SinceU D �G � Gk, we have a continuous projection�2 W �G � Gk ! Gk.
The topology ofGk is discrete, and hence for� 2 Gk, {�} is clopen. For clopen
W

�

D (�2 Æw)�1({�}), �G D
F

�2Gk W
�

. �G is compact, and hence�G D
Fm

iD1 W
�i .

By Lemma 2.5 (3),W
�i D

OL i by someL i � G, andGD
Fm

iD1 L i . Since�2Æwj OL i
D �i ,

w(x) D x(�i ) for every x 2 OL i .
(2) We define a map� W EndModk (GË�G)(A)! R(G, k) by

�( f ) D
n
X

iD1

�L i �i ,

where L i and�i are determined by (1). Since� is bijective by (1), we will prove that
it is a ring homomorphism. For everyf and g 2 EndModk (GË�G)(A) such that�( f ) D
Pn

iD1�L i �i and �(g) D
Pm

jD1�M j � j we have an expression�i D
Pni

lD1 hi , l ki , l by hi , l 2
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G and ki , l 2 k. We have the following equations:

�( f )�(g) D

 

n
X

iD1

�L i �i

! 

m
X

jD1

�M j � j

!

D

 

n
X

iD1

�L i

ni
X

lD1

hi , l ki , l

! 

m
X

jD1

�M j � j

!

D

 

n
X

iD1

ni
X

lD1

m
X

jD1

�L i\hi , l M j hi , l ki , l� j

!

.

On the other hand, we haveG D
F

i , j (L i \ hi , l M j ), and for everyx 26(L i \ hi , l M j )

g Æ f (x(e)) D g(x(�i )) D g

 

x

 

ni
X

lD1

hi , l ki , l

!!

D

ni
X

lD1

ki , l g((hi , l , h�1
i , l x) � h�1

i , l x(e))

D

ni
X

lD1

ki , l (hi , l , h�1
i , l x) � h�1

i , l x(� j )

D x

 

ni
X

lD1

hi , l ki , l� j

!

.

Therefore�( f )�(g) D �(g Æ f ).

By Theorem 6.3, Lemmas 6.4 and 6.5, we have

Theorem 6.6. The functor T0 W Modk(G) ! R(G, k)-Mod defined by T0(A) D
(Res��1)(Hom(U, A)) is an (additive) equivalence, where� is an isomorphism defined
in Lemma 6.5 (2).

7. Appendix

7.1. An alternative proof of Theorem 1. Let G and G0 be quasi-isometric fi-
nitely generated groups, we have Diagram 1.

Q.I. means quasi-isometric and W.E. means weak equivalent:let G andH be étale
groupoids,G andH are said to be weakly equivalent (Morita equivalent) if thereexists
an étale groupoidK and there exist essential morphisms8W K! G, 9W K!H (about
precise definitions see [4, 1.4, 1.5] or [14, Section 5]). Thefollowing theorems for a
quasi-isometry are known.
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Diagram 1.

G 'Q.I. G0

m (i)
G Ë �G 'W.E. G0

Ë �G0

m (ii)
Sh(G Ë �G) 'as topos Sh(G0

Ë �G0)
+ (iii)

Modk(G Ë �G) 'additive e.q. Modk(G0

Ë �G0)
'

Theorem 6.6
'

Theorem 6.6
R(G, k)-Mod R(G0, k)-Mod

Theorem 7.1 ([19, Corollary 3.6, p. 820]). Let G and G0 be finitely generated
groups. If G and G0 are quasi-isometric, then GË �G and G0 Ë �G0 are weakly
equivalent.

Theorem 7.1 is proved by the notion of the coarse space. The converse of the
theorem is also true:

Theorem 7.2. Let G and G0 be finitely generated groups. If GË �G and G0 Ë
�G0 are weakly equivalent, then G and G0 are quasi-isometric.

Proof. If G Ë �G and G0

Ë �G0 are weakly equivalent, thenG and G0 have a
topological coupling�. Gromov’s dynamical criterion [8, 0.2.C0

2] shows thatG and
G0 are quasi-isometric.

(i) in Diagram 1 is obtained by Theorems 7.1 and 7.2. For an étale groupoidG the
category of left étaleG-spaces Sh(G) is in fact a (Grothendieck) topos (see [13], and
about toposes see [10]) and its equivalence class is a weak equivalence invariant of an
étale groupoid, and also Modk(G) is a weak equivalence invariant of an étale groupoid:

Theorem 7.3 ([4, Section 2.3]). Let G and G 0 be étale groupoids. IfG and G 0

are weakly equivalent, thenSh(G) and Sh(G 0) are equivalent as(Grothendieck) toposes,
and henceModk(G) and Modk(G 0) are additively equivalent.

We have (iii) in Diagram 1. For Sh(G) the converse is also true:

Theorem 7.4 ([13, 7.7 Theorem]). Let G and G 0 be étale groupoids.G and G 0

are weakly equivalent if and only ifSh(G) and Sh(G 0) are equivalent as(Grothendieck)
toposes.

(ii) in Diagram 1 is obtained by Theorem 7.4. We lose some information about
quasi-isometry classes of finitely generated groups by (iii) in Diagram 1. Thus, we
have the following problem:
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PROBLEM 7.5. LetG andG0 be finitely generated groups. Is it true that ifR(G,k)
andR(G0, k) are Morita equivalent, thenG and G0 are quasi-isometric? If not, give a
counter-example.
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[14] I. Moerdijk and J. Mřcun: Introduction to Foliations and Lie Groupoids, Cambridge Studies in

Advanced Mathematics91, Cambridge Univ. Press, Cambridge, 2003.
[15] B.L. Osofsky: Homological Dimensions of Modules, Amer.Math. Soc., Providence, RI, 1973.
[16] D.S. Passman: Infinite Crossed Products, Pure and Applied Mathematics135, Academic Press,

Boston, MA, 1989.
[17] J. Roe: Lectures on Coarse Geometry, University Lecture Series31, Amer. Math. Soc., Provi-

dence, RI, 2003.
[18] R. Sauer:Homological invariants and quasi-isometry, Geom. Funct. Anal.16 (2006), 476–515.
[19] G. Skandalis, J.L. Tu and G. Yu:The coarse Baum–Connes conjecture and groupoids, Topology

41 (2002), 807–834.
[20] Y. Shalom:Harmonic analysis, cohomology, and the large-scale geometry of amenable groups,

Acta Math.192 (2004), 119–185.
[21] C.A. Weibel: An Introduction to Homological Algebra, Cambridge Studies in Advanced Math-

ematics38, Cambridge Univ. Press, Cambridge, 1994.



INVARIANTS 895

Department of Mathematics
Graduate School of Osaka University
Toyonaka, Osaka 560-0043
Japan
e-mail: h-morishima@cr.math.sci.osaka-u.ac.jp


