ON RING THEORETIC QUASI-ISOMETRY INVARIANTS

HOKUTO MORISHIMA

(Received April 22, 2011, revised February 13, 2012)

Abstract

We introduce an algebraic version of the translation algebra of a group. We prove that a quasi-isometry of two finitely generated groups induces Morita equivalence of their algebraic translation algebras.

1. Introduction

Ring theoretic approaches for a quasi-isometry of groups were started by Shalom and Sauer [20], [18]. Shalom proved quasi-isometry invariance of the cohomological dimensions of finitely generated amenable groups, and of the **R**-Betti numbers of finitely generated nilpotent groups. In his proof, it was important that there exists a good topological coupling induced by a quasi-isometry. Sauer refined a part of Shalom's argument. He showed that a good topological coupling induces a Morita equivalence between Sauer rings of the coupled group actions (see Section 3). He applied this result to quasi-isometry invariance of the (co)homological dimensions of finitely generated groups with finite dimensions, and of the **R**-cohomology rings of finitely generated nilpotent groups.

Morita theory of Sauer rings is important for classifying groups by quasi-isometry. However, Sauer rings of the same group are not always Morita equivalent. In order to study ring theoretic invariants we should determine a ring for each finitely generated group. We propose considering the rings as follows: Let \mathbf{k} be a ring with the multiplicative identity element 1, and G a finitely generated group. We consider the skew group ring $G*l^f(G,\mathbf{k})$, where $l^f(G,\mathbf{k})$ is the ring of functions with finite image. We denote this ring by $\mathcal{R}(G,\mathbf{k})$, and call it an algebraic translation algebra of G with the coefficient \mathbf{k} . In the case where $\mathbf{k}=\mathbf{Q}$ or \mathbf{C} , we see that $\mathcal{R}(G,\mathbf{k})$ is a subring of Roe's translation algebra [17, p. 68]. In fact, $\mathcal{R}(G,\mathbf{k})$ is isomorphic to the Sauer ring of a natural action of G on G, where G is the Stone-Čech compactification of G endowed with the discrete topology (see Lemma 3.2). We have the main theorem:

Theorem 1. If finitely generated groups G and G' are quasi-isometric, then $\mathcal{R}(G, \mathbf{k})$ and $\mathcal{R}(G', \mathbf{k})$ are Morita equivalent.

²⁰¹⁰ Mathematics Subject Classification. Primary 20F65; Secondary 22A22. This work was supported by Grant-in-Aid for JSPS Fellows.

Two groups always have a good topological coupling such that their Stone-Čech compactifications are coupled (see Section 3). Therefore Theorem 1 is the special case of [18]. Without using a topological coupling and [18], we prove this result in Section 4. The cores of a quasi-isometry (see Definition 2.1) play important roles.

Morita invariants of $\mathcal{R}(G, \mathbf{k})$ are quasi-isometry invariants by Theorem 1. In Section 5, we give a formula to calculate the global dimension and the weak global dimension of $\mathcal{R}(G, \mathbf{k})$. They are well-known Morita invariants. The global dimension of $\mathcal{R}(G, \mathbf{k})$ is estimated by the cohomological dimension of G and the global dimension of G and the global dimension of G and the global dimension of G are trivial. The same result is true for the weak global dimension. It should be noted that some of well-known Morita invariants are trivial. For example, the center of $\mathcal{R}(G, \mathbf{k})$ coincides with that of \mathbf{k} (see Lemma 2.4).

The Morita equivalence in the proof of Theorem 1 preserves some special modules (see Theorem 4.7). For example, $l^f(G, \mathbf{k})$ and $l_c(G, \mathbf{k})$ are preserved. The coarse cohomology $H^n(G, G\mathbf{k})$ is isomorphic to $\operatorname{Ext}^n_{\mathcal{R}(G,\mathbf{k})}$ ($l^f(G,\mathbf{k})$, $l_c(G,\mathbf{k})$) (see Section 4.3), and hence the coarse cohomology is a quasi-isometry invariant as already known. The coarse l^p -cohomology ([6]) is also obtained in this way.

If G is not amenable, then the Morita equivalence of Theorem 1 can be replaced by a ring isomorphism. It is proved in Corollary 4.5. In this case, isomorphism invariants of rings are also quasi-isometry invariants.

In Section 6, a geometric description of $\mathcal{R}(G,\mathbf{k})$ is given by $\underline{\mathrm{Mod}}_{\mathbf{k}}(G\ltimes\beta G)$ by using [4]. Indeed, $\mathcal{R}(G,\mathbf{k})$ -Mod is additively equivalent to $\underline{\mathrm{Mod}}_{\mathbf{k}}(G\ltimes\beta G)$ (see Theorem 6.6). From this we can construct $\mathcal{R}(G,\mathbf{k})$ -modules by the geometry of Stone–Čech compactification. In Appendix 7.1, we give an alternative proof of Theorem 1 using the result in Section 6.

2. Preliminaries

2.1. Geometric group theory. We recall the basic notion of geometric group theory and cores of a quasi-isometry [8, 0.2.C. p. 4, 5].

Let G be a finitely generated group with a finite generating system S. G has a metric $d_{(G,S)}$ defined by

$$d_{(G,S)}(x, y) = \begin{cases} \min\{n \in \mathbf{N} \mid x = s_1^{i_1} \cdots s_n^{i_n} y, \ s_k \in S, \ i_k \in \{-1, 1\}\} & \text{if} \quad x \neq y, \\ 0 & \text{if} \quad x = y, \end{cases}$$

which is called the word metric with respect to S.

Let Z be a metric space. For $W \subseteq Z$ and a real number $K \ge 0$, $\mathcal{N}_K(W) = \{z \in Z \mid \exists w \in W \text{ s.t. } d(z, w) \le K\}$ is called a K-neighborhood of W. If $\mathcal{N}_K(W) = Z$, the subspace W is said to be K-coarsely dense in Z.

A quasi-isometry is a map $f: X \to Y$ between metric spaces such that for some real number $K \ge 1$, f satisfies

- (1) $(1/K) d(x, x') K \le d(f(x), f(x')) \le K d(x, x') + K$ for every $x, x' \in X$,
- (2) f(X) is K-coarsely dense in Y.

Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. This gives an equivalence relation for metric spaces. If S and S' are finite generating systems of G, then $(G, d_{(G,S)})$ and $(G, d_{(G,S')})$ are quasi-isometric.

The definition of cores of a quasi-isometry is as follows:

DEFINITION 2.1. Let $f: X \to Y$ be a quasi-isometry. $A \subseteq X$ and $B \subseteq Y$ are called cores of f if there exists a real number $K \ge 0$ such that $\mathcal{N}_K(A) = X$, $\mathcal{N}_K(B) = Y$, f(A) = B and $f|_A$ is a bijective quasi-isometry.

For every quasi-isometry $f: X \to Y$ there exist cores of f. Indeed, we can define a core B to be f(X), and A to be $\{x_b \in X \mid b \in B\}$ by choosing $x_b \in f^{-1}(b)$ for each b.

2.2. Algebraic translation algebra. Let G be a group, and R a ring with the multiplicative identity element 1 on which G acts from the right. For $r \in R$ and $g \in G$ this action is denoted by r^g . The skew group ring G * R is a free right R-module on G with the multiplication given by

$$(gr_1)(hr_2) = (gh)(r_1^h r_2)$$
 for every $g, h \in G, r_1, r_2 \in R$.

If G acts on R trivially, then we especially write G * R by GR. It is an ordinary group ring (see [16] about skew group rings).

DEFINITION 2.2. (1) Let G be a group and \mathbf{k} a ring with the multiplicative identity element 1.

$$l^f(G, \mathbf{k}) = \{ F \colon G \to \mathbf{k} \mid \sharp (\operatorname{Im} F) < \infty \}$$

is a ring with the following sum and multiplication:

$$(F_1 + F_2)(x) = F_1(x) + F_2(x),$$

 $(F_1F_2)(x) = F_1(x)F_2(x)$

for every $F_1, F_2 \in l^f(G, \mathbf{k})$ and $x \in G$.

(2) G acts on $l^f(G, \mathbf{k})$ from the right by

$$F^g(x) = F(gx)$$
 for every $g \in G$, $x \in G$.

(3) We denote $G * l^f(G, \mathbf{k})$ by $\mathcal{R}(G, \mathbf{k})$. It is called an algebraic translation algebra of G with the coefficient \mathbf{k} .

The multiplicative identity element of $l^f(G, \mathbf{k})$ is the constant function 1. Since $\mathbf{k} \subseteq l^f(G, \mathbf{k})$ as constant functions, a group ring $G\mathbf{k}$ is a subring of $\mathcal{R}(G, \mathbf{k})$. $e \cdot 1$ is

the multiplicative identity element of $\mathcal{R}(G, \mathbf{k})$, where e is the identity element of G. \mathbf{k} is regarded as a left $G\mathbf{k}$ -module by gk = k ($g \in G$, $k \in \mathbf{k}$).

For $S \subseteq G$ the characteristic function

$$\chi_S(x) = \begin{cases} 1 & \text{if} \quad x \in S, \\ 0 & \text{if} \quad x \notin S \end{cases}$$

is an element of $l^f(G, \mathbf{k})$.

In the case where $\mathbf{k} = \mathbf{Z}$, \mathbf{Q} or \mathbf{C} , we see that $\mathcal{R}(G, \mathbf{k})$ is a subring of Roe's translation algebra [17, p. 68].

2.3. Morita theory. We give the basic notion of Morita theory [1]. Let R and S be rings. R-Mod (Mod-R) is the category of left (right) modules over R. A left R and right S-module M is called a left R-right S-bimodule if r(ms) = (rm)s ($r \in R$, $s \in S$, $m \in M$). RM means M is a left R-module, M_R means M is a right R-module, and RM_S means M is a left R-right S-bimodule.

Let \mathcal{F}_1 , \mathcal{F}_2 : $\mathbf{B} \to \mathbf{C}$ be functors, a set $\{\tau_B \in \operatorname{Hom}(\mathcal{F}_1(B), \mathcal{F}_2(B)) \mid B \in \operatorname{Ob}(\mathbf{B})\}$ is called a natural equivalence if $\mathcal{F}_2(f) \circ \tau_B = \tau_{B'} \circ \mathcal{F}_1(f)$ ($f \in \operatorname{Hom}(B, B')$) and τ_B is an isomorphism for every $B \in \operatorname{Ob}(\mathbf{B})$. Then $\mathcal{F}_1 \simeq \mathcal{F}_2$ if there exists a natural equivalence. A functor \mathcal{F} : R-Mod $\to S$ -Mod is called an additive functor if $\operatorname{Hom}(A, B) \to \operatorname{Hom}(\mathcal{F}(A), \mathcal{F}(B))$ defined by $f \mapsto \mathcal{F}(f)$ is a homomorphism. An additive functor \mathcal{F}_1 : R-Mod $\to S$ -Mod is called an additive equivalence if there exists an additive functor \mathcal{F}_2 : S-Mod $\to R$ -Mod such that $\mathcal{F}_2 \circ \mathcal{F}_1 \simeq \operatorname{id}$ and $\mathcal{F}_1 \circ \mathcal{F}_2 \simeq \operatorname{id}$. A functor \mathcal{F}_2 is called an inverse equivalence of \mathcal{F}_1 .

R and S are said to be *Morita equivalent* if there exists an additive equivalence between R-Mod and S-Mod. Let M be a left (right) R-module. The module M is said to be *finitely generated* if there exist $n \in \mathbb{N}$ and a surjective homomorphism $f: R^n \to M$. M is called a (*finite*) *generator* if there exist $n \in \mathbb{N}$ and a surjective homomorphism $f: M^n \to R$. M is said to be *projective* if it is a direct summand of a free left (right) R-module. A generator is called a *progenerator* if it is finitely generated and projective. End(M) = { $f: M \to M \mid f$ is a left (right) R-homomorphism} is called the endomorphism ring. The multiplication is the opposite composition (ordinary composition) of maps.

 $e \in R$ is called an idempotent if $e^2 = e$. If R has the multiplicative identity element 1, then $eRe = \{ere \in R \mid r \in R\}$ is a ring with the multiplicative identity element e. Re is a left R-module, and End(Re) is isomorphic to eRe. eR is a right R-module, and End(eR) is also isomorphic to eRe.

Theorem 2.3. [1, Corollary 22.5, p. 265] Let R be a ring. If P_R is a progenerator, then R and $S = \operatorname{End}(P_R)$ are Morita equivalent. Indeed, if $P^\circledast = \operatorname{Hom}_R(P_R, R)$, then ${}_SP_R$ and ${}_RP_S^\circledast$ are bimodules and $(P \otimes_R -)$: $R\operatorname{-Mod} \to S\operatorname{-Mod}$, $(P^\circledast \otimes_S -)$: $S\operatorname{-Mod} \to R\operatorname{-Mod}$ are inverse equivalences.

If $P_R = eR$ is a progenerator, then S = eRe, $_SP_R = _{eRe}eR_R$ and $_RP_{eRe}^{\circledast} = _RRe_{eRe}$. If R and S are isomorphic, then R and S are Morita equivalent. Indeed, let $\Phi \colon S \to R$ be a ring isomorphism. Since $S \simeq R \simeq \operatorname{End}(R_R)$, an additive equivalence $(_SR_R \otimes_R -)\colon R\operatorname{-Mod} \to S\operatorname{-Mod}$ is obtained. $_RM$ is mapped to $_SM$ satisfying $sm = \Phi(s)m$ ($s \in S$, $m \in M$). We use the notation $\operatorname{Res} \Phi = (_SR_R \otimes_R -)$.

2.4. The center of $\mathcal{R}(G, \mathbf{k})$. The center of a ring R is $Cen(R) = \{r \in R \mid rx = xr \ (\forall x \in R)\}$. If rings R and S are Morita equivalent, then Cen(R) and Cen(S) are isomorphic [1, Proposition 21.10, p.258].

Lemma 2.4. $Cen(\mathcal{R}(G, \mathbf{k})) = Cen(\mathbf{k})$.

Proof. Let $\alpha \in \text{Cen}(\mathcal{R}(G, \mathbf{k}))$. For each $x \neq e \in G$ there exists no $F \neq 0 \in l^f(G, \mathbf{k})$ such that for every $g \in G$, $\chi_g x F = x F \chi_g$ is satisfied, and hence $\alpha \in e \cdot l^f(G, \mathbf{k})$. Since for every $g \in G$ we have $g\alpha = \alpha g$, α is a constant function. $k\alpha = \alpha k$ is satisfied for every $k \in \mathbf{k}$, and hence $\alpha \in \text{Cen}(\mathbf{k})$.

- **2.5.** Transformation groupoids. Let \mathcal{G}_0 , \mathcal{G}_1 be topological spaces, and $s: \mathcal{G}_1 \to \mathcal{G}_0$, $t: \mathcal{G}_1 \to \mathcal{G}_0$, $m: \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 = \{(g_1, g_2) \in \mathcal{G}_1 \times \mathcal{G}_1 \mid s(g_1) = t(g_2)\} \to \mathcal{G}_1$ continuous maps. We consider the following three conditions:
- (1) $m(m(g_1, g_2), g_3) = m(g_1, m(g_2, g_3)) ((g_1, g_2), (g_2, g_3) \in \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1),$
- (2) there exists a continuous map $u: \mathcal{G}_0 \to \mathcal{G}_1$ such that s(u(x)) = t(u(x)) = x and m(u(x), g) = g, m(g', u(x)) = g' ($x \in \mathcal{G}_0$, $g, g' \in \mathcal{G}_1$ with t(g) = x = s(g')),
- (3) there exists a continuous map $I: \mathcal{G}_1 \to \mathcal{G}_1$ such that m(g, I(g)) = u(t(g)), m(I(g), g) = u(s(g)) $(g \in \mathcal{G}_1)$.

 $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1, s, t, m, u, I)$ satisfying the conditions above is called a *topological groupoid*. We use the notation $g_1 \cdot g_2 = m(g_1, g_2)$ $((g_1, g_2) \in \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1)$, $e_x = u(x)$ $(x \in \mathcal{G}_0)$ and $g^{-1} = I(g)$ $(g \in \mathcal{G}_1)$. A topological groupoid $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1, s, t, m, u, I)$ is called an *étale groupoid* if s and t are surjective local homeomorphisms (see [14, Section 5] for more on étale groupoids).

Let G be a finitely generated group, and G acts on a topological space X from the left. We define a *transformation groupoid* $G \ltimes X$ by the following data:

$$(G \ltimes X)_0 = X$$
, $(G \ltimes X)_1 = G \times X$,

where G is regarded as a discrete space.

$$s(g, x) = x$$
 $(g \in G, x \in X)$, $t(g, x) = gx$ $(g \in G, x \in X)$, $(g, x) \cdot (g', x') = (gg', x')$ $(g, g' \in G, x, x' \in X \text{ satisfying } x = g'x')$, $u(x) = (e, x)$ $(x \in X)$,

where e is the identity element of G.

$$I(g, x) = (g^{-1}, gx) \quad (g \in G, x \in X).$$

 $G \ltimes X$ is an étale groupoid.

- **2.6.** Stone-Čech compactifications. We recall the Stone-Čech compactifications for discrete spaces [9]. Let D be a set. $\mathcal{U} \subseteq 2^D$ is called a filter on D if the following conditions are satisfied.
- (0) $D \in \mathcal{U}$,
- (1) $\emptyset \notin \mathcal{U}$,
- (2) if $A_1, A_2 \in \mathcal{U}$, then $A_1 \cap A_2 \in \mathcal{U}$,
- (3) if $A \in \mathcal{U}$, $B \in 2^D$ and $A \subseteq B$, then $B \in \mathcal{U}$.

In addition, $\mathcal U$ is called an ultra filter if $\mathcal U$ satisfies

- (4) if $D = A_1 \sqcup \cdots \sqcup A_n$, then there exists the unique $1 \leq i \leq n$ such that $A_i \in \mathcal{U}$. The set of ultra filters on D is denoted by βD . For $A \subseteq D$ we use the notation $\hat{A} = \{\mathcal{U} \in \beta D \mid A \in \mathcal{U}\}$. \mathcal{O} is a topology on D generated by an open base $\{\hat{A} \mid A \in 2^D\}$. $(\beta D, \mathcal{O})$ is called the *Stone-Čech compactification* of D. Let G be a finitely generated group. βG has a natural G-action from the left. Indeed, for $\mathcal{U} \in \beta G$ and $g \in G$, $g\mathcal{U} = \{gA \mid A \in \mathcal{U}\} \in \beta G$. This action is a homeomorphic action.
- **Lemma 2.5.** (1) βD is compact and Hausdorff. D is identified with a dense subset of βD by an injection $e: D \to \beta D$ satisfying $\{e(d)\} = \widehat{\{d\}}$ for every $d \in D$.
- (2) For $A \in 2^D$, $\widehat{D-A} = \beta D \widehat{A}$. Therefore the topology of βD is generated by clopen (closed and open) sets.
- (3) If O is a clopen set of βD , then there exists $A \in 2^D$ such that $O = \hat{A}$.
- Proof. The proof of (1) is in [9, Theorem 3.18 (a) and (c)], and the proof of (2) is in [9, Theorem 3.17 (c)]. If O is a clopen set of βD , then there exists $A_x \in 2^D$ for each $x \in O$ such that $x \in A_x$ and $O = \bigcup_{x \in O} \hat{A}_x$. Since O is a closed set of Hausdorff space, O is compact. Therefore there exists $\{x_i \in O\}_{i=1}^n$ such that $O = \bigcup_{i=1}^n \hat{A}_{x_i}$. By [9, Theorem 3.17 (b)] we have $O = \widehat{\bigcup_{i=1}^n A_{x_i}}$.
- **2.7. Definition of** $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$. Let \mathcal{G} be an étale groupoid. In [4], the abelian category associated to \mathcal{G} was considered to study a homology theory for \mathcal{G} ([21, Appendix A] is a good reference for abelian categories). This category is denoted by $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$. In Section 6, we describe $\underline{\mathrm{Mod}}_{\mathbf{k}}(G \ltimes \beta G)$ and discuss a relation to the algebraic translation algebra.

First, we recall the definition of $\underline{\operatorname{Sh}}(\mathcal{G})$. A left étale \mathcal{G} -space $X=(X,\,p_0,\,p_1)$ is a topological space with continuous maps $p_0\colon X\to \mathcal{G}_0$ and $p_1\colon \mathcal{G}_1\times_{p_0}X=\{(g,\,x)\mid s(g)=p_0(x)\}\to X$ such that

- (0) p_0 is a surjective local homeomorphism,
- (1) $p_0(p_1(g, x)) = t(g) \ ((g, x) \in \mathcal{G}_1 \times_{p_0} X),$
- (2) $p_1(h \cdot g, x) = p_1(h, p_1(g, x)) \ ((g, x) \in \mathcal{G}_1 \times_{p_0} X, \ (h, g) \in \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1),$
- (3) $p_1(e_{p_0(x)}, x) = x \ (x \in X).$
- p_1 is usually denoted by \cdot . Let $X = (X, p_0, p_1)$ and $Y = (Y, q_0, q_1)$ be left étale \mathcal{G} -spaces. A continuous map $\Phi \colon X \to Y$ is said to be *equivariant* if

- (1) $q_0 \circ \Phi = p_0$,
- (2) $\Phi(p_1(g, x)) = q_1(g, \Phi(x)) \ ((g, x) \in \mathcal{G}_1 \times_{p_0} X)$

are satisfied. $\underline{Sh}(\mathcal{G})$ is the category of which objects are left étale \mathcal{G} -spaces and morphisms are equivariant maps. $\underline{Sh}(\mathcal{G})$ is called *the category of left étale \mathcal{G}-spaces*.

Second, we recall the definition of $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$. Let $X=(X,p_0,p_1)$ and $Y=(Y,q_0,q_1)$ be left étale \mathcal{G} -spaces. We define a finite product of $\underline{\mathrm{Sh}}(\mathcal{G})$: $X\oplus Y=(X\times_{\mathcal{G}_0}Y,r_0,r_1)$ by $X\times_{\mathcal{G}_0}Y=\{(x,y)\in X\times Y\mid p_0(x)=q_0(y)\}, r_0\colon X\times_{\mathcal{G}_0}Y\to \mathcal{G}_0$ with $r_0(x,y)=p_0(x)=q_0(y)$ and $r_1\colon \mathcal{G}_1\times_{r_0}(X\times_{\mathcal{G}_0}Y)\to X\times_{\mathcal{G}_0}Y$ with $r_1(g,(x,y))=(p_1(g,x),q_1(g,y)).\ \Theta=\mathcal{G}_0=(\mathcal{G}_0,\mathrm{id}\colon \mathcal{G}_0\to\mathcal{G}_0,t\circ\mathrm{Pr}_1\colon \mathcal{G}_1\times_{\mathcal{G}_0}\mathcal{G}_0\to\mathcal{G}_0)$ is a left étale \mathcal{G} -space and $\mathrm{Hom}(X,\mathcal{G}_0)=\{p_0\}.$ Θ is a terminal object. \mathbf{k} is regarded as a constant left étale \mathcal{G} -space $\mathbf{k}=(\mathbf{k}\times\mathcal{G}_0,p_0'=\mathrm{Pr}_2,p_1')$ by $p_1'(g,(k,z))=(k,t(g)).$ \mathbf{k} has a natural structure of a ring. We consider \mathbf{k} -module objects of $(\underline{\mathrm{Sh}}(\mathcal{G}),\oplus,\Theta)$: $A=(A,M,\mathcal{U},v,\mathcal{M})$ is called a \mathbf{k} -module object of $(\underline{\mathrm{Sh}}(\mathcal{G}),\oplus,\Theta)$ if morphisms $M\colon A\oplus A\to A,\mathcal{U}\colon\Theta\to A,v\colon A\to A$ and $\mathcal{M}\colon \mathbf{k}\oplus A\to A$ satisfy

- (1) (M, \mathcal{U}, v) is an usual additive group structure on A,
- (2) \mathcal{M} is an usual **k**-action giving a **k**-module structure on (A, M, \mathcal{U}, v) .

M is usually denoted by +, \mathcal{U} by 0, v by - and \mathcal{M} by \cdot . Morphisms between \mathbf{k} -module objects A and B of $(\underline{\operatorname{Sh}}(\mathcal{G}), \oplus, \Theta)$ are morphisms of $\underline{\operatorname{Sh}}(\mathcal{G})$ preserving structures M, \mathcal{U} , v and \mathcal{M} . Therefore \mathbf{k} -module objects form a category. It is denoted by $\underline{\operatorname{Mod}}_{\mathbf{k}}(\mathcal{G})$. $\underline{\operatorname{Mod}}_{\mathbf{k}}(\mathcal{G})$ is an abelian category. $\Theta = \mathcal{G}_0$ is the zero object 0.

 $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$ always has an infinite coproduct. Such a category is called an A.B.3 category [21, A.4]. An infinite coproduct exists as follows: For $\{A_{\lambda} \in \mathrm{Ob}(\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})) \mid \lambda \in \Lambda\}$, A_{λ} gives a presheaf of \mathbf{k} -modules $\mathcal{F}_{A_{\lambda}}$ on \mathcal{G}_{0} by $O \mapsto \Gamma(O, A_{\lambda}) = \{f : O \to A_{\lambda} \mid f \text{ is continuous and } p_{0,\lambda} \circ f = \mathrm{id}_{O}\}$ for every open set $O \subseteq \mathcal{G}_{0}$. Therefore for presheaf $\bigoplus_{\lambda \in \Lambda} \mathcal{F}_{A_{\lambda}}$: $O \mapsto \bigoplus_{\lambda \in \Lambda} \mathcal{F}_{A_{\lambda}}(O)$ its sheaf space $E_{\bigoplus_{\lambda \in \Lambda} \mathcal{F}_{A_{\lambda}}}$ has a natural structure of a \mathbf{k} -module object of $(\underline{\mathrm{Sh}}(\mathcal{G}), \oplus, \Theta)$ (about the relation of a presheaf and a sheaf space see [2, 2.3]). This $E_{\bigoplus_{\lambda \in \Lambda} \mathcal{F}_{A_{\lambda}}}$ is an infinite coproduct. Therefore $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$ is an A.B.3 category.

3. Proof of quasi-isometry invariance of the algebraic translation algebra using a topological coupling

We recall the definition of Sauer rings. Let G acts on a compact Hausdorff space X from the left. $\mathcal{F}(X, \mathbf{k}) = \{F \colon X \to \mathbf{k} \mid F^{-1}(k) \text{ is clopen for every } k \in \mathbf{k}\}$ has the right action of G induced by the left action of G on X. In the paper [18], the skew group ring $G * \mathcal{F}(X, \mathbf{k})$ was considered. We call this ring the Sauer ring of G-space X.

Theorem 3.1 ([18]). If two finitely generated groups G and G' are quasi-isometric, then there exist compact Hausdorff spaces Y_1 on which G acts from the left and Y_2 on which G' acts from the left such that their Sauer rings $G * \mathcal{F}(Y_1, \mathbf{k})$ and $G' * \mathcal{F}(Y_2, \mathbf{k})$ are Morita equivalent. A good topological coupling Ω always gives such $Y_1 = \Omega/G'$ and $Y_2 = \Omega/G$, where a topological coupling Ω is said to be good if it has a compact clopen

fundamental domain for each action.

We relate Sauer rings and our algebraic translation algebras.

Lemma 3.2. Let G be a finitely generated group.

$$\mathcal{R}(G, \mathbf{k}) \simeq G * \mathcal{F}(\beta G, \mathbf{k}).$$

Proof. For $F \in \mathcal{F}(\beta G, \mathbf{k})$, $\beta G = \bigsqcup_{k \in \mathbf{k}} F^{-1}(k)$. Since βG is compact and for each k, $F^{-1}(k)$ is open, and hence there exist $k_1, \ldots, k_n \in \mathbf{k}$ such that $\beta G = \bigsqcup_{i=1}^n F^{-1}(k_i)$. For each i, $F^{-1}(k_i)$ is clopen, and hence by Lemma 2.5 (3) there exist $A_1, \ldots, A_n \subseteq G$ such that $F^{-1}(k_i) = \hat{A}_i$. We define $\lambda : \mathcal{F}(\beta G, \mathbf{k}) \to l^f(G, \mathbf{k})$ by $\lambda(F) = F|_G = \sum_{i=1}^n k_i \chi_{A_i}$. λ is a bijective homomorphism and preserves the action of G. Every function in $l^f(G, \mathbf{k})$ has an expression $\sum_{i=1}^n k_i \chi_{A_i}$, and hence λ is surjective. This λ is extended to $\mathcal{R}(G, \mathbf{k}) \simeq G * \mathcal{F}(\beta G, \mathbf{k})$.

By Lemma 3.2 if we have a good topological coupling such that $Y_1 = \beta G$ and $Y_2 = \beta G'$, then Theorem 1 is the special case of [18]. Indeed, we have the following theorem:

Theorem 3.3. Two quasi-isometric finitely generated groups G and G' always have a good topological coupling such that their Stone-Čech compactifications are coupled.

Proof. In the proof of Theorem 7.1 in Appendix, we have essential morphisms $G \ltimes \beta G \to \mathbf{G}(|G| \sqcup |G'|) \leftarrow G' \ltimes \beta G'$ (see [19, Section 3.4]). We take the weak pullback \mathcal{G} of this morphisms, and hence surjective essential morphisms $G \ltimes \beta G \leftarrow \mathcal{G} \to G' \ltimes \beta G'$ are obtained (see [14, Exercise 5.22 (1)]). \mathcal{G}_0 has a natural $(G \times G')$ -action. \mathcal{G}_0 is a topological coupling such that $\mathcal{G}_0/G' = \beta G$ and $\mathcal{G}_0/G = \beta G'$. Since surjective essential morphisms above are étale and the topologies of βG and $\beta G'$ are generated by clopen sets, we can construct a compact clopen fundamental domain for each action. As a result, \mathcal{G}_0 is a good topological coupling.

We have the main theorem by Lemma 3.2, Theorems 3.1 and 3.3:

Theorem 1. If finitely generated groups G and G' are quasi-isometric, then $\mathcal{R}(G, \mathbf{k})$ and $\mathcal{R}(G', \mathbf{k})$ are Morita equivalent.

4. Proof of quasi-isometry invariance of the algebraic translation algebra without using a topological coupling

The proof is obtained by elementary argument: cores of a quasi-isometry and basic Morita theory (see Sections 2.1 and 2.3).

4.1. Some lemmas. In order to prove quasi-isometry invariance of the algebraic translation algebra, we need Lemmas 4.1 and 4.4.

Lemma 4.1. Let H be a finitely generated group. For $Z \subseteq H$ if there exists a real number $K \geq 0$ such that Z is K-coarsely dense in H, then a right $\mathcal{R}(H, \mathbf{k})$ -module $I_Z = \chi_Z \mathcal{R}(H, \mathbf{k})$ is a progenerator.

Proof. Since $\mathcal{R}(H, \mathbf{k}) = I_Z \oplus I_{H-Z}$, I_Z is finitely generated and projective.

We prove that I_Z is a generator: For the identity element $e \in H$, $\mathcal{N}_K(e)$ is finite, and hence we have an expression $\mathcal{N}_K(e) = \{h_0 = e, h_1, \dots, h_n\}$. We define Z_0, \dots, Z_n by

$$Z_0 = Z,$$

 $Z_1 = h_1 Z - Z,$
 $Z_2 = h_2 Z - h_1 Z - Z,$
...
 $Z_n = h_n Z - h_{n-1} Z - \dots - Z.$

 $Z_0 \sqcup \cdots \sqcup Z_n = H$ and $h_i^{-1}Z_i \subseteq Z$ are satisfied. We define $p_i \colon I_Z \to \mathcal{R}(H, \mathbf{k})$ by $p_i(\chi_Z \gamma) = \chi_{Z_i} h_i \gamma$ for every $\gamma \in \mathcal{R}(H, \mathbf{k})$ and $0 \le i \le n$. They are well-defined as follows: For every $\gamma, \gamma' \in \mathcal{R}(H, \mathbf{k})$ satisfying $\chi_Z \gamma = \chi_Z \gamma'$, by multiplying $\chi_{Z_i} h_i$ to this equation from the left, we have $\chi_{Z_i} h_i \chi_Z \gamma = \chi_{Z_i} h_i \chi_Z \gamma'$. This implies $\chi_{Z_i} \chi_{h_i Z} h_i \gamma = \chi_{Z_i} \chi_{h_i Z} h_i \gamma'$. Thus $h_i^{-1} Z_i \subseteq Z$ shows that $\chi_{Z_i} h_i \gamma = \chi_{Z_i} h_i \gamma'$, and hence p_i is a well-defined homomorphism. As a result, we have a homomorphism $p = \bigoplus_{i=1}^n p_i \colon I_Z^n \to \mathcal{R}(H, \mathbf{k})$. For each $h \in H$ and $F \in l^f(H, \mathbf{k})$ we have $hF = \sum_{i=0}^n \chi_{Z_i} hF = \sum_{i=0}^n \chi_{Z_i} (h_i h_i^{-1}) hF = \sum_{i=0}^n \chi_{Z_i} h_i (h_i^{-1} hF) = \sum_{i=0}^n p_i (\chi_Z h_i^{-1} hF) = p(\chi_Z h_0^{-1} hF, \dots, \chi_Z h_n^{-1} hF)$. Therefore p is surjective.

Let H be a group and $Z \subseteq H$. \mathcal{M}_H is the endomorphism ring of the right free **k**-module on $\{\delta_h \mid h \in H\}$. \mathcal{M}_Z is the subring of \mathcal{M}_H generated on $\{\delta_z \mid z \in Z\}$. We consider a map $\epsilon = \epsilon_{(H,Z)}$: $H \times H \to \mathbf{k}$ satisfying

$$\epsilon(h,z) = \chi_{h^{-1}Z \cap Z}(z) = \begin{cases} 1 & \text{if} \quad z \in h^{-1}Z \cap Z, \\ 0 & \text{if} \quad z \notin h^{-1}Z \cap Z \end{cases}$$

for every $h, z \in H$. By using ϵ , an injective homomorphism $i_Z \colon \chi_Z \mathcal{R}(H, \mathbf{k}) \chi_Z \to \mathcal{M}_Z$ can be defined by

$$i_Z(\chi_Z\alpha\chi_Z)\delta_z = \sum_{i=1}^n \delta_{h_iz}\epsilon(h_i, z)F_i(z)$$

for every $\alpha = \sum_{i=1}^{n} h_i F_i \in \mathcal{R}(H, \mathbf{k}), h_i \in H, F_i \in l^f(H, \mathbf{k})$ and $z \in Z$. This is shown in the next lemma.

Lemma 4.2. i_Z is well-defined, a homomorphism and injective.

Proof. For every $h \in H$ and $z \in Z$ if $hz \notin Z$ is satisfied, then $\delta_{hz}\epsilon(h,z) = 0$. Therefore we have $i_Z(\chi_Z\alpha\chi_Z) \in \mathcal{M}_Z$. Since i_Z preserves the sum, to prove i_Z is well-defined we will prove that for every $\alpha = \sum_{i=1}^n h_i F_i \in \mathcal{R}(H,\mathbf{k})$ if $\chi_Z\alpha\chi_Z = 0$, then $i_Z(\chi_Z\alpha\chi_Z) = 0$. $\chi_Z\alpha\chi_Z = \sum_{i=1}^n h_i \chi_{h_i^{-1}Z\cap Z}F_i = 0$ implies $\sum_{h=h_i} \chi_{h_i^{-1}Z\cap Z}F_i = 0$ for each $h \in H$, and hence $\sum_{h=h_i} \epsilon(h_i,z)F_i(z) = 0$ for every $z \in Z$. This shows $i_Z(\chi_Z\alpha\chi_Z)\delta_z = 0$.

In order to prove i_Z is a homomorphism, we only have to check that i_Z preserves the multiplication for generators about the sum since i_Z preserves the sum and the identity element. $\chi_Z \mathcal{R}(H, \mathbf{k}) \chi_Z$ is generated by $\chi_Z H l^f(H, \mathbf{k}) \chi_Z$ as an additive group, and hence for $g, h \in H$, $F_1, F_2 \in l^f(H, \mathbf{k})$, and $z \in Z$

$$\begin{split} &i_{Z}(\chi_{Z}gF_{1}\chi_{Z}) \circ i_{Z}(\chi_{Z}hF_{2}\chi_{Z})\delta_{z} \\ &= i_{Z}(\chi_{Z}gF_{1}\chi_{Z})(\delta_{hz}\epsilon(h,z)F_{2}(z)) \\ &= \delta_{ghz}\epsilon(g,hz)F_{1}(hz)\epsilon(h,z)F_{2}(z) \\ &= \delta_{ghz}\epsilon(g,hz)\epsilon(h,z)F_{1}(hz)F_{2}(z) \\ &= \delta_{ghz}\chi_{h^{-1}g^{-1}Z\cap h^{-1}Z}(z)\chi_{h^{-1}Z\cap Z}(z)F_{1}^{h}(z)F_{2}(z) \\ &= \delta_{ghz}\chi_{(gh)^{-1}Z\cap Z}(z)(\chi_{h^{-1}Z}F_{1}^{h}F_{2})(z) \\ &= i_{Z}(\chi_{Z}gh\chi_{h^{-1}Z}F_{1}^{h}F_{2}\chi_{Z})\delta_{z} \\ &= i_{Z}(\chi_{Z}gF_{1}\chi_{Z}\chi_{Z}hF_{2}\chi_{Z})\delta_{z}. \end{split}$$

This implies i_Z is a homomorphism.

In order to prove i_Z is injective we will check that for every $\alpha \in \mathcal{R}(H, \mathbf{k})$, $i_Z(\chi_Z\alpha\chi_Z)=0$ implies $\chi_Z\alpha\chi_Z=0$. We have an expression $\alpha=\sum_{i=1}^n h_iF_i$ for some $h_i \in H$ and $F_i \in l^f(H, \mathbf{k})$, where we can assume that h_1, \ldots, h_n are different from each other. $i_Z(\chi_Z\alpha\chi_Z)=0$ implies

$$i_Z(\chi_Z\alpha\chi_Z)\delta_z = \sum_{i=1}^n \delta_{h_iz}\epsilon(h_i,z)F_i(z) = \sum_{i=1}^n \delta_{h_iz}\chi_{h_i^{-1}Z\cap Z}(z)F_i(z) = 0$$

for every $z \in Z$. This shows that $\chi_{h_i^{-1}Z}F_i\chi_Z = 0$ for every i. Thus

$$\chi_{Z}\alpha\chi_{Z} = \sum_{i=1}^{n} h_{i}\chi_{h_{i}^{-1}Z}F_{i}\chi_{Z} = 0.$$

Let G and G' be finitely generated groups, $X \subseteq G$, $Y \subseteq G'$ and $f: X \to Y$ a bijective quasi-isometry. Since f is bijective, f induces a natural isomorphism $\tilde{f}: \mathcal{M}_X \to \mathcal{M}_Y$ as follows. For every $A \in \mathcal{M}_X$ and $x \in X$ we have an expression $A(\delta_x) = \sum_{i=1}^n \delta_{x_i(x)} a_i(x)$ by some $x_i(x) \in X$ and $a_i(x) \in \mathbf{k}$. Thus by using this expression of $A(\delta_X)$, \tilde{f} satisfies

$$\tilde{f}(A)(\delta_y) = \sum_{i=1}^n \delta_{f(x_i((f^{-1}(y))))} a_i(f^{-1}(y))$$

for every $y \in Y$. By Lemma 4.2 we have injective homomorphisms i_X : $\chi_X \mathcal{R}(G, \mathbf{k}) \chi_X \to \mathcal{M}_X$ and i_Y : $\chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y \to \mathcal{M}_Y$.

Lemma 4.3.

$$\tilde{f} \circ i_X(\chi_X \mathcal{R}(G, \mathbf{k})\chi_X) \subseteq i_Y(\chi_Y \mathcal{R}(G', \mathbf{k})\chi_Y).$$

Proof. For every $g \in G$ and $y \in Y$ we have

$$\tilde{f} \circ i_X(\chi_X g \chi_X)(\delta_y) = \begin{cases} \delta_{f(gf^{-1}(y))} \epsilon_{(G,X)}(g, f^{-1}(y)) & \text{if } gf^{-1}(y) \in X, \\ 0 & \text{otherwise} \end{cases}$$

since

$$i_X(\chi_X g \chi_X)(\delta_{f^{-1}(y)}) = \delta_{g f^{-1}(y)} \epsilon_{(G,X)}(g, f^{-1}(y)).$$

Since f is a quasi-isometry, $L = \{f(gf^{-1}(y))y^{-1} \mid y \in Y \text{ and } gf^{-1}(y) \in X\}$ is a finite set. Therefore we have an expression $L = \{h_1, \ldots, h_m\}$. We have $S_i = \{y \in Y \mid gf^{-1}(y) \in X \text{ and } f(gf^{-1}(y))y^{-1} = h_i\}$. S_1, \ldots, S_m are disjoint for each other. If $gf^{-1}(y) \in X$, then there exists $1 \leq j \leq m$ such that $f(gf^{-1}(y))y^{-1} = h_j$ and

$$\begin{split} \delta_{f(gf^{-1}(y))}\epsilon_{(G,X)}(g, \, f^{-1}(y)) &= \delta_{f(gf^{-1}(y))y^{-1}y}\epsilon_{(G,X)}(g, \, f^{-1}(y)) \\ &= \delta_{h_{j}y}\epsilon_{(G,X)}(g, \, f^{-1}(y)) \\ &= \delta_{h_{j}y} \Biggl(\sum_{i=1}^{m} \epsilon_{(G',Y)}(h_{i}, \, y)\chi_{S_{i}}(y) \Biggr) \epsilon_{(G,X)}(g, \, f^{-1}(y)) \\ &= \sum_{i=1}^{m} \delta_{h_{i}y}\epsilon_{(G',Y)}(h_{i}, \, y)\chi_{S_{i}}(y)\epsilon_{(G,X)}(g, \, f^{-1}(y)) \\ &= i_{Y} \Biggl(\chi_{Y} \sum_{i=1}^{m} h_{i}\chi_{S_{i}}\epsilon_{(G,X)}(g, \, f^{-1}(\cdot))\chi_{Y} \Biggr) (\delta_{y}), \end{split}$$

where $\epsilon_{(G,X)}(g, f^{-1}(\cdot))\chi_Y \in l^f(G', \mathbf{k})$. This shows that $\tilde{f} \circ i_X(\chi_X g \chi_X)$ is in the image of i_Y .

On the other hand, for every $F \in l^f(G, \mathbf{k})$ and $y \in Y$ we have

$$\tilde{f} \circ i_X(\chi_X F \chi_X)(\delta_y) = \delta_y F(f^{-1}(y))$$
$$= i_Y(\chi_Y (F \circ f^{-1}) \chi_Y)(\delta_y),$$

where $(F \circ f^{-1})\chi_Y \in l^f(G', \mathbf{k})$. This shows that $\tilde{f} \circ i_X(\chi_X F \chi_X)$ is in the image of i_Y . $\chi_X \mathcal{R}(G, \mathbf{k})\chi_X$ is generated by $\chi_X G \chi_X$ and $\chi_X l^f(G, \mathbf{k})\chi_X$ as a ring. Therefore we have $\tilde{f} \circ i_X(\chi_X \mathcal{R}(G, \mathbf{k})\chi_X) \subseteq i_Y(\chi_Y \mathcal{R}(G', \mathbf{k})\chi_Y)$.

By Lemma 4.3 we have a homomorphism $\Phi: \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X \to \chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y$ with $i_Y \circ \Phi = \tilde{f} \circ i_X$. Similarly, we have $\Psi: \chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y \to \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$ with $i_X \circ \Psi = \tilde{f}^{-1} \circ i_Y$. Therefore $\Phi \circ \Psi = \mathrm{id}$ and $\Psi \circ \Phi = \mathrm{id}$.

We summarize the discussion above as follows:

Lemma 4.4. Let G and G' be finitely generated groups, $X \subseteq G$, and $Y \subseteq G'$. If a bijective quasi-isometry $f: X \to Y$ exists, then $\chi_X \mathcal{R}(G)\chi_X$ and $\chi_Y \mathcal{R}(G')\chi_Y$ are isomorphic. The isomorphism $\Phi = \Phi_f: \chi_X \mathcal{R}(G, \mathbf{k})\chi_X \to \chi_Y \mathcal{R}(G', \mathbf{k})\chi_Y$ is given by

$$\Phi(\chi_X g \chi_X) = \chi_Y \sum_{i=1}^m h_i \chi_{S_i} \epsilon_{(G,X)}(g, f^{-1}(\cdot)) \chi_Y \quad (g \in G),$$

$$\Phi(\chi_X F \chi_X) = \chi_Y (F \circ f^{-1}) \chi_Y \quad (F \in l^f(G, \mathbf{k})),$$

where $\{f(gf^{-1}(y))y^{-1} \mid y \in Y \text{ and } gf^{-1}(y) \in X\} = \{h_1, \dots, h_m\} \ (m, h_i \text{ depend on } g)$ and $S_i = \{y \in Y \mid gf^{-1}(y) \in X \text{ and } f(gf^{-1}(y))y^{-1} = h_i\}.$

Given two quasi-isometric non-amenable finitely generated groups, we can find a bijective quasi-isometry between them [5, Proposition p. 104], and hence by combining this fact and Lemma 4.4, we have

Corollary 4.5. If non-amenable finitely generated groups G and G' are quasi-isometric, then $(\mathcal{R}(G), l^f(G, \mathbf{k}))$ and $(\mathcal{R}(G'), l^f(G', \mathbf{k}))$ are isomorphic as pairs of rings.

4.2. The proof of the main theorem. Let G and G' be finitely generated groups, and $f: G \to G'$ a quasi-isometry. There exist cores of $f: X \subseteq G$ and $Y \subseteq G'$. By Lemma 4.1 $I_X = \chi_X \mathcal{R}(G, \mathbf{k})$ is a progenerator. By Theorem 2.3 $\mathcal{R}(G, \mathbf{k})$ and $\operatorname{End}(I_X)$ are Morita equivalent. Since χ_X is an idempotent, $\operatorname{End}(I_X) \simeq \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$. Therefore $\mathcal{R}(G, \mathbf{k})$ and $\chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$ are Morita equivalent. Furthermore, by Theorem 2.3

$$\chi_{X}\mathcal{R}(G,\mathbf{k})\chi_{X}\chi_{X}\mathcal{R}(G,\mathbf{k})_{\mathcal{R}(G,\mathbf{k})},$$
$$\mathcal{R}(G,\mathbf{k})\mathcal{R}(G,\mathbf{k})\chi_{X}\chi_{X}\mathcal{R}(G,\mathbf{k})\chi_{X}$$

are bimodules, and

$$(\chi_X \mathcal{R}(G, \mathbf{k}) \otimes_{\mathcal{R}(G, \mathbf{k})} -) \colon \mathcal{R}(G, \mathbf{k}) \text{-Mod} \to \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X \text{-Mod},$$

$$(\mathcal{R}(G, \mathbf{k}) \chi_X \otimes_{\chi_X \mathcal{R}(G, \mathbf{k}) \chi_X} -) \colon \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X \text{-Mod} \to \mathcal{R}(G, \mathbf{k}) \text{-Mod}$$

are inverse equivalences. Similarly, $\mathcal{R}(G', \mathbf{k})$ and $\chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y$ are Morita equivalent. Furthermore, by Theorem 2.3

$$\chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y \chi_Y \mathcal{R}(G', \mathbf{k}) \mathcal{R}(G', \mathbf{k}),$$

 $\mathcal{R}(G', \mathbf{k}) \mathcal{R}(G', \mathbf{k}) \chi_Y \chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y$

are bimodules, and

$$(\chi_{Y}\mathcal{R}(G', \mathbf{k}) \otimes_{\mathcal{R}(G', \mathbf{k})} -): \mathcal{R}(G', \mathbf{k})\text{-Mod} \to \chi_{Y}\mathcal{R}(G', \mathbf{k})\chi_{Y}\text{-Mod},$$

$$(\mathcal{R}(G', \mathbf{k})\chi_{Y} \otimes_{\chi_{Y}\mathcal{R}(G', \mathbf{k})\chi_{Y}} -): \chi_{Y}\mathcal{R}(G', \mathbf{k})\chi_{Y}\text{-Mod} \to \mathcal{R}(G', \mathbf{k})\text{-Mod}$$

are inverse equivalences.

Since $f|_X$ is a bijective quasi-isometry, by Lemma 4.4 $\chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$ and $\chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y$ are isomorphic. $\Phi = \Phi_{f|_X} : \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X \to \chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y$ is the isomorphism, and hence

Res
$$\Phi: \chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y$$
-Mod $\to \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$ -Mod,
Res $(\Phi^{-1}): \chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$ -Mod $\to \chi_Y \mathcal{R}(G', \mathbf{k}) \chi_Y$ -Mod

are inverse equivalences. Therefore

$$\mathcal{F}_{1} = (\mathcal{R}(G', \mathbf{k})\chi_{Y} \otimes_{\chi_{Y}\mathcal{R}(G', \mathbf{k})\chi_{Y}} -) \circ \operatorname{Res}(\Phi^{-1}) \circ (\chi_{X}\mathcal{R}(G, \mathbf{k}) \otimes_{\mathcal{R}(G, \mathbf{k})} -),$$

$$\mathcal{F}_{2} = (\mathcal{R}(G, \mathbf{k})\chi_{X} \otimes_{\chi_{Y}\mathcal{R}(G, \mathbf{k})\chi_{Y}} -) \circ \operatorname{Res} \Phi \circ (\chi_{Y}\mathcal{R}(G', \mathbf{k}) \otimes_{\mathcal{R}(G', \mathbf{k})} -)$$

are inverse equivalences. As a result, we obtain the main theorem:

Theorem 1. If finitely generated groups G and G' are quasi-isometric, then $\mathcal{R}(G, \mathbf{k})$ and $\mathcal{R}(G', \mathbf{k})$ are Morita equivalent.

4.3. On some characteristic modules. Let H be a finitely generated group. There exist characteristic $\mathcal{R}(H, \mathbf{k})$ -modules of functions on H preserved by \mathcal{F}_1 of the previous subsection. In this subsection, we use the notation of Section 4.2.

We consider a left $\mathcal{R}(H, \mathbf{k})$ -module $l(H, \mathbf{k}) = \{F : H \to \mathbf{k}\}$ with an action

$$(hF_1)F = F_1^{h^{-1}}F^{h^{-1}} \quad (hF_1 \in \mathcal{R}(H, \mathbf{k}), F \in l(H, \mathbf{k})).$$

 $l^f(H, \mathbf{k})$ or $l_c(H, \mathbf{k}) = \{F \colon H \to \mathbf{k} \mid \#(\operatorname{supp}(F)) < \infty\}$ are submodules of $l(H, \mathbf{k})$. For $Z \subseteq H$ a left $\chi_Z \mathcal{R}(H, \mathbf{k}) \chi_Z$ -module $\chi_Z \mathcal{R}(H, \mathbf{k}) \otimes_{\mathcal{R}(H, \mathbf{k})} l(H, \mathbf{k})$ is isomorphic to the left $\chi_Z \mathcal{R}(H, \mathbf{k}) \chi_Z$ -module $l(Z, \mathbf{k})$ with an action

$$(\chi_Z h F_1 \chi_Z) F = \chi_Z F_1^{h^{-1}} \chi_{hZ} F^{h^{-1}} \quad (\chi_Z h F_1 \chi_Z \in \chi_Z \mathcal{R}(H, \mathbf{k}) \chi_Z, \ F \in l(Z, \mathbf{k})).$$

Lemma 4.6. Under the notation of Section 4.2

$$(\operatorname{Res} \Phi) \circ (\chi_Y \mathcal{R}(G', \mathbf{k}) \otimes_{\mathcal{R}(G', \mathbf{k})} -) (l(G', \mathbf{k})) \simeq (\chi_X \mathcal{R}(G, \mathbf{k}) \otimes_{\mathcal{R}(G, \mathbf{k})} -) (l(G, \mathbf{k})).$$

Proof. By Lemma 4.4 (Res Φ) \circ ($\chi_Y \mathcal{R}(G', \mathbf{k}) \otimes_{\mathcal{R}(G', \mathbf{k})} -)(l(G', \mathbf{k}))$ is isomorphic to the left $\chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$ -module $l(Y, \mathbf{k})$ with an action

$$(\chi_X g \chi_X) F = (\Phi_{f|_X}) (\chi_X g \chi_X) F$$

$$= \left(\chi_Y \sum_{i=1}^m h_i \chi_{S_i} \epsilon_{(G,X)} (g, f|_X^{-1}(\cdot)) \chi_Y \right) F$$

$$= \chi_Y \sum_{i=1}^m \chi_{h_i S_i} \epsilon_{(G,X)} (g, f|_X^{-1}(\cdot))^{h_i^{-1}} \chi_{h_i Y} F^{h_i^{-1}}$$

for every $g \in G$ and $F \in l(Y, \mathbf{k})$, and also

$$(\chi_X F_1 \chi_X) F = (\Phi_{f|_X}) (\chi_X F_1 \chi_X) F$$
$$= (\chi_Y (F_1 \circ (f|_X)^{-1}) \chi_Y) F$$
$$= \chi_Y (F_1 \circ (f|_X)^{-1}) \chi_Y F$$

for every $F_1 \in l^f(G, \mathbf{k})$ and $F \in l(Y, \mathbf{k})$. We define $\lambda : l(Y, \mathbf{k}) \to l(X, \mathbf{k})$ by $F \mapsto F \circ f|_X$. We will prove that λ is a left $\chi_X \mathcal{R}(G, \mathbf{k}) \chi_X$ -isomorphism. Since λ is a bijective additive group homomorphism, we only have to check that the action is preserved. For every $g \in G$, $F \in l(Y, \mathbf{k})$ and $x \in X$, under the notation of Lemma 4.4, if $x \in gX$, then there exists the only h_j such that $f(x) \in h_j S_j$, and also if $x \notin gX$, then there exists no h_j such that $f(x) \in h_j S_j$. Therefore

$$\lambda((\chi_X g \chi_X) F)(x) = (\Phi_{f|_X} (\chi_X g \chi_X) F)(f(x))$$

$$= \left(\chi_Y \sum_{i=1}^m \chi_{h_i S_i} \epsilon_{(G, X)}(g, f|_X^{-1}(\cdot))^{h_i^{-1}} \chi_{h_i Y} F^{h_i^{-1}} \right) (f(x))$$

$$= \begin{cases} F^{h_j^{-1}}(f(x)) & \text{if } x \in gX, \\ 0 & \text{if } x \notin gX \end{cases}$$

$$= \begin{cases} F \circ f(g^{-1}x) & \text{if } x \in gX, \\ 0 & \text{if } x \notin gX \end{cases}$$

$$= ((\chi_X g \chi_X) \lambda(F))(x).$$

For every $F_1 \in l^f(G, \mathbf{k})$, $F \in l(Y, \mathbf{k})$ and $x \in X$

$$\lambda((\chi_X F_1 \chi_X) F)(x) = (\Phi_{f|_X}(\chi_X F_1 \chi_X) F)(f(x))$$

$$= (\chi_Y (F_1 \circ (f|_X)^{-1}) \chi_Y F)(f(x))$$

$$= F_1(F \circ f)(x)$$

$$= ((\chi_X F_1 \chi_X) \lambda(F))(x).$$

Theorem 4.7. Under the notation of Section 4.2

- (1) $\mathcal{F}_1(l(G, \mathbf{k})) \simeq l(G', \mathbf{k}), \ \mathcal{F}_2(l(G', \mathbf{k})) \simeq l(G, \mathbf{k}),$
- (2) $\mathcal{F}_1(l^f(G, \mathbf{k})) \simeq l^f(G', \mathbf{k}), \ \mathcal{F}_2(l^f(G', \mathbf{k})) \simeq l^f(G, \mathbf{k}),$
- (3) $\mathcal{F}_1(l_c(G, \mathbf{k})) \simeq l_c(G', \mathbf{k}), \ \mathcal{F}_2(l_c(G', \mathbf{k})) \simeq l_c(G, \mathbf{k}).$

Proof. (1) We send the equation of Lemma 4.6 by $(\mathcal{R}(G, \mathbf{k})\chi_X \otimes_{\chi_X} \mathcal{R}(G, \mathbf{k})\chi_X -)$. Therefore we have $\mathcal{F}_2(l(G', \mathbf{k})) \simeq l(G, \mathbf{k})$. We also send this equation by \mathcal{F}_1 , and hence $\mathcal{F}_1(l(G, \mathbf{k})) \simeq l(G', \mathbf{k})$. Since λ of the proof of Lemma 4.6 is an isomorphism on l^f and l_c , (2) and (3) are also proved.

We have a left $\mathcal{R}(H,\mathbf{k})$ -module $T=T_H=T_{(H,\mathbf{k})}=\mathcal{R}(H,\mathbf{k})\otimes_{H\mathbf{k}}\mathbf{k}$. T_H is isomorphic to $l^f(H,\mathbf{k})$. Indeed, $\theta\colon T_H\to l^f(H,\mathbf{k})$ defined by $\theta\left(\sum_{i=1}^n g_nF_n\otimes k\right)=\sum_{i=1}^n F_n^{g_n^{-1}}k$ $\left(\sum_{i=1}^n g_nF_n\in\mathcal{R}(H,\mathbf{k}),\,k\in\mathbf{k}\right)$ gives an isomorphism. Let M be a left $\mathcal{R}(H,\mathbf{k})$ -module. Since $H\mathbf{k}$ is a subring of $\mathcal{R}(H,\mathbf{k}),\,M$ is regarded as a left $H\mathbf{k}$ -module. By the flatness of $\mathcal{R}(H,\mathbf{k})_{H\mathbf{k}}$ (see Lemma 5.1 of the next section), we have $\mathrm{Ext}^n_{\mathcal{R}(H,\mathbf{k})}(l^f(H,\mathbf{k}),\,M)=\mathrm{Ext}^n_{\mathcal{R}(H,\mathbf{k})}(T_H,\,M)=\mathrm{Ext}^n_{H\mathbf{k}}(\mathbf{k},\,M)=\mathrm{H}^n(H,\,M)$. Since $l_c(H,\mathbf{k})$ is isomorphic to $H\mathbf{k},\,H^n(H,l_c(H,\mathbf{k}))=H^n(H,H\mathbf{k})$. This cohomology group is the coarse cohomology (see [7]). By Theorem 4.7 $H^n(H,H\mathbf{k})$ is a quasi-isometry invariant.

In the case of $\mathbf{k} = \mathbf{C}$ (or \mathbf{R}) for 0 we have a module of <math>p-summable functions $l^p(G, \mathbf{C}) \subseteq l(G, \mathbf{C})$. We can also prove $\mathcal{F}_1(l^p(G, \mathbf{C})) \simeq l^p(G', \mathbf{C})$, $\mathcal{F}_2(l^p(G', \mathbf{C})) \simeq l^p(G, \mathbf{C})$. Therefore $\mathrm{Ext}^n_{\mathcal{R}(H,\mathbf{k})}(l^f(H,\mathbf{C}), l^p(H,\mathbf{C}))$ is a quasi-isometry invariant. This cohomology group is isomorphic to $\mathrm{H}^n(H, l^p(H,\mathbf{C}))$: the coarse l^p -cohomology (see [6]).

5. The global dimension and the weak global dimension of algebraic translation algebras

Let G be a finitely generated group. We see that $\mathcal{R}(G, \mathbf{k})_{G\mathbf{k}}$ is a flat $G\mathbf{k}$ -module. Let $\Lambda = \left\{S = \{S_1, \ldots, S_{n_S}\} \mid S_i \subseteq G, \bigsqcup_{i=1}^{n_S} S_i = G\right\}$ be the set of finite decompositions of G. For α and $\beta \in \Lambda$ we denote $\alpha < \beta$ if β is a refinement of α . Let $L_{\alpha} = \bigoplus_{i=1}^{n_{\alpha}} (G\mathbf{k})$ be a right free $G\mathbf{k}$ -module. If $\alpha < \beta$, then for each $1 \le k \le n_{\beta}$ there exists $1 \le i_k \le n_{\alpha}$ such that $\beta_k \subseteq \alpha_{i_k}$. Let $f_{\beta\alpha} \colon L_{\alpha} \to L_{\beta}$ be a $G\mathbf{k}$ -homomorphism such that $f_{\beta\alpha}(x_1,\ldots,x_{n_{\alpha}}) = \left(x_{i_1},\ldots,x_{i_{n_{\beta}}}\right)(x_k \in G\mathbf{k})$. These data define a direct system of right $G\mathbf{k}$ -modules, and hence we have a right $G\mathbf{k}$ -module $\lim_{\alpha \in \Lambda} L_{\alpha} : \lim_{\alpha \in \Lambda} L_{\alpha} : \lim_{\alpha$

Lemma 5.1. $\mathcal{R}(G, \mathbf{k})_{G\mathbf{k}}$ is a direct limit of flat $G\mathbf{k}$ -modules:

$$\lim_{\to} L_{\alpha} \simeq \mathcal{R}(G, \mathbf{k})_{G\mathbf{k}}.$$

Therefore $\mathcal{R}(G, \mathbf{k})_{G\mathbf{k}}$ is a flat $G\mathbf{k}$ -module, and the functor $\mathcal{R}(G, \mathbf{k}) \otimes_{G\mathbf{k}} -: G\mathbf{k}$ -Mod $\to \mathcal{R}(G, \mathbf{k})$ -Mod is exact.

Proof. We define $t_{\alpha}: L_{\alpha} \to \mathcal{R}(G, \mathbf{k})$ by $t_{\alpha}(x_1, \dots, x_{n_{\alpha}}) = \sum_{i=1}^{n_{\alpha}} \chi_{\alpha_i} x_i$ $(x_i \in G\mathbf{k})$. The direct sum of $\{t_{\alpha} \mid \alpha \in \Lambda\}$ defines an isomorphism.

We recall the definitions of some homological dimensions. Let R be a ring, and M a left R-module.

- (1) $\operatorname{fd}_R(M) = \sup\{n \mid \exists a \text{ right } R\text{-module } N \text{ with } \operatorname{Tor}_n^R(N, M) \neq 0\}$. This number is equal to the minimal number n such that there exists an n-length flat resolution of M.
- (2) $\operatorname{pd}_R(M) = \sup\{n \mid \exists a \text{ left } R\text{-module } N \text{ with } \operatorname{Ext}_R^n(M,N) \neq 0\}$. This number is also equal to the minimal number n such that there exists an n-length projective resolution of M.
- (3) $\operatorname{wd}(R) = \sup\{\operatorname{fd}_R(M) \mid M \text{ is a left } R\text{-module}\}.$
- (4) $l.gl.dim(R) = \sup\{pd_R(M) \mid M \text{ is a left } R\text{-module}\}$ ([21, Section 3, 4] is a good reference for Tor or Ext and homological dimensions).

wd and l.gl.dim are Morita invariants. We discuss l.gl.dim($\mathcal{R}(G, \mathbf{k})$) and wd($\mathcal{R}(G, \mathbf{k})$).

Lemma 5.2. Let G be a finitely generated group, and l a ring containing \mathbf{k} as a subring. We assume that G acts on l from the right trivially on \mathbf{k} . Let $\mathcal{R} = G * l$, and $T = \mathcal{R} \otimes_{G\mathbf{k}} \mathbf{k}$. For every left \mathcal{R} -module A and B, and an \mathcal{R} -projective resolution \mathcal{C} of A we have a spectral sequence

$$\operatorname{Ext}_{\mathcal{R}}^{p}(T, \operatorname{H}^{q}(\widetilde{\operatorname{Hom}}_{l}(\mathcal{C}, B))) \Rightarrow_{p} \operatorname{Ext}_{\mathcal{R}}^{n}(A, B),$$

where for a left \mathcal{R} -module C, $\widehat{\operatorname{Hom}}_l(C,B) = \operatorname{Hom}_l(C,B)$ is a left module with a left action of \mathcal{R} defined by

$$(gF)\varphi(x) = F^{g^{-1}}g\varphi(g^{-1}x)$$

for every $\varphi \in \widetilde{\text{Hom}}_l(C, B)$, $g \in G$, $F \in l$ and $x \in C$. The notation of a spectral sequence is that of [3, Chapter XV].

Proof. This spectral sequence is obtained by modifying a spectral sequence of Cartan and Leray [3, Proposition 8.2].

First, we prove $\operatorname{Ext}^p_{\mathcal{R}}(T, \operatorname{Hom}_l(\mathcal{R}, B)) = 0$ (if p > 0) by direct calculation. Since $\mathcal{R} = \bigoplus_{g \in G} l \cdot g$ and $\varphi \in \operatorname{Hom}_l(\mathcal{R}, B)$ is decided by $\varphi(g) \in B$, we have $\operatorname{Hom}_l(\mathcal{R}, B) = \prod_{g \in G} B_g$, where B_g is a copy of B. For $(b_g)_{g \in G} \in \prod_{g \in G} B_g$, the \mathcal{R} -action is given by $(xF)(b_g)_{g \in G} = (F^{x^{-1}}xb_{x^{-1}g})_{g \in G}$ $(x \in G, F \in l)$. We consider free right **k**-modules $I_p = \{(\sigma_0, \ldots, \sigma_p) \mid \sigma_i \in G\}$ **k** and $\varphi_{p-1}(\sigma_0, \ldots, \sigma_p) = \sum_{i=0}^p (-1)^i(\sigma_0, \ldots, \check{\sigma_i}, \ldots, \sigma_p)$. $\mathbf{I} = \{I_p, \varphi_p\}$ is the $G\mathbf{k}$ -standard resolution of \mathbf{k} . Then $\tilde{\mathbf{I}} = \mathcal{R} \otimes_{G\mathbf{k}} \mathbf{I}$ is an \mathcal{R} -projective resolution of T. Since $f \in \operatorname{Hom}(\tilde{I}_p, \widetilde{\operatorname{Hom}}_l(\mathcal{R}, B))$ is decided by $f(1, \sigma_1, \ldots, \sigma_p)(g) \in B_g$, we have

$$\operatorname{Hom}(\widetilde{I}_p, \widetilde{\operatorname{Hom}}_l(\mathcal{R}, B)) = \prod_{\sigma_1, \dots, \sigma_p, g \in G} B_{\sigma_1, \dots, \sigma_p, g},$$

where $B_{\sigma_1,\ldots,\sigma_p,g}$ is a copy of B. $\partial_p = \text{Hom}(\tilde{\varphi}_p,\widetilde{\text{Hom}}_l(\mathcal{R},B))$ satisfies

(i)
$$\partial_{p}((b_{\sigma_{1},...,\sigma_{p},g})_{\sigma_{1},...,\sigma_{p},g\in G}) = \left(\sigma_{1}b_{\sigma_{1}^{-1}\sigma_{2},...,\sigma_{1}^{-1}\sigma_{p+1},\sigma_{1}^{-1}g} + \sum_{i=1}^{p+1} (-1)^{i}b_{\sigma_{1},...,\check{\sigma_{i}},...,\sigma_{p+1},g}\right)_{\sigma_{1},...,\sigma_{p+1},g\in G}.$$

By the definition of Ext, $\operatorname{Ext}_{\mathcal{R}}^p(T, \widetilde{\operatorname{Hom}}_l(\mathcal{R}, B)) = \operatorname{Ker} \partial_p / \operatorname{Im} \partial_{p-1}$. For every $(b_{\sigma_1, \dots, \sigma_p, g})_{\sigma_1, \dots, \sigma_p, g \in G} \in \operatorname{Ker} \partial_p$ and in the case of $p \geq 1$, we have $c_{\sigma_1, \dots, \sigma_{p-1}, g} = (-1)^p b_{\sigma_1, \dots, \sigma_{p-1}, g, g}$. This satisfies

(ii)
$$\partial_{p-1}(c_{\sigma_1,\dots,\sigma_{p-1},g})_{\sigma_1,\dots,\sigma_{p-1},g\in G} = (b_{\sigma_1,\dots,\sigma_p,g})_{\sigma_1,\dots,\sigma_p,g\in G}.$$

In fact,

$$\partial_{p-1}(c_{\sigma_{1},\dots,\sigma_{p-1},g})_{\sigma_{1},\dots,\sigma_{p-1},g\in G}$$

$$= \left(\sigma_{1}c_{\sigma_{1}^{-1}\sigma_{2},\dots,\sigma_{1}^{-1}\sigma_{p},\sigma_{1}^{-1}g} + \sum_{i=1}^{p}(-1)^{i}c_{\sigma_{1},\dots,\check{\sigma_{i}},\dots,\sigma_{p},g}\right)_{\sigma_{1},\dots,\sigma_{p},g\in G}$$

$$= \left((-1)^{p}\sigma_{1}b_{\sigma_{1}^{-1}\sigma_{2},\dots,\sigma_{1}^{-1}\sigma_{p},\sigma_{1}^{-1}g,\sigma_{1}^{-1}g} + \sum_{i=1}^{p}(-1)^{p+i}b_{\sigma_{1},\dots,\check{\sigma_{i}},\dots,\sigma_{p},g,g}\right)_{\sigma_{1},\dots,\sigma_{p},g\in G}.$$

By substituting g for σ_{p+1} in (i), we have

(iv)
$$\sigma_1 b_{\sigma_1^{-1}\sigma_2,...,\sigma_1^{-1}\sigma_p,\sigma_1^{-1}g} + \sum_{i=1}^p (-1)^i b_{\sigma_1,...,\check{\sigma}_i,...,\sigma_p,g,g} + (-1)^{p+1} b_{\sigma_1,...,\sigma_p,g} = 0.$$

(ii) is obtained by (iii) and (iv). Therefore $\operatorname{Ext}^p_{\mathcal{R}}(T, \widetilde{\operatorname{Hom}}_l(\mathcal{R}, B)) = 0$ (if p > 0) is proved. This shows $\operatorname{Ext}^p_{\mathcal{R}}(T, \widetilde{\operatorname{Hom}}_l(P, B)) = 0$ (if p > 0) for every projective left \mathcal{R} -module P.

Second, for left \mathcal{R} -modules X and Y, $\rho \colon \operatorname{Hom}_{\mathcal{R}}(T, \widetilde{\operatorname{Hom}}_l(X, Y)) \to \operatorname{Hom}_{\mathcal{R}}(X, Y)$ defined by $f \mapsto f(1)$ is an isomorphism.

Let **X** be a projective resolution of T and $\mathbf{Y} = \widetilde{\operatorname{Hom}}_l(\mathcal{C}, B)$. $\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y})$ is a double complex, and hence we have two spectral sequences with the same limit:

$$I_2^{p,q} = H^p(H^q(\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y}))) \Rightarrow_p \operatorname{Tot}^n(\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y})),$$

$$II_2^{p,q} = H^q(H^p(\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y}))) \Rightarrow_q \operatorname{Tot}^n(\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y})).$$

By the first assertion above $H^p(\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y})) = \operatorname{Hom}_{\mathcal{R}}(T, \mathbf{Y})$ (if p = 0) and $H^p(\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y})) = 0$ (otherwise). We have $\Pi_2^{p,q} = H^q(\operatorname{Hom}_{\mathcal{R}}(T, \mathbf{Y})) = H^q(\mathcal{C}, B) = \operatorname{Ext}_{\mathcal{R}}^q(A, B)$ (if p = 0) and $\Pi_2^{p,q} = 0$ (otherwise) by the second assertion above. Therefore $\operatorname{Tot}^n(\operatorname{Hom}_{\mathcal{R}}(\mathbf{X}, \mathbf{Y})) = \operatorname{Ext}_{\mathcal{R}}^n(A, B)$. Since each term X_p of \mathbf{X} is projective,

 $\operatorname{Hom}_{\mathcal{R}}(X_p, -)$ is exact.

$$H^{q}(\operatorname{Hom}_{\mathcal{R}}(X_{p}, \mathbf{Y})) = H^{q}(\operatorname{Hom}_{\mathcal{R}}(X_{p}, \widetilde{\operatorname{Hom}}_{l}(\mathcal{C}, B)))$$
$$= \operatorname{Hom}_{\mathcal{R}}(X_{p}, H^{q}(\widetilde{\operatorname{Hom}}_{l}(\mathcal{C}, B)))$$

shows that $I_2^{p,q} = \operatorname{Ext}_{\mathcal{R}}^p(T, H^q(\widetilde{\operatorname{Hom}}_l(\mathcal{C}, B))).$

Corollary 5.3.

$$\operatorname{pd}_{\mathcal{R}(G,\mathbf{k})}(T) \leq \operatorname{l.gl.dim}(\mathcal{R}(G,\mathbf{k})) \leq \operatorname{pd}_{\mathcal{R}(G,\mathbf{k})}(T) + \operatorname{l.gl.dim}(l^f(G,\mathbf{k})).$$

We can also prove the Tor version of Lemma 5.2, and hence

$$fd_{\mathcal{R}(G,\mathbf{k})}(T) \leq wd(\mathcal{R}(G,\mathbf{k})) \leq fd_{\mathcal{R}(G,\mathbf{k})}(T) + wd(l^f(G,\mathbf{k})).$$

We estimate $\operatorname{pd}_{\mathcal{R}(G,\mathbf{k})}(T)$ and $\operatorname{fd}_{\mathcal{R}(G,\mathbf{k})}(T)$ by the homological dimensions of G.

Lemma 5.4. (1) $\operatorname{pd}_{\mathcal{R}(G,\mathbf{k})}(T) \leq \operatorname{cd}_{\mathbf{k}}(G)$, where $\operatorname{cd}_{\mathbf{k}}(G) = \operatorname{pd}_{G\mathbf{k}}(\mathbf{k})$.

- (2) $\operatorname{fd}_{\mathcal{R}(G,\mathbf{k})}(T) \leq \operatorname{hd}_{\mathbf{k}}(G)$, where $\operatorname{hd}_{\mathbf{k}}(G) = \operatorname{fd}_{G\mathbf{k}}(\mathbf{k})$.
- (3) If $\operatorname{cd}_{\mathbf{k}}(G) < \infty$, then $\operatorname{cd}_{\mathbf{k}}(G) = \operatorname{pd}_{\mathcal{R}(G,\mathbf{k})}(T)$.
- (4) If $\operatorname{hd}_{\mathbf{k}}(G) < \infty$, then $\operatorname{hd}_{\mathbf{k}}(G) = \operatorname{fd}_{\mathcal{R}(G,\mathbf{k})}(T)$.

Proof. Since the functor $\mathcal{R}(G,\mathbf{k})\otimes_{G\mathbf{k}}-$ is exact by Lemma 5.1, a projective resolution (flat resolution) of \mathbf{k} is mapped to a projective resolution (flat resolution) of T by $\mathcal{R}(G,\mathbf{k})\otimes_{G\mathbf{k}}-$. Therefore (1) and (2) are obtained.

(3) and (4) are proved by the same argument as [18, Section 4].
$$\Box$$

We estimate $l.gl.dim(l^f(G, \mathbf{k}))$ and $wd(l^f(G, \mathbf{k}))$.

Lemma 5.5. Let Δ be a countably infinite set.

- (1) If **k** is a field, then $\operatorname{wd}(l^f(\Delta, \mathbf{k})) = 0$.
- (2) If **k** is **Z**, then $wd(l^f(\Delta, \mathbf{k})) = 1$. If the continuum hypothesis is true, then
- (3) if **k** is a field, then $1.\text{gl.dim}(l^f(\Delta, \mathbf{k})) = 2$,
- (4) if **k** is **Z**, then $1.\text{gl.dim}(l^f(\Delta, \mathbf{k})) \leq 3$.
- Proof. (1) We see that for every $F \in l^f(\Delta, \mathbf{k})$, $F \in F \cdot l^f(\Delta, \mathbf{k}) \cdot F$ is satisfied. Therefore $l^f(\Delta, \mathbf{k})$ is von-Neumann regular [11, xviii, the third paragraph]. This implies that $wd(l^f(\Delta, \mathbf{k})) = 0$ [11, (5.62a) p. 185].
- (2) $l^f(\Delta, \mathbf{k})$ is not von-Neumann regular since $2 \notin 2 \cdot l^f(\Delta, \mathbf{k}) \cdot 2$. Every ideal of $l^f(\Delta, \mathbf{k})$ is generated by projective modules with the form $l^f(\Delta, \mathbf{k}) \cdot \chi_X n$, and hence every ideal of $l^f(\Delta, \mathbf{k})$ is flat. This implies $\operatorname{wd}(l^f(\Delta, \mathbf{k})) = 1$ [11, (5.69) p. 187].

(3) By the theorem of Osofsky [15, Corollary 2.47] for every ring R if every left ideal of R is generated by \aleph_h elements, then

$$1.\text{gl.dim}(R) \le \text{wd}(R) + h + 1.$$

Every ideal of $l^f(\Delta, \mathbf{k})$ is generated by characteristic functions on Δ . Therefore if the continuum hypothesis is true, then $l.gl.dim(l^f(\Delta, \mathbf{k})) \leq 2$. Since $l^f(\Delta, \mathbf{k})$ has a non-projective ideal $(l^f(\Delta, \mathbf{k}))$ is not semi-simple and not hereditary), $l.gl.dim(l^f(\Delta, \mathbf{k})) = 2$ [11, (5.14) p. 169].

(4) It is proved by the theorem of Osofsky and (2). \Box

We remark that $\operatorname{wd}(l^{\infty}(\Delta, \mathbf{C})) \ge 1$. Indeed, for $s_1, \ldots, s_n, \ldots \in \Delta$ there exists a function $f \in l^{\infty}(G, \mathbf{C})$ such that $f(s_n) = \exp(-n)$, and $f \notin f \cdot l^{\infty}(\Delta, \mathbf{C}) \cdot f$.

Theorem 5.6. If **k** is a field, then

- (1) if $\operatorname{hd}_{\mathbf{k}}(G) < \infty$, then $\operatorname{wd}(\mathcal{R}(G, \mathbf{k})) = \operatorname{hd}_{\mathbf{k}}(G)$,
- and if the continuum hypothesis is true, then

 $(2) \ \text{if} \ \operatorname{cd}_{\boldsymbol{k}}(G) < \infty, \ \text{then} \ \operatorname{cd}_{\boldsymbol{k}}(G) \leq 1. \operatorname{gl.dim}(\mathcal{R}(G,\,\boldsymbol{k})) \leq \operatorname{cd}_{\boldsymbol{k}}(G) + 2.$

Proof. The assertions (1) and (2) follow from Corollary 5.3, Lemmas 5.4 and 5.5.

6. Geometric description of $\mathcal{R}(G, \mathbf{k})$

In this section, we need some theorems of groupoid theory and category theory. Everything needed in this section is in Sections 2.5, 2.6 and 2.7. Let G be a finitely generated group with the identity element e, and $\mathcal{G} = G \ltimes \beta G$ an étale groupoid. We consider $\operatorname{Mod}_{\mathbf{k}}(\mathcal{G})$. We define the characteristic object $U \in \operatorname{Mod}_{\mathbf{k}}(\mathcal{G})$.

DEFINITION 6.1. We define $U = \beta G \times G\mathbf{k}$, where $G\mathbf{k}$ has the discrete topology. An element $(x, \alpha) \in \beta G \times G\mathbf{k}$ is denoted by $_{x}(\alpha)$. We also define

$$p_0: U \to \beta G$$
 by $p_0(x(\alpha)) = x$,
 $p_1: (G \ltimes \beta G) \times_{p_0} U \to U$ by $p_1((g, x), x(\alpha)) = g_x(g\alpha)$,
 $M: U \oplus U \to U$ by $M(x(\alpha), x(\beta)) = x(\alpha + \beta)$ $(x \in \beta G)$,
 $U: \Theta \to U$ by $U(x) = x(0)$ $(x \in \beta G)$,
 $v: U \to U$ by $v(x(\alpha)) = x(-\alpha)$ $(x \in \beta G)$,
 $M: \mathbf{k} \oplus U \to U$ by $M(k, x(\alpha)) = x(k\alpha)$ $(x \in \beta G)$.

 $U = ((U, p_0, p_1), M, \mathcal{U}, v, \mathcal{M})$ is an object of $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$. $p_0, p_1, M, \mathcal{U}, v$ and \mathcal{M} are open maps. $\{x(e) \mid x \in \beta G\}$ can be identified with βG by p_0 .

A morphism from the characteristic object U is determined on $\beta G \subseteq U$:

Lemma 6.2. For every object $S = ((S, q_0, q_1), M_S, U_S, v_S, \mathcal{M}_S)$ of $\underline{\mathsf{Mod}}_{\mathbf{k}}(\mathcal{G})$ a continuous map $w \colon \beta G \to S$ satisfying $q_0 \circ w = \mathrm{id}_{\beta G}$ defines the unique morphism $f \colon U \to S$ such that $f|_{\beta G} = w$.

Proof. We define f by $f(x(\sum_{i=1}^n g_i k_i)) = \sum_{i=1}^n k_i \cdot (g_i, g_i^{-1}x) \cdot w(g_i^{-1}x(e))$ for every $x \in \beta G$, $g_i \in G$ and $k_i \in \mathbf{k}$. Therefore if f is a morphism, then f is uniquely defined. Since $q_0 \circ w = \mathrm{id}_{\beta G}$, f satisfies $q_0 \circ f = p_0$. In order to prove f is a morphism we may prove that f is continuous, but this is a routine.

Let \mathcal{A} be an A.B.3 category. $U \in \mathrm{Ob}(\mathcal{A})$ is called a *projective object* if for every epi $b \in \mathrm{Hom}(B,C)$ and morphism $a \in \mathrm{Hom}(U,C)$ there exists $c \in \mathrm{Hom}(U,B)$ such that $a = b \circ c$. A projective object $U \in \mathrm{Ob}(\mathcal{A})$ is called a *projective generator* if every non-zero $A \in \mathrm{Ob}(\mathcal{A})$ satisfies $\mathrm{Hom}(U,A) \neq 0$. $U \in \mathrm{Ob}(\mathcal{A})$ is said to be *small* if every morphism from U into a coproduct $s \colon U \to \bigoplus_{\lambda \in \Lambda} A_\lambda$ factors as $U \to \bigoplus_{\lambda \in J} A_\lambda \to \bigoplus_{\lambda \in \Lambda} A_\lambda$ where J is a finite subset of Λ and morphism between the coproducts is the one which preserves injections.

Theorem 6.3 ([12, Theorem 3.1, p. 631]). Let A be an A.B.3 category with a small projective generator U and $\operatorname{End}_{A}(U)$ denote the endomorphism ring of U. Then the functor $T: A \to \operatorname{Mod-End}_{A}(U)$ defined by $T(A) = \operatorname{Hom}(U, A)$ is an additive equivalence.

To see that Theorem 6.3 is applied to $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$ we prove that the characteristic object U is a small projective generator of $\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G})$.

Lemma 6.4. (1) $U \in Ob(\underline{Mod}_{k}(\mathcal{G}))$ is a projective object.

- (2) $U \in \mathsf{Ob}(\mathsf{Mod}_{\mathbf{k}}(\mathcal{G}))$ is a projective generator.
- (3) $U \in Ob(Mod_k(\mathcal{G}))$ is small.

Proof. (1) For every $B=(B,p_{0,B},p_{1,B}), C=(C,p_{0,C},p_{1,C})\in \mathrm{Ob}(\underline{\mathrm{Mod}}_{\mathbf{k}}(\mathcal{G}))$, a morphism $a\colon U\to C$ and an epi $b\colon B\to C$ there exists an open set $V_x\subseteq C$ such that $a(x(e))\in V_x$ and $p_{0,C}|_{V_x}$ is a homeomorphism for each $x\in\beta G$. Since $b\colon B\to C$ is an epi, b is surjective. Therefore there exists $y_x\in B$ such that $b(y_x)=a(x(e))$. b is continuous, and hence $y_x\in b^{-1}(V_x)$ is open. We have an open set $L_x'\subseteq b^{-1}(V_x)$ such that $y_x\in L_x'$ and $p_{0,B}|_{L_x'}$ is a homeomorphism. We also have a clopen set $L_x''\subseteq p_{0,B}(L_x')\cap p_{0,C}(V_x)$ since the topology of βG is generated by clopen sets (Lemma 2.5 (2)). b satisfies $p_{0,C}\circ b=p_{0,B}$, and hence $L_x=(p_{0,B}|_{L_x'})^{-1}(L_x'')$ satisfies $L_x\subseteq b^{-1}(V_x)$, $y_x\in L_x$ and $b|_{L_x}$ is a homeomorphism. Clopen sets $W_x=a^{-1}(b(L_x))$ satisfy $\bigcup_{x\in\beta G}W_x=\beta G$. βG is compact, and hence $\bigcup_{j=1}^m W_{x_j}=\beta G$. We have a refinement $\{A_i\}_{i=1}^n$ of $\{W_{x_j}\}_{j=1}^m$ such that $\beta G=\bigcup_{i=1}^n A_i$. We can chose k_i for each i such that $A_i\subseteq W_{x_k}$, and hence

we define a continuous map w by $w|_{A_i} = (b|_{L_{x_{k_i}}})^{-1} \circ a|_{A_i}$. By Lemma 6.2 there exists a morphism c such that $c|_{\beta G} = w$. This c satisfies $b \circ c = a$.

- (2) By (1) U is a projective object. We will prove that every non-zero object $A = (A, p_{0,A}, p_{1,A}) \in \text{Ob}(\underline{\text{Mod}}_{\mathbf{k}}(\mathcal{G}))$ satisfies $\text{Hom}(U, A) \neq 0$. Since A is non-zero, there exists $a \neq 0 \in A$. For $x = p_{0,A}(a) \in \beta G$ since $p_{0,A}$ is a local homeomorphism and by Lemma 2.5 (2) the topology of βG is generated by clopen sets, there exists clopen $W_x \subseteq A$ such that $a \in W_x$ and $p_{0,A}|_{W_x}$ is a homeomorphism. We define a continuous map w by $w|_{p_{0,A}(W_x)} = (p_{0,A}|_{W_x})^{-1}$ and $w|_{\beta G p_{0,A}(W_x)} = 0$. By Lemma 6.2 there exists a morphism f such that $f|_{\beta G} = w$. $f(x) = a \neq 0$ shows that $\text{Hom}(U, A) \neq 0$.
- (3) For every morphism from U into a coproduct $s: U \to \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ there exists a finite set $\Lambda_x \subseteq \Lambda$ such that $s(x) \in \bigoplus_{\lambda \in \Lambda_x} A_{\lambda} \subseteq \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ for each $x \in \beta G$. $\bigoplus_{\lambda \in \Lambda_x} A_{\lambda}$ is open in $\bigoplus_{\lambda \in \Lambda} A_{\lambda}$. s is continuous and the topology of βG is generated by clopen sets (Lemma 2.5 (2)), and hence there exists clopen $W_x \subseteq \beta G$ such that $s(W_x) \subseteq \bigoplus_{\lambda \in \Lambda_x} A_{\lambda}$ and $x \in W_x$. βG is compact, and hence there exist x_1, \ldots, x_m such that $\bigcup_{j=1}^m W_{x_j} = \beta G$. Therefore $s(\beta G) \subseteq \bigoplus_{\lambda \in \bigcup_{j=1}^m \Lambda_{x_j}} A_{\lambda}$. This shows that $s: U \to \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ factors as $U \to \bigoplus_{\lambda \in J} A_{\lambda} \to \bigoplus_{\lambda \in \Lambda} A_{\lambda}$, where $J = \bigcup_{j=1}^m \Lambda_{x_j}$ and morphism between the coproducts is the one which preserves injections.

Since U is a small projective generator, by Theorem 6.3 the functor $T \colon \operatorname{\underline{Mod}}_{\mathbf{k}}(\mathcal{G}) \to \operatorname{Mod-End}_{\operatorname{\underline{Mod}}_{\mathbf{k}}(\mathcal{G})}(U)$ defined by $T(A) = \operatorname{Hom}(U, A)$ is an additive equivalence. We describe the ring $\operatorname{End}_{\operatorname{Mod}_{\mathbf{k}}(\mathcal{G})}(U)$.

Lemma 6.5. (1) A morphism $f: U \to U$ is determined by a finite decomposition $G = \bigsqcup_{i=1}^n L_i$ and $\alpha_i \in G\mathbf{k}$ such that $f(x(e)) = x(\alpha_i)$ for every $x \in \hat{L}_i$. (2) $\operatorname{End}_{\operatorname{Mod}_k(\mathcal{G})}(U)$ is isomorphic to the ring $\mathcal{R}(G, \mathbf{k})^{op}$.

- Proof. (1) By Lemma 6.2 a continuous map $w = f|_{\beta G} : \beta G \to U$ uniquely defines f. Since $U = \beta G \times G\mathbf{k}$, we have a continuous projection $\pi_2 : \beta G \times G\mathbf{k} \to G\mathbf{k}$. The topology of $G\mathbf{k}$ is discrete, and hence for $\alpha \in G\mathbf{k}$, $\{\alpha\}$ is clopen. For clopen $W_{\alpha} = (\pi_2 \circ w)^{-1}(\{\alpha\}), \ \beta G = \bigsqcup_{\alpha \in G\mathbf{k}} W_{\alpha}. \ \beta G$ is compact, and hence $\beta G = \bigsqcup_{i=1}^m W_{\alpha_i}$. By Lemma 2.5 (3), $W_{\alpha_i} = \hat{L}_i$ by some $L_i \subseteq G$, and $G = \bigsqcup_{i=1}^m L_i$. Since $\pi_2 \circ w|_{\hat{L}_i} = \alpha_i$, $w(x) = {}_x(\alpha_i)$ for every $x \in \hat{L}_i$.
 - (2) We define a map $\theta : \operatorname{End}_{\operatorname{Mod}_{\mathbf{k}}(G \ltimes \beta G)}(A) \to \mathcal{R}(G, \mathbf{k})$ by

$$\theta(f) = \sum_{i=1}^{n} \chi_{L_i} \alpha_i,$$

where L_i and α_i are determined by (1). Since θ is bijective by (1), we will prove that it is a ring homomorphism. For every f and $g \in \operatorname{End}_{\operatorname{Mod}_k(G \ltimes \beta G)}(A)$ such that $\theta(f) = \sum_{i=1}^n \chi_{L_i} \alpha_i$ and $\theta(g) = \sum_{j=1}^m \chi_{M_j} \beta_j$ we have an expression $\alpha_i = \sum_{l=1}^{n_i} h_{i,l} k_{i,l}$ by $h_{i,l} \in \operatorname{Mod}_{k}(G \ltimes \beta G)$

G and $k_{i,l} \in \mathbf{k}$. We have the following equations:

$$\theta(f)\theta(g) = \left(\sum_{i=1}^{n} \chi_{L_i} \alpha_i\right) \left(\sum_{j=1}^{m} \chi_{M_j} \beta_j\right)$$

$$= \left(\sum_{i=1}^{n} \chi_{L_i} \sum_{l=1}^{n_i} h_{i,l} k_{i,l}\right) \left(\sum_{j=1}^{m} \chi_{M_j} \beta_j\right)$$

$$= \left(\sum_{i=1}^{n} \sum_{l=1}^{n_i} \sum_{j=1}^{m} \chi_{L_i \cap h_{i,l} M_j} h_{i,l} k_{i,l} \beta_j\right).$$

On the other hand, we have $G = \bigsqcup_{i,j} (L_i \cap h_{i,l} M_j)$, and for every $x \in \widehat{(L_i \cap h_{i,l} M_j)}$

$$g \circ f(x(e)) = g(x(\alpha_i)) = g\left(x\left(\sum_{l=1}^{n_i} h_{i,l} k_{i,l}\right)\right)$$

$$= \sum_{l=1}^{n_i} k_{i,l} g((h_{i,l}, h_{i,l}^{-1} x) \cdot h_{i,l}^{-1} x(e))$$

$$= \sum_{l=1}^{n_i} k_{i,l} (h_{i,l}, h_{i,l}^{-1} x) \cdot h_{i,l}^{-1} x(\beta_j)$$

$$= x\left(\sum_{l=1}^{n_i} h_{i,l} k_{i,l} \beta_j\right).$$

Therefore $\theta(f)\theta(g) = \theta(g \circ f)$.

By Theorem 6.3, Lemmas 6.4 and 6.5, we have

Theorem 6.6. The functor $T' : \underline{\mathsf{Mod}}_{\mathbf{k}}(\mathcal{G}) \to \mathcal{R}(G, \mathbf{k})$ -Mod defined by $T'(A) = (\mathsf{Res}\ \theta^{-1})(\mathsf{Hom}(U, A))$ is an (additive) equivalence, where θ is an isomorphism defined in Lemma 6.5 (2).

7. Appendix

- **7.1.** An alternative proof of Theorem 1. Let G and G' be quasi-isometric finitely generated groups, we have Diagram 1.
- Q.I. means quasi-isometric and W.E. means weak equivalent: let \mathcal{G} and \mathcal{H} be étale groupoids, \mathcal{G} and \mathcal{H} are said to be weakly equivalent (Morita equivalent) if there exists an étale groupoid \mathcal{K} and there exist essential morphisms $\Phi \colon \mathcal{K} \to \mathcal{G}, \ \Psi \colon \mathcal{K} \to \mathcal{H}$ (about precise definitions see [4, 1.4, 1.5] or [14, Section 5]). The following theorems for a quasi-isometry are known.

Diagram 1.

Theorem 7.1 ([19, Corollary 3.6, p. 820]). Let G and G' be finitely generated groups. If G and G' are quasi-isometric, then $G \ltimes \beta G$ and $G' \ltimes \beta G'$ are weakly equivalent.

Theorem 7.1 is proved by the notion of the coarse space. The converse of the theorem is also true:

Theorem 7.2. Let G and G' be finitely generated groups. If $G \ltimes \beta G$ and $G' \ltimes \beta G'$ are weakly equivalent, then G and G' are quasi-isometric.

- Proof. If $G \ltimes \beta G$ and $G' \ltimes \beta G'$ are weakly equivalent, then G and G' have a topological coupling Ω . Gromov's dynamical criterion [8, $0.2.C_2'$] shows that G and G' are quasi-isometric.
- (i) in Diagram 1 is obtained by Theorems 7.1 and 7.2. For an étale groupoid \mathcal{G} the category of left étale \mathcal{G} -spaces $\underline{\operatorname{Sh}}(\mathcal{G})$ is in fact a (Grothendieck) topos (see [13], and about toposes see [10]) and its equivalence class is a weak equivalence invariant of an étale groupoid, and also $\operatorname{Mod}_{\mathbf{k}}(\mathcal{G})$ is a weak equivalence invariant of an étale groupoid:
- **Theorem 7.3** ([4, Section 2.3]). Let \mathcal{G} and \mathcal{G}' be étale groupoids. If \mathcal{G} and \mathcal{G}' are weakly equivalent, then $\underline{Sh}(\mathcal{G})$ and $\underline{Sh}(\mathcal{G}')$ are equivalent as (Grothendieck) toposes, and hence $\underline{Mod}_k(\mathcal{G})$ and $\underline{Mod}_k(\mathcal{G}')$ are additively equivalent.

We have (iii) in Diagram 1. For Sh(G) the converse is also true:

- **Theorem 7.4** ([13, 7.7 Theorem]). Let \mathcal{G} and \mathcal{G}' be étale groupoids. \mathcal{G} and \mathcal{G}' are weakly equivalent if and only if $\underline{Sh}(\mathcal{G})$ and $\underline{Sh}(\mathcal{G}')$ are equivalent as (Grothendieck) toposes.
- (ii) in Diagram 1 is obtained by Theorem 7.4. We lose some information about quasi-isometry classes of finitely generated groups by (iii) in Diagram 1. Thus, we have the following problem:

PROBLEM 7.5. Let G and G' be finitely generated groups. Is it true that if $\mathcal{R}(G, \mathbf{k})$ and $\mathcal{R}(G', \mathbf{k})$ are Morita equivalent, then G and G' are quasi-isometric? If not, give a counter-example.

ACKNOWLEDGEMENT. I would like to express my appreciation to Professor Ken'ichi Ohshika whose comments and suggestions were of inestimable value for my study. I would also like to thank Shin-ichi Oguni and Michihisa Wakui whose comments made enormous contribution to my work.

References

- [1] F.W. Anderson and K.R. Fuller: Rings and Categories of Modules, Springer, New York, 1974.
- [2] G.E. Bredon: Sheaf Theory, second edition, Graduate Texts in Mathematics 170, Springer, New York, 1997.
- [3] H. Cartan and S. Eilenberg: Homological Algebra, Princeton Univ. Press, Princeton, NJ, 1956.
- [4] M. Crainic and I. Moerdijk: A homology theory for étale groupoids, J. Reine Angew. Math. 521 (2000), 25–46.
- [5] P. de la Harpe: Topics in Geometric Group Theory, Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, IL, 2000.
- [6] G. Elek: Coarse cohomology and l_p-cohomology, K-Theory 13 (1998), 1–22.
- [7] R. Geoghegan: Topological Methods in Group Theory, Graduate Texts in Mathematics 243, Springer, New York, 2008.
- [8] M. Gromov: Asymptotic invariants of infinite groups; in Geometric Group Theory, 2, (Sussex, 1991), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, Cambridge, 1993, 1–295.
- [9] N. Hindman and D. Strauss: Algebra in the Stone-Čech Compactification, de Gruyter Expositions in Mathematics 27, de Gruyter, Berlin, 1998.
- [10] P.T. Johnstone: Topos Theory, Academic Press, London, 1977.
- [11] T.Y. Lam: Lectures on Modules and Rings, Springer, New York, 1999.
- [12] B. Mitchell: The full imbedding theorem, Amer. J. Math. 86 (1964), 619–637.
- [13] I. Moerdijk: The classifying topos of a continuous groupoid, I, Trans. Amer. Math. Soc. 310 (1988), 629–668.
- [14] I. Moerdijk and J. Mrčun: Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics 91, Cambridge Univ. Press, Cambridge, 2003.
- [15] B.L. Osofsky: Homological Dimensions of Modules, Amer. Math. Soc., Providence, RI, 1973.
- [16] D.S. Passman: Infinite Crossed Products, Pure and Applied Mathematics 135, Academic Press, Boston, MA, 1989.
- [17] J. Roe: Lectures on Coarse Geometry, University Lecture Series 31, Amer. Math. Soc., Providence, RI, 2003.
- [18] R. Sauer: Homological invariants and quasi-isometry, Geom. Funct. Anal. 16 (2006), 476–515.
- [19] G. Skandalis, J.L. Tu and G. Yu: The coarse Baum-Connes conjecture and groupoids, Topology 41 (2002), 807–834.
- [20] Y. Shalom: Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math. 192 (2004), 119–185.
- [21] C.A. Weibel: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge Univ. Press, Cambridge, 1994.

Department of Mathematics Graduate School of Osaka University Toyonaka, Osaka 560-0043 Japan

e-mail: h-morishima@cr.math.sci.osaka-u.ac.jp