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Abstract
In this paper, by modifying Cheng–Yau’s technique to complete spacelike hyper-

surfaces in the de Sitter (nC1)-spaceSnC1
1 (1), we prove a rigidity under the hypoth-

esis of the mean curvature and the normalized scalar curvature being linearly related.
As a corollary, we have the Theorem 1.1 of [3].

1. Introduction

Let LnC2 be the (n C 2)-dimensional Lorentz–Minkowski space, that is, the real
vector spaceRnC2 endowed with the Lorentzian metric

(1.1) hv, wi D �v0w0 C

nC1
X

iD1

viwi

for v,w 2 RnC2. Then, the (nC 1)-dimensional de Sitter spaceSnC1
1 (1) can be defined

as the following hyperquadric ofLnC2

(1.2) SnC1
1 (1)D {x 2 LnC2

W hx, xi D 1}.

A smooth immersion' W Mn
! SnC1

1 (1) � LnC2 of an n dimensional connected
manifold Mn is said to be aspacelikehypersurface if the induced metric via' is a
Riemannian metric onMn. As is uaual, the spacelike hypersurface is said to be com-
plete if the Riemannian induced metric is a complete metric on Mn. By endowing
Mn with the induced metric we can supposeMn to be Riemannian and' to be an
isometric spacelike immersion.

The interest in the study of spacelike hypersurfaces immersed in the de Sitter space
is motivated by their nice Bernstein-type properties. It was proved by E. Calabi [2]
(for n � 4) and by S.Y. Cheng and S.T. Yau [7] (for alln) that a complete maximal
spacelike hypersurface inLnC2 is totally geodesic. In [13], S. Nishikawa obtained sim-
ilar results for others Lorentzian manifolds. In particular, he proved that a complete
maximal spacelike hypersurface inSnC1

1 (1) is totally geodesic.
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Goddard [9] conjectured that complete spacelike hypersurface with constant mean
curvature in the de SitterSnC1

1 (1) should be umbilical. Although the conjecture turned
out to be false in its original statement, it motivated a great deal of work of several
authors trying to find a positive answer to the conjecture under appropriate additional
hypotheses. For instance, in 1987 Akutagawa [1] proved the Goddard conjecture when
H2

< 1 if n D 2 (see also Ramanathan [16]) andH2
< 4(n � 1)=n2 if n > 2. He

and Ramanathan also showed that whenn D 2, for any constantH2
> c2, there exists

a non-umbilical surface of mean curvatureH in the de Sitter spaceS3
1(c) of constant

curvaturec> 0. One year later, S. Montiel [11] (and Akutagawa [1], Ramanathan [16]
whennD 2) solved Goddard’s problem in the compact case inSnC1

1 (1) without restric-
tion over the range ofH . He also gave examples of non-umbilical complete spacelike
hypersurfaces inSnC1

1 (1) with constantH satisyingH2
� 4(n� 1)=n2 if n > 2, includ-

ing the so-called hyperbolic cylinders. In [12], Montiel proved that the only complete
spacelike hypersurface inSnC1

1 (1) with constantH D 2
p

n� 1=n with more than one
topological end is a hyperbolic cylinder. At the same time, the complete hypersurfaces
in the de Sitter space have been characterized by Cheng [5] under the hypothesis of
the mean curvature and the scalar curvature being linearly related.

On the other hand, for the study of spacelike hypersurfaces with constant scalar
curvature in de Sitter spaces, Y. Zheng [18] proved that a compact spacelike hyper-
surface inSnC1

1 (1) with constant normalized scalar curvaturer , r < 1 and non-negative
sectional curvatures is totally umbilical. Later, Q.M. Cheng and S. Ishikawa [6] showed
that Zheng’s result in [18] is also true without additional assumptions on the sectional
curvatures of the hypersurface. In [10], H. Li proposed the following problem: Let
Mn be a complete spacelike hypersurface inSnC1

1 (1), n � 3, with constant normalized
scalar curvaturer satisfying (n � 2)=n � r � 1. Is Mn totally umbilical? A. Caminha
[4] answered that question affirmatively under the additional condition that the supre-
mum of H is attained onMn. Recently, Camargo–Chaves–Sousa [3] showed that Li’s
question is also true if the mean curvature is bounded.

In this paper, by modifying Cheng–Yau’s technique to complete spacelike hyper-
surfaces inSnC1

1 (1), we prove a rigidity theorem under the hypothesis of the mean
curvature and the normalized scalar curvature being linearly related. More precisely,
we have

Theorem 1.1. Let Mn be a complete spacelike hypersurface of SnC1
1 (1) with

bounded mean curvature. If rD aH C b, a, b 2 R, a � 0, b � (n� 2)=n, (n� 1)a2
C

4n(1� b) � 0, then Mn is totally umbilical.

If we choosea D 0 and (n � 2)=n � b � 1 in Theorem 1.1, we obtain the The-
orem 1.1 of [3]:

Corollary 1.2. Let Mn be a complete spacelike hypersurface of SnC1
1 (1) with con-

stant normalized scalar curvature r satisfying(n � 2)=n � r � 1. If Mn has bounded
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mean curvature, then Mn is totally umbilical.

2. Preliminaries

Let M be an n-dimensional complete spacelike hypersurface of de Sitterspace
SnC1

1 (1). For any p 2 M, we choose a local orthonormal framee1, : : : , en, enC1 in
SnC1

1 (1) aroundp such thate1, : : : , en are tangent toM. Take the corresponding dual
coframe!1, : : : , !n, !nC1, We use the following standard convention for indices:

1� A, B, C, D, : : :� nC 1, 1� i , j , k, l , : : :� n.

Let "i D 1, "nC1 D �1, then the structure equations ofSnC1
1 (1) are given by

d!A D
X

B

"B!AB ^ !B, !AB C !B A D 0,(2.1)

d!AB D
X

C

"C!AC ^ !C B �
1

2

nC1
X

C,DD1

RABC D!C ^ !D,(2.2)

RABC D D "A"B(ÆACÆBD � ÆADÆBC).(2.3)

Restricting those forms toM, we get the structure equations ofM

d!i D

n
X

jD1

!i j ^ ! j , !i j C ! j i D 0,(2.4)

d!i j D

n
X

kD1

!ik ^ !k j �
1

2

n
X

k,lD1

Ri jkl!k ^ !l .(2.5)

The Gauss equations are

Ri jkl D (ÆikÆ j l � Æi l Æ jk) � (hikh j l � hi l h jk),(2.6)

n(n� 1)r D n(n� 1)� n2H2
C jBj2,(2.7)

where r D (1=(n(n � 1)))
P

i , j Ri j i j is the normalized scalar curvature ofM and the
norm square of the second fundamental form is

(2.8) jBj2 D
X

i , j

h2
i j .

The Codazzi equations are

(2.9) hi jk D hik j D h j ik ,
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where the covariant derivative ofhi j is defined by

(2.10)
X

k

hi jk!k D dhi j C
X

k

hk j!ki C
X

k

hik!k j .

Similarly, the componentshi jkl of the second derivativer2h are given by

(2.11)
X

l

hi jkl!l D dhi jk C
X

l

hl jk!li C
X

l

hi lk!l j C
X

l

hi j l !lk .

By exterior differentiation of (2.10), we can get the following Ricci formula

(2.12) hi jkl � hi j lk D
X

m

him Rmjkl C
X

m

h jm Rmikl.

The Laplacian4hi j of hi j is defined by4hi j D
P

k hi jkk , from the Codazzi equation
and Ricci formula, we have

(2.13) 4hi j D
X

k

hkki j C
X

m,k

hkmRmi jk C
X

m,k

him Rmkjk.

Set�i j D hi j �HÆi j . It is easy to check that� is traceless andj�j2 D
P

i , j �
2
i j D jBj2�

nH2. Following Cheng–Yau [8], for eacha � 0, we introduce a modified operator�
acting on anyC2-function f by

(2.14) �( f ) D
X

i , j

��

nH C

n� 1

2
a

�

Æi j � hi j

�

fi j ,

where fi j is given by the following

X

j

fi j ! j D d fi C f j!i j .

Lemma 2.1. Let Mn be a complete spacelike hypersurface of SnC1
1 (1) with r D

aH C b, a, b 2 R and (n� 1)a2
C 4n� 4nb� 0. Then we have

(2.15) jrBj2 � n2
jrH j2.

Proof. From Gauss equation, we have

jBj2 D n2H2
C n(n� 1)(r � 1)D n2H2

C n(n� 1)(aH C b� 1).

Taking the covariant derivative of the above equation, we have

2
X

i , j

hi j hi jk D 2n2H Hk C n(n� 1)aHk.
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Therefore,

4jBj2jrBj2 � 4
X

k

0

�

X

i , j

hi j hi jk

1

A

2

D [2n2H C n(n� 1)a]2
jrH j2.

Since we know

[2n2H C n(n� 1)a]2
� 4n2

jBj2 D 4n4H2
C n2(n� 1)2a2

C 4n3(n� 1)aH

� 4n2(n2H2
C n(n� 1)(aH C b� 1))

D n2(n� 1)2a2
� 4n3(n� 1)(b� 1)

D n2(n� 1)[(n� 1)a2
C 4n� 4nb] � 0,

it follows that

jrBj2 � n2
jrH j2.

Lemma 2.2. Let Mn be a complete spacelike hypersurface of SnC1
1 (1) with r D

aH C b, a, b 2 R. Then we have

(2.16)

�(nH) �
X

i , j ,k

h2
i jk � n2

jrH j2

C j�j

2

�

j�j

2
�

n(n� 2)
p

n(n� 1)
jH j j�j C n(1� H2)

�

.

Proof. First, from (2.6) and (2.12), we have

1

2
4jBj2 D

1

2
4

X

i , j

h2
i j D

X

i , j

hi j4hi j C
X

i , j ,k

h2
i jk

D

X

i , j ,k

h2
i jk C n

X

i , j

hi j Hi j C n(jBj2 � nH2) � nH f3 C jBj4,

where f3 D
P

i , j ,k hi j h jkhki . On the other side, from Gauss equation andr D aHC b,
we have

(2.17)

4jBj2 D 4(n2H2
C n(n� 1)(r � 1))

D 4(n2H2
C n(n� 1)(aH C b� 1))

D 4(n2H2
C (n� 1)anH)

D 4(nH C

1

2
(n� 1)a)2.
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Then from (2.17) and Okumura’s inequality [14], we get

�(nH) D
X

i , j

((nH C

1

2
(n� 1)a)Æi j � hi j )(nH)i j

D (nH C

1

2
(n� 1)a)4(nH) �

X

i , j

hi j (nH)i j

D (nH C

1

2
(n� 1)a)4(nH C

1

2
(n� 1)a) �

X

i , j

hi j (nH)i j

D

1

2
4

�

nH C

1

2
(n� 1)a

�2

�

�

�

�

�

r(nH C

1

2
(n� 1)a)

�

�

�

�

2

�

X

i , j

hi j (nH)i j

D

1

2
4

�

nH C

1

2
(n� 1)a

�2

� n2
jrH j2 �

X

i , j

hi j (nH)i j

D

1

2
4jBj2 � n2

jrH j2 �
X

i , j

hi j (nH)i j

D

X

i , j ,k

h2
i jk � n2

jrH j2 C n(jBj2 � nH2) � nH f3 C jBj4

�

X

i , j ,k

h2
i jk � n2

jrH j2 C j�j

2

�

j�j

2
�

n(n� 2)
p

n(n� 1)
jH j j�j C n(1� H2)

�

.

Proposition 2.3. Let Mn be a complete spacelike hypersurface of SnC1
1 (1) with

bounded mean curvature. If rD aH C b, a, b 2 R, a � 0, (n � 1)a2
C 4n � 4nb� 0,

then there is sequence of points{pk} 2 Mn such that

lim
k!1

nH(pk) D n supH I lim
k!1

jrnH(pk)j D 0I lim sup
k!1

(�(nH)(pk)) � 0.

Proof. Choose a local orthonormal frame fielde1, : : : , en at p 2 Mn such that
hi j D �i Æi j . Thus

�(nH) D
X

i

��

nH C

1

2
(n� 1)a

�

� �i

�

(nH)i i .

If H � 0 the proposition is obvious. Let us suppose thatH is not identically zero. By
changing the orientation ofMn if necessary, we may assume supH > 0. From

�

2
i � jBj

2
D n2H2

C n(n� 1)(aH C b� 1)

D (nH)2
C (n� 1)a(nH)C n(n� 1)(b� 1)

D

�

nH C

1

2
(n� 1)a

�2

�

1

4
(n� 1)((n� 1)a2

C 4n� 4nb)

�

�

nH C

1

2
(n� 1)a

�2

,



SPACELIKE HYPERSURFACES IN THE DESITTER SPACE 721

we have

(2.18) j�i j �

�

�

�

�

nH C

1

2
(n� 1)a

�

�

�

�

.

Then, for i , j with i ¤ j ,

(2.19) Ri j i j D 1� �i� j � 1�

�

nH C

1

2
(n� 1)a

�2

.

BecauseH is bounded, it follows from (2.19) that the sectional curvatures are bounded
from below. Therefore we may apply generalized maximun principle [15] [17] to nH,
obtaining a sequence of points{pk} 2 Mn such that

(2.20) lim
k!1

nH(pk) D n supH I lim
k!1

jrnH(pk)j D 0I lim sup
k!1

((nH)i i (pk)) � 0.

Since H is bounded, taking subsequences if necessary, we can arriveto a sequence
{pk} 2 Mn which satisfies (2.20) and such thatH (pk) � 0. Thus from (2.18) we get

(2.21)

0� nH(pk)C
1

2
(n� 1)a� j�i (pk)j � nH(pk)C

1

2
(n� 1)a� �i (pk)

� nH(pk)C
1

2
(n� 1)aC j�i (pk)j

� 2nH(pk)C (n� 1)a.

Using once more the fact thatH is bounded, from (2.21) we infer thatnH(pk) C
(1=2)(n� 1)a� �i (pk) is non-negative and bounded. By applying�(nH) at pk, taking
the limit and using (2.20) and (2.21) we have

lim sup
k!1

(�(nH)(pk)) �
X

i

lim sup
k!1

��

nH C

1

2
(n� 1)a

�

� �i

�

(pk)(nH)i i (pk)

� 0.

3. Proof of results

Proof of Theorem 1.1. IfMn is maximal, i.e., if H � 0, due to Nishikawa’s re-
sult [13], we know thatMn is totally geodesic. Let us suppose thatH is not identi-
cally zero. In this case, by Proposition 2.3, it is possible to obtain a sequence of points
{pk} 2 Mn such that

(3.1) lim sup
k!1

(�(nH)(pk)) � 0, lim
k!1

H (pk) D supH > 0.

Moreover, using the Gauss equation, we have that

(3.2) j�j

2
D jBj2 � nH2

D n(n� 1)(H2
C aH C b� 1).
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In view of limk!1

H (pk) D supH and a � 0, (3.2) implies that limk!1

j�j

2(pk) D
supj�j2. Now we consider the following polynomial given by

(3.3) Psup H (x) D x2
�

n(n� 2)
p

n(n� 1)
supHx C n(1� supH2).

If sup H2
< 4(n � 1)=n2, then the discriminant ofPsup H (x) is negative. Hence,

Psup H (supj�j) > 0. If supH2
� 4(n � 1)=n2, let � the biggest root ofPsup H (x) D 0,

which is positive. It’s easy to check that supj�j2 � �2
> 0 provideda � 0 and b �

(n� 2)=n. In fact,

(3.4)
(supj�j)2

D supj�j2 D n(n� 1)(supH2
C a supH C b� 1)

� n(n� 1)(supH2
C b� 1),

it is straightforward to verify that

(3.5) supj�j2 � �2
�

n� 2

2(n� 1)

�

n2 supH2
� n supH

p

n2 supH2
� 4(n� 1)C c

�

.

wherecD (2n(n�1)=(n�2))((n�1)b�(n�2)). It can be easily seen that supj�j2��2
>

0 if and only if

n2 supH2
� n supH

p

n2 supH2
� 4(n� 1)C c > 0.

So, if b > (n� 2)=n, the last inequality is true. In fact, it’s true if and only if

(3.6) (n2 supH2
C c)2

> n2 supH2(n2 supH2
� 4(n� 1)),

i.e.

(3.7) n2 supH2(2cC 4(n� 1))C c2
> 0.

If bD (n� 2)=n, then 2cC 4(n� 1)D 0. Hence

n2 supH2(2cC 4(n� 1))C c2
> 0.

Then we deduce thatPsup H (supj�j) > 0.
Using Lemma 2.1 and evaluating (2.16) at the pointspk of the sequence, taking

the limit and using (3.1), we obtain that

0� lim sup
k!1

(�(nH)(pk)) � supj�j2Psup H (supj�j) � 0,

and so supj�j2Psup H (supj�j) D 0. Therefore, sincePsup H (supj�j) > 0, we conclude
that supj�j2 D 0 which shows thatMn is totally umbilical.
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