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Abstract
For a Lie groupG D R

n
Ë

�

R

m with the semi-simple action� W Rn
! Aut(Rm),

we show that if0 is a finite extension of a lattice ofG then K (0, 1) is formal.
Moreover we show that a compact symplectic aspherical manifold with the funda-
mental group0 satisfies the hard Lefschetz property. By those results we give many
examples of formal solvmanifolds satisfying the hard Lefschetz property but not ad-
mitting Kähler structures.

1. Introduction

Formal spaces (see Definition 5.3) in the sense of Sullivan are important in de Rham
homotopy theory. Well-known examples of formal spaces are compact Kähler manifolds
(see [9]). Suppose0 is a torsion-free finitely generated nilpotent group. ThenK (0, 1)
is formal if and only if0 is abelian by Hasegawa’s theorem in [11]. But in case0 is
a virtually polycyclic (see Definition 2.1) group, the formality of K (0, 1) is more com-
plicated. One of the purposes of this paper is to apply the wayof the algebraic hull of
0 to study the formality ofK (0, 1). For a torsion-free virtually polycyclic group0, we
have a unique algebraic groupH

0

with an injective homomorphism W 0! H
0

so that:
(1)  (0) is Zariski-dense inH

0

.
(2) The centralizerZH

0

(U(H
0

)) of U(H
0

) is contained inU(H
0

).
(3) dimU(H

0

) D rank0.
SuchH

0

is called the algebraic hull of0. We call the unipotent radical ofH
0

the uni-
potent hull of0 and denote it byU

0

. In [3], Baues constructed a compact aspherical
manifold M

0

with the fundamental group0 which is called the standard0-manifold
by the algebraic hull of0. And he gave the way of computation of the de Rham co-
homology of M

0

. By using these results, we prove:

Proposition 1.1. If the unipotent hullU
0

of 0 is abelian, K (0, 1) is formal.

So we would like to know criteria forU
0

to be abelian. We prove the following theorem.
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Theorem 1.2. Let 0 be a torsion-free virtually polycyclic group. Then the follow-
ing two conditions are equivalent:
(1) U

0

is abelian.
(2) 0 is a finite extension group of a lattice of a Lie group GD R

n
Ë

�

R

m such that
the action� W Rn

! Aut(Rm) is semi-simple.

Therefore we have:

Corollary 1.3. If 0 satisfies the condition(2) in Theorem 1.2,then K(0, 1)
is formal.

REMARK 1. A lattice0 of G D R

n
Ë

�

R

m is the form00 Ë
�

0

00 such that00 and
0

00 are lattices ofRn andRm respectively and the action� of 00 preserves000.

As well as formality the hard Lefschetz property (see Definition 5.5) is an import-
ant property of a compact Kähler manifold. We have the following proposition.

Proposition 1.4. Let M be a compact symplectic aspherical manifold with the
torsion-free virtually polycyclic fundamental group0. If the unipotent hullU

0

is abelian,
then M satisfies the hard Lefschetz property.

Hence we have:

Corollary 1.5. If 0 satisfies the condition(2) in Theorem 1.2,then a com-
pact symplectic aspherical manifold with the fundamental group 0 satisfies the hard
Lefschetz property.

In [5], Benson and Gordon showed that a compact symplectic aspherical manifold
with the torsion-free nilpotent fundamental group0 satisfies the hard Lefschetz prop-
erty if and only if 0 is abelian.

As we see in [11] and [5], formality and the hard Lefschetz property are strong
criteria for aspherical manifolds to admit Kähler structures. But by the results of this
paper, we can obtain many non-Kähler formal aspherical manifolds satisfying the hard
Lefschetz property.

Let M be a compact aspherical manifold with the virtually polycyclic fundamental
group. In [4], Baues and Cortés showed that ifM admits a Kähler structure then the
fundamental group ofM is virtually abelian (this result is an extension of the result
in [1] and [12]). Let G be a simply connected solvable Lie group. We say thatG is
of type (I) if for any g 2 G all eigenvalues of the adjoint operator Adg have absolute
value 1. In [2] it was proved that a lattice of a simply connected solvable Lie group
G is virtually nilpotent if and only ifG is type (I). Hence we have:
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Corollary 1.6. Let 0 be a finite extension group of a lattice of a Lie group GD
R

n
Ë

�

R

m such that the action�W Rn
! Aut(Rm) is semi-simple and G is not of type(I).

Then a compact aspherical manifold M with the fundamental group 0 is formal but
admits no Kähler structure. If M admits a symplectic structure, then M satisfies the
hard Lefschetz property.

REMARK 2. In [12], Hasegawa showed that a simply connected solvableLie group
G with a virtually abelian lattice such thatG=0 admits Kähler structure can be written
asG D R

2k
Ë

�

C

l such that

�(t j )((z1, : : : , zl )) D
�

e
p

�1� j
1 t j z1, : : : , e

p

�1� j
l t j zl

�

,

where eache
p

�1� j
i is a root of unity.

Solvmanifolds are homogeneous spaces of connected solvable Lie groups. These are
examples of aspherical manifolds with the polycyclic fundamental groups. In particular
for a simply connected solvable Lie groupG with a lattice0, the solvmanifoldG=0
is a compact aspherical manifold with the fundamental group0. As generalizations of
solvmanifolds we define infra-solvmanifolds. LetG be a simply connected solvable Lie
group. Consider the group Aut(G) Ë G of affine transformations ofG and the projec-
tion p W Aut(G) Ë G! Aut(G). An infra-solvmanifold is a manifold of the formG=1
for a torsion-free subgroup1 of Aut(G) Ë G such thatp(1) is contained in a com-
pact subgroup of Aut(G). In [3] Baues showed that every compact infra-solvmanifold
is diffeomorphic to a standard0-manifold and for any torsion-free virtually polycyclic
group0 the standard0-manifold is diffeomorphic to an infra-solvmanifoldG=0 such
that 0 � Aut(G) Ë G is a discrete subgroup andp(0) is finite. Thus for any0 satis-
fying the condition (2) in Theorem 1.2 we have a compact infra-solvmanifoldG=0 for
someG D R

n
Ë

�

R

m such that the action� W Rn
! Aut(Rm) is semi-simple.

Notations and terminology: Let k be a subfield ofC. A groupG is calledk-algebraic
group if G is a Zariski-closed subgroup ofGLn(C) which is defined by polynomials with
coefficients ink. Let G(k) denote the set ofk-points ofG andU(G) the maximal Zariski-
closed unipotent normalk-subgroup ofG called the unipotent radical ofG. A general
reference is [7]. In this paper, algebraic groups are alwayswritten in the bold face.

2. Algebraic hulls

In this section we explain the algebraic hulls of polycyclicgroups or simply con-
nected solvable Lie groups.

DEFINITION 2.1. A group0 is polycyclic if it admits a sequence

0 D 00 � 01 � � � � � 0k D {e}
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of subgroups such that each0i is normal in0i�1 and0i�1=0i is cyclic. We set rank0 D
PiDk

iD1 rank0i�1=0i which is independent of the choice of a sequence0i .

There are close relations between polycyclic groups and solvable Lie groups.

Theorem 2.2 ([21, Proposition 3.7, Theorem 4.28]). Let G be a simply connected
solvable Lie group and0 a lattice in G. Then0 is torsion-free polycyclic anddim G D
rank0. Conversely every polycyclic group admits a finite index normal subgroup which
is isomorphic to a lattice in a simply connected solvable Liegroup.

Let 0 be a virtually polycyclic group and00 be a finite index polycyclic subgroup.
We set rank0 D rank00.

DEFINITION 2.3. Let k be a subfieldC. Let 0 be a torsion-free virtually poly-
cyclic group (resp. simply connected solvable Lie group). Then ak-algebraic groupH

0

is a k-algebraic hull of 0 if there exists an injective homomorphism W 0 ! H
0

(k)
and H

0

satisfies the following conditions:
(1)  (0) is Zariski-dense inH

0

.
(2) ZH

0

(U(H
0

)) � U(H
0

).
(3) dimU(H

0

) = rank0 (resp. dim0).

Theorem 2.4([3,Theorem A.1, Corollary A.3], [21, Proposition 4.40, Lemma 4.41]).
Let 0 be a torsion-free virtually polycyclic group(resp. simply connected solvable Lie
group). Then there exists aQ-algebraic (resp.R-algebraic) hull of 0 and for any sub-
field k� C which containsQ (resp.R) a k-algebraic hull of0 is unique up to k-algebraic
group isomorphism.

We call the unipotent radical ofH
0

the unipotent hull of0 and denote it byU
0

.

Lemma 2.5. Let 0 be a torsion-free virtually polycyclic group and1 a finite
index subgroup of0. Let  W 0! H

0

be the k-algebraic hull of0 and G the Zariski-
closure of (1) in H

0

. Then the algebraic groupG is the k-algebraic hull of1 and
we haveU

1

D U
0

.

Proof. LetH0
0

be the identity component ofH
0

. SinceG is a closed finite index
subgroup ofH

0

, we haveH0
0

� G. Since0 is virtually polycyclic, H0
0

is solvable.
Hence we haveU(H

0

) D (H0
0

)unip D U(G). Since rank0 D rank1, we have

dim U(G) D rank1,
and we have

ZG0(U(G)) � ZH
0

(U(H
0

)) � U(H
0

) D U(G).

Hence the lemma follows.
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Lemma 2.6 ([21, Proof of Theorem 4.34]). Let G be a simply connected solv-
able Lie group with a lattice0. Let  W G! HG be theR-algebraic hull of G andH0

the Zariski-closure of (0) in HG. ThenH 0 is theR-algebraic hull of0 and we have
UG D U

0

.

3. Cohomology computations of aspherical manifolds with virtually torsion-
free polycyclic fundamental groups

Let 0 be a torsion-free virtually polycyclic group andH
0

the Q-algebraic hull
of 0. Denote H

0

D H
0

(R). Let U
0

be the unipotent radical ofH
0

and let T be a
maximal reductive subgroup. ThenH

0

decomposes as a semi-direct productH
0

D

T Ë U
0

. Let u be the Lie algebra ofU
0

. Since the exponential map expW u ! U
0

is a diffeomorphism,U
0

is diffeomorphic toRn such thatn D rank0. The splitting
H
0

D T ËU
0

gives rise to the affine action� W H
0

! Aut(U
0

) ËU
0

such that� is an
injective homomorphism.

In [3] Baues constructed a compact aspherical manifoldM
0

D �(0)nU
0

with
�1(M

0

) D 0. We call M
0

a standard0-manifold.

Theorem 3.1 ([3, Theorem 1.2]). Standard0-manifold is unique up to diffeo-
morphism.

Let A�(M
0

) be the de Rham complex ofM
0

. Then A�(M
0

) is the set of the0-

invariant differential formsA�(U
0

)0 on U
0

. Let
�

V

u�
�T

be the left-invariant forms on
U
0

which are fixed byT . Since0 � H
0

D T ËU
0

, we have the inclusion

�

^

u�
�T
D A�(U

0

)H
0

� A�(U
0

)0 D A�(M
0

).

Theorem 3.2 ([3, Theorem 1.8]). This inclusion induces a cohomology iso-
morphism.

4. Proof of Theorem 1.2

4.1. The embeddings of solvable Lie algebras in splittable Lie algebras. The
idea of this subsection is based on [22]. Letg be a solvable Lie algebra andn D
{X 2 g j adX is nilpotent}. Then n is the maximal nilpotent ideal ofg and called the
nilradical of g.

Lemma 4.1 ([18, p. 58]). We have[g, g] � n.

Let D(g) denote the space of the derivations ofg. By the Jordan decomposition,
we have the decomposition adX D dXCnX such thatdX is a semi-simple operator and
nX is a nilpotent operator.
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Lemma 4.2 ([22, Proposition 3]). We have dX , nX 2 D(g).

Then we have the homomorphismf W g! D(g) such that f (X) D dX for X 2 g.
Since kerf D n, we have Imf � g=n.

Let Ng D Im f Ë g and Nn D {X � dX 2 Ng j X 2 g}. Since adX�dX D adX � dX on g,
adX�dX is a nilpotent operator. SoNn consists of nilpotent elements.

Proposition 4.3. We have dX(Nn) � n for any X 2 g, Nn is a nilpotent ideal ofNg
and Ng D Im f Ë Nn.

Proof. By Lie’s theorem, we have a basisX1, : : : , Xl of n
C such that adg on
n are represented by upper triangular matrices. Then for anyX 2 g, we have

adX(X1) D aX,1X1,

adX(X2) D aX,2X2C bX,12X1,

� � �

adX(Xl ) D aX,l Xl C bX,l�1l Xl�1C � � � C bX,1l X1.

We takeXlC1, : : : , XlCm such thatX1, : : : , Xl , XlC1, : : : , XlCm is a basis ofg
C. By
Lemma 4.1, we have adX(Xi ) 2 n. Hence we have

adX(XlC1) D bX,llC1Xl C � � � C bX,1lC1X1,

� � �

adX(XlCm) D bX,llCmXl C � � � C bX,1lCmX1.

Then we have

dX(Xi ) D aX,i Xi , 1� i � l ,

dX(Xi ) D 0, l C 1� i � l Cm.

Hence we havedX(g) � n and dX(Nn) � n. This implies [Ng, Ng] � n. In particular, Nn
is an ideal of Ng. Since Nn consists of nilpotent elements,Nn is a nilpotent ideal. By
Ng D {dX C Y � dY j X, Y 2 g}, we haveNg D Im f Ë Nn.

By this proposition, we have the inclusioni W g! D(Nn)Ë Nn given by i (X) D dX C

X � dX for X 2 g.

4.2. Constructions of algebraic hulls of simply connected solvable Lie groups.
Let G be a simply connected solvable Lie group andg the Lie algebra ofG. Let N
be the maximal normal nilpotent subgroup ofG which corresponds to the nilradical
n of g. Consider the injectioni W g ! Im f Ë Nn � D(Nn) Ë Nn constructed in the last
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subsection. Let NN be the simply connected Lie group which corresponds toNn. Since
the Lie algebra of Aut(NN) Ë NN is D(Nn) Ë Nn, we have the Lie group homomorphism
I W G! Aut( NN) Ë NN induced by the injective homomorphismi W g! D(Nn) Ë Nn.

Lemma 4.4. The homomorphism IW G! Aut( NN) Ë NN is injective.

Proof. Since the restriction ofi W g ! D(Nn) Ë Nn on n is injective, the restriction
I W G! Aut( NN) Ë NN on N is also injective. LetT f be the subgroup of Aut(NN) which
corresponds to Imf . We haveI W G! T f Ë NN. By Proposition 4.3,Ng=n D Im f � Nn=n.
So we have the induced mapI W G=N! Tf � NN=N and it is sufficient to show that this
map is injective. Letj W Im f � Nn=n! Nn=n be the projection andJW Tf � NN=N! NN=N
be the homomorphism which corresponds toj . Since the composition

j Æ i (X modn) D X � dX mod n

is surjective, j Æ i W g=n ! Nn=n is an isomorphism. SinceG=N and NN=N are sim-
ply connected abelian groups,J Æ I W G=N ! NN=N is also an isomorphism. Hence
I W G=N ! Tf � NN=N is injective.

A simply connected nilpotent Lie group is considered as the real points of a uni-
potentR-algebraic group (see [19, p. 43]) by the exponential map. Wehave the unipotent
R-algebraic groupNN with NN(R) D NN. We identify the group Auta( NN) of automorphisms
of algebraic groups with Aut(n

C

) and Auta( NN) has theR-algebraic group structure with
Auta( NN)(R) D Aut(N). So we have theR-algebraic group Auta( NN) Ë NN. By the above
lemma, we have the injectionI W G ! Aut(N) Ë N D Auta( NN) Ë NN(R). Let G be the
Zariski-closure ofI (G) in Auta( NN) Ë NN.

Lemma 4.5. We haveU(G) D NN.

Proof. LetT be the Zariski-closure ofT f in Auta( NN). ThenG � TË NN. SinceG
is connected solvable andT consists of semi-simple automorphisms, we haveU(G) D
G \ NN. By this, it is sufficient to show dimU(G) D dim NN. Let N be the Zariski-
closure of I (N). By I (N) � NN, we haveU(G)=N D U(G=N). Thus it is sufficient to
show U(G=N) D G=N. Consider the induced mapI W G=N ! T f � NN=N as the proof

of Lemma 4.4. The Zariski-closure ofI (G=N) in T � NN=N is G=N. SinceT � NN=N is
commutative, the projectionT � NN=N! NN=N is anR-algebraic group homomorphism.
Since we showed thatJ Æ I W G=N! NN=N is isomorphism In the proof of Lemma 4.4,
the imageJ Æ I (G=N) is Zariski-dense inNN=N. This implies NN=N D U(G=N). Hence
the lemma follows.

By this lemma we have the following proposition.
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Proposition 4.6. G is the algebraic hull of G and the Lie algebra of the uni-
potent hullUG is Nn

C

.

Proof. We show thatG satisfies the properties of the algebraic hull ofG. We
have dimU(G)D dim NND dimG. Let (t,x) 2 ZG(U(G)) � Auta NNË NN. SinceU(G)D N
and t is a semi-simple automorphism, we havet(y) D y for any y 2 NN. So we have
t D id

NN. We haveZG(U(G)) � U(G). Hence the proposition follows.

4.3. Proof of Theorem 1.2. We first prove:

Theorem 4.7. Let G be a simply connected solvable Lie group. ThenUG is abelian
if and only if GD R

n
Ë

�

R

m such that the action� W Rn
! Aut(Rm) is semi-simple.

Proof. Consider the inclusioni W g! Im f Ë Nn. By the above argument, the Lie
algebra ofUG is Nn

C

. SupposeG D R

n
Ë

�

R

m such that the action� W Rn
! Aut Rm

is semi-simple. It is sufficient to showNn D {X � dX j X 2 g} � Im f Ë g is an abelian
Lie algebra. LetX, Y 2 g and X D X1 C X2, Y D Y1 C Y2 be the decompositions
induced by the semi-direct productg D R

n
Ë

�

�

R

m. Then we havedX2 D 0, dY2 D 0,
[X1, Y1] D 0 and [X2, Y2] D 0 by the assumption. Hence we have

[X � dX , Y � dY] D [X1, Y2] C [X2, Y1] � dX1(Y2)C dY1(X2).

Since the action�
�

is semi-simple, we havedX1(Y2) D [X1,Y2] and dY1(X2)D [Y1, X2].
Therefore we have [X � dX , Y � dY] D 0. This implies Nn is abelian.

Conversely we assumeUG is abelian. By Proposition 4.6,Nn is abelian. By [g,g] �
n, g is two-step solvable. By [8, Lemma 4.1], we have the decomposition g D a Ë g1

for some nilpotent subalgebraa of g where g1 D
T

gi for the lower central series
g D g0

� g1
� g2

� � � � of g. Since Nn is abelian, the subspace{X � dX j X 2 a}

is a abelian subalgebra ofNn. Sincea is nilpotent, the Lie algebra{X � dX j X 2 a} is
identified with a. Hencea is abelian. Finally we show that the action ofa on g1 is
semi-simple. We suppose that adX on g1 is not semi-simple for someX 2 a. Then the
action of adX�dX on g1 is non-trivial. Since we haveNnD {X�dX j X 2 g} � Im f Ë Nn,
we have [Nn, a] ¤ {0}. This contradictsNn is abelian. Hence the action ofa on g1 is
semi-simple and we have the theorem.

Proof of Theorem 1.2. By Theorem 2.2, we have a finite index subgroup of 0
which is isomorphic to a lattice of some simply connected solvable Lie groupG. By
Lemma 2.5 and 2.6, we haveU

0

D UG. Hence by Theorem 4.7 we have the theorem.

REMARK 3. A virtually polycyclic group0 has the maximal nilpotent normal
subgroup called the nilradical of0. Since the nilradical of0 is contained inU

0

(see
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[3, Proposition A.7]), ifU
0

is abelian then the nilradical of0 is also abelian. But the
converse is not true. ConsiderG D R Ë

�

R

4 with

�(t) D

0

B

B

�

er t 0 0 0
0 e�r t 0 0
0 0 1 t
0 0 0 1

1

C

C

A

.

Then for somer ¤ 0 G has a latticeZ Ë
�

0

00 for a lattice000 of R4. We haveU
0

D

UG D C
2
�U3(C) and it is not abelian. On the other hand the nilradical of0 (resp.G)

is isomorphic toZ4 (resp.R4).

5. Formality and hard Lefschetz properties of aspherical manifolds

5.1. Formality. We review the definition of formality and prove Proposition 1.1.

DEFINITION 5.1. Adifferential graded algebra(called DGA) is a gradedR-algebra
A� with the following properties:
(1) A� is graded commutative, i.e.

y ^ x D (�1)p�qx ^ y, x 2 Ap, y 2 Aq.

(2) There is a differential operatord W A! A of degree one such thatd Æ d D 0 and

d(x ^ y) D dx^ yC (�1)px ^ dy, x 2 Ap.

Let A and B be DGAs. If a morphism of graded algebra' W A ! B satisfies
d Æ ' D ' Æ d, we call ' a morphism of DGAs. If a morphism of DGAs induces
a cohomology isomorphism, we call it a quasi-isomorphism.

DEFINITION 5.2. A and B areweakly equivalentif there is a finite diagram
of DGAs

A C1! C2 � � �  Cn ! B

such that all the morphisms are quasi-isomorphisms.

Let M be a smooth manifold. The de Rham complexA�(M) of M is a DGA. The
cohomology algebraH�(M, R) is a DGA with d D 0.

DEFINITION 5.3. A smooth manifoldM is formal if A�(M) and H�(M, R) are
weakly equivalent.
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Proposition 5.4. Let 0 be a torsion-free virtually polycyclic group. If the uni-
potent hull U

0

is abelian, the standard0-manifold M
0

is formal.

Proof. We use same notations as in Section 3. If thek-unipotent hull of0 is
abelian,

�

V

u�, d
�

D

�

V

u�, 0
�

. By Theorem 3.2, we have the diagram of DGAs

A�(M
0

) 

�

�

^

u�
�T
�

D H�(M
0

)

such that the mapA�(M
0

)  
��

V

u�
�T�

is a quasi-isomorphism. Hence the propos-
ition follows.

Hence we have Proposition 1.1.

5.2. The hard Lefschetz property. We review the definition of the hard Lefschetz
property and prove Proposition 1.4.

DEFINITION 5.5. Let (M, !) be a 2n-dimensional symplectic manifold. We say
that (M, !) satisfies thehard Lefschetz propertyif the linear map

[!n�i ]^W H i (M, R)! H2n�i (M, R)

is an isomorphism for any 0� i � n.

Proof of Proposition 1.4. As in the proof of Proposition 1.1,we have an iso-

morphism
�

V

u�
�T
� H�(M,R). Consider the cohomology class of a symplectic form!

on M. We have!0 2
�

V2
u�
�T

which represents the cohomology class [!] 2 H2(M,R).
Since!n

0 ¤ 0 for 2n D dimu D dim M, !0 is a symplectic form on the vector spaceu.
Since the linear map

!

n�i
0 ^W

^

ui
!

^

u2n�i

is injective for any 0� i � n by the hard Lefschetz property of a torus, the restriction

!

n�i
0 ^W

�

^

ui
�T
!

�

^

u2n�i
�T

is also injective and so

[!n�i ]^W H i (M, R)! H2n�i (M, R)

is injective and thus it is an isomorphism by the Poincaré duality. Hence we have
the proposition.
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6. Examples

EXAMPLE 1. Let G D R Ë

�

R

2 with �(t) D
�

er t 0
0 e�r t

�

. Then for somer ¤ 0,

�(1) is conjugate to an element ofSL2(Z). Hence we have a lattice0 D Z Ë Z

2. G �
R has a left-invariant symplectic form. In [10] (see also [20]) by direct computations
Fernandez and Gray showed thatG=0 � S1 is formal and satisfies the hard Lefschetz
property and admits no Complex structure. This is also a simple example for the result
of this paper.

EXAMPLE 2. Let G D C Ë

�

C

2 with �(x) D
�

ex 0
0 e�x

�

. Then the cochain com-

plex
�

V

g�, d
�

of the Lie algebra ofG is given by:

g� D hx1, x2, y1, y2, z1, z2i,

dx1 D dx2 D 0,

dy1 D �x1 ^ y1C x2 ^ y2, dy2 D �x2 ^ y1 � x1 ^ y2,

dz1 D x1 ^ z1 � x2 ^ z2, dz2 D x1 ^ z2C x2 ^ z1.

We have an invariant symplectic form! D x1 ^ x2 C z1 ^ y1 C y2 ^ z2. For some
p, q 2 R �(pZC

p

�1qZ) is conjugate to a subgroup ofSL4(Z) and hence we have a
lattice 0 D (pZ C

p

�1qZ) Ë 000 for a lattice000 of C2 (see [15] and [13]). For any
lattice0, G=0 is complex, symplectic with the hard Lefschetz property andformal but
not Kähler.

REMARK 4. For a Lie groupG in Example 2, the de Rham cohomology ofG=0
depends on a choice of a lattice0. Under some conditions, the de Rham cohomology
of a solvmanifoldG=0 is isomorphic to the cohomology of Lie algebrag of G (see
[14], [21, Section 7]). But for a general solvmanifoldG=0 it is difficult to compute
the de Rham cohomology ofG=0. By the results of this paper, for a Lie groupG D
R

n
Ë

�

R

m with the semi-simple action�, we can say thatG=0 is formal and hard
Lefschetz for any lattice0 even if an isomorphismH�(G=0,R) � H�(g) fails to hold.

EXAMPLE 3. Let G D R Ë

�

R

4 with

�(t) D

0

B

B

�

ept cos(qt) �ept sin(qt) 0 0
ept sin(qt) ept cos(qt) 0 0

0 0 e�pt cos(�qt) �e�pt sin(�qt)
0 0 e�pt sin(�qt) e�pt cos(�qt)

1

C

C

A

.

Then for p, q as Example 2,�(1) is conjugate to an element ofSL4(Z) and henceG
has a lattice0 D ZË 0

00 for a lattice000 of R4. The cochain complex
�

V

(g�R)�, d
�



450 H. KASUYA

of the Lie algebra ofG � R is given by:

(g� R)� D hw, x1, x2, x3, x4, yi,

dx1 D �pw ^ x1C qw ^ x2, dx2 D �qw ^ x1 � pw ^ x2,

dx3 D pw ^ x3 � qw ^ x4, dx4 D qw ^ x3C pw ^ x4.

We have a left-invariant symplectic form! D w ^ y C x1 ^ x3 C x4 ^ x2. We regard
wC

p

�1y, x1C
p

�1x2, x3C
p

�1x4 as (1,0)-forms, we obtain a left-invariant complex
structure. By the result of this paper, for any lattice0, G=0 � S1 is formal and any
symplectic form onG=0 � S1 satisfies the hard Lefschetz property.

REMARK 5. In [6], Bock studies formality and the hard Lefschetz property of
solvmanifolds of dimension� 6 by direct computations. The cohomology ofG=0 may
vary for a choice of0 and Bock does not decide whetherG=0 � S1 is formal and
satisfies the hard Lefschetz property.

By combining the above examples we obtain:

EXAMPLE 4. Let G D R

2
Ë

�

R

2kC4(lCmCn) such that

�(t1, t2)D
k
M

iD1

�

cosai t1 � sinai t1
sinai t1 cosai t1

�

�

l
M

iD1

0

B

B

�

ebi t1 0 0 0
0 e�bi t1 0 0
0 0 ebi t1 0
0 0 0 e�bi t1

1

C

C

A

�

m
M

iD1

0

B

B

�

eci t1 cos(di t2) �eci t1 sin(di t2) 0 0
eci t1 sin(di t2) eci t1 cos(di t2) 0 0

0 0 e�ci t1 cos(�di t2) �e�ci t1 sin(�di t2)
0 0 e�ci t1 sin(�di t2) e�ci t1 cos(�di t2)

1

C

C

A

�

n
M

iD1

0

B

B

�

eei t1 cos(fi t1) �eei t1 sin( fi t1) 0 0
eei t1 sin( fi t1) eei t1 cos(fi t1) 0 0

0 0 e�ei t1 cos(� fi t1) �e�ei t1 sin(� fi t1)
0 0 e�ei t1 sin(� fi t1) e�ei t1 cos(� fi t1)

1

C

C

A

.

We write A� B D
�

A 0
0 B

�

for matricesA, B.

We supposeai D 2�=K i for K i D 2, 3, 4, or 6,bi D r L i for r as Example 1 and
L i 2 Z, ci D pMi , di D q M0

i , ei D pNi and fi D q N0

i for p, q as Example 2 and
Mi , M 0

i , Ni , N 0

i 2 Z. Then each component of�(Z2) for the direct product is conjugate
to a subgroup ofSL2(Z) or SL4(Z) and hence we have a lattice0 D Z

2
Ë 0

00 for a
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lattice 000 of R2kC4(lCmCn). The cochain complex
�

V

g�, d
�

of the Lie algebra ofG is
given by:

g�Dhu1, u2, w1, : : : , w2k, x1, : : : , x4l , y1, : : : , y4m, z1, : : : , z4ni,

du1Ddu2D0,

dw2i�1Dai u1^w2i , dw2i D�ai u1^w2i�1 (1� i � k),

dx2i�1D�bi u1^x2i�1, dx2i Dbi u1^x2i (1� i �2l ),

dy4i�3D�ci u1^ y4i�3Cdi u2^ y4i�2, dy4i�2D�di u2^ y4i�3�ci u1^ y4i�2,

dy4i�1D ci u1^ y4i�1�di u2^ y4i , dy4i Ddi u2^ y4i�1Cci u1^ y4i (1� i �m),

dz4i�3D�ei u1^z4i�3C fi u1^z4i�2, dz4i�2D� fi u1^z4i�3�ei u1^z4i�2,

dz4i�1Dei u1^z4i�1� fi u1^z4i , dz4i D fi u1^z4i�1Cei u1^z4i (1� i �n).

G has a left-invariant symplectic form

! D u1 ^ u2C

k
X

iD1

w2i�1 ^ w2i C

2l
X

iD1

x2i�1 ^ x2i

C

m
X

iD1

(y4i�3 ^ y4i�1C y4i ^ y4i�2)C
n
X

iD1

(z4i�3 ^ z4i�1C z4i ^ z4i�2).

Regarding

u1C
p

�1u2,

w2i�1C
p

�1w2i (1� i � k),

x4i�3C
p

�1x4i�1, x4i�2C
p

�1x4i (1� i � l ),

y2i�1C
p

�1y2i (1� i � 2m),

z2i�1C
p

�1z2i (1� i � 2n)

as (1, 0)-forms, we have a left-invariant complex structureon G. By the results of this
paper, for any lattice0 of G, G=0 is formal and satisfies the hard Lefschetz property
but admits no Kähler structure.

EXAMPLE 5 (Oeljeklaus–Toma manifolds). We apply the result of this paper to
non-Kähler complex manifolds constructed by Oeljeklaus and Toma in [17]. LetK be
a finite extension field ofQ with the degreesC 2t for positive integerss, t . Suppose
K admits embeddings�1, : : : , �s, �sC1, : : : , �sC2t into C such that�1, : : : , �s are real
embeddings and�sC1, : : : , �sC2t are complex ones satisfying�sCi D N�sCiCt for 1� i �
t . We can chooseK admitting such embeddings (see [17]). DenoteOK the ring of
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algebraic integers ofK , O�

K the group of units inOK and

O�C

K D {a 2 O�

K W �i > 0 for all 1� i � s}.

Define l W O�C

K ! R

sCt by

l (a) D (logj�1(a)j, : : : , logj�s(a)j, 2 logj�sC1(a)j, : : : , 2 logj�sCt (a)j)

for a 2 O�C

K . Then by Dirichlet’s units theorem,l (O�C

K ) is a lattice in the vector space
L D

{

x 2 RsCt
PsCt

iD1 xi D 0
}

. For the projectionp W L ! R

s given by the firsts
coordinate functions. Then we have a subgroupU with the ranks of O�C

K such that
p(l (U )) is a lattice inRs. We have the action ofU ËOK on H s

� C

t such that

(a, b) � (x1C
p

�1y1, : : : , xsC
p

�1ys, z1, : : : , zt )

D (�1(a)x1C �1(b)C
p

�1�1(a)y1, : : : , �s(a)xsC �s(b)C
p

�1�s(a)ys,

�sC1(a)z1C �sC1(b), : : : , �sCt (a)zt C �sCt (b)).

In [17] it is proved that the quotientX(K , U ) D H s
�C

t
=U ËOK is compact. We call

this complex manifold a Oeljeklaus–Toma (OT) manifold with(s, t). By this construc-
tion we give solvmanifold-presentationsG=0 of OT-manifolds with (s, t). We consider
p(l (U )) Ë

�

(Rs
� C

t ) with

�(t1, : : : , ts)

D

0

B

B

B

B

B

B

B

B

B

�

et1

. ..

ets

�sC1 Æ �
�1
1 (et1)

...

�sCt Æ �
�1
1 (et1)

1

C

C

C

C

C

C

C

C

C

A

for (t1, : : : , ts) 2 p(l (U )). Then for some lattice000 of Rs
�C

t , we havep(l (U ))Ë
�

0

00

�

UËOK . Since p(l (U )) is a lattice ofRs, we have an extension of� on Rs andUËOK

can be seen as a lattice ofRs
Ë

�

(Rs
� C

t ). Thus OT-manifolds are formal complex
solvmanifolds not admitting Kähler structure.

REMARK 6. For t D 1, OT-manifolds X(K , U ) admit LCK (locally conformal
Kähler) structures.

REMARK 7. We call X(K , U ) simple type if the action ofU on O admits no
proper non-trivial submodule of lower rank. IfX(K , U ) is simple type, then in [17] it
is proved that the second Betti number isb2D s(s�1)=2. Then the second cohomology
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H2(X(K ,U ),R) is spanned by{[dti ^dt j ]}1�i< j�s and hence simple type OT-manifolds
admit no symplectic structure.

EXAMPLE 6. Infra-solvmanifolds appear in study of geometries of 3-manifolds.
See [23] for the general theory of geometries of 3-manifolds. A compact aspherical
3-manifold M with the virtually solvable fundamental group admits a one of the three
geometriesE3, Nil, Sol i.e. M is diffeomorphic toG=0 such thatG is R3, U3(R) or
R Ë

�

R

2 as an Example 1 with a left-invariant metric and0 � C Ë G is a lattice for
the groupC of isometric automorphisms ofG. In the E3 case,0 is virtually abelian
by Bieberbach’s first theorem. In theSol case,C is finite (see [23]). Hence a compact
3-manifold M admitting the geometryE3 or Sol is formal.

7. Remarks

In this section we give an example of a formal standard0-manifold with the hard
Lefschetz property such thatU

0

is not abelian. In addition this is also an example of
formal manifold satisfying the hard Lefschetz property such that it is finitely covered
by a non-formal manifold not satisfying the hard Lefschetz property. We notice that
compact manifolds finitely covered by non-Kähler manifoldsare not Kähler.

Let 0 D Z Ë

�

Z

2 such that fort 2 Z

�(t) D

�

(�1)t (�1)t t
0 (�1)t

�

.

Lemma 7.1. The algebraic hull of0 is given byH
0

D {�1} Ë U3(C) such that

(�1) �

0

�

1 x z
0 1 y
0 0 1

1

A

D

0

�

1 x (�1)z
0 1 (�1)y
0 0 1

1

A.

Proof. We have the inclusion

0 �

0

�(�1)x,

0

�

1 x z
0 1 y
0 0 1

1

A

1

A

� {�1} Ë U3(C).

Then0 is Zariski-dense in{�1}ËU3(C) and rank0 D 3D dimU3(C). Since the action
of {�1} on U3(C) is faithful, the centralizer ofU3(C) is contained inU3(C). Hence
the lemma follows.

We haveH
0

(R) D {�1} ËU
0

such thatU
0

D U3(R). Let u be the Lie algebra of
U
0

. We haveu D hX1, X2, X3i such that the bracket is given by

[X1, X2] D �[X2, X1] D X3.
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The {�1}-action onu is given by

(�1) � X1 D X1, (�1) � Xi D �Xi , i D 2, 3.

Let x1, x2, x3 be the basis ofu� which is dual to X1, X2, X3. Then the DGA
�

V

u�
�{�1}

is the subalgebra of
V

u� generated by{x1, x2 ^ x3} and the derivation on
�

V

u�
�{�1}

is trivial. Let M
0

be the standard0-manifold. Then by Theorem 3.2, we

have the quasi-isomorphism
�

V

u�
�{�1}

! A�(M
0

). Since the derivation on
�

V

u�
�{�1}

is trivial, we have the isomorphism
�

V

u�
�{�1}

� H�(M). Hence we have:

Proposition 7.2. M
0

is formal.

REMARK 8. SinceU
0

is not abelian, the converse of Proposition 5.4 is not true.

REMARK 9. We have the finite index subgroup 2Z Ë Z2 which is nilpotent. So
0 is virtually nilpotent but not virtually abelian. By the result of [11], K (2Z Ë Z2, 1)
is not formal. But for the finite extension group0, K (0, 1) is formal.

REMARK 10. Since{�1} acts isometrically onU
0

with the invariant metric,M
0

admits theNil geometry. So we have a formal 3-dimensional compact manifold admit-
ting the Nil geometry.

Let 1D 0�Z. Then we haveH
1

D H
0

�R andU
1

D U
0

�R. As above we have

the quasi-isomorphism inclusion
�

V

u�
�{�1}



V

(y)� A�(M
1

). Let !D x1^yCx2^x3.
Then ! is a symplectic form onM

1

. Since H1(M
1

, R) � hx1, yi and H3(M
1

, R) �
hx1 ^ x2 ^ x3, x2 ^ x3 ^ yi, the linear map [!]^W H1(M

1

, R) ! H3(M
1

, R) is an
isomorphism and hence we have the following proposition.

Proposition 7.3. M
0

� S1 satisfies the hard Lefschetz property.

REMARK 11. 1 is a finite extension group of the non-abelian nilpotent group
2ZËZ2

�Z as Remark 9. By the result of [5], a compactK (2ZËZ2
�Z, 1)-manifold

is not a Lefschetz 4-manifold. ThusM
1

is a example of a Lefschetz 4-manifold with
non-Lefschetz finite covering space. In [16, Example 3.4], Lin showed the existence of
Lefschetz 4-manifolds with non-Lefschetz finite covering space. M

1

is a simpler and
more constructive example.

ACKNOWLEDGEMENTS. The author would like to express his gratitude to
Toshitake Kohno for helpful suggestions and stimulating discussions. He would also
like to thank Katsuhiko Kuribayashi and Keizo Hasegawa for their active interests in this
paper. This research is supported by JSPS Research Fellowships for Young Scientists.



FORMALITY HARD LEFSCHETZ PROPERTY 455

References

[1] D. Arapura: Kähler solvmanifolds, Int. Math. Res. Not. (2004), 131–137.
[2] L. Auslander:An exposition of the structure of solvmanifolds, I, Algebraic theory, Bull. Amer.

Math. Soc.79 (1973), 227–261.
[3] O. Baues: Infra-solvmanifolds and rigidity of subgroups in solvablelinear algebraic groups,

Topology 43 (2004), 903–924.
[4] O. Baues and V. Cortés:Aspherical Kähler manifolds with solvable fundamental group, Geom.

Dedicata122 (2006), 215–229.
[5] C. Benson and C.S. Gordon:Kähler and symplectic structures on nilmanifolds, Topology 27

(1988), 513–518.
[6] C. Bock: On Low-dimensional solvmanifolds, preprint arXiv:0903.2926 (2009).
[7] A. Borel: Linear Algebraic Groups, second edition, Springer, New York, 1991.
[8] D. Burde, K. Dekimpe and K. Vercammen:Complete LR-structures on solvable Lie algebras,

J. Group Theory13 (2010), 703–719.
[9] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan,Real homotopy theory of Kähler manifolds,

Invent. Math.29 (1975), 245–274.
[10] M. Fernández and A. Gray:Compact symplectic solvmanifolds not admitting complex struc-

tures, Geom. Dedicata34 (1990), 295–299.
[11] K. Hasegawa:Minimal models of nilmanifolds, Proc. Amer. Math. Soc.106 (1989), 65–71.
[12] K. Hasegawa:A note on compact solvmanifolds with Kähler structures, Osaka J. Math.43

(2006), 131–135.
[13] K. Hasegawa:Small deformations and non-left-invariant complex structures on six-dimensional

compact solvmanifolds, Differential Geom. Appl.28 (2010), 220–227.
[14] A. Hattori: Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ.

Tokyo Sect. I8 (1960), 289–331.
[15] I. Nakamura: Complex parallelisable manifolds and their small deformations, J. Differential

Geometry10 (1975), 85–112.
[16] Y. Lin: Examples of non-Kähler Hamiltonian circle manifolds with the strong Lefschetz prop-

erty, Adv. Math. 208 (2007), 699–709.
[17] K. Oeljeklaus and M. Toma:Non-Kähler compact complex manifolds associated to number

fields, Ann. Inst. Fourier (Grenoble)55 (2005), 161–171.
[18] A.L. Onishchik and E.B. Vinberg: Lie Groups and Lie Algebras, III, Springer, Berlin, 1994.
[19] A.L. Onishchik and E.B. Vinberg: Lie Groups and Lie Algebras, II, Springer, Berlin, 2000.
[20] A. Tralle and J. Oprea: Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math-

ematics1661, Springer, Berlin, 1997.
[21] M.S. Raghunathan: Discrete Subgroups of Lie Groups, Springer, New York, 1972.
[22] B.E. Reed:Representations of solvable Lie algebras, Michigan Math. J.16 (1969), 227–233.
[23] P. Scott:The geometries of3-manifolds, Bull. London Math. Soc.15 (1983), 401–487.

Department of Mathematics
Tokyo Institute of Technology
O-okayama, Meguro, Tokyo
Japan
e-mail: khsc@ms.u-tokyo.ac.jp
e-mail: kasuya@math.titech.ac.jp


