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Abstract
For a Lie groupG = R" x, R™ with the semi-simple actiog: R" — Aut(R™),
we show that ifl" is a finite extension of a lattice o& then K(T', 1) is formal.
Moreover we show that a compact symplectic aspherical minifath the funda-
mental groupl” satisfies the hard Lefschetz property. By those results we miany
examples of formal solvmanifolds satisfying the hard L&tz property but not ad-
mitting Kahler structures.

1. Introduction

Formal spaces (see Definition 5.3) in the sense of Sullivannaportant in de Rham
homotopy theory. Well-known examples of formal spaces arapact Kéhler manifolds
(see [9]). Suppos¢E is a torsion-free finitely generated nilpotent group. The(T", 1)
is formal if and only ifT" is abelian by Hasegawa’s theorem in [11]. But in c&ses
a virtually polycyclic (see Definition 2.1) group, the forlitya of K(T", 1) is more com-
plicated. One of the purposes of this paper is to apply the efahe algebraic hull of
" to study the formality ofK (", 1). For a torsion-free virtually polycyclic group, we
have a unique algebraic grodfy- with an injective homomorphisny: I' — Hr so that:

(1) ¥ () is Zariski-dense irHr.

(2) The centralizerZy,.(U(Hr)) of U(Hr) is contained inU(Hr).

(3) dimU(Hr) = rankT".

SuchHr is called the algebraic hull df'. We call the unipotent radical dfir the uni-
potent hull ofI" and denote it byUr. In [3], Baues constructed a compact aspherical
manifold My with the fundamental group’ which is called the standarf-manifold

by the algebraic hull of". And he gave the way of computation of the de Rham co-
homology of Mr. By using these results, we prove:

Proposition 1.1. If the unipotent hullUr of I' is abelian K(I", 1) is formal.

So we would like to know criteria fodr to be abelian. We prove the following theorem.
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Theorem 1.2. LetT be a torsion-free virtually polycyclic group. Then the éol-
ing two conditions are equivalent
(1) Ur is abelian.
(2) T is a finite extension group of a lattice of a Lie group=6R" x4 R™ such that
the actiong: R" — Aut(R™) is semi-simple.

Therefore we have:

Corollary 1.3. If I satisfies the condition2) in Theorem 1.2,then K(I', 1)
is formal.

REMARK 1. A latticel’ of G = R"x,R™ is the formI" x, I'” such thatl” and
I'” are lattices ofR" andR™ respectively and the actiop of I’ preserved™”.

As well as formality the hard Lefschetz property (see D&btinit5.5) is an import-
ant property of a compact Kéahler manifold. We have the folhmyproposition.

Proposition 1.4. Let M be a compact symplectic aspherical manifold with the
torsion-free virtually polycyclic fundamental grodip If the unipotent hullJr is abelian
then M satisfies the hard Lefschetz property.

Hence we have:

Corollary 1.5. If T satisfies the condition(2) in Theorem 1.2,then a com-
pact symplectic aspherical manifold with the fundamentalug I' satisfies the hard
Lefschetz property.

In [5], Benson and Gordon showed that a compact symplecibeagal manifold
with the torsion-free nilpotent fundamental grolipsatisfies the hard Lefschetz prop-
erty if and only if " is abelian.

As we see in [11] and [5], formality and the hard Lefschetzperty are strong
criteria for aspherical manifolds to admit Kéhler struetur But by the results of this
paper, we can obtain many non-Kahler formal aspherical folasi satisfying the hard
Lefschetz property.

Let M be a compact aspherical manifold with the virtually polyyéundamental
group. In [4], Baues and Cortés showed thatvif admits a Kahler structure then the
fundamental group oM is virtually abelian (this result is an extension of the tesu
in [1] and [12]). LetG be a simply connected solvable Lie group. We say tBais
of type (I) if for any g € G all eigenvalues of the adjoint operator Atlave absolute
value 1. In [2] it was proved that a lattice of a simply coneectsolvable Lie group
G is virtually nilpotent if and only ifG is type (I). Hence we have:
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Corollary 1.6. LetT" be a finite extension group of a lattice of a Lie group=G
R"x4,R™ such that the actio: R" — Aut(R™) is semi-simple and G is not of ty|(g.
Then a compact aspherical manifold M with the fundamentaugiT is formal but
admits no Kahler structure. If M admits a symplectic stroetithen M satisfies the
hard Lefschetz property.

REMARK 2. In[12], Hasegawa showed that a simply connected sol\dablgroup
G with a virtually abelian lattice such th&/I" admits Kahler structure can be written
asG = R* x,, C' such that

o)z, ..., 2) = (eﬁ"lltl z, ..., eﬁ""‘lz.),
where eacteY-%' is a root of unity.

Solvmanifolds are homogeneous spaces of connected selvebyroups. These are
examples of aspherical manifolds with the polycyclic fumdstal groups. In particular
for a simply connected solvable Lie group with a latticeT", the solvmanifoldG/T"
is a compact aspherical manifold with the fundamental grbupAs generalizations of
solvmanifolds we define infra-solvmanifolds. L&tbe a simply connected solvable Lie
group. Consider the group A@( x G of affine transformations o6& and the projec-
tion p: Aut(G) x G — Aut(G). An infra-solvmanifold is a manifold of the forr®s/A
for a torsion-free subgroup of Aut(G) x G such thatp(A) is contained in a com-
pact subgroup of Au@). In [3] Baues showed that every compact infra-solvmadifol
is diffeomorphic to a standarti-manifold and for any torsion-free virtually polycyclic
group I' the standard™-manifold is diffeomorphic to an infra-solvmanifol@/I" such
that " C Aut(G) x G is a discrete subgroup anp(I") is finite. Thus for anyl" satis-
fying the condition (2) in Theorem 1.2 we have a compact wsfslymanifoldG/I" for
someG = R" x4, R™ such that the actiop: R" — Aut(R™) is semi-simple.

Notations and terminologyLet k be a subfield oC. A groupG is calledk-algebraic
group if G is a Zariski-closed subgroup &L,(C) which is defined by polynomials with
coefficients ink. Let G(k) denote the set dé-points of G andU(G) the maximal Zariski-
closed unipotent normai-subgroup ofG called the unipotent radical d&. A general
reference is [7]. In this paper, algebraic groups are alwaytten in the bold face.

2. Algebraic hulls

In this section we explain the algebraic hulls of polycydioups or simply con-
nected solvable Lie groups.

DEFINITION 2.1. A groupl is polycyclicif it admits a sequence

Fr=TroD>lr1>---D>Tx ={e}
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of subgroups such that ea€h is normal inI'i_; andTi_,/T’ is cyclic. We set rank =
Z:j rankT;_1/T; which is independent of the choice of a sequehce

There are close relations between polycyclic groups anebabld Lie groups.

Theorem 2.2 ([21, Proposition 3.7, Theorem 4.28])Let G be a simply connected
solvable Lie group and" a lattice in G. Ther" is torsion-free polycyclic andim G =
rankI". Conversely every polycyclic group admits a finite indexnmedrsubgroup which
is isomorphic to a lattice in a simply connected solvable drieup.

Let " be a virtually polycyclic group and” be a finite index polycyclic subgroup.
We set rank” = rankI".

DEFINITION 2.3. Letk be a subfieldC. Let I" be a torsion-free virtually poly-
cyclic group (resp. simply connected solvable Lie group)ef ak-algebraic grougHr
is a k-algebraic hullof T if there exists an injective homomorphisth: ' — Hr (k)
and Hr satisfies the following conditions:

(1) () is Zariski-dense irHr.
(2) Zy.(U(Hr)) C U(Hr).
(3) dimU(Hr) = rankD" (resp. diml).

Theorem 2.4([3, Theorem A.1, Corollary A.3], [21, Proposition 4.40,hma 4.41))
Let I" be a torsion-free virtually polycyclic groufresp. simply connected solvable Lie
group). Then there exists @-algebraic (resp.R-algebraig hull of I' and for any sub-
field k € € which containgQ (resp.R) a k-algebraic hull ofl” is unique up to k-algebraic
group isomorphism.

We call the unipotent radical dfir the unipotent hull ofl" and denote it byUr.

Lemma 2.5. Let I' be a torsion-free virtually polycyclic group and a finite
index subgroup of". Lety: I' — Hr be the k-algebraic hull of* and G the Zariski-
closure ofy(A) in Hr. Then the algebraic grou® is the k-algebraic hull ofA and
we haveU, = Ur.

Proof. LetH? be the identity component dfi-. SinceG is a closed finite index
subgroup ofHr, we haveH2 C G. SinceT is virtually polycyclic, H2 is solvable.
Hence we haveJ(Hr) = (Hl‘l)ump = U(G). Since rank™ = rankA, we have

dimU(G) = rankA,
and we have

Zg(U(G)) C Zn (U(Hr)) € U(Hr) = U(G).

Hence the lemma follows. O
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Lemma 2.6 ([21, Proof of Theorem 4.34]) Let G be a simply connected solv-
able Lie group with a latticel’. Lety: G — Hg be theR-algebraic hull of G andH’
the Zariski-closure of/(I") in Hs. ThenH’ is the R-algebraic hull ofI" and we have
Ug = Ur.

3. Cohomology computations of aspherical manifolds with viually torsion-
free polycyclic fundamental groups

Let ' be a torsion-free virtually polycyclic group andy the Q-algebraic hull
of I'. Denote Hr = Hr(R). Let Ur be the unipotent radical oHr and letT be a
maximal reductive subgroup. TheH decomposes as a semi-direct prodltit =
T x Ur. Let u be the Lie algebra ofJr. Since the exponential map exp — Ur
is a diffeomorphismUr is diffeomorphic toR" such thatn = rankI". The splitting
Hr = T x Ur gives rise to the affine actiom: Hr — Aut(Ur) x Ur such thate is an
injective homomorphism.

In [3] Baues constructed a compact aspherical manifld = «(I")\Ur with
m1(Mr) =I'. We call My a standardl"-manifold.

Theorem 3.1([3, Theorem 1.2]) Standard I'-manifold is unique up to diffeo-
morphism.

Let A*(Mr) be the de Rham complex d¥l-. Then A*(Mr) is the set of thel'-

invariant differential formsA*(Ur)" on Ur. Let (/\u*)T be the left-invariant forms on
Ur which are fixed byT. Sincel’ C Hr = T x Ur, we have the inclusion

(Aw)" = AU C AU = A(M)

Theorem 3.2([3, Theorem 1.8]) This inclusion induces a cohomology iso-
morphism.

4. Proof of Theorem 1.2

4.1. The embeddings of solvable Lie algebras in splittableie algebras. The
idea of this subsection is based on [22]. lgte a solvable Lie algebra and =
{X € g | adx is nilpoten}. Thenn is the maximal nilpotent ideal of and called the
nilradical of g.

Lemma 4.1 ([18, p.58]) We have[g, g] C n.
Let D(g) denote the space of the derivations gof By the Jordan decomposition,

we have the decomposition ad= dy + hx such thatdy is a semi-simple operator and
ny is a nilpotent operator.
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Lemma 4.2 ([22, Proposition 3]) We have g, nx € D(g).

Then we have the homomorphisin: g — D(g) such thatf(X) = dx for X € g.
Since kerf =n, we have Inf =~ g/n.

Letg=Imf xgandn={X—dx € g| X € g}. Since agl_g, = adx —dx on g,
adx_q, is a nilpotent operator. S® consists of nilpotent elements.

Proposition 4.3. We have d(n) C n for any X e g, n is a nilpotent ideal ofg
andg =Imf xn.

Proof. By Lie’s theorem, we have a basig, ..., X; of n® C such that agl on
n are represented by upper triangular matrices. Then forXamyg, we have

adx(X1) = ax,1 X1,
ady (X2) = ax 2X2 + bx 12X,

adx (X)) = ax,; Xi + by -1 Xj—1 + -+ - + bx u X1.

We take X|.1,..., Xjom such thatXy, ..., X, Xj11,..., Xi+m iS @ basis ofg ® C. By
Lemma 4.1, we have adX;) € n. Hence we have

adx (Xi+1) = bx 41X + -+« + by 141 X1,

adX(XI+m) = bX,II—&-mxI +---+ bX,]J+mX1-
Then we have

dx(Xi) =ax; X, 1=<i=I,
dx(X)=0, 1+1<i<I+m

Hence we havelx(g) C n and dx(n) C n. This implies f, g] € n. In particular,n
is an ideal ofg. Sincen consists of nilpotent elements, is a nilpotent ideal. By
g={dx+Y—dy| X,Y € g}, we haveg = Imf x n. O

By this proposition, we have the inclusion g — D(n) x n given byi(X) = dx +
X —dx for X € g.

4.2. Constructions of algebraic hulls of simply connectedavable Lie groups.
Let G be a simply connected solvable Lie group andhe Lie algebra ofG. Let N
be the maximal normal nilpotent subgroup @f which corresponds to the nilradical
n of g. Consider the injectiori: g — Imf x n C D(n) x n constructed in the last
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subsection. LetN be the simply connected Lie group which corresponds.tdSince
the Lie algebra of Auf{l) x N is D(i) x i, we have the Lie group homomorphism
| : G — Aut(N) x N induced by the injective homomorphisim g — D(#) x f.

Lemma 4.4. The homomorphism:IG — Aut(N) x N is injective.

Proof. Since the restriction af: g — D(ft) x n on n is injective, the restriction
|: G — Aut(N) x N on N is also injective. LefT; be the subgroup of Aul{) which
corresponds to Irh. We havel : G — T; x N. By Proposition 4.33/n = Imf @ i/n.
So we have the induced mdp G/N — T; x N/N and it is sufficient to show that this
map is injective. Letj: Imf @n/n — ii/n be the projection and: Tf x N/N — N/N
be the homomorphism which correspondsjtoSince the composition

joi(Xmodn) = X—dyxy modn

is surjective, j oi: g/n — f/n is an isomorphism. Sinc&/N and N/N are sim-
ply connected abelian groups,o |: G/N — N/N is also an isomorphism. Hence
| : G/N — T; x N/N is injective. O

A simply connected nilpotent Lie group is considered as & points of a uni-
potentR-algebraic group (see [19, p.43]) by the exponential map heve the unipotent
R-algebraic groupN with N(R) = N. We identify the group Aw(N) of automorphisms
of algebraic groups with Aut) and Auk(N) has theR-algebraic group structure with
Auta(N)(R) = Aut(N). So we have th&®-algebraic group Au(N) x N. By the above
lemma, we have the injectioh: G — Aut(N) x N = Auta(N) x N(R). Let G be the
Zariski-closure ofl (G) in Auta(N) x N.

Lemma 4.5. We haveU(G) = N.

Proof. LetT be the Zariski-closure of; in Aut,(N). ThenG < TxN. SinceG
is connected solvable and consists of semi-simple automorphisms, we heNE&) =
G N N. By this, it is sufficient to show dird(G) = dimN. Let N be the Zariski-
closure of[(N). By I(N) c N, we haveU(G)/N = U(G/N). Thus it is sufficient to
show U(G/N) = G/N. Consider the induced malp: G/N — Ty x N/N as the proof
of Lemma 4.4. The Zariski-closure ¢f{G/N) in T x N/N is G/N. SinceT x N/N is
commutative, the projectioff x N/N — N/N is anR-algebraic group homomorphism.
Since we showed thato|: G/N — N/N is isomorphism In the proof of Lemma 4.4,
the imageJ o 1 (G/N) is Zariski-dense ifN/N. This impliesN/N = U(G/N). Hence
the lemma follows. (]

By this lemma we have the following proposition.
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Proposition 4.6. G is the algebraic hull of G and the Lie algebra of the uni-
potent hullUg is nc.

Proof. We show thaG satisfies the properties of the algebraic hull @f We
have dimJ(G) = dimN = dimG. Let (t,x) € Zg(U(G)) c Aut,Nx N. SinceU(G) =N
and t is a semi-simple automorphism, we hayg) = y for any y € N. So we have
t = idy. We haveZg(U(G)) C U(G). Hence the proposition follows. ]

4.3. Proof of Theorem 1.2. We first prove:

Theorem 4.7. Let G be a simply connected solvable Lie group. ThHens abelian
if and only if G=R" x4 R™ such that the actiog: R" — Aut(R™) is semi-simple.

Proof. Consider the inclusion: g — Imf x n. By the above argument, the Lie
algebra ofUg is n¢. SupposeG = R" x, R™ such that the actiog: R" — AutR™
is semi-simple. It is sufficient to show = {X —dx | X € g} C Imf x g is an abelian
Lie algebra. LetX,Y € g and X = X; + X3, Y = Y; + Y2 be the decompositions
induced by the semi-direct produgt= R" x,, R™. Then we havedx, = 0, dy, = 0,
[X1, Y1] = 0 and [X3, Y2] = 0 by the assumption. Hence we have

[X - an Y — dY] = [Xli Y2] + [XZ! Yl] - dxl(YZ) + le(XZ)'

Since the action,. is semi-simple, we havdy, (Y2) = [ X1, Y2] and dy, (X2) = [Y1, X2].
Therefore we haveX —dx, Y —dy] = 0. This impliesn is abelian.

Conversely we assumdg is abelian. By Proposition 4.6y is abelian. By §,g] C
n, g is two-step solvable. By [8, Lemma 4.1], we have the decoiitipasg = a x g*°
for some nilpotent subalgebra of g where g™ = (¢ for the lower central series
g=g">gt>g?>--- of g. Sincen is abelian, the subspadeX — dx | X € a}
is a abelian subalgebra @f Sincea is nilpotent, the Lie algebréX —dx | X € a} is
identified with a. Hencea is abelian. Finally we show that the action @fon g is
semi-simple. We suppose thatyadn g* is not semi-simple for som& € a. Then the
action of agk—dx on g* is non-trivial. Since we have = {X—dx | X € g} C Imf xn,
we have fi, a] # {0}. This contradictsn is abelian. Hence the action af on g™ is
semi-simple and we have the theorem. ]

Proof of Theorem 1.2. By Theorem 2.2, we have a finite indexgsuip of I'
which is isomorphic to a lattice of some simply connected/anle Lie groupG. By
Lemma 2.5 and 2.6, we hawdr = Ug. Hence by Theorem 4.7 we have the theorem.

O

REMARK 3. A virtually polycyclic groupT" has the maximal nilpotent normal
subgroup called the nilradical df. Since the nilradical of” is contained inUr (see
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[3, Proposition A.7]), ifUr is abelian then the nilradical df is also abelian. But the
converse is not true. Consid& = R x, R* with

€t 0 00

0 e 0 0

o) = 0 0O 1t
0 0 01

Then for somer # 0 G has a latticeZ x, I'” for a lattice I’ of R*. We haveU| =
Ug = C?xU3(C) and it is not abelian. On the other hand the nilradicalofresp.G)
is isomorphic toz* (resp.R%).

5. Formality and hard Lefschetz properties of aspherical maifolds

5.1. Formality. We review the definition of formality and prove Propositiori.1

DerINITION 5.1. Adifferential graded algebrécalled DGA) is a gradet-algebra
A* with the following properties:
(1) A* is graded commutative, i.e.

YyAX = (-1)PIx Ay, xeAP ye Al
(2) There is a differential operatat: A — A of degree one such thatod =0 and
dx Ay) =dxAy+ (=1)Px Ady, xe AP.

Let A and B be DGAs. If a morphism of graded algebga A — B satisfies

dog =¢od, we call p a morphism of DGAs. If a morphism of DGAs induces

a cohomology isomorphism, we call it a quasi-isomorphism.

DEFINITION 5.2. A and B areweakly equivalentf there is a finite diagram
of DGAs

A«<~C, >Cy« ...« C,—>B
such that all the morphisms are quasi-isomorphisms.

Let M be a smooth manifold. The de Rham compki(M) of M is a DGA. The
cohomology algebradd*(M, R) is a DGA withd = 0.

DEFINITION 5.3. A smooth manifoldM is formal if A*(M) and H*(M, R) are
weakly equivalent.
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Proposition 5.4. Let I' be a torsion-free virtually polycyclic group. If the uni-
potent hull U- is abelian the standardl"-manifold M- is formal.

Proof. We use same notations as in Section 3. If khenipotent hull of I' is
abelian, (A u*, d) = (/A u*, 0). By Theorem 3.2, we have the diagram of DGAs

(M) < ((/\ u*)T) — H*(My)

such that the mapA*(Mr) < ((/\ u*)T) is a quasi-isomorphism. Hence the propos-
ition follows. O

Hence we have Proposition 1.1.

5.2. The hard Lefschetz property. We review the definition of the hard Lefschetz
property and prove Proposition 1.4.

DEFINITION 5.5. Let M, w) be a Z-dimensional symplectic manifold. We say
that (M, w) satisfies thehard Lefschetz propertif the linear map

[@"'IA: H((M, R) — H® (M, R)
is an isomorphism for any & i <n.

Proof of Proposition 1.4. As in the proof of Proposition 1We have an iso-
morphism(/\u"‘)T ~ H*(M,R). Consider the cohomology class of a symplectic fesm

on M. We havew € (/\zu*)T which represents the cohomology clasg § H?(M,R).
Sincewy # 0 for 2n = dimu = dimM, g is a symplectic form on the vector space

Since the linear map
o) A /\ui — /\uzn’i
is injective for any 0<i < n by the hard Lefschetz property of a torus, the restriction
W) A (/\ui)T — (/\u2”7i>T
is also injective and so
[@"]A: H'(M, R) > H® (M, R)

is injective and thus it is an isomorphism by the PoincaréliguaHence we have
the proposition. ]
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6. Examples

EXAMPLE 1. LetG =R x4 R? with ¢(t) = (e(f)‘ egt ) Then for somea # 0,

#(1) is conjugate to an element &l,(Z). Hence we have a latticE = Z x Z2. G x

R has a left-invariant symplectic form. In [10] (see also 2By direct computations
Fernandez and Gray showed tf@T" x S' is formal and satisfies the hard Lefschetz
property and admits no Complex structure. This is also a lsirapample for the result
of this paper.

0 e*
plex (/\ g*, d) of the Lie algebra ofG is given by:

EXAMPLE 2. LetG = C x4 C? with ¢(x) = (ex 0 ) Then the cochain com-

g = (X1, X2, Y1, Y2, 71, Z2),
dx; =dx =0,
dyr = —X1 AY1+ X2 AYa, dYo=—X2 AY1— X1 A Yz,

dzr =X AZL—Xo A2y, Az = X1 AZo+ X2 A Z1.

We have an invariant symplectic form = X; A Xo + 23 A Y1 4+ Y2 A Zo. FOr some
p,q € R ¢(pZ + v—19Z) is conjugate to a subgroup &Li(Z) and hence we have a
lattice I' = (pZ + +v/—19Z) x I'” for a latticeI’” of C2 (see [15] and [13]). For any
lattice ', G/T" is complex, symplectic with the hard Lefschetz property &nthal but
not Kahler.

REMARK 4. For a Lie groupG in Example 2, the de Rham cohomology GfT"
depends on a choice of a lattide Under some conditions, the de Rham cohomology
of a solvmanifoldG/T" is isomorphic to the cohomology of Lie algebgaof G (see
[14], [21, Section 7]). But for a general solvmanifo@/I" it is difficult to compute
the de Rham cohomology d&/T". By the results of this paper, for a Lie grop =
R" x4 R™ with the semi-simple actio, we can say thaG/I' is formal and hard
Lefschetz for any lattic& even if an isomorphisnH*(G/T",R) =~ H*(g) fails to hold.

EXAMPLE 3. LetG = R x; R* with

ePtcosqt) —eP'sin(t) 0 0

() = ePlsin(qt) eP!cosqt) 0 0
B 0 0 e Plcos(—qt) —e Psin(—qt)
0 0 e Ptsin(—qt) e P'cos(-qt)

Then for p, g as Example 2¢(1) is conjugate to an element &4(Z) and henceG
has a latticel’ = Z x I'” for a latticeI” of R*. The cochain complex/\(g ® R)*, d)
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of the Lie algebra ofG x R is given by:

(8O R)" = (w, X1, X2, X3, X4, ¥),

dxy = —pw A Xy +qw A Xy, dX = —qw A X3 — Pw A X,

dXg = pw AXg—qw A X4, dX4 =Qqw A X3+ pw A Xa.
We have a left-invariant symplectic form = w Ay + X3 A X3 + X4 A Xo. We regard
w++/—1y, X1 ++/—1Xp, X3++/—1x4 as (1,0)-forms, we obtain a left-invariant complex

structure. By the result of this paper, for any lattice G/T" x St is formal and any
symplectic form onG/T" x S* satisfies the hard Lefschetz property.

REMARK 5. In [6], Bock studies formality and the hard Lefschetz mndyp of
solvmanifolds of dimensiort 6 by direct computations. The cohomology @fI" may
vary for a choice ofl" and Bock does not decide wheth&y/T x St is formal and
satisfies the hard Lefschetz property.

By combining the above examples we obtain:

EXAMPLE 4. LetG = R? x, RZ+4+m+n) gych that

k .
ot t) =P (Cosaltl —Slna.tl)

et sinait; cosa;t;

Pt 0 0 O

~| 0 ed 0 o0
eD| o o er o
i=1
0 0 0 ebt
€St cos@ity) —e%h sin(dity) 0 0
® é et sin(dit,) €%t cos(ity) 0 0
~ 0 0 eG4 cos(-dit,) —e %% sin(—d;ty)
0 0 e Shsin(—dity) e %% cos(-dit,)
€%t cos(fit;) —€8% sin(fity) 0 0
© EJnB eft sin(fity) €% cos(fity) 0 0
~ 0 0 e 8t cos(-fit;) —e U sin(—fity)
0 0 et sin(—fity) e ®hcos( fity)

0B
We supposey; = 2/K; for Kij =2, 3,4, or 6, =rL; for r as Example 1 and

LieZ ¢ =pM, d =qM, & = pN and fi =qN for p,q as Example 2 and
Mi, M/, Ni, N/ € Z. Then each component gf(Z?) for the direct product is conjugate
to a subgroup ofSly(Z) or Sly(Z) and hence we have a lattide = Z? x T for a

We write A@ B = (A 0) for matricesA, B.
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lattice I of R&F4(+m"M_ The cochain compleX/\ g*, d) of the Lie algebra ofG is
given by:

g*z(ulvu21wlv---1w2kyxly---1X4|1yl!"'1y4mvzlv"'1z4n>1
dU1=dU2=O,
dwy 1=auUiAwz, dwy=-auiAwz 1 (1=i=K),

dXpi—1=—bjuiAXa-1, dx=buiaxy (1=i=2),
dysi—3=—CiU1AYsi-3+0iUaAYsi2, dYsi—p=—CiUpAYs-3—CilU1AYsi2,
dysi-1=CUIAYa-1—CiUaAYs, dYs =diUaAYs-1+CUIAYs (L=i=m),
dzj s=—€UiAZj 3+ fiuinzZy o dzj o=—fiU1AZy 3—QUIAZs 2,
dzj_y=6uUiAzZg_1— fiuiAzy, dzg = fiusAzg_1+quinzg (1<i<n).

G has a left-invariant symplectic form

k

2
w = U AUz + Z w1 A Wy + ZXZifl A Xoi
i=1 i=1

m n
+ Z(yAi—S A Yai—1 + Yai A Yai—2) + Z(Zzu—s A Zgi—1 + Za A Zgi—p).
i=1 i=1

Regarding

uz + v—1up,

w1+ V—=1wy (1 <i <k),

Xai 34+ V=1Ix4q 1, X4 o+ vV—Ixg (@ <i <),
Ya 1+ v-1ys (L<i<2m),

Zoi_1+vV—=1zz (1<i<2n)

as (1, 0)-forms, we have a left-invariant complex structomeG. By the results of this
paper, for any latticd™ of G, G/I" is formal and satisfies the hard Lefschetz property
but admits no Kahler structure.

ExAMPLE 5 (Oeljeklaus—Toma manifolds). We apply the result of théper to
non-Kahler complex manifolds constructed by Oeljeklaud @aoma in [17]. LetK be
a finite extension field ofQ with the degrees + 2t for positive integerss, t. Suppose
K admits embeddingssy, ..., s, 0541, ..., 0512t iNt0 C such thatoy, ..., o5 are real
embeddings ands,1,...,0s.2 are complex ones satisfying,; = gs,jt for 1 <i <
t. We can choose&K admitting such embeddings (see [17]). Den@le the ring of



452 H. KAsSuYA
algebraic integers oK, Oy the group of units inOx and

Ot ={aeOg:0i>0forall 1<i <s}.
Definel: Ox* — RS*! by

I(@) = (loglo1(a)l, . - -, loglos(a)l, 2 loglos;a(a)], - - ., 2logos+(a)])

for a € Oy*. Then by Dirichlet's units theorem(O}") is a lattice in the vector space
L = {x e RS*' | 3711 x; = 0}. For the projectionp: L — R® given by the firsts
coordinate functions. Then we have a subgraupwith the ranks of 0" such that
p(l(V)) is a lattice inRS. We have the action off x Ok on H® x C! such that

@b)-xe+v=1y;, ..., X+ vV-1y,21,..., %)
= (o1(@)xq + o1(b) + vV —=1o1(a)y1, - . ., os(A)Xs + os(b) + v —1os(a)ys,
0s+1(8)21 + 0511(D), . . ., os1(@)Z + 0541(D)).
In [17] it is proved that the quotienk(K,U) = HSx C'/U x Ok is compact. We call
this complex manifold a Oeljeklaus—Toma (OT) manifold w{fht). By this construc-

tion we give solvmanifold-presentatioid/I" of OT-manifolds with §,t). We consider
p(l(U)) x4 (RS x C') with

oty ..., ts)

Ostt © ‘Tfl(etl)

for (t1,...,ts) € p(I(V)). Then for some latticé™” of RSxC!, we havep(l(U))x, [ =
UxOk. Sincep(l(U)) is a lattice ofR®, we have an extension gf on RS andU x O
can be seen as a lattice BF x, (R® x C'). Thus OT-manifolds are formal complex
solvmanifolds not admitting Kéhler structure.

REMARK 6. Fort = 1, OT-manifolds X(K, U) admit LCK (locally conformal
Kahler) structures.

REMARK 7. We call X(K, U) simple type if the action ofJ on O admits no
proper non-trivial submodule of lower rank. X(K, U) is simple type, then in [17] it
is proved that the second Betti numbelbjs= s(s—1)/2. Then the second cohomology
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H2(X(K,U),R) is spanned by[dt Adt;j]}1<i-j=s and hence simple type OT-manifolds
admit no symplectic structure.

ExAMPLE 6. Infra-solvmanifolds appear in study of geometries of &aifolds.
See [23] for the general theory of geometries of 3-manifoldscompact aspherical
3-manifold M with the virtually solvable fundamental group admits a ofiehe three
geometriesE®, Nil, Soli.e. M is diffeomorphic toG/I" such thatG is RS2, Us(R) or
R x, R? as an Example 1 with a left-invariant metric aidc C x G is a lattice for
the groupC of isometric automorphisms db. In the E3 case,I" is virtually abelian
by Bieberbach'’s first theorem. In tHgol case,C is finite (see [23]). Hence a compact
3-manifold M admitting the geometrfe® or Sol is formal.

7. Remarks

In this section we give an example of a formal standBrthanifold with the hard
Lefschetz property such thatr is not abelian. In addition this is also an example of
formal manifold satisfying the hard Lefschetz propertytsuiat it is finitely covered
by a non-formal manifold not satisfying the hard Lefschetoperty. We notice that
compact manifolds finitely covered by non-Kéhler manifolde not Kéahler.

Let I' = Z x4 Z? such that fort € Z

(D (-
¢(t)—( o )

Lemma 7.1. The algebraic hull ofl" is given byHr = {£1} x U3(C) such that

Proof. We have the inclusion

1 x z
I~ ((—1)", (O 1 y)) C {#£1} x U3(C).
0 0 1

ThenT is Zariski-dense i{£1} x U3(C) and rank™ = 3 = dimU3(C). Since the action
of {£1} on U3(C) is faithful, the centralizer ofJ3(C) is contained inU3(C). Hence
the lemma follows. (]

We haveHr(R) = {+1} x Ur such thatUr = U3(R). Let u be the Lie algebra of
Ur. We haveu = (X3, X2, X3) such that the bracket is given by

[X1, Xo] = —[X2, X1] = Xs.
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The {£1}-action onu is given by
(-1)- Xy = X1, (-1)- X ==X, i=2,3.

Let X1, X2, X3 be the basis ofu* which is dual to X1, X5, X3. Then the DGA
(/\ u*){il} is the subalgebra of\ u* generated by{x;, xo A X3} and the derivation on

(A u*)[il] is trivial. Let Mr be the standard’-manifold. Then by Theorem 3.2, we
have the quasi—isomorphis(rf\u*){ﬂ} — A*(Mr). Since the derivation on@/\u*){il}
is trivial, we have the isomorphisrfy\ u*){ﬂ} ~ H*(M). Hence we have:

Proposition 7.2. Mr is formal.
REMARK 8. SinceUr is not abelian, the converse of Proposition 5.4 is not true.

REMARK 9. We have the finite index subgrougZ & Z? which is nilpotent. So
I is virtually nilpotent but not virtually abelian. By the s of [11], K(2Z x Z?, 1)
is not formal. But for the finite extension group K(T', 1) is formal.

REMARK 10. Since{+1} acts isometrically oiJr with the invariant metricMr
admits theNil geometry. So we have a formal 3-dimensional compact mahddmit-
ting the Nil geometry.

Let A =T xZ. Then we haveH, = Hr xR andU, = Ur xR. As above we have
the quasi-isomorphism inclusi({d\u*){ﬂ}@/\(y) C A*(M,). Letw = X3 AY+Xa AXa.
Then w is a symplectic form orMl,. Since HY(My, R) = (x1, y) and H3(M4, R) =
(X1 A X2 A X3, X2 A X3 A'Y), the linear map g]A: HY(M,, R) — H3(M4, R) is an
isomorphism and hence we have the following proposition.

Proposition 7.3. Mr x St satisfies the hard Lefschetz property.

REMARK 11. A is a finite extension group of the non-abelian nilpotent grou
27 x Z? x Z as Remark 9. By the result of [5], a compd€(2Z x Z? x Z, 1)-manifold
is not a Lefschetz 4-manifold. Thusl, is a example of a Lefschetz 4-manifold with
non-Lefschetz finite covering space. In [16, Example 3.4}, ¢howed the existence of
Lefschetz 4-manifolds with non-Lefschetz finite coverimpse. M, is a simpler and
more constructive example.
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