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Abstract
For each closed oriented 3-manifoldM in Thurston’s picture, the set of degrees

of self-maps onM is given.
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1. Introduction

1.1. Background. Each closed orientedn-manifold M is naturally associated
with a set of integers, the degrees of all self-maps onM, denoted asD(M)D {deg(f ) j
f W M ! M}.

Indeed the calculation ofD(M) is a classical topic appeared in many literatures.
The result is simple and well-known for dimensionnD 1,2. For dimensionn> 3, there
are many interesting special results (See [3], [10], [15] for recent ones and references
therein), but it is difficult to get general results, since there are no classification results
for manifolds of dimensionn > 3.

The case of dimension 3 becomes attractive in the topic and itis possible to cal-
culate D(M) for any closed oriented 3-manifoldM. Since Thurston’s geometrization
conjecture, which seems to be confirmed, implies that closedoriented 3-manifolds can
be classified in a reasonable sense.

2000 Mathematics Subject Classification. 55M25, 57M10.
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Thurston’s geometrization conjecture claims that the eachJaco-Shalen-Johanson de-
composition piece of a prime 3-manifold supports one of the eight geometries, which

are H3, ePSL(2, R), H2 � E1, Sol, Nil, E3, S3 and S2 � E1 (for details see [24] and
[20]). Call a closed orientable 3-manifoldM is geometrizableif each prime factor of
M meets Thurston’s geometrization conjecture. All 3-manifolds discussed in this paper
are geometrizable.

The following result is known in early 1990’s:

Theorem 1.0. Suppose M is a geometrizable3-manifold. Then M admits a self-
map of degree larger than1 if and only if M is either
(a) covered by a torus bundle over the circle, or
(b) covered by F� S1 for some compact surface F with�(F) < 0, or
(c) each prime factor of M is covered by S3 or S2 � E1.

Hence for any 3-manifoldM not listed in (a)–(c) of Theorem 1.0,D(M) is ei-
ther {0, 1,�1} or {0, 1}, which depends on whetherM admits a self map of degree�1 or not. To determineD(M) for geometrizable 3-manifolds listed in (a)–(c) of The-
orem 1.0, let’s have a close look of them.

For short, we often call a 3-manifold supporting Nil geometry a Nil 3-manifold,
and so on. Among Thurston’s eight geometries, six of them belong to the list (a)–(c)
in Theorem 1.0. 3-manifolds in (a) are exactly those supporting either E3, or Sol
or Nil geometries. E3 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds are
torus bundle or semi-bundles; Nil 3-manifolds which are nottorus bundles or semi-
bundles are Seifert fibered spaces having Euclidean orbifolds with three singular points.
3-manifolds in (b) are exactly those supportingH2 � E1 geometry; 3-manifolds sup-
porting S3 or S2 � E1 geometries form a proper subset of (3). Now we divide all
3-manifolds in the list (a)–(c) in Theorem 1.0 into the following five classes:
Class 1.M supporting eitherS3 or S2 � E1 geometries;
Class 2. each prime factor ofM supporting eitherS3 or S2� E1 geometries, butM is
not in Class 1;
Class 3. torus bundles and torus semi-bundles;
Class 4. Nil 3-manifolds not in Class 3;
Class 5.M supportingH2 � E1 geometry.

D(M) is known recently forM in Class 1 and Class 3. We will calculateD(M)
for M in the remaining three classes. For the convenience of the readers, we will
presentD(M) for M in all those five classes. To do this, we need first to coordinate
3-manifolds in each class, then state the results ofD(M) in term of those coordinates.
This is carried in the next subsection.
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1.2. Main results.

Class 1. According to [13] or [20], the fundamental group of a 3-manifold sup-
porting S3-geometry is among the following eight types:Zp, D�

4n, T�
24, O�

48, I �120, T 0
8�3q ,

D0
n0 �2q and Zm � �1(N), where N is a 3-manifold supportingS3-geometry,�1(N) be-

longs to the previous seven ones, andj�1(N)j is coprime tom. The cyclic groupZp

is realized by lens spaceL(p, q), each group in the remaining types is realized by a
unique 3-manifold supportingS3-geometry. Note also the sub-indices of those seven
types groups are exactly their orders, and the order of the groups in the last type is
mj�1(N)j. There are only two closed orientable 3-manifolds supporting S2�E1 geom-
etry: S2 � S1 and RP3 # RP3.

Theorem 1.1. (1) D(M) for M supporting S3-geometry are listed below:

�1(M) D(M)Zp {k2 j k 2 Z} C pZ
D�

4n {h2 j h 2 ZI 2 ­ h or hD nor hD 0} C 4nZ
T�

24 {0, 1, 16} C 24Z
O�

48 {0, 1, 25} C 48Z
I �120 {0, 1, 49} C 120Z
T 0

8�3q

�
{k2 � (32q�2p � 3q) j 3 ­ k, q � p > 0} C 8 � 3qZ (2 j q),
{k2 � (32q�2p � 3qC1) j 3 ­ k, q � p > 0} C 8 � 3qZ (2 ­ q)

D0
n0 �2q

{k2 � [1 � (n0)2q�1] i � [1 � 2(2p�q)(n0�1)] j j i , j , k, p 2 Z,
q � p > 0} C n02qZ

Zm � �1(N)

�
d 2 Z ���� d D hC j�1(N)jZ, h 2 D(N),

d D k2 CmZ, k 2 Z
�

(2) D(S2 � S1) D D(RP3 # RP3) D Z.

Class 2. We assume that each 3-manifoldP supportingS3-geometry has the ca-
nonical orientation induced from the canonical orientation on S3. When we change the
orientation of P, the new oriented 3-manifold is denoted byNP. Moreover, lens space
L(p, q) is orientation reversed homeomorphic toL(p, p� q), so we can write all the
lens spaces connected summands asL(p, q). Now we can decompose each 3-manifold
in Class 2 as

M D (mS2 � S1) # (m1P1 # n1 NP1) # � � � # (msPs # ns NPs)

# (L(p1, q1,1) # � � � # L(p1, q1,r1)) # � � � # (L(pt , qt,1) # � � � # L(pt , qt,r t )),

where all thePi are 3-manifolds with finite fundamental group different from lens spaces,
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all the Pi are different from each other, and all the positive integerpi are different from
each other. Define

Diso(M) D {deg(f ) j f W M ! M, f induces an isomorphism on�1(M)}.

Theorem 1.2. (1) D(M) D Diso(m1P1 # n1 NP1) \ � � � \ Diso(msPs # ns NPs) \
Diso(L(p1, q1,1) # � � � # L(p1, q1,r1)) \ � � � \ Diso(L(pt , qt,1) # � � � # L(pt , qt,r t ));

(2) Diso(m P# n NP) D �
Diso(P) if m ¤ n,
Diso(P) [ (�Diso(P)) if m D nI

(3) Diso(L(p, q1) # � � � # L(p, qn)) D H�1(C).

The notionsH and C in Theorem 1.2 (3) is defined as below:
Let Up D {all units in ringZp}, U2

p D {a2 j a 2 Up}, which is a subgroup ofUp.

We consider the quotientUp=U2
p D {a1, : : : , am}, everyai corresponds with a cosetAi

of U2
p. For the structure ofUp, see [9] p. 44. DefineH to be the natural projection

from {n 2 Z j gcd(n, p) D 1} to Up=U2
p.

Define NAs D {L(p, qi ) j qi 2 As} (with repetition allowed). InUp=U2
p, define Bl D

{as j # NAs D l } for l D 1, 2, : : :, there are only finitely manyl such thatBl ¤ ;. Let
Cl D {a 2 Up=U2

p j ai a 2 Bl , 8ai 2 Bl } if Bl ¤ ; and Cl D Up=U2
p otherwise. Define

C DT1
lD1 Cl .

Class 3. To simplify notions, for a diffeomorphism� on torusT , we also use�
to present its isotopy class and its induced 2 by 2 matrix on�1(T) for a given basis.

A torus bundleis M� D T � I =(x, 1)� (�(x), 0) where� is a diffeomorphism of
the torusT and I is the interval [0, 1]. Then the coordinates ofM� is given as below:
(1) M� admits E3 geometry,� conjugates to a matrix of finite ordern, where n 2
{1, 2, 3, 4, 6};

(2) M� admits Nil geometry,� conjugates to�� 1 n
0 1

�
, wheren ¤ 0;

(3) M� admits Sol geometry,� conjugates to
�

a b
c d

�
, wherejaCdj > 2, ad�bcD 1.

A torus semi-bundle N� D N [� N is obtained by gluing two copies ofN along
their torus boundary�N via a diffeomorphism�, whereN is the twistedI -bundle over
the Klein bottle. We have the double coveringp W S1 � S1 � I ! N D S1 � S1 � I =� ,
where� is an involution such that� (x, y, z) D (x C � , �y, 1� z).

Denote byl0 and l1 on �N be the images of the secondS1 factor and firstS1 fac-
tor on S1�S1�{1}. A canonical coordinateis an orientation ofl0 and l1, hence there
are four choices of canonical coordinate on�N. Once canonical coordinates on each�N are chosen,� is identified with an element

�
a b
c d

�
of GL2(Z) given by�(l0, l1)D

(l0, l1)
�

a b
c d

�
.
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With suitable choice of canonical coordinates of�N, N� has coordinates as below:

(1) N� admits E3 geometry,� D �
1 0
0 1

�
or
�

0 1
1 0

�
;

(2) N� admits Nil geometry,� D �
1 0
z 1

�
,
�

0 1
1 z

�
or
�

1 z
0 1

�
, wherez¤ 0;

(3) N� admits Sol geometry,� D �
a b
c d

�
, whereabcd¤ 0, ad� bcD 1.

Theorem 1.3. D(M�) is in the table below for torus bundle M� , where Æ(3) DÆ(6)D 1, Æ(4)D 0.

M� � D(M�)
E3 finite order kD 1, 2 Z
E3 finite order kD 3, 4, 6 {(kt C 1)(p2 � Æ(k)pqC q2) j t, p, q 2 Z}

Nil � �
1 0
n 1

�
, n ¤ 0 {l 2 j l 2 Z}

Sol
�

a b
c d

�
, jaC dj > 2

{p2 C (d � a)pr=c� br2=c j p, r 2 Z,
either br=c, (d � a)r =c 2 Z or (p(d � a) � br )=c 2 Z}

(2) D(N�) is listed in the table below for torus semi-bundle N� , where Æ(a, d) D
ad=gcd(a, d)2.

N� � D(N�)

E3
�

1 0
0 1

� Z
E3

�
0 1
1 0

�
{2l C1 j l 2Z}

Nil
�

1 0
z 1

�
, z¤0 {l 2 j l 2Z}

Nil
�

0 1
1 z

�
or
�

1 z
0 1

�
, z¤0 {(2l C1)2 j l 2Z}

Sol
�

a b
c d

�
, abcd¤0, ad�bcD1

{(2l C1)2 j l 2Z}, if Æ(a, d) is even or
{(2l C1)2 j l 2Z}[ {(2l C1)2 � Æ(a, d) j l 2Z},
if Æ(a, d) is odd

To coordinate 3-manifolds in Class 4 and Class 5, we first recall the well known
coordinates of Seifert fibered spaces.

Suppose an oriented 3-manifoldM 0 is a circle bundle with a given sectionF ,
where F is a compact surface with boundary componentsc1, : : : , cn with n > 0. On
each boundary component ofM 0, orient ci and the circle fiberhi so that the product
of their orientations match with the induced orientation ofM 0 (call such pairs{(ci , hi )}
a section-fiber coordinate system). Now attachn solid tori Si to the n boundary tori
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of M 0 such that the meridian ofSi is identified with sloper i D c�i
i h�i

i where�i > 0,
(�i ,�i ) D 1. Denote the resulting manifold byM(�gI �1=�1, : : : ,�s=�s) which has the
Seifert fiber structure extended from the circle bundle structure of M 0, whereg is the
genus of the sectionF of M, with the signC if F is orientable and� if F is non-
orientable, here ‘genus’ of nonorientable surfaces means the number ofRP2 connected
summands. Calle(M) DPs

iD1 �i =�i 2 Q the Euler number of the Seifert fiberation.

Class 4. If a Nil manifold M is not a torus bundle or torus semi-bundle, then
M has one of the following Seifert fibreing structures:M(0I �1=2, �2=3, �3=6),
M(0I �1=3, �2=3, �3=3), or M(0I �1=2, �2=4, �3=4), wheree(M) 2 Q � {0}.

Theorem 1.4. For 3-manifold M in Class 4,we have
(1) D(M(0I �1=2, �2=3, �3=6))D {l 2 j l D m2 CmnC n2, l � 1 mod 6, m, n 2 Z};
(2) D(M(0I �1=3, �2=3, �3=3))D {l 2 j l D m2 CmnC n2, l � 1 mod 3, m, n 2 Z};
(3) D(M(0I �1=2, �2=4, �3=4))D {l 2 j l D m2 C n2, l � 1 mod 4, m, n 2 Z}.

Class 5. All manifolds supportingH2 � E1 geometry are Seifert fibered spaces
M such thate(M) D 0 and the Euler characteristic of the orbifold�(OM ) < 0.

SupposeM D (gI �1,1=�1, : : : , �1,m1=�1, : : : , �n,1=�n, : : : , �n,mn=�n), where all the
integers�i > 1 are different from each other, and

Pn
iD1

Pmi
jD1 �i , j =�i D 0.

For each�i and eacha 2 U�i , define�a(�i )D #{�i , j j pi (�i , j )D a} (with repetition
allowed), pi is the natural projection from{n j gcd(n,�i ) D 1} to U�i . Define Bl (�i ) D
{a j �a(�i )D l } for l D 1,2,: : : , there are only finitely manyl such thatBl (�i )¤ ;. Let
Cl (�i )D {b 2 U�i j ab2 Bl (�i ), 8a 2 Bl (�i )} if Bl (�i )¤ ; andCl (�i )D U�i otherwise.
Finally defineC(�i ) DT1

lD1 Cl (�i ), and NC(�i ) D p�1
i (C(�i )).

Theorem 1.5. D(M(gI �1,1=�1,:::,�1,m1=�1,:::,�n,1=�n,:::,�n,mn=�n))DTn
iD1

NC(�i ).

1.3. A brief comment of the topic and organization of the paper. Theorem 1.0
was appeared in [25]. The proof of the “only if ” part in Theorem 1.0 is based on the
results on simplicial volume developed by Gromov, Thurstonand Soma (see [21]), and
various classical results by others on 3-manifold topologyand group theory ([5], [19],
[17]). The proof of “if ” part in Theorem 1.0 is a sequence elementary constructions, which
were essentially known before, for example see [6] and [11] for (3). That graph manifolds
admits no self-maps of degrees> 1 also follows from a recent work [2].

The table in Theorem 1.1 is quoted from [1], which generalizes the earlier work
[7]. The statement below quoted from [7] will be repeatedly used in this paper.

Proposition 1.6. For 3-manifold M supporting S3 geometry,

Diso(M) D {k2 C l j�1(M)j, where k andj�1(M)j are co-prime}.
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The topic of mapping degrees between (and to) 3-manifolds covered by S3 has
been discussed for long times and has many relations with other topics (see [26] for
details). We just mention several papers: in very old papers[16] and [14], the degrees
of maps between any given pairs of lens spaces are obtained byusing equivalent maps
between spheres; in [8],D(M, L(p,q)) can be computed for any 3-manifoldM; and in
a recent one [12], an algorithm (or formula) is given to the degrees of maps between
given pairs of 3-manifolds covered byS3 in term of their Seifert invariants.

Theorem 1.3 is proved in [23].
Theorems 1.2, 1.4 and 1.5 will be proved in Sections 3, 4 and 5 respectively in

this paper. In Section 2 we will computeD(M) for some concrete 3-manifolds using
Theorems 1–5. We will also discuss when�1 2 D(M) and when�1 2 D(M) implies
that M admits orientation reversing homeomorphisms.

All terminologies not defined are standard, see [5], [20] and[9].

2. Examples of computation, orientation reversing homeomorphisms

EXAMPLE 2.1. Let M D (P # NP) # (L(7, 1) #L(7, 2) # 2L(7, 3)), whereP is the
Poincare homology three sphere.

By Theorem 1.2 (2), Proposition 1.6 and the factj�1(P)j D 120, we haveD(P #NP) D Diso(P) [ (�Diso(P)) D {120nC i j n 2 Z, i D 1, 49, 71, 119}.
Now we are going to calculateD((L(7, 1)#L(7, 2)#2L(7, 3)) following the notions

of Theorem 1.2 (3). ClearlyU7 D {1, 2, 3, 4, 5, 6} and U2
7 D {1, 2, 4}. ThenU7=U2

7 D
{a1, a2}, where a1 D N1 and a2 D N3; U7 D {A1 [ A2}, where A1 D U2

7 , A2 D 3U2
7 ;

# NA1 D 2 and #NA2 D 2; B2 D {N1, N3}, Bl D ; for l ¤ 2. SinceU7=U2
7 D B2, we have

C2 D B2 and alsoCl D U7=U2
7 for l ¤ 2; then C D T1

lD1 Cl D U7=U2
7 . Then for

the natural projectionH W {n 2 Z j gcd(n, p) D 1} ! U7=U2
7 , H�1(C) are all number

coprime to 7, hence we haveDiso((L(7, 1) #L(7, 2) # 2L(7, 3))D {l 2 Z j gcd(l , 7)D 1}

by Theorem 1.2 (3).
Finally by Theorem 1.2 (1), we haveD(M)D {120nCi j n 2 Z, i D 1,49,71,119}\

{l 2 Z j gcd(l ,7)D 1} D {840nC i j n 2 Z, i D 1,71,121,169,191,239,241,289,311,359,
361, 409, 431, 479, 481, 529, 551, 599, 601, 649, 671, 719, 769, 839}. Note�1 2 D(M).

EXAMPLE 2.2. SupposeM D (2P # NP) # (L(7, 1) #L(7, 2) #L(7, 3)).
Similarly by Theorem 1.2 (2), Proposition 1.6 andj�1(P)j D 120, we have

D(2P # NP) D Diso(P) D {120nC i j n 2 Z, i D 1, 49}.
To calculateD(L(7, 1) # L(7, 2) # L(7, 3)), we haveU7, U2

7 , U7=U2
7 D {a1, a2},

U7 D {A1, A2} exactly as last example. But then #NA1 D 2 and #NA2 D 1; B1 D {N3},
B2 D {N1}, Bl D ; for l ¤ 1, 2. MoreoverC1 D C2 D {N1}, andCl D U7=U2

7 for l ¤ 1, 2;
then C DT1

lD1 Cl D {N1}, and H�1(C) D {7nC i j n 2 Z, i D 1, 2, 4}. Hence we have
Diso(#(L(7, 1) #L(7, 2) #L(7, 3))D {7nC i j n 2 Z, i D 1, 2, 4} by Theorem 1.2 (3).

By Theorem 1.2 (1),D(M) D {120nC i j n 2 Z, i D 1, 49}\ {7nC i j n 2 Z, i D
1, 2, 4} D {840nC i j n 2 Z, i D 1, 121, 169, 289, 361, 529}. Note�1 � D(M).
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EXAMPLE 2.3. By Theorem 1.3, for the torus bundleM� , � D �
2 1
1 1

�
, among

the first 20 integers> 0, exactly 1, 4, 5, 9, 11, 16, 19, 202 D(M�).

EXAMPLE 2.4. For Nil 3-manifoldM D M(0I �1=2, �2=3, �3=6), D(M) D {l 2 j
l D m2 C mnC n2, l � 1 mod 6, m, n 2 Z}. The numbers inD(M) smaller than
10000 are exactly 1, 49, 169, 361, 625, 961, 1369, 1849, 2401,3721, 4489, 5329,
6241, 8291, 9409. Since alll D 6k C 1, k 2 N with l 2 � 10000 can be presented as
m2CmnCn2 exceptl D 55, 85 (if 5jm2CmnCn2, then 5j (2mCn)2C3n2, therefore
5 j 2mC n and 5j n, it follows that 25j m2 CmnC n2).

EXAMPLE 2.5. For H2�E1 manifold M D M(2I 1=5,1=5,�2=5,1=7,2=7,�3=7),
we follow the notions in Theorem 1.5 to calculateD(M).

First we haveU5 D {1, 2, 3, 4} with indices�a(5) are{2, 0, 1, 0} respectively. Then
B1(5) D {3}, B2(5) D {1}, Bl (5) D ; for l ¤ 1, 2 andC1(5) D C2(5) D {1}. Hence
C(5)DT1

lD1 Cl (5)D {1}. Hence NC(5)D {5nC 1 j n 2 Z}.
Similarly U7 D {1, 2, 3, 4, 5, 6} with indices�a(7) are{1, 1, 0, 1, 0, 0} respectively.

Then B1(7)D C1(7)D {1, 2, 4}. Bl (7)D ; and Cl (7)D U7 for l ¤ 1. HenceC(7)DT1
lD1 Cl (7)D {1, 2, 4}. NC(7)D {7nC i j n 2 Z, i D 1, 2, 4}.

Finally D(M) D {5nC 1 j n 2 Z} \ {7nC i j n 2 Z, i D 1, 2, 4} D {35nC i j n 2Z, i D 1, 11, 16}.

EXAMPLE 2.6. SupposeM is a 3-manifold supportingS3 geometry. By Prop-
osition 1.6, M admits degree�1 self mapping if and only if there is integer number
h, such thath2 � �1 mod �1(M). Then we can prove that ifM is not a lens space,�1� D(M), (see proof of Proposition 3.10). With some further topological and number
theoretical arguments, the following results were proved in [22].
(1) There is a degree�1 self map onL(p, q), but no orientation reversing homeo-
morphism on it if and only if (p, q) satisfies:p ­ q2C 1, 4­ p and all the odd prime
factors of p are the 4kC 1 type.
(2) Every degree�1 self map onL(p, q) are homotopic to an orientation reversing
homeomorphism if and only if (p,q) satisfies:q2 � �1 mod p, pD 2, pe1

1 , 2pe1
1 , where

p1 is a 4kC 1 type prime number.

EXAMPLE 2.7. SupposeM is a torus bundle. Then any non-zero degree map is
homotopic to a covering ([25] Corollary 0.4). Hence if�1 2 D(M), then M admits an
orientation reversing self homeomorphism.

(1) For the torus bundleM� , � D �
2 1
1 1

�
, �1 2 D(M�). Indeed for� D �

a b
c d

�
, if

jaC dj D 3, then�1 2 D(M�). Since p2 C ((d � a)=b)pr � c=br2 D �1 has solution
pD 1� d, r D b when aC d D 3, and solutionpD �1� d, r D b when aC d D �3.

(2) For the torus bundleM� , � D �
2 3
1 2

�
, �1 � D(M�). Indeed for� D �

a b
c d

�
, if

aCd�2 has prime decompositionpe1
1 � � � pen

n such thatpi D 4lC3 andei D 2mC1 for
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somei , then�1� D(M�). Since if the equationp2C ((d�a)=b)pr � (c=b)r 2 D �1 has
integer solution, then (((aCd)2�4)r 2�4b2)=b2 should be a square of rational number.
That is ((aCd)2�4)r 2�4b2 D s2 for some integers. Therefore (aCdC2)(aCd�2)r 2

is a sum of two squares. By a fact in elementary number theory,neitheraCdC2 nor
aC d � 2 has 4kC 3 type prime factor with odd power (see p. 279, [9]).

3. D(M) for connected sums

3.1. Relations betweenD iso(M1 # M2) and fD iso(M1), D iso(M2)g. In this sec-
tion, we consider the manifoldsM in Class 2:M has non-trivial prime decomposition,
each connected summand has finite or infinite cyclic fundamental group, andM is not
homeomorphic toRP3 # RP3. (Note for each geometrizable 3-manifoldP, �1(P) is fi-
nite if and only if P is S3 3-manifold, and�1(P) is infinite cyclic if and only if P is
S2 � E1 3-manifold.)

Since eachS3 3-manifold P is covered byS3, we assumeP has the canonical
orientation induced by the canonical orientation onS3. When we change the orientation
of P, the new oriented 3-manifold is denoted byNP. Moreover, lens spaceL(p, q) is
orientation reversed homeomorphic toL(p, p� q), so we can write all the lens spaces
connected summands asL(p, q). Now we can decompose the manifold as

M D (mS2 � S1) # (m1P1 # n1 NP1) # � � � # (msPs # ns NPs)

# (L(p1, q1,1) # � � � # L(p1, q1,r1)) # � � � # (L(pt , qt,1) # � � � # L(pt , qt,r t )),

where all thePi are 3-manifolds with finite fundamental group different from lens spaces,
all the Pi are different with each other, and all the positive integerpi are different from
each other. We will use this convention in this section.

SupposeF (resp.P) is a properly embedded surface (resp. an embedded 3-manifold)
in a 3-manifoldM. We useM nF (resp.M nP) to denote the resulting manifold obtained
by splitting M along F (resp. removing intP, the interior ofP).

The definitions below are quoted from [17]:

DEFINITION 3.1. Let M, N be 3-manifolds andB f D S
i (B

C
i [ B�

i ) is a finite
collection of disjoint 3-ball pairs in intM. A map f W M n B f ! N is called anal-
most defined mapfrom M to N if for each i , f j�BCi D f j�B�i Æ r i for some orientation

reversing homeomorphismr i W �BC
i ! �B�

i . If identifying �BC
i with �B�

i via r i , we

get a quotient closed manifoldM( f ), and f induces a mapQf W M( f ) ! N. We define
deg(f ) D deg( Qf ).

DEFINITION 3.2. For two almost defined mapsf and g, we say that f is
B-equivalentto g if there are almost defined mapsf D f0, f1, : : : , fn D g such that
either fi is homotopic to fiC1 rel(�B fi [ �B fiC1) or fi D fiC1 on M n B for an union
of balls B containing B fi [ B fiC1.
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Lemma 3.3 ([17] Lemma 3.6, [25] Lemma 1.11).Suppose fW M ! M is a map
of nonzero degree and

S
S2

i is an union of essential2-spheres. Then there is an al-
most defined map gW M n Bg ! M, B-equivalent to f, such thatdeg(g) D deg(f ) and
g�1

�S
S2

i

�
is a collection of spheres.

Lemma 3.4 ([25] Corollary 0.2). Suppose M is a geometrizable3-manifold. Then
any nonzero degree proper map fW M ! M induces an isomorphism f� W �1(M) !�1(M) unless M is covered by either a torus bundle over the circle, or F � S1 for some
compact surface F, or the S3.

The following lemma is well-known.

Lemma 3.5. Suppose M is a closed orientable3-manifold, f W M ! M is of de-
gree d¤ 0. Then f� W H2(M, Q) ! H2(M, Q) is an isomorphism.

Theorem 3.6. Suppose MD M1 # � � � # Mn is a non-prime manifold which is
not homeomorphic to RP3 # RP3. Each�1(Mi ) is finite or cyclic, and �1(Mi ) ¤ 0. If
f W M ! M is a map of degree d¤ 0, then there exists a permutation� of {1, : : : , n},
such that there is a map gi W M� (i ) ! Mi of degree d for each i. Moreover, gi� is an
isomorphism on fundamental group.

Proof. Call M 0 is a puncturedM, if M 0 D M n B, where B is a finitely many
disjoint 3-balls in the interior ofM. We use OM� to denote the 3-manifold obtained
from M� by capping off the boundary spheres with 3-balls.

M is obtained by gluing the boundary sphere ofM 0
i D Mi n int(Bi ) to a n-punctured

3-sphere. The image of�Bi in M, which is denoted bySi , is a separating sphere.
By Lemma 3.3, there is an almost defined mapg W M n Bg ! M, B-equivalent to

f , such thatg�1
�S

Si
�

is a collection of spheres and deg(g) D d. Let Mg D M n Bg.

Let U D Mg n g�1
�S

Si
� D {M j

i j j D 1, : : : , l i , i D 1, : : : , n}. The components

of g�1(M 0
i ) are denoted byM1

i , : : : , M l i
i .

By Lemma 3.4, f� W �1(M) ! �1(M) is an isomorphism. Sinceg is differ from
f just on the 3-ballsBg up to homotopy rel�Bg, it follows that g� W �1(M n Bg) D�1(M) ! �1(M) is an isomorphism.

Since the prime decomposition of 3-manifoldM is unique, andMg is just a punc-
tured M, each component ofU is either a punctured non-trivial prime factor ofM, or
a punctured 3-sphere.

By Lemma 3.5, f� is an injection onH2(M,Q). If Si is a separating sphere, then
[Si ] D 0 in H2(M, Q). So each componentS0 of f �1(Si ) is homologous to 0, thus
S0 separatesM. By the procession of construction ofg (see the proof of Lemma 3.4,
[17]), which is B-equivalent tof , each componentS of g�1(Si ) is also a separating
sphere inMg. So�1(Mg) is the free product of the�1(M j

i ), i D 1, : : : , n, j D 1, : : : , l i .
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Note �1(M) D �1(M1) � � � � � �1(Mn), each�1(Mi ) is an indecomposable factor of�1(M). Sinceg� is an isomorphism and each punctured 3-sphere has trivial�1, from
the basic fact on free product of groups, it follows that there is at least one punc-
tured prime non-trivial factor ing�1(M 0

i ). Since this is true for eachi D 1, : : : , n and
there are at mostn punctured prime non-trivial factors inU , it follows that there aren
punctured prime non-trivial factors inU . Hence there is exactly one punctured prime
non-trivial factor ing�1(M 0

i ), denoted asM� (i ), moreoverg� W �1(M� (i )) ! �1(Mi ) is an
isomorphism, where� is a permutation on{1, : : : , n}.

Since�1(Mi ) D Z if and only if Mi D S2 � S1, it follows that if Mi D S2 � S1,
then M� (i ) D S2� S1. Since D(S2� S1) D Z, below we assume thatOM0

i ¤ S2� S1, and
to show that there is a mapgi W M� (i ) ! Mi of degreed.

Since the mapg W M(g) ! M has degreed (see Definition 3.1), thengi D
gj W �Sl i

jD1 M j
i

�
(g) ! M 0

i is a proper map of degreed, which can extend to a map

Ogi W �Sl i
jD1

OM j
i

�
(g)! OM 0

i D Mi of degreed between closed 3-manifolds. The last map is

also defined on
�Sl i

jD1
OM j

i

�
(g)n�Bg D �Sl i

jD1
OM j

i

�nBg � �Sl i
jD1

OM j
i

�
, where�Bg � M(g)

is the image of�Bg � M.

Now consider the mapOgi W �Sl i
jD1

OM j
i

� n Bg ! Mi . Since �2(Mi ) D 0, we can

extend the mapOgi from
Sl i

jD1
OM j

i n Bg to
Sl i

jD1
OM j

i . More carefully, for each pair

BC
k , B�

k � Sl i
jD1

OM j
i we can make the extension with the propertyOgi jBCi D Ogi jB�i Æ Ori ,

where Ori W BC
i ! B�

i is an orientation reversing homeomorphism extendingr i W �BC
i !�B�

i . Now it is easy to see the mapOgi W Sl i
jD1

OM j
i ! Mi is still of degreed.

From the mapOgi W �Sl i
jD1

OM j
i

�! Mi one can obviously define a mapgi W #l i
jD1

OM j
i !

Mi of degreed between connected 3-manifolds. Since allOM j
i are S3 except one is

M� (i ), we have mapgi W M� (i ) ! Mi .

DEFINITION 3.7. For closed oriented 3-manifoldM, M 0, define

Diso(M, M 0)D {deg(f ) j f W M ! M 0, f induces isomorphism on fundamental group},

Diso(M)D {deg(f ) j f W M ! M, f induces isomorphism on fundamental group}.

Under the condition we considered in this section, we haveD(M) D Diso(M) by
Lemma 3.4.

Lemma 3.8. Suppose fi W Mi ! M 0
i is a map of degree d between closed

n-manifolds, n� 3, fi� is surjective on�1, i D 1,2. Then there is a map fW M1#M2 !
M 0

1 # M 0
2 of degree d and f� is surjective on�1. In particular,

(1) Diso(M1 # M2, M 0
1 # M 0

2) � Diso(M1, M 0
1) \ Diso(M2, M 0

2),
(2) Diso(M1 # M2) � Diso(M1) \ Diso(M2).

Proof. Since f� is surjective on�1, it is known (see [18] for example), we can
homotope fi such that for somen-ball D0

i � M 0
i , f �1

i (Di ) is an n-ball Di � Mi . Thus
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we get a proper mapNfi W Mi n Di ! M 0
i n D0

i of degreed, which also induces a degree
d map from�Di to �D0

i . Since maps of the same degree between (n� 1)-spheres are
homotopic, so after proper homotopy, we can pasteNf1 and Nf2 along the boundary to
get map f W M1 # M2 ! M 0

1 # M 0
2 of degreed and f� is surjective on�1.

3.2. D(M) for connected sums. Suppose

M D (mS2 � S1) # (m1P1 # n1 NP1) # � � � # (msPs # ns NPs)

# (L(p1, q1,1) # � � � # L(p1, q1,r1)) # � � � # (L(pt , qt,1) # � � � # L(pt , qt,r t )),

where all thePi are 3-manifolds with finite fundamental group different from lens spaces,
all the Pi are different with each other, and all the positive integerpi are different from
each other.

To prove Theorem 1.2, we need only to prove the three propositions below.

Proposition 3.9.

D(M) D Diso(m1P1 # n1 NP1) \ � � � \ Diso(msPs # ns NPs) \ Diso(L(p1, q1,1) # � � �
# L(p1, q1,r1)) \ � � � \ Diso(L(pt , qt,1) # � � � # L(pt , qt,r t )).

(�)

Proof. For every self-mapping degreed of M, in Theorem 3.6 we have proved
that for every oriented connected summandP of M, it corresponds to an oriented con-
nected summandP0, such that there is a degreed mapping f W P ! P0, and f in-
duces isomorphism on fundamental group. By the classification of 3-manifolds with
finite fundamental group (see [13], 6.2),P and P0 are homeomorphism (not consider-
ing the orientation) unless they are lens spaces with same fundamental group. Now by
Lemma 3.8 (1), we haved 2 Diso(mi Pi #ni NPi ) andd 2 Diso(L(p j ,q j ,1)#� � �#L(p j ,q j ,r j )),
for i D 1, : : : , s and j D 1, : : : , t . Hence we have proved

D(M) � Diso(m1P1 # n1 NP1) \ � � � \ Diso(msPs # ns NPs) \ Diso(L(p1, q1,1) # � � �
# L(p1, q1,r1)) \ � � � \ Diso(L(pt , qt,1) # � � � # L(pt , qt,r t )).

(Since D(mS2 � S1) D Z, we can just forget it in the discussion.)
Apply Lemma 3.8 once more, we finish the proof.

Proposition 3.10. If P is a 3-manifold with finite fundamental group different

from lens space, Diso(m P# n NP) D �
Diso(P) if m ¤ n,
Diso(P) [ (�Diso(P)) if m D n.

Proof. If P is not a lens space, from the list in [13], we can check that
4 j j�1(P)j. By Proposition 1.6,Diso(Q) D {k2C l j�1(Q)j j gcd(k, j�1(Q)j) D 1}, where
Q is any 3-manifolds withS3 geometry. If k2 C l j�1(P)j D �k02 � l 0j�1(P)j, then
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k2Ck02 D �(lC l 0)j�1(P)j. Since 4j j�1(P)j and gcd(k, j�1(P)j)D gcd(k0, j�1(P)j)D 1,
k,k0 are both odd, thus�(lC l 0)j�1(P)j D k2Ck02 D 4sC2, contradicts with 4j j�1(P)j.
So Diso(P) \ (�Diso(P)) D ;. (In particular�1¤ D(P).)

From the definition we haveDiso(P) D Diso( NP) and Diso(P, NP) D Diso( NP, P) D�Diso( NP).
If m¤ n, we may assume thatm> n. For the self-mapf , if some P corresponds

to NP, there must also be someP corresponds toP, so deg(f ) 2 Diso(P)\ (�Diso(P)),
it is impossible by the argument in first paragraph. So all theP correspond toP, and
all the NP correspond toNP. SinceDiso(P)D Diso( NP), we haveDiso(m P#n NP)� Diso(P).
By Lemma 3.8 and the factDiso(P) D Diso( NP), we haveDiso(m P# n NP) D Diso(P).

If mD n, similarly we have either all theP correspond toP and all the NP corres-
pond to NP; or all the P correspond toNP and all the NP correspond toP. SinceDiso(P)D
Diso( NP) and Diso(P, NP)D Diso( NP, P)D�Diso( NP), we haveDiso(m P#m NP)� Diso(P)[
(�Diso(P)). On the other hand from the argument above, we haveDiso(P), �Diso(P)�
Diso(m P # m NP), henceDiso(m P# m NP)D Diso(P) [ (�Diso(P)).

Lemma 3.11. Diso(L(p, q), L(p, q0)) D {k2q�1q0 C lp j gcd(k, p) D 1}, here q�1

is seen as in group Up D {all the units in the ringZp}.

Proof. L(p,q) is the quotient ofS3 by the action ofZp, (z1,z2)! (ei 2�=pz1,ei 2q�=pz2).

Let Qfq,q0 W S3 ! S3, Qfq,q0 (z1, z2) D (zq
1=pjz1j2q C jz2j2q0 , zq0

2 =pjz1j2q C jz2j2q0). We can
check that this map induces a mapfq,q0 W L(p, q) ! L(p, q0) with degreeqq0, more-
over sinceq, q0 are coprime withp, fq,q0� is an isomorphism�1. By Proposition 1.6
Diso(L(p, q)) D {k2 C lp j gcd(k, p) D 1}. Compose each self-map onL(p, q) which
induces an isomorphism on�1 with fq,q0 , we have{k2q�1q0 C lp j gcd(k, p) D 1} �
Diso(L(p, q), L(p, q0)). On the other hand, for each mapgW L(p, q) ! L(p, q0) of degree
d which induces an isomorphism on�1, then fq0,q Æ g is a self-map onL(p, q) which in-
duces an isomorphism on�1, where fq0,q W L(p, q0) ! L(p, q) is a degreeqq0 map. Hence
the degree offq0,q Æ g is qq0d which must be in{k2C lp j gcd(k, p) D 1}, that isqq0d D
k2C lp, gcd(k, p) D 1, thend D k2q�1q0�1C pl D (k=q�1)2q�1q0C pl 2 {k2q�1q0C lp j
gcd(k, p) D 1}. HenceDiso(L(p, q), L(p, q0)) D {k2q�1q0 C lp j gcd(k, p) D 1}.

Let Up D {all units in ringZp}, U2
p D {a2 j a 2 Up}, which is a subgroup ofUp.

Let H denote the natural projection from{n 2 Z j gcd(n, p) D 1} to Up=U2
p.

Later, we will omit the p, denote them byU and U2. We consider the quotient
U=U2 D {a1, : : : , am}, every ai corresponds with a cosetAi of U2. For the structure
of U , see [9] p. 44, then we can get the structure ofU2 and U=U2 easily.

Define NAs D {L(p, qi ) j qi 2 As} (with repetition allowed). InU=U2, define Bl D
{as j # NAs D l } for l D 1,2,: : :, there are only finitely manyBl ’s are nonempty. LetCl D
{a 2 U=U2 j ai a 2 Bl , 8ai 2 Bl } if Bl ¤ ; and Cl D U=U2 otherwise,C DT1

lD1 Cl .

Proposition 3.12. Diso(L(p, q1) # � � � # L(p, qn)) D H�1(C).
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Proof. By Lemma 3.11, we haveDiso(L(p, q), L(p, q0)) D {k2q�1q0 C lp j
gcd(k, p) D 1}. ThereforeDiso(L(p, q), L(p, q0)) will not change if we replaceL(p, q)
by L(p, s2q) (resp. L(p, q0) by L(p, s2q0)) for any s in Up.

Now we consider the relation between two setsDiso(L(p, q), L(p, q0)) and
Diso(L(p, q�), L(p, q0�)). It is also easy to see if (q=q0)(q0�=q�) D s2 in Up, then
Diso(L(p, q), L(p, q0)) D Diso(L(p, q�), L(p, q�)), and if (q=q)(q0�=q�) ¤ s2 in Up, then
Diso(L(p, q), L(p, q0)) \ Diso(L(p, q�), L(p, q0�)) D ;.

Let f W L(p, q1) # � � � # L(p, qn) ! L(p, q1) # � � � # L(p, qn) be a map of degree
d ¤ 0. Supposef sendsL(p, qi ) to L(p, qk) and sendsL(p, q j ) to L(p, ql ) in the
sense of Theorem 3.6. SinceDiso(L(p, qi ), L(p, qk)) \ Diso(L(p, q j ), L(p, ql )) ¤ ;,
by last paragraph, we must have (qi =qk)(ql =q j ) D s2 in Up. Henceqi =q j is in U2 if
and only if ql =qk is in U2; in other words,L(p, qi ) and L(p, q j ) are in the sameNAs

if and only if L(p, qk) and L(p, ql ) are in the sameNAt . Hence f provides 1-1 self-
correspondence onNA1, : : : , NAm, and if some elements inNAs corresponds toNAt , there
is # NAs D # NAt .

Let f W L(p, q1) # � � � # L(p, qn) ! L(p, q1) # � � � # L(p, qn) be a self-map. For each
ai 2 U=U2, f must send NAi to some NA j with # NAi D # NA j D l , and bothai , a j 2 Bl .
AssumeL(p, qi ) 2 NAi , L(p, q j ) 2 NA j , then deg(f ) 2 {k2q�1

i q j C lp j gcd(k, p) D 1}

by Lemma 3.11. By consider inU=U2, we haveH (deg(f )) D Nqj = Nqi D a j =ai , that is
H (deg(f ))ai D a j 2 Bl . Since we choose arbitraryai in Bl , we have H (deg(f )) 2
Cl . Also we choose arbitraryl , we haveH (deg(f )) 2 T1

lD1 Cl D C, hence deg(f ) 2
H�1(C).

On the other hand, ifd 2 H�1(C), then H (d)D c 2 C DT1
lD1Cl . For eachBl ¤ ;

and eachai 2 Bl , we havecai D a j 2 Bl . Then Ai 7! A j gives 1-1 self-correspondence
among { NAi j # NAi D l }. We can make further 1-1 correspondence from elements inNAi to elements in NA j . Since our discussion works for allBl ¤ ;, we have 1-1 self-
correspondence on{L(p, q1), : : : , L(p, qn)} (with repetition allowed). Therefore for
eachL(p, qi ) 2 NAi and L(p, q j ) 2 NA j , cD Nqj Nq�1

i . Therefored have the formk2q j q�1
i

mod p with (k, p) D 1. By Lemma 3.11, there is a mapfi , j W L(p, qi ) ! L(p, q j ) of
degreed which induces an isomorphism on�1.

By Lemma 3.8, we can construct a self-mapping of degreed of L(p, q1) # � � � #
L(p, qn) which induces an isomorphism on�1. HenceH�1(C) � Diso(L(p, q1) # � � � #
L(p, qn)). Thus Diso(L(p, q1) # � � � # L(p, qn)) D H�1(C).

4. D(M) for Nil manifolds

4.1. Self coverings of Euclidean orbifolds.

DEFINITION 4.1 ([20]). A 2-orbifold is a Hausdorff, paracompact space which is
locally homeomorphic to the quotient space ofR2 by a finite group action. Suppose
O1 andO2 are orbifolds andf W O1 !O2 is an map. We sayf is anorbifold covering
if any point p in O2 has a neighbourhoodU such that f �1(U ) is the disjoint union of
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setsV�,� 23, such that f jW V� ! U is the natural quotient map between two quotients
of R2 by finite groups, one of which is a subgroup of the other.

In this paper, we only consider about orbifold with singularpoints. Here we say
a point x in the orbifold is asingular point of index qif x has a neighborhoodU
homeomorphic to the quotient space ofR2 by rotate action of finite cyclic groupZq,
q > 1.

An orbifold O with singular points{x1,:::,xs} is homeomorphic to a surfaceF , but
for the sake of the singular points, we would like to distinguish them through denoting
O by F(q1, : : : , qs). Hereq1, : : : , qs are indices of singular points. Here the covering
map f W O1 ! O2 is not the same as the covering map fromF1 to F2.

If f W O1 ! O2 is an orbifold covering, the singular points ofO2 are{x1, : : : , xs},
for any y 2O2, y¤ xi , define deg(f )D # f �1(y). For any singular pointx, let f �1(x)D
{a1, : : : ,ai }. At point a j , f is locally equivalent toz! zd j onC, x anda j correspond to
0. Here we have

P
d j D d, a j is an ordinary point if and only ifd j equals to the index

of x. Define D(x) D [d1, � � � , di ] to be theorbifold covering data at singular point x,
andD( f ) D {D(x1), : : : , D(xs)} (with repetition allowed) to be theorbifold covering
data of f.

The following lemma is easy to verify.

Lemma 4.2. If a Nil manifold M is not a torus bundle or a torus semi-bundle,
then M has one of the following Seifert fibreing structures: M(0I �1=2, �2=3, �3=6),
M(0I �1=3, �2=3, �3=3), or M(0I �1=2, �2=4, �3=4), where e(M) 2 Q � {0}.

Proof. Consider Nil manifoldM as a Seifert fibered space, then its orbifoldO(M)
has zero Euler characteristic. SoO(M) must be one of following orbifolds: the torus
T2, the Klein bottleK , P2(2, 2), S2(2, 3, 6), S2(2, 4, 4), S2(3, 3, 3) andS2(2, 2, 2, 2).

By [4] p. 38 and p. 40, we can see thatM has structure of torus bundle ifO(M) is
T2 or K , and M has structure of torus semi-bundle ifO(M) is P2(2,2) or S2(2,2,2,2).

The remaining three casesS2(2, 3, 6), S2(2, 4, 4) andS2(3, 3, 3) correspond to the
three cases claimed in the lemma. Cleare(M) 2 Q � {0} since Nil manifolds have
non-zero Euler number.

Proposition 4.3. Denote the degrees set of self covering of an orbifoldO by D(O).
We have:
(1) For O D S2(2, 3, 6), D(O) D {m2 CmnC n2 j m, n 2 Z, (m, n) ¤ (0, 0)}.

Moreover, if d 2 D(O) is coprime with6, then
(i) d � 1 mod 6;
(ii) this covering map of degree dD 6k C 1 is realized by an orbifold covering
from O to O with orbifold covering data

{D(x1), D(x2), D(x3)} D {[2, : : : , 2� �� �
3k

, 1], [3, : : : , 3� �� �
2k

, 1], [6, : : : , 6� �� �
k

, 1]},
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Fig. 1.

where x1, x2 and x3 are singular points of indices2, 3 and 6 respectively.
(2) For O D S2(3, 3, 3), D(O) D {m2 CmnC n2 j m, n 2 Z, (m, n) ¤ (0, 0)}.

Moreover, if d 2 D(O) is coprime with3, then
(i) d � 1 mod 3;
(ii) this covering map of degree dD 6k C 1 is realized by an orbifold covering
from O to O with orbifold covering data

{D(x1), D(x2), D(x3)} D {[3, : : : , 3� �� �
k

, 1], [3, : : : , 3� �� �
k

, 1], [3, : : : , 3� �� �
k

, 1]},

where x1, x2 and x3 are singular points of indices3, 3 and 3 respectively.
(3) For O D S2(2, 4, 4), D(O) D {m2 C n2 j m, n 2 Z, (m, n) ¤ (0, 0)}.

Moreover, if d 2 D(O) is coprime with4, then
(i) d � 1 mod 4;
(ii) this covering map of degree dD 4k C 1 is realized by an orbifold covering
from O to O with orbifold covering data

{D(x1), D(x2), D(x3)} D {[2, : : : , 2� �� �
2k

, 1], [4, : : : , 4� �� �
k

, 1], [4, : : : , 4� �� �
k

, 1]},

where x1, x2 and x3 are singular points of indices2, 4 and 4 respectively.

Proof. We only prove case (1). The other two cases can be proved similarly.
S2(2, 3, 6) can be seen as pasting the equilateral triangle as shown in Fig. 1

geometrically.�1(S2(2, 3, 6)) can be identified with a discrete subgroup0 of IsoC(E2), a funda-
mental domain of0 is shown in Fig. 2. It is as a lattice inE2 with vertex coordinate
mC nei�=3, m, n 2 Z.
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Fig. 2.

For the coveringpW T2 ! S2(2,3,6), T2 can be seen as the quotient of a subgroup00 � 0 on E2, with a fundamental domain as Fig. 3. Here00 is just all the translation
elements of0, thus00 is generated byz! zCp3i and z! zC (

p
3=2)i C 3=2.

For every self coveringf W S2(2,3,6)! S2(2,3,6), f�W �1(S2(2,3,6))! �1(S2(2,3,6))
is injective. Sincep is covering, f� Æ p� W �1(T2) ! �1(S2(2, 3, 6)) is also injective. So
f�(p�(�1(T2))) is a free abelian subgroup of�1(S2(2, 3, 6)).

For every
 2 0, which is not translation, it can be represented byf W z! ei 2k�=nzC
z0, gcd(k,n) D 1, n > 1. Then f n(z) D (ei 2k�=n)nzC (ei 2k(n�1)�=nC� � �ei 2k�=nC1)z0 D z.
So 
 is a torsion element, thus
 � f�(p�(�1(T2))) except
 D e. So f�(p�(�1(T2))) �
p�(�1(T2)), thus there existsQf W T2 ! T2 being the lifting of f .

T2
Qf K

p K
T2

pK
S2(2, 3, 6)

f K S2(2, 3, 6).

Here we have

deg(f ) D deg( Qf ) D [�1(T2) W Qf�(�1(T2))] D area(fundamental domain ofQf�(�1(T2)))

area(fundamental domain of�1(T2))
,

here Qf�(�1(T2)), �1(T2) are all seen as subgroup of�1(S2(2, 3, 6)).
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Fig. 3.

Clearly, we can choose a fundamental domain off�(�1(S2(2, 3, 6))) to be an equi-
lateral triangle inE2 with vertices asm C nei�=3, then the fundamental domain ofQf�(�1(T2)) is an equilateral hexagon with vertices asmC nei�=3. The scale of area is
the square of the scale of edge length. The scale of edge length must bejmCnei�=3j Dp

m2 CmnC n2. So deg(f ) D m2 CmnC n2.
On the other hand, for every (m, n) 2 Z2 � {(0, 0)}, chooseg W E2 ! E2, g(z) D

(mC nei�=3)z. It is routine to check that for any
 2 0, there is
 0 2 0, such that
g(
 (z))D 
 0(g(z)). So g induces Ng, which is self covering onS2(2, 3, 6), and deg(Ng)D
m2 CmnC n2. We have proved the first sentence of Proposition 4.3 (1).

If m2CmnCn2 is coprime to 6,m2CmnCn2 � 1 or 5 mod 6. Sincem2CmnCn2 �
4m2C 4mnC 4n2 � (2mC n)2 mod 3, and any square number must be 0 or 1 mod 3, we
must havem2 CmnC n2 � 1 mod 6. We have proved Proposition 4.3 (1) (i).

Assumeh is a self covering of degreed D 6kC1, x1, x2, x3 are the singular points
on S2(2, 3, 6) with indices 2, 3, 6. Forx1, h�1(x1) must be ordinary points or singular
point of index 2. Since the degreed D 6k C 1, h�1(x1) is 3k ordinary points and
x1. Similarly, for x2, h�1(x2) is 2k ordinary points andx2. Then x1, x2 � h�1(x3), so
h�1(x3) is k ordinary points andx3. Thus the covering map of degreed D 6k C 1 is
realized by a self covering ofO with orbifold covering data{[2, : : : , 2, 1], [3,: : : , 3, 1],
[6, : : : , 6, 1]}. We have proved Proposition 4.3 (1) (ii).
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4.2. D(M) for Nil manifolds.

Lemma 4.4. For Nil manifold M, D(M) � {l 2jl 2 Z}.

Proof. Let f be a self map ofM. By [25, Corollary 0.4], f is either homotopic
to a covering mapg W M ! M, or a homotopy equivalence.

If f is homotopic to a covering, sinceM has unique Seifert fibering structure up
to isomorphism, we can makeg to be a fiber preserving map. Denote the orbifold of
M by OM . By [20, Lemma 3.5], we have:

(4.1)

8<
:e(M) D e(M) � l

m
,

deg(g) D l �m,

wherel is the covering degree ofOM ! OM andm is the covering degree on the fiber
direction. Sincee(M) ¤ 0, from equation (4.1) we getl D m. Thus deg(f ) D deg(g)
is a square numberl 2.

If f is a homotopy equivalence, then deg(f ) D �1. To finish the proof of the
lemma, we need only to show that the degree off is not �1. Otherwise composing a
self coveringg of degreen > 1, theng Æ f is of degree�n, which is not a homotopy
equivalence, therefore is homotopic to a covering, and musthave degree> 0 by the
last paragraph, a contradiction.

Theorem 4.5. For 3-manifold M inClass 4,we have
(1) For M D M(0I �1=2, �2=3, �3=6), D(M) D {l 2 j l D m2 CmnC n2, l � 1 mod 6,
m, n 2 Z};
(2) For M D M(0I �1=3, �2=3, �3=3), D(M) D {l 2 j l D m2 CmnC n2, l � 1 mod 3,
m, n 2 Z};
(3) For M D M(0I �1=2,�2=4,�3=4), D(M)D {l 2 j l Dm2Cn2, l � 1 mod 4,m,n 2 Z}.

Proof. We will just prove Case (1). The proof of Cases (2) and (3) are exactly
as that of Case (1). BelowM D M(0I �1=2, �2=3, �3=6).

First we show thatD(M) � {l 2 j l D m2 CmnC n2, l � 1 mod 6, m, n 2 Z}.
Since the orbifoldOM D S2(2, 3, 6), by Proposition 4.3 (1), we havel D m2 C

mnC n2. Below we show thatl D 6kC 1.
Let N be the regular neighborhood of 3 singular fibers. To define theSeifert in-

variants, a sectionF of M n N is chosen, and moreover�F and fibers on each com-
ponent of�(M n N) are oriented.

Consider the coveringgj W M n g�1(N) ! M n N. Let QF be a componentg�1(F).
It is easy to verify that QF is a section ofM n g�1(N). Now we lift the orientations on�F and the fibers on�(M nN) to those on�(M n g�1(N)), we get a coordinate system
on �(M n g�1(N)). Therefore we have a coordinate preserving covering

g W (M, M n g�1(N), g�1(N)) ! (M, M n N, N).
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Fig. 4.

SupposeV 0 is a tubular neighborhood of some singular fiberL 0. The meridian
of V 0 can be represented by (c0)�0(h0)� 0 (�0 > 0), where (c0, h0) is the section- fiber
coordinate of�V 0.

SupposeV is a component ofg�1(V 0) and the meridian ofV is represented as
c�h� (� > 0), where (c, h) is the lift of (c0, h0). Since gj W V ! V 0 is a covering of
solid torus, sog must send meridian to meridian homeomorphically, thusg(c�h�) D
(c0)�0 (h0)� 0 . See Fig. 4.

Sinceg has the fiber direction covering degreemD l , g(h) D (h0)l . Sincec, c0 are
the boundaries of sections andg sendc to c0, we haveg(c) D (c0)s. Then g(c�h�) D
(c0)��s(h0)��l D (c0)�0(h0)� 0 . Hence we get� � l D � 0.

Let V 0 be a tubular neighborhood of singular fiber whose meridian can be repre-
sented as (c0)6(h0)� 0 . By the arguments above, the meridian of the preimageV can be
represent byc�h� .

Since� 0 is coprime with 6. By� � l D � 0, so l is coprime with 6. Still by Prop-
osition 4.3 (1), we havel D 6kC 1.

Then we show{l 2 j l D m2 CmnC n2, l � 1 mod 6, m, n 2 Z} � D(M).
Supposel D m2 C mnC n2 and l D 6k C 1, denote the quotient manifold ofZl

free action onM by Ml . Then Ml has the Seifert fibering structureM(0I l � �1=2,
l � �2=3, l � �3=6). We have the coveringgl W M ! Ml of degreel .

Claim. there exists a map fl W Ml ! M of degree l.

Let D D D1 [ D2 [ D3 � S2(2, 3, 6) be the regular neighborhood discs of 3 sin-
gular points of indices 2, 3, and 6 respectively. By Proposition 4.3 (1), there exists a
branched covering mapNfl W S2(2, 3, 6)! S2(2, 3, 6) of degreel such that
(1) Nfl induce a covering mapNfl j W S2 n Nf �1

l (D) ! S2 n D;
(2) Nf �1

l (Di ) consists of (3k C 1) discs with orbifold covering data [2,: : : , 2� �� �
3k

, 1] for

i D 1, and (2k C 1) discs with orbifold covering data [3,: : : , 3� �� �
2k

, 1] for i D 2, and

(kC 1) discs with orbifold covering data [6,: : : , 6� �� �
k

, 1] for i D 3.
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Clearly Nf �1
l (D) consists of (3kC 1)C (2kC 1)C (kC 1)D 6kC 3 disks.

Then we have the covering mapNfl � id W (S2 n f �1
l (D)) � S1 ! (S2 n D) � S1 of

degreel , which can be extends to a covering mapfl W M 0 ! M, where M 0 has the
Seifert structureM(0I �1, : : : , �1� �� �

3k

, �1=2, �2, : : : , �2� �� �
2k

, �2=3, �3, : : : , �3� �� �
k

, �3=6). Clearly

M 0 is isomorphic toMl .
Now the covering fl Æ gl W M ! Ml ! M has degreel 2.
We finish the proof of Case (1).

5. D(M) for H2 � E1 manifolds

In this case, all the manifolds are Seifert fibered spacesM such that the Euler
numbere(M) D 0 and the Euler characteristic of the orbifold�(OM ) < 0.

SupposeM D (gI �1,1=�1, : : : , �1,m1=�1, : : : , �n,1=�n, : : : , �n,mn=�n), where all the
integers�i > 1 are different from each other, and

Pn
iD1

Pmi
jD1 �i , j =�i D 0.

For every�i , considerU�i . For everya 2 U�i , define�a(�i )D #{�i , j j pi (�i , j )D a}

(with repetition allowed), wherepi is the natural projection from{n j gcd(n, �i ) D 1}

to U�i . Define Bl (�i ) D {a j �a(�i ) D l } for l D 0, 1, : : : , there are only finitely many
Bl (�i ) nonempty. LetCl (�i ) D {b 2 U�i j ab 2 Bl (�i ), 8a 2 Bl (�i )} if Bl (�i ) ¤ ; and
Cl (�i ) D U�i otherwise. Finally defineC(�i ) DT1

lD1 Cl (�i ), and NC(�i ) D p�1
i (C(�i )).

Theorem 5.1.

D

�
M

�
gI �1,1�1

, : : : , �1,m1�1
, : : : , �n,1�n

, : : : , �n,mn�n

�� D n\
iD1

NC(�i ).

Proof. Supposef is a non-zero degree self-mapping ofM. By [25, Corollary 0.4],
f is homotopic to a covering mapgW M ! M. SinceM has the unique Seifert structure,
we can isotopeg to a fiber preserving map. Denote the orbifold ofM by OM . Then
g induces a self-coveringNg on OM , since�(OM ) < 0, then Ng must be 1-sheet, thus
isomorphism ofOM .

So g is a degreed covering on the fiber direction. Or equivalently, by the action
of Zd on each fiber, the quotient ofM is also M. Thus d 2 D(M) if and only if

M 0 D M

�
g W d

�1,1�1
, : : : , d

�1,m1�1
, : : : , d

�n,1�n
, : : : , d

�n,mn�n

�

is homeomorphic toM.
By the uniqueness of Seifert structure ([20] Theorem 3.9) and the facte(M)D 0, we

have thatM is homeomorphism toM 0 if and only if (�i ,1, : : : ,�i ,mi ) D (d�i ,1, : : : , d�i ,mi )
under a permutation, all the numbers are seen as inU (�i ).

For everya 2 U (�i ), if (�i ,1, : : : , �i ,mi ) D (d�i ,1, : : : , d�i ,mi ) holds, we must have�a(�i ) D �da(�i ), thus pi (d) 2 C�a(�i ). For a is an arbitrary element inU (�i ), we have
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pi (d) 2 C(�i ), thusd 2 NC(�i ). Since�i is also chosen arbitrarily,d 2Tn
iD1

NC(�i ), thus
D(M) �Tn

iD1
NC(�i ).

For anyd 2Tn
iD1

NC(�i ), M is homeomorphic toM 0, so D(M) �Tn
iD1

NC(�i )
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