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Abstract
For each closed oriented 3-manifoM in Thurston’s picture, the set of degrees
of self-maps onM is given.
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1. Introduction

1.1. Background. Each closed orientedi-manifold M is naturally associated
with a set of integers, the degrees of all self-mapsvbndenoted aD(M) = {deg(f) |
f: M— M},

Indeed the calculation oD(M) is a classical topic appeared in many literatures.
The result is simple and well-known for dimension=1,2. For dimensiom > 3, there
are many interesting special results (See [3], [10], [15]recent ones and references
therein), but it is difficult to get general results, sincerthare no classification results
for manifolds of dimensiom > 3.

The case of dimension 3 becomes attractive in the topic aislpbssible to cal-
culate D(M) for any closed oriented 3-manifoll. Since Thurston’s geometrization
conjecture, which seems to be confirmed, implies that clagezhted 3-manifolds can
be classified in a reasonable sense.
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Thurston’s geometrization conjecture claims that the €&do-Shalen-Johanson de-
composition piece of a prime 3-manifold supports one of tightegeometries, which
are H3, PSI(2, R), H? x E1, Sol, Nil, E3, S* and S? x E! (for details see [24] and
[20]). Call a closed orientable 3-manifolell is geometrizablef each prime factor of
M meets Thurston's geometrization conjecture. All 3-mddBadiscussed in this paper
are geometrizable.

The following result is known in early 1990’s:

Theorem 1.0. Suppose M is a geometrizabBemanifold. Then M admits a self-
map of degree larger thad if and only if M is either
(a) covered by a torus bundle over the circlar
(b) covered by Fx S' for some compact surface F with(F) < 0, or
(c) each prime factor of M is covered by 8r S x EZ.

Hence for any 3-manifoldM not listed in (a)—(c) of Theorem 1.M(M) is ei-
ther {0, 1,—1} or {0, 1}, which depends on whetheévl admits a self map of degree
—1 or not. To determindd(M) for geometrizable 3-manifolds listed in (a)—(c) of The-
orem 1.0, let’'s have a close look of them.

For short, we often call a 3-manifold supporting Nil georiedr Nil 3-manifold
and so on Among Thurston’s eight geometries, six of them belong #® likt (a)—(c)
in Theorem 1.0. 3-manifolds in (a) are exactly those suppgreither E3, or Sol
or Nil geometries. E® 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds are
torus bundle or semi-bundles; Nil 3-manifolds which are twus bundles or semi-
bundles are Seifert fibered spaces having Euclidean odkifeith three singular points.
3-manifolds in (b) are exactly those supportift? x E* geometry; 3-manifolds sup-
porting S* or S x E! geometries form a proper subset of (3). Now we divide all
3-manifolds in the list (a)—(c) in Theorem 1.0 into the foliog five classes:

Class 1.M supporting eitherS® or $* x E' geometries;

Class 2. each prime factor ®fl supporting eitherS® or S?> x E' geometries, but is
not in Class 1;

Class 3. torus bundles and torus semi-bundles;

Class 4. Nil 3-manifolds not in Class 3;

Class 5.M supportingH? x E! geometry.

D(M) is known recently forM in Class 1 and Class 3. We will calculaig(M)
for M in the remaining three classes. For the convenience of thders, we will
presentD(M) for M in all those five classes. To do this, we need first to coordinat
3-manifolds in each class, then state the result®@¥) in term of those coordinates.
This is carried in the next subsection.
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1.2. Main results.

Class 1. According to [13] or [20], the fundamental group of a 3-maidf sup-
porting S*-geometry is among the following eight typeBy, Dy, T4 Olg 110 Toaas
D}y and Zy, x mr1(N), where N is a 3-manifold supportings®-geometry,1(N) be-
longs to the previous seven ones, gnd(N)| is coprime tom. The cyclic groupZ,
is realized by lens spack(p, q), each group in the remaining types is realized by a
unique 3-manifold supporting®-geometry. Note also the sub-indices of those seven
types groups are exactly their orders, and the order of tbepgrin the last type is
m|1(N)|. There are only two closed orientable 3-manifolds suppgré’ x E* geom-
etry: % x St and RP? #RP°.

Theorem 1.1. (1) D(M) for M supporting 8-geometry are listed belaw

m1(M) b(M)
Zp (K’ |kezZ)+ pz
D}, {h?|heZ;24horh=norh=0}+4nZ
T, {0, 1,16 + 24z
O, {0, 1,25 + 48
150 {0, 1,49 + 12
T {{kz-(32q_2p—3q)|3+k, qzp>0+8-3Z  (2]0q),
83 (k2. (3292 —39%1) |3}k, q>p>0}+8-39Z (24qQ)
D/ {k?-[1— (n)#71]' - [1 - 2@e=00=D]) |k, p e Z,
-2 q>p>0}+n2Z
ety | [aez] 920 0O0Z_heo00]

(2) D($ x S') = D(RP#RP°) = Z.

Class 2. We assume that each 3-manifoRl supportingS®-geometry has the ca-
nonical orientation induced from the canonical orientatim S°. When we change the
orientation of P, the new oriented 3-manifold is denoted By Moreover, lens space
L(p, q) is orientation reversed homeomorphic tdp, p —q), so we can write all the
lens spaces connected summand4 3, q). Now we can decompose each 3-manifold
in Class 2 as

M=(mS x SY# (M PL#n Py #- - # (MsPs # s Ps)
#(L(p11 Ch,l)#‘ : #L(p11 Ch,rl))#' . #(L(plv Qt,l)#‘ H L(p[, Qt,n)),

where all theP, are 3-manifolds with finite fundamental group differentrfréens spaces,
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all the P, are different from each other, and all the positive integeare different from
each other. Define

Diso(M) = {deg(f) | f: M — M, f induces an isomorphism am(M)}.

Theorem 1.2. (1) D(M) = Diso(MP1 # n1P1) N -+ N Diso(MsPs # nsPs) N
Diso(L(P1, 0, 1) #- - - #L(P1, Adar,)) N - -+ N Diso(L (P, G,2) #- - - # L(Prs Gr))s
, 5\ _ | Diso(P) if m#n,
@) D'S°‘”‘P#”P)‘{Diso(P)U(—Diso(P» it m=n
(3) Diso(L(p, au) #:--#L(p, Gn)) = H (C).

The notionsH and C in Theorem 1.2 (3) is defined as below:

Let U, = {all units in ring Z,}, U7 = {a® | a € Uy}, which is a subgroup ot
We consider the quotiertﬂp/US ={a,...,am}, everya corresponds with a cose
of US. For the structure olJ,, see [9] p.44. DefineH to be the natural projection
from {n € Z | gcd@, p) = 1} to Up/UJ.

Define As = {L(p,q) | g € As} (with repetition allowed). InUp/UZ, defineB, =
{as | #As =1} for | =1, 2,. .., there are only finitely many such thatB, # @. Let
C ={ae Up/Ug |aaecB, Va e B} if B #0 andC, = Up/Ug otherwise. Define
C=NZC.

Class 3. To simplify notions, for a diffeomorphisnpy on torusT, we also usep
to present its isotopy class and its induced 2 by 2 matrixtgfT) for a given basis.

A torus bundleis M, = T x | /(x, 1) ~ (¢(x), 0) whereg is a diffeomorphism of
the torusT and | is the interval [0, 1]. Then the coordinates Wi, is given as below:
(1) My admits E3 geometry,¢ conjugates to a matrix of finite order, wheren e
{1,2,3,4,6;

(2) My admits Nil geometrygp conjugates toﬂ:((l) 'I) wheren # 0;

(3) My admits Sol geometryp conjugates tc(f:‘ 3) wherela+d| > 2, ad—bc = 1.

A torus semi-bundle N= N Uy N is obtained by gluing two copies df along
their torus boundary N via a diffeomorphismp, whereN is the twistedl -bundle over
the Klein bottle. We have the double coveripg S' x St x| — N =St x St x | /7,
wheret is an involution such that(x, y, z2) = (X + 7, -y, 1—2).

Denote bylg andl,, on 3N be the images of the secor® factor and firstSt fac-
tor on St x St x {1}. A canonical coordinatés an orientation ofy andl,,, hence there
are four choices of canonical coordinate ®N. Once canonical coordinates on each
oN are choseng is identified with an elemelf"é1 3) of GLx(Z) given by ¢(lg,ls) =

to1(2 5)
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With suitable choice of canonical coordinatesod, N, has coordinates as below:

(1) N, admits E® geometry,¢ = ((1) 2) or ((1) (1)>

(2) N, admits Nil geometrygp = (% 2) ((1) ;) or (% i) wherez # 0;

(3) N, admits Sol geometryp = (‘g g) whereabcd# 0, ad — bc = 1.

Theorem 1.3. D(M,) is in the table below for torus bundle jMiwhere§(3) =
3(6)=1,5(4)=0.

M¢ ¢ D(M¢)
E3 | finite order k=1, 2 Z
ES |finite order k=3, 4, 6 {(kt + 1)(p? —8(K)pa + 0) | t, p, g € Z}
Nil :l:(rl] S),n;ﬁo 121 ez
ab {p*+(d—a)pr/c—br?/c| p,r € Z,
Sol (c d)’ la+d>2 either br/c, (d —a)r/c e Z or (p(d —a) —br)/c € Z}

(2) D(Ng) is listed in the table below for torus semi-bundlg,,Nvhere §(a, d) =
ad/gcd@, d)?.

N¢ ¢ D(N¢)
10

E° (o 1) z

ES 8 (1)) (20 +1|l ez}

Nil (; ‘1)) 240 12]1ez)

Nil (2 i) or(é i),z;eo (@ + 1?1 €z}
{(2 +1)?|1 ez}, if 8(a, d) is even or

Sol (g 3) abcd#0, ad—bc=1 | {(2 +1)2|1 €Z} U {(2 + 1?2-8(a, d) |1 € Z},
if 5(a, d) is odd

To coordinate 3-manifolds in Class 4 and Class 5, we firstliréisa well known
coordinates of Seifert fibered spaces.

Suppose an oriented 3-manifoll’ is a circle bundle with a given sectioR,
where F is a compact surface with boundary componests. .., ¢, with n > 0. On
each boundary component &', orient ¢ and the circle fibeh; so that the product
of their orientations match with the induced orientation\f (call such pairg(c;, h;)}
a section-fiber coordinate system). Now attacisolid tori § to the n boundary tori
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of M’ such that the meridian of is identified with sloper; = ¢ hiﬁi whereq; > 0,
(i, Bi) = 1. Denote the resulting manifold byl (£g; B1/a1, ..., Bs/as) which has the
Seifert fiber structure extended from the circle bundlecétme of M’, whereg is the
genus of the sectior of M, with the sign+ if F is orientable and- if F is non-
orientable, here ‘genus’ of nonorientable surfaces meh@sitmber ofRP* connected
summands. Cale(M) = >"°_, fi/ai € Q the Euler number of the Seifert fiberation.

Class 4. If a Nil manifold M is not a torus bundle or torus semi-bundle, then
M has one of the following Seifert fibreing structuresM(0; B1/2, B2/3, B3/6),
M(0; B1/3, B2/3, B3/3), or M(0; B1/2, B2/4, B3/4), wheree(M) € Q — {0}.

Theorem 1.4. For 3-manifold M inClass 4,we have
(1) D(M(0; B1/2,B2/3,B3/6)) ={I? || =m?> +mn+n?, | =1 mod 6,m, n € Z};
(2) D(M(O; B1/3,B2/3,B3/3)) = {1? || =m?> 4+ mn+n? | =1 mod 3,m,n € Z};
(38) D(M(0; B1/2, B2/4, B3/A) = {12 || =m? +n? | =1 mod 4,m, n € Z}.

Class 5. All manifolds supportingH? x E* geometry are Seifert fibered spaces
M such thate(M) = 0 and the Euler characteristic of the orbifoldOp) < O.

SupposeM = (9; B11/@1, - s Bim /%1y - -+, Bna/@n, - -+, Bam,/an), Where all the
integerse; > 1 are different from each other, aid;_; >-i"; B j/ai = 0.

For eacho; and eacha € U,,, definefa(ci) =#{Bi; | pi(Bi,;) = a} (with repetition
allowed), p; is the natural projection fronin | gcdf, o) = 1} to U,,. Define Bi(«;) =
{a|Oa(ey) =1} for | =1,2,..., there are only finitely many such thatB,(«;) # @. Let
C (O[i) = {b € UO(i | abe B (ai), Vae B (O{i)} if B (Oli) 75 @ and C (O[i) = Ua‘ otherwise.
Finally defineC(xi) = (2, Ci(i), and Cla) = P H(C ().

Theorem 1.5. D(M(Q; B1.1/@1,-Brmy, /@1y sBn.1/Cnse s Brmn /) = (e, Clet).

1.3. A brief comment of the topic and organization of the pape Theorem 1.0
was appeared in [25]. The proof of the “only if” part in Thewrel.O is based on the
results on simplicial volume developed by Gromov, Thurstod Soma (see [21]), and
various classical results by others on 3-manifold topolagg group theory ([5], [19],
[17]). The proof of “if” part in Theorem 1.0 is a sequence edgrtary constructions, which
were essentially known before, for example see [6] and [@d{3). That graph manifolds
admits no self-maps of degreesl also follows from a recent work [2].

The table in Theorem 1.1 is quoted from [1], which generalitee earlier work
[7]. The statement below quoted from [7] will be repeatedbed in this paper.

Proposition 1.6. For 3-manifold M supporting $geometry

Diso(M) = {k? + I|71(M)|, where k and|z1(M)| are co-prime.
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The topic of mapping degrees between (and to) 3-manifoldered by S° has
been discussed for long times and has many relations witlr dtipics (see [26] for
details). We just mention several papers: in very old pafis$ and [14], the degrees
of maps between any given pairs of lens spaces are obtainediby equivalent maps
between spheres; in [8D(M, L(p,q)) can be computed for any 3-manifoM; and in
a recent one [12], an algorithm (or formula) is given to thgrdes of maps between
given pairs of 3-manifolds covered I§? in term of their Seifert invariants.

Theorem 1.3 is proved in [23].

Theorems 1.2, 1.4 and 1.5 will be proved in Sections 3, 4 andsperctively in
this paper. In Section 2 we will compute(M) for some concrete 3-manifolds using
Theorems 1-5. We will also discuss wherl € D(M) and when—1 € D(M) implies
that M admits orientation reversing homeomorphisms.

All terminologies not defined are standard, see [5], [20] §id

2. Examples of computation, orientation reversing homeontphisms

EXAMPLE 2.1. LetM = (P#P)#(L(7, 1) #L(7, 2) # A.(7, 3)), whereP is the
Poincare homology three sphere.

By Theorem 1.2 (2), Proposition 1.6 and the f&ef(P)| = 120, we haveD(P #
P) = Diso(P) U (—Diso(P)) = {1200 +i |ne Z, i =1, 49, 71, 119.

Now we are going to calculat®B((L(7,1)#L(7,2)#2A.(7,3)) following the notions
of Theorem 1.2 (3). Clearly; = {1, 2,3, 4,5, andU? = {1, 2, 4. ThenU7/U? =
{ay, &}, wherea; = 1 anda; = 3; U; = {A; U A}, where A; = U2, A, = 3U%;
#A; =2 and #, = 2; B, = {1,3}, B = ¢ for | # 2. SinceU;/UZ = B,, we have
C, = B, and alsoC, = U;/UZ? for | # 2; thenC = (2, C; = U;/UZ. Then for
the natural projectiorH: {n € Z | gcdf, p) = 1} — U;/U%, H (C) are all number
coprime to 7, hence we hauiso((L(7, 1) #L(7,2)# A (7,3))={l € Z | gcd(, 7) = 1}
by Theorem 1.2 (3).

Finally by Theorem 1.2 (1), we havi@(M) = {120n+i |n€ Z, i =1,49,71,119N
{leZ|gcd(,7)=1} ={84n+i|neZ,i=1,71,121,169,191,239,241,289,311,359,
361, 409, 431, 479, 481, 529, 551, 599, 601, 649, 671, 719,88. Note —1 € D(M).

EXAMPLE 2.2. SupposeM = (2P # P) # (L(7, 1) #L(7, 2) #L(7, 3)).

Similarly by Theorem 1.2 (2), Proposition 1.6 andi(P)| = 120, we have
D(2P#P) = Diso(P) = {1200 +i |ne Z, i = 1, 49.

To calculateD(L(7, 1) #L(7, 2) #L(7, 3)), we haveUs, U2, U;/UZ? = {ay, a},
U; = {A1, A} exactly as last example. But themlA#= 2 and #A, = 1; B, = {3},
B, = {1}, B =@ for | # 1,2. MoreoverC; = C, = {1}, andC, = U7/U? for | # 1,2;
thenC =2, C = {1}, andHY(C) = {Tn+i |ne€Z, i =1,2, 4. Hence we have
Diso®(L(7, ) #L(7, 2) #L(7,3))={/n+i|n€ Z, i =1, 2,4 by Theorem 1.2 (3).

By Theorem 1.2 (1)D(M) ={12n+i |ne€Z,i =1,49N{In+i|neZ, i=
1,2,4={84n+i|neZ, i=1,121, 169, 289, 361, 529 Note —1 ¢ D(M).
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EXAMPLE 2.3. By Theorem 1.3, for the torus bundMy, ¢ = (1 1

the first 20 integers- O, exactly 1, 4, 5, 9, 11, 16, 19, 20D(M,).

), among

EXAMPLE 2.4. For Nil 3-manifoldM = M(0; B1/2, B2/3, B3/6), D(M) = {I? |
Il =m?+mn+n? | =1mod 6,m n e Z}. The numbers inD(M) smaller than
10000 are exactly 1, 49, 169, 361, 625, 961, 1369, 1849, 23021, 4489, 5329,
6241, 8291, 9409. Since dll= 6k + 1, k € N with 12 < 10000 can be presented as
m? +mn+n? exceptl = 55,85 (if 5| m?+mn+n?, then 5| (2m+n)? +3n?, therefore
5|2m+n and 5| n, it follows that 25| m? + mn+ n?).

EXAMPLE 2.5. ForH?xE?! manifold M = M(2; 1/5,1/5,-2/5,1/7,2/7,-3/7),
we follow the notions in Theorem 1.5 to calculdi{M).

First we haveUs = {1, 2, 3,4 with indices0,(5) are{2,0, 1, Q respectively. Then
B1(5) = {3}, B2(5) = {1}, B(5) = 0 for | # 1, 2 andCy(5) = C,(5) = {1}. Hence
C(5) =2, Ci(5) = {1}. HenceC(5) = {5n + 1| n e Z}.

Similarly U7 = {1, 2, 3, 4, 5, § with indicesf,(7) are{1, 1, 0, 1, 0, @ respectively.
Then By(7) = C1(7) = {1, 2, 4. B(7) =0 and C(7) = U7 for | # 1. HenceC(7) =
N2, (7N =11,2,4. C(7)={M+i|neZ i=124.

Finally DIM) ={5n+1|neZ}Nn{/in+i|ne€Z,i=1,2,4=(35n+i|ne
Z,i =111, 18.

EXAMPLE 2.6. SupposeM is a 3-manifold supportings® geometry. By Prop-
osition 1.6,M admits degree-1 self mapping if and only if there is integer number
h, such thath? = —1 mod z;(M). Then we can prove that ik is not a lens space,
—1¢ D(M), (see proof of Proposition 3.10). With some further togatal and number
theoretical arguments, the following results were proved22].

(1) There is a degree-1 self map onL(p, g), but no orientation reversing homeo-
morphism on it if and only if p, q) satisfies:p 4 g + 1, 44 p and all the odd prime
factors of p are the & + 1 type.

(2) Every degree-1 self map onL(p, q) are homotopic to an orientation reversing
homeomorphism if and only ifff,q) satisfies:q? = —1 mod p, p = 2, pi*, 2p;*, where
p; is a & + 1 type prime number.

EXAMPLE 2.7. SupposeéM is a torus bundle. Then any non-zero degree map is
homotopic to a covering ([25] Corollary 0.4). Hence-ifL € D(M), then M admits an
orientation reversing self homeomorphism.

(1) For the torus bundiVy, ¢ = (i i) —1 € D(My). Indeed forg = ("g g) if

la +d| = 3, then—1 € D(M,). Since p? + ((d —a)/b)pr — c/br?2 = —1 has solution
p=1-d,r =bwhena+d = 3, and solutionp =-1—d, r = b whena+d = -3.

(2) For the torus bundiV, ¢ = (1 g) —1 ¢ D(My). Indeed forg = (i 3) if

a+d=+2 has prime decompositiop;*- - - p&" such thatp; = 4l +3 ande = 2m+1 for
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somei, then—1 ¢ D(M,). Since if the equatiorp? + ((d—a)/b)pr —(c/b)r? = —1 has
integer solution, then &+ d)?—4)r?—4b?)/b? should be a square of rational number.
That is (@+d)?>—4)r?—4b? = s? for some integes. Therefore §+d+2)(@a+d—2)2

is a sum of two squares. By a fact in elementary number themiyhera +d + 2 nor
a+d—2 has &+ 3 type prime factor with odd power (see p.279, [9]).

3. D(M) for connected sums

3.1. Relations betweenDiso(M1 # M) and {Diso(M1), Diso(M2)}. In this sec-
tion, we consider the manifolds! in Class 2:M has non-trivial prime decomposition,
each connected summand has finite or infinite cyclic fundaahemoup, andM is not
homeomorphic taRP* #RP°. (Note for each geometrizable 3-manifoR} 1(P) is fi-
nite if and only if P is S* 3-manifold, andr(P) is infinite cyclic if and only if P is
& x E' 3-manifold.)

Since eachS® 3-manifold P is covered byS®, we assumeP has the canonical
orientation induced by the canonical orientation ®h When we change the orientation
of P, the new oriented 3-manifold is denoted By Moreover, lens space(p, q) is
orientation reversed homeomorphic t4p, p—q), so we can write all the lens spaces
connected summands ag¢p, q). Now we can decompose the manifold as

M=(mS x SY# (M PL#tn Py #- - # (MsPs #nsPs)
#(L(p1, Ao, 0) #- - #L(P1, Aur,)) #- - #(L(Py, ) #-- - #L(PL, Gr)),s

where all theP, are 3-manifolds with finite fundamental group differentrfréens spaces,
all the P are different with each other, and all the positive integeare different from
each other. We will use this convention in this section.

Suppose- (resp.P) is a properly embedded surface (resp. an embedded 3-ritgnifo
in a 3-manifoldM. We useM \ F (resp.M \ P) to denote the resulting manifold obtained
by splitting M along F (resp. removing inP, the interior of P).

The definitions below are quoted from [17]:

DEFINITION 3.1. LetM, N be 3-manifolds andB¢ = [ J,(B U B]) is a finite
collection of disjoint 3-ball pairs in in. A map f: M\ By — N is called anal-
most defined mafrom M to N if for eachi, f|aBi+ = flss- or; for some orientation
reversing homeomorphism: 9B — 9B~. If identifying dB* with 9B~ via r;, we
get a quotient closed manifolil(f), and f induces a mapf: M(f) — N. We define
deg(f) = deg(f).

DEFINITION 3.2. For two almost defined mapé and g, we say thatf is
B-equivalentto g if there are almost defined mags= fq, f1,..., f, = g such that
either f; is homotopic tofi;; rel(@By, U 9By,,) or fi = fi,1 on M\ B for an union
of balls B containing By, U By, ,.
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Lemma 3.3 ([17] Lemma 3.6, [25] Lemma 1.11).Suppose fM — M is a map
of nonzero degree an{) 32 is an union of essentia?-spheres. Then there is an al-
most defined map:gM \ By — M, B-equivalent to f such thatdeg@) = deg(f) and
g (U &) is a collection of spheres.

Lemma 3.4 ([25] Corollary 0.2). Suppose M is a geometrizat8emanifold. Then
any nonzero degree proper map: M — M induces an isomorphism, f 7;(M) —
71(M) unless M is covered by either a torus bundle over the gitteF x S' for some
compact surface For the S.

The following lemma is well-known.

Lemma 3.5. Suppose M is a closed orientalemanifold f: M — M is of de-
gree d# 0. Then f: Hy(M, Q) — Hy(M, Q) is an isomorphism.

Theorem 3.6. Suppose M= Mj #--- # M, is a non-prime manifold which is
not homeomorphic to R RP®. Each 1(M;) is finite or cyclic and 71(M;) # 0. If
f: M - M is a map of degree ¢ 0, then there exists a permutatianof {1,...,n},
such that there is a map; gM.j) — M; of degree d for each i. Moreoveg;. is an
isomorphism on fundamental group.

Proof. Call M’ is a puncturedM, if M’ = M \ B, where B is a finitely many
disjoint 3-balls in the interior ofM. We useM, to denote the 3-manifold obtained
from M, by capping off the boundary spheres with 3-balls.

M is obtained by gluing the boundary sphereMdf = M; \int(B;) to an-punctured
3-sphere. The image d&fB; in M, which is denoted byg, is a separating sphere.

By Lemma 3.3, there is an almost defined ngpM \ By — M, B-equivalent to
f, such thatg*(|J S) is a collection of spheres and dgy& d. Let Mg = M \ By.

LetU =Mg\g}(US)= {M! |j=1,...,1;,i=1,...,n}. The components
of g7(M/) are denoted b1, ..., M/,

By Lemma 3.4, f.: 71(M) — 71(M) is an isomorphism. Sincg is differ from
f just on the 3-ballsBy up to homotopy reldBy, it follows that g..: w1(M \ Bg) =
w1(M) — 71(M) is an isomorphism.

Since the prime decomposition of 3-manifdldl is unique, andVig is just a punc-
tured M, each component dfl is either a punctured non-trivial prime factor bf, or
a punctured 3-sphere.

By Lemma 3.5,f, is an injection onH,(M, Q). If S is a separating sphere, then
[S] =0 in Hy(M, Q). So each componers of f~1(S) is homologous to 0, thus
S separatedM. By the procession of construction gf (see the proof of Lemma 3.4,
[17]), which is B-equivalent tof, each componens of g~%(S) is also a separating
sphere inMgy. So 1(Mg) is the free product of thal(Mij), i=1,....,n, j=1,....l.
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Note 71(M) = 71(My) * - - - x 11 (My), eachw1(M;) is an indecomposable factor of
m1(M). Sinceg, is an isomorphism and each punctured 3-sphere has triyjafrom
the basic fact on free product of groups, it follows that ¢hés at least one punc-
tured prime non-trivial factor ig~*(M/). Since this is true for each=1,...,n and
there are at most punctured prime non-trivial factors id, it follows that there aren
punctured prime non-trivial factors ib. Hence there is exactly one punctured prime
non-trivial factor ing=*(M/), denoted aM, ), moreoverg,: m1(M.g)) — 71(M;) is an
isomorphism, where is a permutation oril,..., n}.

Sincer1(M;) = Z if and only if M; = $? x St, it follows that if Mj = & x S,
then M,y = & x S, Since D(S? x S') = Z, below we assume thaill # S x S, and
to show that there is a mag : M.j — M; of degreed.

Since the mapg: M(g) — M has degreed (see Definition 3.1), thery =
gl: (U'J-‘:l MiJ)(g) — M/ is a proper map of degree, which can extend to a map
Gi: (U'J-i=1 M!)(g) - M{ = M; of degreed between closed 3-manifolds. The last map is
also defined or((Ji_; M!)(9)\Bq = (U'_; M)\ Bg € (U'_; M), whered By c M(g)
is the image ofd By C M.

Now consider the may : (U'j‘zl M/) \ By — 'Mi. Since 7>(M;) = 0, we can
extend the mapj; _from U'j‘:l M)\ By to U'jizl M), More carefully, for each pair
B, B C U'j‘zl I\7IiJ we can make the extension with the prope@[yw =Gl ofi,
wherefi: B — B is an orientation reversing homeomorphism extending B —
9B~. Now it is easy to see the majp: U'j‘zl |\7|iJ — M is still of degreed.

From the maggy: (Ui_; M/) — M; one can obviously define a magp: #)_,M/ —

M; of degreed between connected 3-manifolds. Since ﬂii are S° except one is
Mf(i), we have map; : Mr(i) — M. L]

DEFINITION 3.7. For closed oriented 3-manifol, M’, define
Diso(M, M) = {deg(f) | f: M — M’, f induces isomorphism on fundamental grpup

Diso(M) = {deg(f) | f: M — M, f induces isomorphism on fundamental grpup

Under the condition we considered in this section, we hBN®) = Diso(M) by
Lemma 3.4.

Lemma 3.8. Suppose if M; — M/ is a map of degree d between closed
n-manifolds n > 3, fi, is surjective onry, i = 1,2 Then there is a map:fM;#M, —
M; # M, of degree d and .fis surjective onry. In particular,

(1) Diso(Ml# Mo, Mi# Mé) ) Diso(Mla M;/L) N Diso(MZy Mé),
(2) Diso(Ml # MZ) ) Diso(Ml) N Diso(MZ)-

Proof. Sincef, is surjective onry, it is known (see [18] for example), we can
homotopef; such that for some-ball D; C M/, fi‘l(Di) is ann-ball D; € M;. Thus
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we get a proper mag;: M; \ D; — M/ \ Dj of degreed, which also induces a degree
d map fromaD; to aD/. Since maps of the same degree betwaes {)-spheres are
homotopic, so after proper homotopy, we can pafiteand f, along the boundary to
get mapf: My # M, — M # M) of degreed and f, is surjective onr;. ]

3.2. D(M) for connected sums. Suppose
M = (mS x S # (myPL#n,Py) #- - - # (MsPs # ns Ps)
#(L(py, Qo) #- - # L(P1, Our,)) #- - # (L(Py, Ge2) #- - - # LD Q)

where all theP, are 3-manifolds with finite fundamental group differentrfréens spaces,
all the B, are different with each other, and all the positive integeare different from
each other.

To prove Theorem 1.2, we need only to prove the three prdpositbelow.

Proposition 3.9.
D(M) = Diso(ml I:)l #nl |51) n---N Diso(msps #nsF_)s) N DiSO(L(pL Q1,1) #eo

%
) #L(P1, Gury)) N -+ N Diso(L(Pr, O,1) #- - - # L(Pt, Gir,))-

Proof. For every self-mapping degreeof M, in Theorem 3.6 we have proved
that for every oriented connected summanaf M, it corresponds to an oriented con-
nected summand’, such that there is a degret mapping f: P — P/, and f in-
duces isomorphism on fundamental group. By the classificatif 3-manifolds with
finite fundamental group (see [13], 6.2, and P’ are homeomorphism (not consider-
ing the orientation) unless they are lens spaces with sam#afoental group. Now by
Lemma 3.8 (1), we havd € Diso(m; P#n; P,) andd € Diso(L(pj,dj,1)# - -#L(p;j,qjr,)),
fori=1,...,sandj =1,...,t. Hence we have proved

D(M) C Diso(ml Pl #nl |51) n---N Diso(ms Ps #nslss) N Diso(l—(pl, ql,l) #eeo
#L(P1, Aur,)) N+ N Diso(L(Prs O,2) #- - - # L(Pt, Ger,))-

(SinceD(MS x SY) = Z, we can just forget it in the discussion.)
Apply Lemma 3.8 once more, we finish the proof. ]

Proposition 3.10. If P is a 3-manifold with finite fundamental group different
- Diso(P) if m#n,
from lens spaceDiso(mP#nP ={ 1se .
PaceDisol ) = \DsolP) U (-Do(P)) if m=n.
Proof. If P is not a lens space, from the list in [13], we can check that
4| |1(P)|. By Proposition 1.6 Diso(Q) = {k*+1{71(Q)| | gcd(k, |71(Q)[) = 1}, where
Q is any 3-manifolds withS® geometry. Ifk? + I|my(P)| = —k? — I'|m1(P)|, then
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k? +k? = —(1 +1")|1(P)|. Since 4 |z1(P)| and gedk, |71(P)]) = ged(', |71 (P)l) = 1,
k,k’ are both odd, thus-(I +1")|1(P)| = k? +k?> = 4s+ 2, contradicts with 4 |r1(P)].
S0 Diso(P) N (—Diso(P)) = 4. (In particular—1 # D(P).)

From the definition we hav®iso(P) = Diso(P) and Diso(P, P) = Diso(P, P) =
_Diso(P)-

If m# n, we may assume thah > n. For the self-mapf, if some P corresponds
to P, there must also be sonfe corresponds td, so degf) € Diso(P) N (—Diso( P)),
it is impossible by the argument in first paragraph. So all Eheorrespond toP, and
all the P correspond tdP. Since Diso(P) = Diso(P), We haveDiso(m P#nP) C Diso(P).
By Lemma 3.8 and the fadDiso(P) = Diso(P), we haveDiso(m P #nP) = Diso(P).

If m=n, similarly we have either all th® correspond toP and all theP corres-
pond toP; or all the P correspond td® and all theP correspond tdP. SinceDiso(P) =
Diso(P) and Diso(P, P) = Diso(P, P) = —Diso(P), we haveDiso(mP#mP) C Diso(P) U
(—Diso(P)). On the other hand from the argument above, we Hayg(P), —Diso(P) C
Diso(MP#mP), henceDiso(m P #mP) = Diso(P) U (= Diso( P)). O

Lemma 3.11. Diso(L(p, q), L(p, @) = {k*q~'q’ + Ip | gedk, p) = 1}, here q*
is seen as in group pJ= {all the units in the ringZ}.

Proof. L(p,q) is the quotient ofs® by the action ofZ,, (z1,22) — (€%7/Pz;,6 %97/ Pz,).
Let foq: S* = S, fog(@, 22) = @/ V122 + (22299, 22 /|22 + |22]2). We can
check that this map induces a mdgq : L(p, q) — L(p, 9') with degreeqq’, more-
over sinceq, q’ are coprime withp, fqq. is an isomorphismr;. By Proposition 1.6
Diso(L(p, 9)) = {k? + Ip | gcdk, p) = 1}. Compose each self-map dr(p, q) which
induces an isomorphism am with fqq, we have{k’q='q’ + Ip | gcdk, p) = 1} C
Diso(L(p, ), L(p,q")). On the other hand, for each mgpL(p,q) — L(p, q’) of degree
d which induces an isomorphism on, then fy 4 o g is a self-map ori_(p, g) which in-
duces an isomorphism on, wherefy q: L(p,q’) — L(p,q) is a degre€/q’ map. Hence
the degree offy q o g is gg'd which must be ink? + Ip | gcdk, p) = 1}, thatisqq'd =
k?+1p, gedk, p) = 1, thend = k*q~'q"~* + pl = (k/q)’q~*q’ + pl € (K’g'a’ +Ip |
gedk, p) = 1}. HenceDiso(L(p, ), L(p, @) = {k*a~'q" +Ip | gedk, p) = 1}. O

Let Up = {all units in ringZ,,}, U7 = {a* | a € Up}, which is a subgroup ot
Let H denote the natural projection frofm € Z | gcdf, p) = 1} to Up/Ug.

Later, we will omit the p, denote them byJ and U2. We consider the quotient
U/U? = {ay, ..., an}, everya corresponds with a cosey of U2. For the structure
of U, see [9] p.44, then we can get the structureUdfand U /U? easily.

Define As = {L(p, ) | g € As} (with repetition allowed). InU/U?, define B =
{as | #As =1} for | =1,2,..., there are only finitely man,’s are nonempty. Le€,
{aeU/U?|qac B, Va € B} if B # 0 andC; = U/U? otherwise,C = (2, C.

Proposition 3.12. Diso(L(p, qu) #---#L(p, gn)) = HY(C).
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Proof. By Lemma 3.11, we hav®is(L(p, ), L(p, 9)) = {k’q~q + Ip |
gedk, p) = 1}. ThereforeDiso(L(p, q), L(p, q’)) will not change if we replace.(p, q)
by L(p, s°q) (resp.L(p, @) by L(p, s?q’)) for any s in Uy,

Now we consider the relation between two sddxq(L(p, q), L(p, ') and
Diso(L(P, G), L(p, 0.)). It is also easy to see ifq(q’)(q./d«) = s> in Up, then
Diso(L(P, @), L(P,q)) = Diso(L(P, &), L(P, a)), and if @/q)(d./q.) # s* in Up, then
Diso(L(p, ), L(p, 9")) N Diso(L(p, @), L(p, Q.)) = @.

Let f: L(p,qu)#---#L(p,an) = L(p,qu) #---#L(p, gn) be a map of degree
d # 0. Supposef sendsL(p, g;) to L(p, g) and sends.(p, g;) to L(p, q) in the
sense of Theorem 3.6. Sind@so(L(p, ¢i), L(P, dk)) N Diso(L(P, d;j), L(P, @) # 9,
by last paragraph, we must have /ak)(d/9;) = s? in Up. Henceq;/q; is in u? if
and only if g /g is in U?; in other words,L(p, ) and L(p, g;) are in the sameAs
if and only if L(p, q«) and L(p, q) are in the sameA;. Hence f provides 11 self-
correspondence oA, ..., Ay, and if some elements ifs corresponds to;, there
is #As = #A.

Let f: L(p,qu)# --#L(p,0n) — L(p,qu) #:--#L(p, qn) be a self-map. For each
a € U/U? f must sendA to someA; with #A; = #A; = |, and botha, a; € B;.
AssumeL(p, ) € A, L(p, q;) € Aj, then degf) € {k?q1q; + Ip | gcdk, p) = 1}
by Lemma 3.11. By consider i) /U2, we haveH (deg(f)) = 0;/G = aj/a&, that is
H(deg(f))ay = a; € B;. Since we choose arbitrarg in B, we haveH (deg(f))
C. Also we choose arbitrary, we haveH (deg(f)) € (=, Ci = C, hence deg() €
H-1(C).

On the other hand, il € H(C), thenH(d) =ce C =(2,C. For eachB # ¢
and eachg; € B, we havecg = a; € B.. Then A, — A; gives 1-1 self-correspondence
among {A | #A, = |}. We can make further 1-1 correspondence from elements in
A to elements inAJ-. Since our discussion works for aBy # @, we have 1-1 self-
correspondence ofiL(p, 01), ---, L(p, gn)} (with repetition allowed). Therefore for
eachL(p, g) € A andL(p, g;) € A}, ¢ = §;G*. Therefored have the formk?g;jg*
mod p with (k, p) = 1. By Lemma 3.11, there is a mafy;: L(p, ¢) — L(p, q;) of
degreed which induces an isomorphism ory.

By Lemma 3.8, we can construct a self-mapping of degteaf L(p, q1) #---#
L(p, g) which induces an isomorphism on. HenceH %(C) C Diso(L(p, Q1) # - - #
L(P. 6n))- Thus Diso(L(p, G) #- - # L(p, a)) = H~1(C). O

4. D(M) for Nil manifolds

4.1. Self coverings of Euclidean orbifolds.

DEFINITION 4.1 ([20]). A 2orbifold is a Hausdorff, paracompact space which is
locally homeomorphic to the quotient space®t by a finite group action. Suppose
Oy and O, are orbifolds andf: O; — O, is an map. We sayf is anorbifold covering
if any point p in O, has a neighbourhood such thatf ~1(U) is the disjoint union of
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setsV,,A € A, such thatf|: V, — U is the natural quotient map between two quotients
of R? by finite groups, one of which is a subgroup of the other.

In this paper, we only consider about orbifold with singutemints. Here we say
a point x in the orbifold is asingular point of index qif x has a neighborhood)
homeomorphic to the quotient space ®f by rotate action of finite cyclic Qroufzy,
q>1.

An orbifold O with singular points{xy,...,Xs} iS homeomorphic to a surfade, but
for the sake of the singular points, we would like to distiisguthem through denoting

O by F(qi,...,0qs). Hereqy, ..., gs are indices of singular points. Here the covering
map f: 01 — O, is not the same as the covering map fréimto F..
If f: 01— O, is an orbifold covering, the singular points 6% are{xy, ..., Xs},

for anyy € 0,y # x;, define degf) = #f ~1(y). For any singular poink, let f ~1(x) =
{a1,...,&}. At pointa;, f is locally equivalent te — z% on C, x anda; correspond to
0. Here we havg_ d; = d, a; is an ordinary point if and only ifl; equals to the index

of x. Define D(x) = [dy, --- , di] to be theorbifold covering data at singular point,x
and®(f) = {D(xy), ..., D(xs)} (with repetition allowed) to be therbifold covering
data of f.

The following lemma is easy to verify.

Lemma 4.2. If a Nil manifold M is not a torus bundle or a torus semi-bundle
then M has one of the following Seifert fibreing structurds(0; B1/2, B2/3, B3/6),
M(0: B1/3, B2/3, B3/3), or M(0: B1/2, B2/4, B3/4), where €M) € Q — {0}.

Proof. Consider Nil manifolcM as a Seifert fibered space, then its orbifGdM)
has zero Euler characteristic. $M) must be one of following orbifolds: the torus
T2, the Klein bottleK, P?(2, 2), S?(2, 3, 6), (2, 4, 4), (3, 3, 3) andS*(2, 2, 2, 2).

By [4] p. 38 and p. 40, we can see tht has structure of torus bundle @(M) is
T2 or K, andM has structure of torus semi-bundle@(M) is P?(2,2) or $%(2,2,2,2).

The remaining three case(2, 3, 6), S?(2, 4, 4) andSA(3, 3, 3) correspond to the
three cases claimed in the lemma. ClefM) € Q — {0} since Nil manifolds have
non-zero Euler number. O

Proposition 4.3. Denote the degrees set of self covering of an orbitdldy D(O).
We have
(1) For O = (2, 3,6),D(0) = {m? + mn+n? | m,n e Z, (m,n) # (0, 0).
Moreovey if d € D(O) is coprime with6, then
(i) d=1mod 6;
(i) this covering map of degree & 6k + 1 is realized by an orbifold covering
from O to O with orbifold covering data

{D(x1), D(x2), D(x3)} = {[2,...,2,1],[3,...,3, 1], [6,..., 6 1]},
3k 2 k



262 H. SUN, S. WANG, J. WU AND H. ZHENG
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b

Fig. 1.

where %, X, and % are singular points of indice?, 3 and 6 respectively.
(2) For O = $(3, 3, 3), D(0) = (M? + mn+n? | m,n € Z, (m, n) # (0, 0)}.
Moreovey if d € D(O) is coprime with3, then
() d=1mod 3;
(i) this covering map of degree €& 6k + 1 is realized by an orbifold covering
from O to O with orbifold covering data
{D(x1), D(x2), D(x3)} ={[3,...,3, 1], [3,...,3, 1], [3,...,3 1]},

where X%, X2 and % are singular points of indice8, 3 and 3 respectively.
(3) For O = $(2, 4, 4),D(0) = {(M? +n? | m,n € Z, (m, n) # (0, 0)}.
Moreovey if d € D(O) is coprime with4, then
() d=1mod 4;
(ii) this covering map of degree & 4k + 1 is realized by an orbifold covering
from O to O with orbifold covering data

(D(x)), D(x2), D(xe)} = {[2, ... 2.1], [4,..., 4 1], [4,..., 4 1]},

where X%, Xo and % are singular points of indice®, 4 and 4 respectively.

Proof. We only prove case (1). The other two cases can be greweilarly.

(2, 3, 6) can be seen as pasting the equilateral triangle ewnslin Fig. 1
geometrically.

71(S?(2, 3, 6)) can be identified with a discrete subgrdumf Iso, (E?), a funda-
mental domain off" is shown in Fig. 2. It is as a lattice iB? with vertex coordinate
m+neé™3 m,ne Z.
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M=

b
>

Fig. 2.

For the coveringp: T? — S%(2,3,6), T? can be seen as the quotient of a subgroup
I'" c T on E?, with a fundamental domain as Fig. 3. Heréis just all the translation
elements ofl", thus T is generated by — z+ +/3i andz — z + (+/3/2)i + 3/2.

For every self covering: $%(2,3,6)— $%(2,3,6), f.: 71(S%(2,3,6))— 71(S%(2,3,6))
is injective. Sincep is covering, f, o p,: m1(T?) — m1(S*(2, 3, 6)) is also injective. So
f.(p«(71(T?)) is a free abelian subgroup af(S*(2, 3, 6)).

For everyy e I', which is not translation, it can be representedfby — €27/nz4
20, gcdk,n) = 1,n > 1. Thenf"(2) = (€/MNz 4 (€&M-17/n ... 27/ L 1)z = 7.
Sovy is a torsion element, thug ¢ f,(p.(m1(T?))) excepty = e. So f.(p.(r1(T?)) C
P, (1(T?)), thus there existd : T2 — T2 being the lifting of f.

R,

(2, 3, 6)—— P2, 3, 6).
Here we have

area(fundamental domain df,(1(T2)))
area(fundamental domain af;(T?)) '

deg(f) = deg(f) = [71(T?) : fu(ma(T?)] =

here f,(71(T2)), 71(T?) are all seen as subgroup of(S¥(2, 3, 6)).
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Fig. 3.

Clearly, we can choose a fundamental domainfdfr1(S*(2, 3, 6))) to be an equi-
lateral triangle inE? with vertices asm + né”/3, then the fundamental domain of
f.(72(T?) is an equilateral hexagon with vertices ms+ né”/3. The scale of area is
the square of the scale of edge length. The scale of edgenlemggt bem+né™/3| =
vm2 + mn+n2. So degf) = m? + mn+ n?.

On the other hand, for everyn( n) € Z? — {(0, O}, chooseg: E? — E?, g(2) =
(m + ne™3)z. It is routine to check that for any € T, there isy’ € T, such that
9(y(2) = y'(9(2)). Sog inducesg, which is self covering or8%(2, 3,6), and degj) =
m? + mn+ n?. We have proved the first sentence of Proposition 4.3 (1).

If m?4+mn+n? is coprime to 6m?+mn+n? = 1 or 5 mod 6. Sincen’+mn+n? =
4m? 4+ 4mn+ 4n? = (2m+ n)? mod 3, and any square number must be 0 or 1 mod 3, we
must havem? + mn+ n? = 1 mod 6. We have proved Proposition 4.3 (1) (i).

Assumeh is a self covering of degreé = 6k + 1, X3, X2, X3 are the singular points
on $%(2, 3, 6) with indices 2, 3, 6. Foxy, h~(x1) must be ordinary points or singular
point of index 2. Since the degre® = 6k + 1, h™1(x;) is 3k ordinary points and
x1. Similarly, for x;, h™1(xp) is 2k ordinary points andk;. Then Xy, x> ¢ h™1(x3), so
h=%(xs) is k ordinary points andks. Thus the covering map of degree= 6k + 1 is
realized by a self covering aP with orbifold covering datd[2,...,2,1],[3,...,3, 1],
[6,...,6,1]. We have proved Proposition 4.3 (1) (ii). ]
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4.2. D(M) for Nil manifolds.

Lemma 4.4. For Nil manifold M, D(M) c {I?|l € Z}.

Proof. Letf be a self map oM. By [25, Corollary 0.4],f is either homotopic
to a covering mam: M — M, or a homotopy equivalence.

If f is homotopic to a covering, sincel has unique Seifert fibering structure up
to isomorphism, we can makg to be a fiber preserving map. Denote the orbifold of
M by Om. By [20, Lemma 3.5], we have:

I
(4.1) {e(M) = e(M)-E,
deg@) =1-m,

wherel is the covering degree ddy — Oy andm is the covering degree on the fiber
direction. Sincee(M) # 0, from equation (4.1) we gét= m. Thus degf) = deg@)
is a square numbdr.

If f is a homotopy equivalence, then déy(= £1. To finish the proof of the
lemma, we need only to show that the degreefos not —1. Otherwise composing a
self coveringg of degreen > 1, thengo f is of degree—n, which is not a homotopy
equivalence, therefore is homotopic to a covering, and rhase degree- O by the
last paragraph, a contradiction. O

Theorem 4.5. For 3-manifold M inClass 4,we have
(1) For M = M(0; B1/2, B2/3, B3/6), D(M) = {I? || = m?> + mn+n?, | =1 mod 6,
m, n € Z};
(2) For M = M(0; B1/3, B2/3, B3/3), DIM) = {I? || = m? + mn+n?, | =1 mod 3,
m, n € Z};
(3) For M = M(0; B1/2,B2/4,83/4), D(M) = {I12]|1 = m?+n?, | =1 mod 4,m,n € Z}.

Proof. We will just prove Case (1). The proof of Cases (2) aBdafe exactly
as that of Case (1). BeloM = M(0; B1/2, B2/3, B3/6).

First we show thaD(M) C {I? || =m? +mn+n? | =1 mod 6,m, n € Z}.

Since the orbifoldOy = S?(2, 3, 6), by Proposition 4.3 (1), we have= m? +
mn+ n?. Below we show that = 6k + 1.

Let N be the regular neighborhood of 3 singular fibers. To defineSbiert in-
variants, a sectiorr of M \ N is chosen, and moreover+ and fibers on each com-
ponent ofd(M \ N) are oriented.

Consider the covering|: M \ g~%(N) — M \ N. Let F be a componeng~(F).

It is easy to verify that~ is a section ofM \ g 1(N). Now we lift the orientations on
dF and the fibers o(M \ N) to those ond(M \ g~1(N)), we get a coordinate system
on 3(M \ g~1(N)). Therefore we have a coordinate preserving covering

g: (M, M\ g~(N), g"(N)) = (M, M\ N, N).
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meridian of V

¢ = a component of OF ¢ =a component of 9 F

Fig. 4.

SupposeV’ is a tubular neighborhood of some singular fid€r The meridian
of V’ can be represented by} (W)? (o’ > 0), where ¢, h') is the section- fiber
coordinate ofgV’.

SupposeV is a component ofg~1(V’) and the meridian oV is represented as
c“h? (a > 0), where ¢, h) is the lift of (¢, h"). Sinceg|: V — V' is a covering of
solid torus, sog must send meridian to meridian homeomorphically, tiggs*h?) =
() (W), See Fig. 4.

Sinceg has the fiber direction covering degree= 1, g(h) = (')'. Sincec,c’ are
the boundaries of sections amdsendc to ¢, we haveg(c) = (¢)S. Theng(c*h?) =
(©)*s(n)P = () (n)#. Hence we geB -1 = B'.

Let V' be a tubular neighborhood of singular fiber whose meridiam lwa repre-
sented asq)®(h)?". By the arguments above, the meridian of the preimdgean be
represent byc*h?”.

Since B’ is coprime with 6. Byg -1 = B/, sol is coprime with 6. Still by Prop-
osition 4.3 (1), we havé = 6k + 1.

Then we show{I? || = m? + mn+n? | =1 mod 6,m, n € Z} C D(M).

Suppose = m? + mn+ n? and| = 6k + 1, denote the quotient manifold &,
free action onM by M,. Then M, has the Seifert fibering structum (0; | - B1/2,
|- B2/3, 1 B3/6). We have the covering,: M — M, of degreel.

Claim. there exists a map,; f M; — M of degree I.

Let D = D; U D, U D3 C S$(2, 3, 6) be the regular neighborhood discs of 3 sin-
gular points of indices 2, 3, and 6 respectively. By Propasi4.3 (1), there exists a
branched covering maf : S%(2, 3, 6)— S¥(2, 3, 6) of degred such that
(1) fi induce a covering mag|: $?\ f (D) — S*\ D;

(2) fX(Di) consists of (B + 1) discs with orbifold covering data [2, ., 2, 1] for
——

3
i =1, and (X + 1) discs with orbifold covering data [3,., 3, 1] for i = 2, and
—_——

2
(k + 1) discs with orbifold covering data [6, ., 6, 1] for i = 3.

k
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Clearly ﬂ‘l(D) consists of (R + 1)+ (2k + 1) + (k + 1) = 6k + 3 disks.

Then we have the covering mafp x id: (S?\ (D)) x St — (S*\ D) x St of
degreel, which can be extends to a covering mép M’ — M, where M’ has the
Seifert structureM(0; B1, ..., B1, B1/2, B2, ..., B2, B2/3, B3, ..., B3, B3/6). Clearly

SN————— S———— S————

3K 2% k
M’ is isomorphic toM;.

Now the coveringfiog: M — M, — M has degree?.
We finish the proof of Case (1). O

5. D(M) for H? x E! manifolds

In this case, all the manifolds are Seifert fibered spadesuch that the Euler
numbere(M) = 0 and the Euler characteristic of the orbifoldOy) < O.

SupposeM = (9; B1.1/@1, - - Bim, /1y -« -y Bni/@n, - - -y Bam,/an), Where all the
integerse; > 1 are different from each other, and;_, >"IL, f /o = 0.

For everyw;, considerU,,. For everya € U,,, definefa(ci) =#{pi; | pi(i,;) = a}
(with repetition allowed), whergy; is the natural projection fronn | gcd, o) = 1}
to Uy, . Define Bi(«i) = {a | fa(ey) =1} for 1 =0, 1,..., there are only finitely many
Bi(«i) nonempty. LetCi(«;) = {b e U, | abe B(«), Va € B(x)} if Bi(ei) # @ and
Ci(ai) = U, otherwise. Finally defin€ (i) = (2, Ci(i), and Clo) = P H(C()).

Theorem 5.1.

B B Bu b)) LA e
D(M(g, o e e ))_QC(a.).

Proof. Supposd is a non-zero degree self-mappingMf By [25, Corollary 0.4],
f is homotopic to a covering magp M — M. SinceM has the unique Seifert structure,
we can isotopgy to a fiber preserving map. Denote the orbifold Mf by Oy. Then
g induces a self-covering on Oy, since x(Oy) < 0, thend must be 1-sheet, thus
isomorphism ofOy.

So g is a degreed covering on the fiber direction. Or equivalently, by the awti
of Z4 on each fiber, the quotient dfl is alsoM. Thusd € D(M) if and only if

M’ = M(g:dﬁil,...,dﬂ“‘“&...,d@,...,dﬂ“mﬂ)

a1 a1 Qn Qn

is homeomorphic tav.

By the uniqueness of Seifert structure ([20] Theorem 3.9)) the facte(M) = 0, we
have thatM is homeomorphism tdA’ if and only if (8i,1,...,Bim) = (ABi1,...,dBim)
under a permutation, all the numbers are seen a$(in).

For everya € U(w), if (Bi1, ..., Bim) = (dBi1, ..., dBim) holds, we must have
Oa(ei) = Ogalei), thus pi(d) € Cy, (). Fora is an arbitrary element it («;), we have
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pi(d) € C(ev), thusd € C(). Sincee; is also chosen arbitrarilyg € N'_; C(ai), thus
D(M) € (=, Cl@). )
For anyd € (_; C(«), M is homeomorphic tav’, so D(M) > _; C(ei) O
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