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Abstract
We introduce and study knotoids. Knotoids are represented by diagrams in a

surface which differ from the usual knot diagrams in that theunderlying curve is
a segment rather than a circle. Knotoid diagrams are considered up to Reidemeister
moves applied away from the endpoints of the underlying segment. We show that
knotoids in S2 generalize knots inS3 and study the semigroup of knotoids. We also
discuss applications to knots and invariants of knotoids.

1. Introduction

Drawing a diagram of a knot may be a complicated task, especially when the num-
ber of crossings is big. This paper was born from the observation that one (small) step
in the process of drawing may be skipped. It is not really necessary for the underlying
curve of the diagram to be closed, i.e., to begin and to end at the same point. A curve
K � S2 with over/under-crossing data and distinct endpoints determines a knot inS3

in a canonical way. Indeed, let us connect the endpoints ofK by an arc inS2 running
under the rest ofK . This yields a usual knot diagram inS2. It is easy to see that the
knot in S3 represented by this diagram does not depend on the choice of the arc and
is entirely determined byK . The actual drawing of the arc in question is unnecessary.
This suggests to consider “open” knot diagrams which differfrom the usual ones in
that the underlying curve is an interval rather than a circle. We call such open dia-
gramsknotoid diagrams. They yield a new, sometimes simpler way to present knots
and also lead to an elementary but possibly useful improvement of the standard Seifert
estimate from above for the knot genus.

The study of knotoid diagrams also suggests a notion of a knotoid. Knotoids are
defined as equivalence classes of knotoid diagrams modulo the usual Reidemeister moves
applied away from the endpoints. We show that knotoids inS2 generalize knots inS3

and introduce and study a semigroup of knotoids inS2 containing the usual semigroup of
knots as the center. We also discuss an extension of several knot invariants to knotoids.

The concept of a knotoid may be viewed as a generalization of the concept of
a “long knot” on R2. More general “mixtures” formed by closed and open knotted
curves on the plane were introduced by S. Burckel [2] in 2007.
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Fig. 1. The unifoils.

Fig. 2. The bifoils.

The paper is organized as follows. In Section 2 we introduce knotoid diagrams and
discuss their applications to knots. We introduce knotoidsin Section 3 and study the
semigroup of knotoids in Sections 4–6. The properties of this semigroup are formu-
lated in Section 4 and proved in Section 6, where we use the technique of theta-curves
detailed in Section 5. Sections 7 and 8 deal with the bracket polynomial of knotoids.
The last two sections are concerned with skein modules of knotoids and with knotoids
in R2.

This work was partially supported by the NSF grant DMS-0904262. The author is
indebted to Nikolai Ivanov for helpful discussions.

2. Knotoid diagrams and knots

2.1. Knotoid diagrams. Let 6 be a surface. Aknotoid diagram K in 6 is a
generic immersion of the interval [0, 1] in the interior of6 whose only singularities
are transversal double points endowed with over/undercrossing data. The images of 0
and 1 under this immersion are called theleg and thehead of K , respectively. These
two points are distinct from each other and from the double points; they are called the
endpointsof K . We orient K from the leg to the head. The double points ofK are
called thecrossingsof K . By abuse of notation, for a knotoid diagramK in 6, we
write K � 6. Examples of knotoid diagrams inS2 with � 2 crossings are shown in
Figs. 1 and 2 above.
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Fig. 3. The moves�� and�C.

Two knotoid diagramsK1 and K2 in 6 are (ambient) isotopic if there is an isotopy
of 6 in itself transformingK1 in K2. Note that an isotopy of a knotoid diagram may
displace the endpoints.

We define threeReidemeister moves�1,�2,�3 on knotoid diagrams in6. The move�i on a knotoid diagramK � 6 preservesK outside a closed 2-disk in6 disjoint from
the endpoints and modifiesK within this disk as the standardi -th Reidemeister move,
for i D 1, 2, 3 (pushing a branch ofK over/under the endpoints is not allowed).

We introduce two more moves on knotoid diagrams. The move�� (resp.�C)
pulls the strand adjacent to the head or the leg under (resp. over) a transversal strand,
see Fig. 3. These moves reduce the number of crossings by 1. Applying ��, we can
transform any knotoid diagram in the trivial one represented by an embedding of [0, 1]
in the interior of6.

More generalmulti-knotoid diagramsin 6 are defined as generic immersions of
a single oriented segment and several oriented circles in6 endowed with over/under-
crossing data. Though most of the theory below extends to multi-knotoid diagrams, we
shall mainly focus on knotoid diagrams.

2.2. From knotoid diagrams to knots. The theory of knotoid diagrams sug-
gests a new diagrammatic approach to knots. Unless explicitly stated to the contrary,
by a knot we mean an isotopy class of smooth embeddings of an oriented circle intoR3 or, equivalently, intoS3 D R3[ {1}. Every knotoid diagramK � S2 determines a
knots K� � S3. It is defined as follows. Pick an embedded arca � S2 connecting the
endpoints ofK and otherwise meetingK transversely at a finite set of points distinct
from the crossings ofK . (We call such an arc ashortcut for K .) We turn K [ a into
a knot diagram by declaring thata passes everywhere underK . The orientation ofK
from the leg to the head defines an orientation ofK [ a. The knot in S3 represented
by K [ a is denotedK�; we say thatK representsK� or that K is a knotoid dia-
gram of K�. The knot K� does not depend on the choice of the shortcuta because
any two shortcuts forK are isotopic in the class of embedded arcs inS2 connecting
the endpoints ofK . These isotopies induce isotopies and Reidemeister moves on the
corresponding knot diagramsK [ a.
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It is clear that every knot� � S3 may be represented by a knotoid diagram. In-
deed, take a (usual) knot diagram of� and cut out an underpassing strand. The strand
may contain no crossings, or 1 crossing, or� 2 crossings. In all cases we obtain a
knotoid diagram of�. It is clear that two knotoid diagrams represent isotopic knots if
and only if these diagrams may be related by isotopy inS2, the Reidemeister moves
(away from the endpoints), and the moves��1� .

Alternatively, one can start with a knotoid diagramK � S2 and consider the knot
diagram obtained fromK by adjoining a shortcut forK passingover K. This yields
a knot KC � S3. In this context, the moves��1� become forbidden and��1C allowed.

The diagrammatic approach to knots based on knotoid diagrams extends to ori-
ented links inS3 through the use of multi-knotoid diagrams inS2.

2.3. Computation of the knot group. Since a knotoid diagramK � S2 fully
determines the knotK� � S3, one should be able to read all invariants of this knot
directly from K . We compute here the group�1(S3 � K�) from K .

Similarly to the Wirtinger presentation in the theory of knot diagrams, we asso-
ciate with every knotoid diagramK in an oriented surface6 a knotoid group�(K ).
This group is defined by generators and relations. Observe that K breaks at its cross-
ings into a disjoint union of embedded “overpassing” segments in 6. The generators
of �(K ) are associated with these segments. (The generator associated with a seg-
ment is usually represented by a small arrow crossing the segment from the right to
the left.) We impose on these generators the standard Wirtinger relations associated
with the crossings ofK , see [7], p. 110. IfK hasm crossings, then we obtainmC 1
generators andm relations. The resulting group�(K ) is preserved under isotopy and
the moves�1,�2,�3,�� on K . For example, ifK is a trivial knotoid diagram, then�(K ) � Z.

Lemma 2.1. For any knotoid diagram K� S2 of a knot� � S3,

(2.3.1) �(K ) � �1(S3 � �).

Proof. It suffices to consider the case whereK has at least one crossing. Apply-
ing ��1� to K several times, we can transformK into a knotoid diagram whose end-
points lie close to each other, i.e., may be connected by an arc a � S2 disjoint from
the rest ofK . Then K [ a is a knot diagram of� D K�. The presentation of�(K )
above differs from the Wirtinger presentation of�1(S3��) determined by the knot dia-
gram K [a in only one aspect: the segments ofK adjacent to the endpoints contribute
different generatorsg, h to the set of generators of�(K ). In the diagramK [ a these
two segments are united and contribute the same generator tothe Wirtinger presenta-
tion. Therefore�1(S3��) is the quotient of�(K ) by the normal subgroup generated by
gh�1. However,g D h in �(K ). Indeed, pushing a small arrow representingg across
the whole sphereS2 while fixing the endpoints of the arrow and using the relations in�(K ), we can obtain the arrow representingh. Thus,�(K ) � �1(S3 � �).
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A similar method allows one to associate with any knotoid diagram aknotoid quandle,
generalizing the knot quandle due to D. Joyce and S. Matveev.

2.4. The crossing numbers. The crossing number cr(�) of a knot � � S3 is
defined as the minimal number of crossings in a knot diagram of�. One can use
knotoid diagrams to define two similar invariants cr�(�). By definition, cr�(�) is the
minimal number of crossings of a knotoid diagramK such thatK� D �. Clearly,
crC(�) D cr�(mir(�)), where mir(�) is the mirror image of�.

Note that cr�(�) � cr(�) � 1. This follows from the fact that a knotoid diagram
of � can be obtained from a knot diagram of� with minimal number of crossings by
cutting out an underpass containing one crossing. Moreover,if a minimal diagram of� has an underpass withN � 2 crossings, then cr�(�) � cr(�)�N. Similarly, crC(�) �
cr(�) � 1 and if a minimal diagram of� has an overpass withN � 2 crossings, then
crC(�) � cr(�) � N.

2.5. Seifert surfaces. Recall the construction of a Seifert surface of a knot� in
S3 from a knot diagramD of �. Every crossing ofD admits a unique smoothing com-
patible with the orientation of�. Applying these smoothings to all crossings ofD, we
obtain a closed oriented 1-manifoldOD � S2. This OD consists of several disjoint simple
closed curves and bounds a system of disjoint disks inS3 lying aboveS2. These disks
together with half-twisted strips at the crossings form a compact connected orientable
surface inS3 bounded by�. The genus of this surface is equal to (cr(D)� j ODjC1)=2,
where cr(D) is the number of crossings ofD and j ODj is the number of components ofOD. This yields an estimate from above for the Seifert genusg(�) of �:

(2.5.1) g(�) � cr(D) � j ODj C 1

2
.

An analogous procedure applies to a knotoid diagramK of �. Every crossing ofK
admits a unique smoothing compatible with the orientation of K from the leg to the
head. Applying these smoothings to all crossings, we obtainan oriented 1-manifoldOK � S2. This OK consists of an oriented intervalJ � S2 (with the same endpoints as
K ) and several disjoint simple closed curves. The closed curves bound a system of
disjoint disks in S3 lying above S2. We add a bandJ � [0, 1] lying below S2 and
meetingS2 along J � {0} D J. The union of these disks with the band and with half-
twisted strips at the crossings is a compact connected orientable surface inS3 bounded
by K� D �. The genus of this surface is equal to (cr(K )� j OK j C 1)=2, where cr(K ) is
the number of crossings ofK and j OK j is the number of components ofOK . Therefore

(2.5.2) g(�) � cr(K ) � j OK j C 1

2
.

This estimate generalizes (2.5.1) and can be stronger. For example, consider the
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non-alternating knot� D 11n1 from [3] represented by a knot diagramD with 11
crossings. Herej ODj D 6 and (2.5.1) givesg(�) � 3. Removing fromD an underpass
with 2 crossings, we obtain a knotoid diagramK of � with 9 crossings andj OK j D 6.
Formula (2.5.2) gives a stronger estimateg(�) � 2. (In fact, g(�) D 2, see [3].)

3. Basics on knotoids

3.1. Knotoids. We introduce a notion of a knotoid in a surface6. This notion
will be central in the rest of the paper, specifically in the case6 D S2.

The Reidemeister moves�1, �2, �3 and isotopy generate an equivalence relation
on the set of knotoid diagrams in6: two knotoid diagrams are equivalent if they may
be obtained from each other by a finite sequence of isotopies and the moves��1

i with
i D 1, 2, 3. The corresponding equivalence classes are calledknotoidsin 6. The set of
knotoids in6 is denotedK(6). The knotoid represented by an embedding [0, 1],! 6
is said to betrivial . Any homeomorphism of surfaces6 ! 60 induces a bijection
K(6) ! K(60) in the obvious way.

We define two commuting involutive operations on knotoids in6: reversion rev
and mirror reflection mir. Reversion exchanges the head and the leg of a knotoid. In
other words, reversion inverts orientation on the knotoid diagrams. Mirror reflection
transforms a knotoid into a knotoid represented by the same diagrams with overpasses
changed to underpasses and vice versa.

3.2. Knotoids in S2. We shall be mainly interested in knotoids in the 2-sphere
S2 D R2[{1}. They are defined in terms of knotoid diagrams inS2 as above. There is
a convenient class of knotoid diagrams inS2 which we now define. A knotoid diagram
K � S2 is normal if the point 1 2 S2 lies in the component ofS2 � K adjacent to
the leg of K . In other words,K is normal if K � R2 D S2 � {1} and the leg ofK
may be connected to1 by a path avoiding the rest ofK . For example, the diagrams
in Fig. 4 below are normal while the diagrams in Figs. 1 and 2 are not normal.

Any knotoid k in S2 can be represented by a normal diagram. To see this, take
a diagram ofk in S2, push it away from1 and push, if necessary, several branches
of the diagram across1 to ensure that the resulting diagram is normal. Note that the
Reidemeister moves on knotoid diagrams inR2 (away from the endpoints) and ambient
isotopy inR2 preserve the class of normal diagrams. It is easy to see that two normal
knotoid diagrams represent the same knotoid inS2 if and only if they can be related
by the Reidemeister moves inR2 and isotopy inR2.

Besides reversion and mirror reflection, we consider another involution on K(S2).
Observe that the reflection of the planeR2 with respect to the vertical line{0}�R� R2

extends to a self-homeomorphism ofS2 by 1 7! 1. Applying this homeomorphism
to knotoid diagrams inS2 we obtain an involution onK(S2). This involution is called
symmetryand denoted sym. It commutes with rev and mir. We call these three involu-
tions onK(S2) the basic involutions.
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Fig. 4. The knotoid' and its transformations.

As an exercise, the reader may check that the knotoids inS2 shown in Fig. 1
and the knotoidB2 in Fig. 2 are trivial. The knotoidsB1 in Fig. 2 and' in Fig. 4
are equal; we show in the next subsection that' is non-trivial. For a list of distinct
knotoids represented by diagrams with up to 5 crossings, see[1].

3.3. Knotoids versus knots. Every knotoid k in S2 determines two knotsk�
and kC in S3. By definition k� D K� and kC D KC, whereK � S2 is any diagram of
k. It is easy to see thatk� does not depend on the choice ofK .

In the opposite direction, every knot� � S3 determines a knotoid�� in S2. Present� by an oriented knot diagramD in S2 and pick a small open arc� � D disjoint
from the crossings. ThenK D D � � is a knotoid diagram inS2 representing�� 2
K(S2). The diagramK may depend on the choice of� but the knotoid�� does not
depend on this choice: when� is pulled alongD under (resp. over) a crossing ofD,
our procedure yields an equivalent knotoid diagram. The equivalence is achieved by
pushing the strand ofD transversal to� at the crossing in question over (resp. under)
D towards1, then across1, and finally back over (resp. under)D from the other
side of �. (This transformation expands as a composition of isotopies, moves��1

2 ,��1
3 and, at the very end, two moves��1

1 ). That �� does not depend on the choice
of D is clear because for any Reidemeister move onD or a local isotopy ofD, we
can choose the arc� outside the disk where this move/isotopy modifiesD. To obtain a
normal diagram of��, one can apply the construction above to an arc� on an external
strand of D.

It is clear that (��)C D (��)� D �. Therefore the map� 7! �� from the set of knots
to K(S2) is injective. This allows us to identify knots with the corresponding knotoids
and viewK(S2) as an extension of the set of knots. Accordingly, we will sometimes
call the knotoids inS2 of type �� knots. All the other knotoids inS2 are said to be
pure. For example, the knotoid' in S2 shown in Fig. 4 is pure because'C ¤ '�.
Indeed,'C is an unknot and'� is a left-handed trefoil. In particular, the knotoid' is
non-trivial.
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The basic involutions rev, sym, mir onK(S2) restrict to the orientation reversal
and the reflection on knots. Note that the restrictions of symand mir to knots are
equal because the mirror reflections in the planesR2 � {0} and {0} � R2 are isotopic.
The basic involutions transform pure knotoids into pure knotoids.

4. The semigroup of knotoids

4.1. Multiplication of knotoids. Observe that each endpoint of a knotoid dia-
gram K in a surface6 has a closed 2-disk neighborhoodB in 6 such thatK meets
B precisely along a radius ofB, and in particular all crossings ofK lie in 6� B. We
call such B a regular neighborhoodof the endpoint. Such neighborhoods are used in
the definition of multiplication for knotoids. Given a knotoid ki in an oriented surface6i for i D 1, 2, we define aproduct knotoid k1k2. Presentki by a knotoid diagram
K i � 6i for i D 1, 2. Pick regular neighborhoodsB � 61 and B0 � 62 of the head of
K1 and the leg ofK2, respectively. Glue61 � Int(B) to 62 � Int(B0) along a homeo-
morphism�B ! �B0 carrying the only point ofK1\�B to the only point ofK2\�B0
and such that the orientations of61, 62 extend to an orientation of the resulting sur-
face6. The part ofK1 lying in 61 � Int(B) and the part ofK2 lying in 62 � Int(B0)
meet in one point and form a knotoid diagramK1K2 in 6, called theproduct of K1

and K2. The knotoidk1k2 in 6 determined byK1K2 is well defined up to orientation-
preserving homeomorphisms. Clearly, if61, 62 are connected, then6 D 61 #62.

Multiplication of knotoids is associative, and the trivial knotoid in S2 is the neutral
element. From now on, we endowS2 with orientation extending the counterclockwise
orientation inR2. Since S2 # S2 D S2, multiplication of knotoids turnsK(S2) into a
semigroup. This multiplication has a simple description interms of normal diagrams:
given normal diagramsK1, K2 of knotoids k1, k2 2 K(S2), we can formK1K2 by at-
taching a copy ofK2 to the head ofK1 in a small neighborhood of the latter inR2.
This implies that

(k1k2)� D (k1)�C(k2)� and (k1k2)C D (k1)CC(k2)C,

whereC is the standard connected summation of knots. Fig. 5 shows the product of
the knotoids', mir(') 2 K(S2).

Given a knotoidk in S2 and a knot� � S3, the productk�� is represented by
a diagram obtained by tying� in a diagramK of k near the head. We can use the
Reidemeister moves and isotopies ofR2 to pull � along K ; hence, tying� in any other
place onK produces the same knotoidk��. Pulling � all the way throughK towards
the leg, we obtain that

(4.1.1) k�� D ��k.

Thus, knots lie in the center of the semigroupK(S2).
Observe that multiplication of knotoids inS2 is compatible with the summation of

knots: (�1C�2)� D ��1��2 for any knots�1, �2 � S3.
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Fig. 5. The product' mir(').

4.2. Prime knotoids. We call a knotoidk 2 K(S2) prime if it is non-trivial, and
a splitting k D k1k2 with k1, k2 2 K(S2) implies thatk1 or k2 is the trivial knotoid. The
next theorem says that for knots, this notion is equivalent to the standard notion of a
prime knot.

Theorem 4.1. A knot � � S3 is prime if and only if the knotoid�� 2 K(S2)
is prime.

One direction is obvious: if� is as a sum of non-trivial knots, then�� is a product
of non-trivial knotoids. The converse as well as the next theorem will be proved in
Section 6 using the results of Section 5.

Theorem 4.2. Every knotoid in S2 expands as a product of prime knotoids. This
expansion is unique up to the identity(4.1.1), where k runs over prime knotoids and� runs over prime knots.

These theorems have interesting corollaries. First of all,the product of two non-
trivial knotoids cannot be a trivial knotoid. Secondly, theproduct of two knotoids cannot
be a knot, unless both knotoids are knots. Thirdly, every knotoid expands uniquely as a
product��k1k2 � � �kn, where� is a knot inS3 (possibly, trivial),n � 0, andk1, k2, : : : , kn

are pure prime knotoids inS2. In more algebraic terms, we obtain thatK(S2) is the
direct product of the semigroup of knots and the subsemigroup of K(S2) generated by
pure prime knotoids. This subsemigroup is free on these generators. The semigroup of
knots is precisely the center ofK(S2).

4.3. Complexity. The complexity c(K ) of a knotoid diagramK � S2 is the min-
imal integerc such that there is a shortcuta � S2 for K whose interior meetsK in c
points (the endpoints ofa are not counted). Thecomplexity c(k) of a knotoidk 2K(S2)
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is the minimum of the complexities of the diagrams ofk. It is clear thatc(k) � 0 and
c(k) D 0 if and only if k is a knot. A knotoidk is pure if and only if c(k) � 1.
The complexity of a knotoid is preserved under the basic involutions. For example,
the knotoid' in Fig. 4 satisfies

c(') D c(mir(')) D c(sym(')) D c(rev(')) D 1.

Since the complexity of a knotoid diagram is invariant underisotopies inS2, to
compute the complexity of a knotoid we may safely restrict ourselves to normal dia-
grams and the shortcuts inR2. It is easy to deduce thatc(k1k2) � c(k1)C c(k2) for any
k1, k2 2 K(S2). The following theorem, proved in Section 6, shows that this inequality
is in fact an equality.

Theorem 4.3. We have c(k1k2) D c(k1)C c(k2) for any k1, k2 2 K(S2).

Theorem 4.3 implies thatk 7! c(k) is a homomorphism from the semigroupK(S2)
onto the additive semigroup of non-negative integersZ�0.

It is easy to check that if a knotoidk is represented by a diagram withn crossings,
then c(k) � n.

5. A digression on theta-curves

5.1. Theta-curves. A theta-curve� is a graph embedded inS3 and formed by
two verticesv0, v1 and three edgese�, e0, eC each of which joinsv0 to v1. We callv0 and v1 the leg and thehead of � respectively. Each vertexv 2 {v0, v1} of � has a
closed 3-disk neighborhoodB � S3 meeting� along precisely 3 radii ofB. We call
such B a regular neighborhoodof v. The sets

�� D e0 [ e�, �0 D e� [ eC, �C D e0 [ eC
are knots inS3 which we orient fromv0 to v1 on e0 � ��, e� � �0, and eC � �C.
These knots are called theconstituent knotsof � .

By isotopy of theta-curves, we mean ambient isotopy inS3 preserving the labels
0, 1 of the vertices and the labels�, 0, C of the edges. The set of isotopy classes of
theta-curves will be denoted2.

All theta-curves lying inS2 � S3 are isotopic to each other. They are calledtrivial
theta-curves. The isotopy class of trivial theta-curves isdenoted by 1.

Given a knot� � S3, we can tie it in the 0-labeled edge of a trivial theta-curve.
This yields a theta-curve� (�). It is obvious that (� (�))0 is a trivial knot and

(5.1.1) (� (�))� D (� (�))C D �.

This implies that� (�) D 1 if and only if � is a trivial knot. Similarly, tying� in the�-labeled edge of a trivial theta-curve, we obtain a theta-curve ��(�).
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5.2. Vertex multiplication. The set2 has a binary operation called thevertex
multiplication, see [15]. It is defined as follows. Given theta-curves� , � 0, pick regu-
lar neighborhoodsB and B0 of the head of� and of the leg of� 0, respectively. Let
us glue the closed 3-ballsS3 � Int(B) and S3 � Int(B0) along an orientation-reversing
homeomorphism�B ! �B0 carrying the only point of�B lying on the i -th edge of�
to the only point of�B0 lying on the i -th edge of� 0 for i D �, 0,C. (The orientation
in �B, �B0 is induced by the right-handed orientation inS3 restricted toB, B0.) The
part of � lying in S3� Int(B) and the part of� 0 lying in S3� Int(B0) meet in 3 points
and form a theta-curve inS3 denoted� � � 0 or �� 0. This theta-curve is well defined up
to isotopy. Observe that

(�� 0)� D ��C� 0�, (�� 0)0 D �0C� 00, (�� 0)C D �CC� 0C.

It is obvious that vertex multiplication is associative. Itturns2 into a semigroup
with neutral element 1 represented by the trivial theta-curves. Note one important prop-
erty of 2: the vertex product of two theta-curves is trivial if and only if both factors
are trivial (see [15], Theorem 4.2 or [11], Lemma 2.1).

It follows from the definitions that the map� 7! � (�) from the semigroup of knots
to 2 is a semigroup homomorphism: for any knots�1, �2 � S3,

(5.2.1) � (�1 C �2) D � (�1) � � (�2).

The image of this homomorphism lies in the center of2: pulling a knot� along the
0-labeled edge, we easily obtain that� (�) �� D � �� (�) for any theta-curve� . Similarly,
the maps� 7! �C(�) and� 7! ��(�) are homomorphisms from the semigroup of knots
to the center of2.

5.3. Prime theta-curves. A theta-curve isprime if it is non-trivial and does not
split as a vertex product of two non-trivial theta-curves. This definition is parallel to
the one of a prime knot: a knot inS3 is prime if it is non-trivial and does not split
as a connected sum of two non-trivial knots. The following lemma relates these two
definitions.

Lemma 5.1. A knot � � S3 is prime if and only if the theta-curve� (�) is prime.

We postpone the proof of Lemma 5.1 to the end of the section. This lemma im-
plies two similar claims: a knot� is prime if and only if the theta-curve�C(�) is
prime; a knot� is prime if and only if the theta-curve��(�) is prime.

5.4. Prime decompositions. Tomoe Motohashi [11] established the following de-
composition theorem for theta-curves: every theta-curve� expands as a (finite) vertex
product of prime theta-curves; these prime theta-curves are determined by� uniquely up
to permutation. A more precise version of the uniqueness is given in [10], Theorems 1.2
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and 1.3: the expansion� D �1�2 � � � �m as a product of prime theta-curves is unique up to
the transformation replacing�i �iC1 with �iC1�i (wherei D 1,: : : ,m�1) allowed whenever�i or �iC1 is the theta-curve� (�), �C(�) or ��(�) for some knot� � S3.

5.5. Simple theta-curves. We call a theta-curve� simple if the associated con-
stituent knot�0 is trivial. For example, the trivial theta-curve is simple.For a non-trivial
knot � � S3, the theta-curve� (�) is simple while�C(�) and ��(�) are not simple. A
theta-curve isotopic to a simple theta-curve is itself simple.

The identity (�� 0)0 D �0C� 00 implies that the vertex product of two theta-curves
is simple if and only if both factors are simple. The isotopy classes of simple theta-
curves form a sub-semigroup of2 denoted2s. Clearly,2s is the kernel of the homo-
morphism� 7! �0 from 2 to the semigroup of knots inS3.

The Motohashi prime decomposition theorem specializes to simple theta-curves as
follows: every simple theta-curve expands as a product�1�2 � � � �m of prime simple
theta-curves; this expansion is unique up to the transformation replacing�i �iC1 with�iC1�i (where i D 1, : : : , m� 1) allowed whenever�i D � (�) or �iC1 D � (�) for some
knot � � S3.

5.6. Complexity of simple theta-curves. We introduce a numerical “complex-
ity” of a simple theta-curve� . By assumption, there is an embedded 2-diskD � S3

such that�D D �0 is the union of the edges of� labeled by� andC. Deforming
slightly D in S3 (keeping�D), we can assume that the disk interior Int(D) meets the
0-labeled edge of� transversely at a finite number of points. We call suchD a span-
ning disk for � . The minimal number of the intersections of the interior of aspanning
disk for � with the 0-labeled edge of� is called thecomplexityof � and denotedc(�).
It is clear thatc(�) � 0 is an isotopy invariant of� andc(�)D 0 if and only if � D � (�)
for a knot � � S3.

Lemma 5.2. For any simple theta-curves�1, �2,

(5.6.1) c(�1�2) D c(�1)C c(�2).

Proof. Consider the theta graph� D �1�2. The inequalityc(�) � c(�1)C c(�2) is
obtained through gluing of spanning disks for�1, �2 into a spanning disk for� . We
prove the opposite inequality. By the definition of the vertex multiplication, there is
a 2-sphere6 � S3 that splits S3 into two 3-balls B0 and B1 containing the leg and
the head of� respectively, such that6 meets each edge of� transversely at one point
and (S3, �i ) is obtained from (S3, �) by the contraction ofB1�i into a point for i D
0, 1. Let D � S3 be a spanning disk for� whose interior meets the 0-labeled edge
of � transversely inc(�) points. The sphere6 meets�D transversely in two points.
Deforming6, we can additionally assume that6 meetsD transversely along a proper
embedded arc and a system of disjoint embedded circles. Pickan innermost such circle
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Fig. 6. The theta-curve� (�).

s � Int(D). The circle s splits 6 into two hemispheres60, 61 and bounds a disk
Ds � D such that6 \ Ds D �Ds D s. For i D 0, 1, the hemisphere6i meets� in ni

points with 0� ni � 3. The unionDs[6i is a 2-sphere embedded inS3 and meeting� in ni points. Note that the graph� with all edges oriented from the leg to the head
is a 1-cycle inS3 modulo 3. Since the algebraic intersection number of such a cycle
with Ds[6i is zero,ni ¤ 1. Sincen0Cn1 D card(� \6) D 3, one of the numbersn0,
n1 is equal to zero. Assume for concreteness thatn0 D 0. Then the sphereDs[60 is
disjoint from � . This sphere bounds a 3-ball inS3 disjoint from � . Pushing60 in this
ball towardsDs and then away fromD, we can isotope6 in S3 into a new position
so that6 \ D has one component less. Proceeding by induction, we reduce ourselves
to the case where6 \ D is a single arc.

Under isotopy of6 as above, the ballsB0, B1 bounded by6 follow along and
keep the properties stated at the beginning of the proof. Thearc 6 \ D splits D into
two half-disks D \ B0 and D \ B1 pierced by the 0-labeled edge of� transversely in
m0 and m1 points respectively. By the choice ofD, we havem0Cm1 D c(�). On the
other hand, fori D 0, 1, the contraction ofB1�i into a point transformsD \ Bi into
a spanning disk for�i pierced by the 0-labeled edge of�i transversely inmi points.
Thus, mi � c(�i ). Hencec(�) D m1 Cm2 � c(�1)C c(�2).

5.7. Proof of Lemma 5.1. One direction is obvious: if� splits as a sum of
two non-trivial knots�1, �2, then� (�) splits as a product of the non-trivial theta-curves� (�1) and � (�2). Suppose that� is prime. We assume that� (�) splits as a vertex prod-
uct of two non-trivial theta-curves and deduce a contradiction.

Recall that� (�) is obtained by tying� on the 0-labeled edge of a trivial theta-
curve � � S3. We assume that the tying proceeds inside a small closed 3-ball B � S3

such thatB \ � is a sub-arc of the 0-labeled edge of�. The knot � is tied in this
sub-arc insideB. The resulting (knotted) arc inB is denoted by the same symbol�,
see Fig. 6. In this notation,� (�) D (� � B) [ �. The arcsB \ � and � have the same
endpointsa, b; these endpoints are called thepolesof B.
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Let 6 � S3 be a 2-sphere meeting each edge of� (�) transversely in one point and
exhibiting � (�) as a product of non-trivial theta-curves�1 and �2. Slightly deforming6, we can assume thata, b � 6 and6 intersects�B transversely. We shall isotope6 in S3 (keeping the requirements on6 stated above) in order to reduce6 \ �B and
eventually to obtain6 \ �B D ;. Then6 \ B D ; and6 exhibits � as a product of
two theta-curves� 01 and � 02. One of them is disjoint fromB and coincides with�1 or�2. By the Wolcott theorem stated in Section 5.2,� 01 D � 02 D 1. This contradicts the
non-triviality of �1 and �2.

The components of6\�B are circles in the 2-sphere�B disjoint from each other
and from the polesa, b 2 �B. Suppose that one of these circles,s, bounds a disk
Ds in �B � {a, b}. Replacing if necessarys by an innermost component of6 \ �B
lying in this disk, we can assume that6 \ Int(Ds) D ;. The circles splits6 into two
hemispheres. The same argument as in the proof of Lemma 5.2 shows that one of these
hemispheres is disjoint from� (�) and its union withDs bounds a ball inS3 � � (�).
Pushing this hemisphere inside this ball towardsDs and then away from�B, we can
isotope6 in S3 into a new position so that6\�B has one component less. Proceeding
by induction, we reduce ourselves to the case where all components of6\�B separate
the polesa, b in �B. In particular, the linking numbers of any component of6 \ �B
with the constituent knots (� (�))C and (� (�))� are equal to�1.

If 6 \ B has a disk component, then this disk meets� � B in one point and
splits B into two balls B1, B2. Since� is prime, one of the ball-arc pairs (B1, B1\ �),
(B2,B2\�) is trivial. Pushing6 away across this ball-pair, we can isotope6 in S3 into
a new position such that6\�B has one component less (and still all these components
separate the poles). Thus, we may assume that6 \ B has no disk components.

Let Bc D S3 � Int(B) be the complementary 3-ball ofB. If 6 \ Bc has a disk
componentD, then the linking number considerations show that eitherD meets the 0-
labeled edge of� (�) in at least one point orD meets each of the other two edges of� (�) in at least one point. Since6 meets each edge of� (�) only in one point,6 \
Bc may have at most two disk components. This implies that the 1-manifold 6 \ �B
splits 6 into several annuli and two disks lying inBc. One of these two disks, say
D1, meets the 0-labeled edge of� (�) in one pointd. Observe that the intersection of
the 0-labeled edge of� (�) with Bc has two components containing the polesa, b 2�B D �Bc. Assume, for concreteness, thatd and a lie in the same component of this
intersection. The circle�D1 � 6 \ �B bounds a diskDa in �B containing a (and
possibly containing other components of6 \ �B). The union D1 [ Da � Bc is an
embedded 2-sphere meeting� in a andd. This sphere bounds a 3-ballBC � Bc whose
intersection with� is the sub-arc of the 0-labeled edge of� connectingd and a. The
triviality of � implies that this arc is unknotted inBC. PushingD1 in BC towardsDa

and then insideB, we can isotope6 in S3 into a new position so that6 \ �B has at
least one component less. This isotopy creates a disk component of 6 \ B which can
be further eliminated as explained above. Proceeding recursively, we eventually isotope6 so that it does no meet�B.
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6. Proof of Theorems 4.1–4.3

We begin with a geometric lemma.

Lemma 6.1. An orientation preserving diffeomorphism fW S3 ! S3 fixing point-
wise an unknotted circle S� S3 is isotopic to the identityid W S3 ! S3 in the class of
diffeomorphisms S3 ! S3 fixing S pointwise.

Proof. Pick a tubular neighborhoodN � S3 of S. We haveN D S� D, where
D is a 2-disk and the identificationN D S� D is chosen so that forp 2 �D, the
longitude S� {p} � �N bounds a diskD0 in Nc D S3 � Int(N). We can deform f
in the class of diffeomorphisms ofS3 fixing S pointwise so that f (N) D N and f
commutes with the projectionN ! S. Then the diffeomorphismf j�N W �N ! �N in-
duces a loop� f W S! Diff( �D) in the group of orientation preserving diffeomorphisms
of the circle �D. This group is a homotopy circle and�1(Diff( �D)) D Z. The in-
teger corresponding to� f is nothing but the linking number ofS with f (S� {p}).
Since f (S� {p}) D � f (D0), this linking number is equal to 0. Thus, the loop� f is
contractible. This allows us to deformf in the class of diffeomorphismsS3 ! S3

fixing S pointwise in a diffeomorphism, again denotedf , such that f (N) D N, f
commutes with the projectionN ! S, and f D id on �N. Now, the diffeomorphism
f jN W N ! N induces a loop in the group of orientation preserving diffeomorphisms
of D fixing pointwise �D and the center ofD. This group is contractible and there-
fore the loop in question also is contractible. This allows us to deform f in the class
of diffeomorphismsS3 ! S3 fixing S[ �N pointwise in a diffeomorphism, again de-
noted f , such that f D id on N. The restriction of f to the solid torusT D Nc is an
orientation-preserving diffeomorphism fixing�T pointwise. Thenf jT is isotopic to the
identity idT W T ! T in the class of diffeomorphismsT ! T fixing �T pointwise, see
Ivanov [4], Section 10 (the proof of this fact uses the famoustheorem of Cerf04 D 0
and the work of Laudenbach [6]). Extending the isotopy between f jT and idT by the
identity on N we obtain an isotopy off to the identity constant onS.

6.1. A map t W K(S2) !�s . Starting from a knotoid diagramK � R2, we con-
struct a simple theta-curve as follows. Letv0, v1 be the leg and the head ofK . Pick
an embedded arca � R2 connectingv0 to v1. We identify R2 with the coordinate
planeR2 � {0} � R3. Let eC (respectively,e�) be the arc inR3 obtained by pushing
the interior of a in the vertical direction in the upper (respectively lower)half-space
keeping the endpointsv0, v1 2 R2 � {0}. Pushing the underpasses ofK in the lower
half-space we transformK into an embedded arce0 � R3 that meetse� [ eC solely
at v0 and v1. Then � D e� [ e0 [ eC is a theta-curve inS3 D R3 [ {1}. It is sim-
ple becausee� [ eC D �Da for a (unique) embedded 2-diskDa � a � R such that
Da\ (R2�{0}) D a. The same arguments as in Section 3.3 show that the isotopy class
of � does not depend on the choice ofa and depends only on the knotoidk 2 K(S2)
represented byK . We denote this isotopy class byt(k). This construction defines a
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map t W K(S2) ! 2s. For example, ifk D �� for a knot � � S3, then t(k) D � (�) is
the theta-curve introduced in Section 5.1.

The following theorem yields a geometric interpretation ofknotoids inS2 and com-
putes the semigroupK(S2) in terms of theta-curves.

Theorem 6.2. The map tW K(S2) ! 2s is a semigroup isomorphism.

Proof. That t transforms multiplication of knotoids into vertex multiplication of
theta-curves follows from the definitions. To prove thatt is bijective we construct the
inverse map2s ! K(S2).

Let � � S3 D R3[ {1} be a theta-curve with verticesv0, v1 and edgese�, e0, eC.
We say that� is standard if � � R3, both vertices of� lie in R2 D R2� {0}, the edge
eC lies in the upper half-space, the edgee� lies in the lower half-space, andeC, e�
project bijectively to the same embedded arca � R2 connectingv0 and v1. A standard
theta-curve is simple and has a “standard” spanning disk bounded byeC[e� in a�R.

Observe that any simple theta curve� � S3 is (ambient) isotopic to a standard
theta-curve. To see this, isotope� away from1 2 S3 so that� � R3, pick a span-
ning disk for � and apply an (ambient) isotopy pulling this disk in a standard position
as above.

We claim that if two standard theta-curves� , � 0 � R3 are isotopic, then they are
isotopic in the class of standard theta-curves. Indeed, we can easily deform� 0 in the
class of standard theta-curves so that� and � 0 share the same vertices and the same�-labeled edges. LetS be the union of these vertices and edges. The setS is an un-
knotted circle inS3. Since� is isotopic to� 0, there is an orientation-preserving diffeo-
morphism f W S3 ! S3 carrying � onto � 0 and preserving the labels of the vertices and
the edges. Thenf (S) D S. Deforming f , we can additionally assume thatf jS D id.
By the previous lemma,f is isotopic to the identity idW S3 ! S3 in the class of diffeo-
morphisms fixingS pointwise. This isotopy induces an isotopy of� 0 to � in the class
of standard theta-curves.

The results above show that without loss of generality we canfocus on the class of
standard theta-curves and their isotopies in this class. Consider a standard theta-curve� � R3. We shall apply to� a sequence of (ambient) isotopies moving only the interior
of the 0-labeled edgee0 and keeping fixed the other two edgese�, eC and the verti-
ces. Leta � R2 be the common projection ofe�, eC to R2 and let D � a�R be the
standard spanning disk for� . First, we isotopee0 so that it meetsa�R transversely in
a finite number of points. The intersections ofe0 with (a � R) � D can be eliminated
by pulling the corresponding branches ofe0 in the horizontal direction acrossv0�R orv1�R. In this way, we can isotopee0 so that all its intersections witha�R lie inside
D. Then we further isotopee0 so that its projection toR2 has only double transversal
crossings. This projection is provided with over/under-crossings data in the usual way
and becomes a knotoid diagram. The knotoidu(�) 2 K(S2) represented by this dia-
gram depends only on� and does not depend on the choices made in the construction.
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The key point is that pulling a branch ofe0 acrossv0 � R or acrossv1 � R leads to
equivalent knotoids inS2, cf. the argument in Section 3.3. All other isotopies ofe0

are translated to sequences of isotopies and Reidemeister moves on the knotoid dia-
gram away from the vertices. Observe finally that the knotoidu(�) is preserved under
isotopy of � in the class of standard theta-curves. Thereforeu is a well-defined map2s ! K(S2). It is clear that the mapst and u are mutually inverse.

6.2. Proof of Theorem 4.1. By Lemma 5.1, a knot� � S3 is prime if and only
if the theta-curve� (�) is prime. As we know,� (�) D t(��). Theorem 6.2 shows that
t(��) is prime if and only if the knotoid�� is prime.

6.3. Proof of Theorem 4.2. Theorem 4.2 follows from Theorem 6.2 and the
Motohashi prime decomposition theorem for simple theta-curves.

6.4. Proof of Theorem 4.3. We claim that for any knotoidk in S2, its complex-
ity c(k) is equal to the complexityc(t(k)) of the simple theta-curvet(k). Observe that
to computec(k) we may use only knotoid diagrams and their shortcuts lying in R2.
For any knotoid diagramK � R2 of k and any shortcuta � R2 for K , the number of
intersection points of the 0-labeled edge oft(k) with the spanning diskDa of t(k) is
equal to the number of intersections of the interior ofa with K . Hencec(k) � c(t(k)).
Conversely, given a spanning diskD of t(k) meeting the 0-labeled edge transversely in
c(t(k)) points, we can isotopet(k) and D as in the proof of Theorem 6.2 so thatD\R2

becomes a shortcut for a diagram ofk in R2. Thereforec(k) � c(t(k)). This proves the
equality c(k) D c(t(k)). This equality shows that the complexity mapcW K(S2) ! Z is
the composition oft W K(S2) ! 2s with the complexity mapcW 2s ! Z. Since the
latter map is a semigroup homomorphism (Lemma 5.2) and so ist , their composition
is a semigroup homomorphism.

6.5. Remarks.
1. The existence of a prime decomposition of any knotoidk 2 K(S2) may be proved
directly without referring to the Motohashi theorem. In fact, we can prove the follow-
ing stronger claim. LetN � 0 be the number of factors (counted with multiplicity) in
the decomposition of the knotk� as a sum of prime knots. SetM D c(k) C N. We
claim thatk splits as a product of at mostM prime knotoids. Indeed, let us splitk as
a product of two non-trivial knotoids and then inductively split all non-prime factors
as long as it is possible. This process must stop at (at most)M factors. Indeed, sup-
pose thatk D k1k2 � � � km is a decomposition ofk as a product ofm > M non-trivial
knotoids. Theorem 4.3 gives

P
i c(ki ) D c(k). Therefore at mostc(k) knotoids among

k1, : : : , km have positive complexity. Sincem> M D c(k)C N, at leastNC1 knotoids
among k1, : : : , km have complexity 0. A non-trivial knotoidki of complexity 0 has
the form �� for a non-trivial knot� � S3. The knot� may be recovered fromki via� D (ki )�. We conclude that in the expansionk� D (k1)� C (k2)� C � � � C (km)� the
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right-hand side has at leastN C 1 non-trivial summands. This contradicts the choice
of N.
2. Given a knotoidk in S2, we can use the theta-curvet(k) to derive from k one
more knot inS3. Consider the 2-fold coveringp W S3 ! S3 branched along the trivial
knot formed by the�-labeled edges oft(k). The preimage underp of the 0-labeled
edge oft(k) is a knot in S3 depending solely onk.
3. Recall the multi-knotoid diagrams in a surface6 introduced in Section 2.1. The
classes of such diagrams under the equivalence relation generated by isotopy in6 and
the three Reidemeister moves (away from the endpoints of thesegment component) are
called multi-knotoidsin 6. The definitions and the theorems of Section 4 directly ex-
tend to multi-knotoids inS2. The proofs use the theta-links defined as embedded finite
graphs inS3 whose components are oriented circles except one componentwhich is a
theta-curve. A theta-link is simple if its theta-curve component is simple. Theorem 6.2
extends to this setting and establishes an isomorphism between the semigroup of multi-
knotoids in S2 and the semigroup of (isotopy classes of) simple theta-links. Note also
that the Motohashi theorems extend to theta-links, see [8].
4. The theory of knotoids offers a diagrammatic calculus forsimple theta-curves. A
similar calculus for arbitrary theta-curves can be formulated in terms of bipointed knot
diagrams. An (oriented) knot diagram isbipointed if it is endowed with an ordered
pair of generic points, called the leg and the head. A bipointed knot diagramD in S2

determines a theta-curve�D � S3 by adjoining an embedded arc connecting the leg to
the head and running underD. This arc is the 0-labeled edge of�D, the segment ofD
leading from the leg to the head is theC-labeled edge, and the third edge is labeled
by �. Clearly, any theta-curve is isotopic to�D for some D. The isotopy class of�D

is preserved under the Reidemeister moves onD away from the leg and the head and
under pushing a branch ofD over the leg or the head. (Pushing a branch under the leg
or the head is forbidden). These moves generate the isotopy relation on theta-curves.

7. The bracket polynomial and the crossing number

7.1. The bracket polynomial. In analogy with Kauffman’s bracket polynomial
of knots, we define the bracket polynomial for knotoids in anyoriented surface6.
By a state on a knotoid diagramK � 6, we mean a mapping from the set of cross-
ings of K to the set{�1,C1}. Given a states on K , we apply the A-smoothings
(resp. the B-smoothings) at all crossings ofK with positive (resp. negative) value of
s. This yields a compact 1-manifoldKs � 6 consisting of a single embedded segment
and several disjoint embedded circles. Set

hK i D X
s2S(K )

A�s(�A2 � A�2)jsj�1,

where S(K ) is the set of all states ofK , �s 2 Z is the sum of the values�1 of s 2
S(K ) over all crossings ofK , and jsj is the number of components ofKs. Standard
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computations show that the Laurent polynomialhK i 2 Z[ A�1] is invariant under the sec-
ond and third Reidemeister moves onK and is multiplied by (�A3)�1 under the first
Reidemeister moves. The polynomialhK i considered up to multiplication by integral
powers of�A3 is an invariant of knotoids denotedh i and called thebracket polynomial.

One useful invariant of knotoids derived from the bracket polynomial is the span.
The span of a non-zero Laurent polynomialf D P

i fi Ai 2 Z[ A�1] is defined by
spn(f ) D iC� i�, whereiC (resp.i�) is the maximal (resp. the minimal) integeri such
that fi ¤ 0. For f D 0, set spn(f ) D �1. The spanspn(K ) of a knotoid diagramK
is defined by spn(K ) D spn(hK i). Clearly, spn(K ) is invariant under all Reidemeister
moves onK and defines thus a knotoid invariant also denoted spn. The span of any
knotoid is an even (non-negative) integer.

The indeterminacy associated with the first Reidemeister moves can be handled us-
ing the writhe. The writhew(K ) 2 Z of a knotoid diagramK is the sum of the signs
of the crossings ofK (recall thatK is oriented from the leg to the head). The producthK iÆ D (�A3)�w(K )hK i is invariant under all Reidemeister moves onK . The resulting
invariant of knotoids is called thenormalized bracket polynomialand denotedh iÆ. It
is invariant under the reversion of knotoids and changes viaA 7! A�1 under mirror
reflection and under orientation reversion in6. The normalized bracket polynomial
is multiplicative: given a knotoidki in an oriented surface6i for i D 1, 2, we havehk1k2iÆ D hk1iÆhk2iÆ. This implies that the span of knotoids is additive with respect to
multiplication of knotoids.

7.2. An estimate of the crossing number. A fundamental property of the bracket
polynomial of knots established by L. Kauffman [5] is an inequality relating the span to the
crossing number. This generalizes to knotoids as follows.

Theorem 7.1. Let 6 be an oriented surface. For any knotoid diagram K� 6
with n crossings,

(7.2.1) spn(K ) � 4n.

Proof. Let sC (resp.s�) be the state ofK assigningC1 (resp.�1) to all cross-
ings. The same argument as in the case of knots shows that

(7.2.2) spn(K ) D spn(hK i) � 2(nC jsCj C js�j � 2).

To estimatejsCj C js�j, we need the following construction introduced for knot dia-
grams in [13]. Let0 � 6 be the underlying graph ofK . This graph is connected and
hasn four-valent vertices, two 1-valent vertices (the endpoints of K ), and 2nC1 edges.
We thicken0 to a surface: every vertex is thickened to a small square in6 and every
edgee of 0 is thickened to a band. If one endpoint ofe is 1-valent ore connects an
undercrossing to an overcrossing, then the band is a narrow neighborhood ofe in 6
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meeting the square neighborhoods of the endpoints ofe along their sides in the obvious
way. If both endpoints ofe are undercrossings (resp. overcrossings), then one takes the
same band and half-twists it in the middle. The union of thesesquares and bands is a
surfaceM containing0 as a deformation retract. It is easy to check that�M is formed
by disjoint copies of the 1-manifoldsKsC and Ks� together with two arcs joining the
endpoints ofKsC and Ks� . (These arcs come up as the sides of the squares obtained by
thickening the endpoints ofK .) ThereforejsCj C js�j � b0(�M)C 1, wherebi denotes
the i -th Betti number with coefficients inZ=2Z. Using the homology exact sequence
of (M,�M), the Poincaré duality, the connectedness ofM, and the Euler characteristic,
we obtain

b0(�M) � b0(M)C b1(M, �M) D b0(M)C b1(M) D 2� �(M) D nC 1.

Thus jsCj C js�j � nC 2. Together with (7.2.2) this implies (7.2.1).

Theorem 7.1 implies that for any knotoidk in 6,

(7.2.3) spn(k) � 4 cr(k),

where cr(k) is the crossing number ofk defined as the minimal number of crossings
in a diagram ofk.

7.3. The case� D S2. The normalized bracket polynomial of knotoids inS2

generalizes the Jones polynomial of knots inS3: for any knot� � S3, the polynomialh��iÆ is obtained from the Jones polynomial of� (belonging toZ[t�1=4]) by the sub-
stitution t�1=4 D A�1. For knotoids inS2, Formula (7.2.3) has the following addendum.

Theorem 7.2. For a knotoid k in S2, we havespn(k) D 4 cr(k) if and only if
k D ��, where � is an alternating knot in S3. In particular, spn(k) � 4 cr(k) � 2 for
any pure knotoid k in S2.

Proof. If kD �� for an alternating knot�, then we can present� by a reduced al-
ternating knot diagramD. Removing fromD a small open arc disjoint from the cross-
ings, we obtain a knotoid diagramK of k such thathK i D hDi. Then

spn(k) D spn(hK i) D spn(hDi) D 4 cr(D) D 4 cr(K ) � 4 cr(k),

where the third equality is a well known property of reduced alternating knot diagrams,
see [5]. Combining with (7.2.3), we obtain spn(k) D 4 cr(k).

To prove the converse, we need more terminology. A knotoid diagram isalternating
if traversing the diagram from the leg to the tail one meets under- and over-crossings in
an alternating order. A simple geometric argument shows that all alternating knotoid
diagrams inS2 have complexity 0. (For a diagramK of positive complexity consider
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the region ofS2 � K adjacent to the head ofK . This region is not adjacent to the leg
of K . Analyzing the over/under-passes of the edges of this region, one easily observes
that K cannot be alternating.)

Recall that for any knotoid diagramsK1, K2 in S2, we can form a product knotoid
diagramK1K2 � S2 (see Section 4.1). We call a knotoid diagramK � S2 prime if
(i) every embedded circle inS2 meetingK transversely in one point bounds a regular
neighborhood of one of the endpoints ofK and
(ii) every embedded circle inS2 meeting K transversely in two points bounds a disk
in S2 meeting K along a proper embedded arc or along two disjoint embedded arcs
adjacent to the endpoints ofK .

Condition (i) means thatK is not a product of two non-trivial knotoid diagrams.
An induction on the number of crossings shows that every knotoid diagram splits as a
product of a finite number of knotoid diagrams satisfying (i). These diagrams may not
satisfy (ii). If a diagramK of a knotoidk does not satisfy (ii), thenK can be obtained
from some other knotoid diagram by tying a non-trivial knot in a small neighborhood
of a generic point. Pushing this knot towards the head ofK , we obtain a knotoid dia-
gram of k that has the same number of crossings asK and splits a product of two
non-trivial knotoid diagrams. An induction on the number ofcrossings shows that for
any knotoid diagramK of a knotoid k, there is a knotoid diagramK 0 of k such that
cr(K 0) D cr(K ) and K 0 splits as a product of prime knotoid diagrams.

We claim that any prime knotoid diagramK � S2 satisfying spn(K ) D 4 cr(K )
is alternating. The argument is parallel to the one in [13] and proceeds as follows.
We use the notation introduced in the proof of Theorem 7.1. The formula spn(K ) D
4 cr(K ) implies that jsCj C js�j D n C 2. Hence,b0(�M) D b0(M) C b1(M, �M).
The latter equality holds if and only if the inclusion homomorphism H1(MI Z=2Z) !
H1(M, �MI Z=2Z) is equal to 0. This is possible if and only if the intersection form
H1(MI Z=2Z) � H1(MI Z=2Z) ! Z=2Z is zero. SinceK is prime, for any edgee of0 connecting two 4-valent vertices, the regions ofS2 � 0 adjacent toe are distinct
and their closures have no common edges besidese. The boundaries of these closures
are cycles in0 � M. If e connects two undercrossings or two overcrossings, then the
intersection number inM of these two cycles is equal to 1 (mod 2) which contradicts
the triviality of the intersection form. Hence0 has no such edges andK is alternating.

We can now accomplish the proof of the theorem. Letk be a knotoid inS2 such
that spn(k) D 4 cr(k). Then any minimal diagramK of k satisfies spn(K ) D 4 cr(K ).
By the argument above, we can chooseK so that it is a product of prime diagrams
K1, : : : , Kr . Observee that both numbers spn(K ) and cr(K ) are additive with respect to
multiplication of knotoid diagrams. The assumption spn(K ) D 4 cr(K ) and the inequal-
ity (7.2.3) imply that spn(K i ) D 4 cr(K i ) for i D 1, : : : , r . By the previous paragraph,
each K i is an alternating knotoid diagrams (of complexity 0). Therefore there are al-
ternating knots�1, : : : , �r � S3 such thatk D �� for � D �1 C � � � C �r . It remains to
observe that the knot� is alternating.
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7.4. Example. For the pure knotoid' in S2 shown in Fig. 4, we haveh'iÆ D
A4C A6� A10. Clearly, spn(')D 6 and cr(')D 2. In this case, the inequality spn(�) �
4 cr(�) � 2 is an equality.

7.5. Remarks.
1. Kauffman’s notions of a virtual knot diagram and a virtualknot extend to knotoids
in the obvious way. The theory of virtual knotoids is equivalent to the theory of knotoids
in closed connected oriented surfaces considered up to orientation-preserving homeo-
morphisms and attaching handles in the complement of knotoid diagrams.
2. The following observation is due to Oleg Viro. Every knotoid k (or virtual knotoid)
in an oriented surface determines an oriented virtual knot through the “virtual closure”:
the endpoints ofk are connected by a simple arc in the ambient surface; all intersections
of the arc with k are declared to be virtual. This construction allows one to apply
to knotoids the invariants of virtual knots. For example, the normalized bracket poly-
nomial of knotoids introduced above results in this way fromthe normalized bracket
polynomial of virtual knots. Using the virtual closure, we can introduce the Khovanov
homology and the Khovanov–Rozansky homology of knotoids (and more generally of
multi-knotoids).
3. Any knotoid k in an oriented surface6 determines an oriented knotkÆ in the
3-manifold 60 � [0, 1], where60 D 6 # (S1 � S1). To obtain kÆ, remove the interi-
ors of disjoint regular neighborhoodsB0, B1 � 6 of the endpoints ofk and glue�B0

to �B1 along an orientation-reversing homeomorphism carrying the point k \ �B0 to
the point k \ �B1. Then kÆ is the image ofk \ (6 n Int(B0 [ B1)) under this gluing.
A similar construction applies to multi-knotoids, where the genus of the ambient sur-
face increases by the number of interval components. In particular, any knotoid inS2

determines an oriented knot inS1 � S1 � [0, 1].
4. The notion of a finite type invariant of knots directly extends to knotoids. It would
be interesting to extend to knotoids other knot invariants:the Kontsevich integral, the
colored Jones polynomials, the Heegaard-Floer homology, etc.
5. For any knot� � S3, we have cr(��) � cr(�). Conjecturally, cr(��) D cr(�). This
would follow from the stronger conjecture that any minimal diagram of the knotoid��
has complexity 0.

8. Extended bracket polynomial of knotoids

8.1. Polynomial hh iiÆ. We introduce a 2-variable extension of the bracket poly-
nomial of knotoids. LetK be a knotoid diagram inS2. Pick a shortcuta � S2 for K
(cf. Section 2.2). Given a states 2 S(K ), consider the smoothed 1-manifoldKs � S2

and its segment componentks. (It is understood that the smoothing ofK is effected in
small neighboroods of the crossings disjoint froma.) Note thatks coincides withK in
a small neighborhood of the endpoints ofK . In particular, the set�ks D �a consists of
the endpoints ofK . We orient K , ks, and a from the leg ofK to the head ofK . Let
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ks �a be the algebraic number of intersections ofks with a, that is the number of times
ks crossesa from the right to the left minus the number of timesks crossesa from
the left to the right (the endpoints ofks and a are not counted). Similarly, letK � a
be the algebraic number of intersections ofK with a. We define a 2-variable Laurent
polynomial hhK iiÆ 2 Z[ A�1, u�1] by

hhK iiÆ D (�A3)�w(K )u�K �a X
s2S(K )

A�suks�a(�A2 � A�2)jsj�1.

The definition of hhK iiÆ extends word for word to multi-knotoid diagrams inS2, see
Section 2.1. The following lemma shows that the polynomialhhK iiÆ yields an invariant
of knotoids and multi-knotoids. This invariant is denotedhh iiÆ.

Lemma 8.1. The polynomialhhK iiÆ does not depend on the choice of the shortcut
a and is invariant under the Reidemeister moves on K .

Proof. As we know, any two shortcuts forK are isotopic in the class of embed-
ded arcs inS2 connecting the endpoints ofK . Therefore, to verify the independence
of a, it is enough to analyze the following three local transformations ofa:
(1) pulling a across a strand ofK (this adds two points toa\ K );
(2) pulling a across a double point ofK ;
(3) adding a curl toa near an endpoint ofK (this adds a point toa\ K ).

The transformations (1) and (2) preserve the numbersK �a and ks � a for all states
s of K . The transformation (3) preservesks � a � K � a for all s. Hence,hhK iiÆ is
preserved under these transformations and does not depend on a.

Consider the “unnormalized” versionhhK , aii of hhK iiÆ obtained by deleting the
factor (�A3)�w(K )u�K �a. The polynomialhhK , aiidepends ona (hence the notation) but
does not depend on the orientation ofK (to computeks �a one needs only to remember
which endpoint is the leg and which one is the head). The polynomial hhK ,aii satisfies
Kauffman’s recursive relation

(8.1.1) hhK , aii D AhhK A, aii C A�1hhKB, aii,
where K A is obtained fromK by the A-smoothing at a certain crossing andKB is ob-
tained from K by the B-smoothing at the same crossing. Here the diagramsK , K A,
KB are unoriented and share the same leg and head. (At least one of these diagrams
has a circle component so that Formula (8.1.1) necessarily involves multi-knotoids.)
The standard argument based on (8.1.1) shows thathhK , aii is invariant under the sec-
ond and third Reidemeister moves onK and is multiplied by (�A3)�1 under the first
Reidemeister moves provided these moves proceed away froma. Such moves also pre-
serve the numberK �a and therefore they preservehhK iiÆ. Since the polynomialhhK iiÆ
does not depend ona, it is invariant under all Reidemeister moves onK .
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8.2. Special values. For any knotoidk in S2,

hhkiiÆ(A, u D 1)D hkiÆ,
hhkiiÆ(A, u D �A3) D hk�iÆ and hhkiiÆ(A, u D �A�3) D hkCiÆ.

These formulas show that the polynomialhhkiiÆ interpolates between the normalized
bracket polynomials ofk, k�, and kC. The first formula is obvious and the other two
are obtained by applying (8.1.1) to all crossings ofK viewed as crossings ofK [ a.
This reduces the computation ofhhkiiÆ(A, �A�3) to the computation of the bracket
polynomial of the diagram of an unknot formed by the arcsks and a, whereks passes
everywhere over (resp. under)a. The latter polynomial is equal to (�A3)�ks�a.

For example,hh'iiÆ D A4 C (A6 � A10)u2. The substitutionsu D 1, u D �A3, and
u D �A�3 produce the normalized bracket polynomial of', of the left-handed trefoil,
and of the unknot, respectively.

Note finally that if a knotoidk is a knot, thenhhkiiÆ D hkiÆ 2 Z[ A�1].

8.3. TheA-span and theu-span. For a polynomialF 2 Z[ A�1,u�1], we define
two numbers spnA(F) and spnu(F). Let us expandF as a finite sum

P
i , j2Z Fi , j Ai u j ,

where Fi , j 2 Z. If F ¤ 0, then spnA(F) D iC � i�, where iC (resp. i�) is the max-
imal (resp. the minimal) integeri such thatFi , j ¤ 0 for some j . Similarly, spnu(F) D
jC � j�, where jC (resp. j�) is the maximal (resp. the minimal) integerj such that
Fi , j ¤ 0 for somei . By definition, spnA(0)D spnu(0)D �1.

For a knotoidk in S2, set spnA(k) D spnA(hhkiiÆ) and spnu(k) D spnu(hhkiiÆ). Both
these numbers are even (non-negative) integers. Clearly,

(8.3.1) spn(k) � spnA(k) � 4 cr(k) and spnu(k) � 2c(k),

where the first two inequalities are obvious and the third inequality is proven similarly
to (7.2.3). For example, spnA(') D spn(') D 6 and spnu(') D 2. Here two of the
inequalities (8.3.1) are equalities.

8.4. The skein relation. The polynomialhh iiÆ satisfies the skein relation

(8.4.1) �A4hhKCiiÆ C A�4hhK�iiÆ D (A2 � A�2)hhK0iiÆ
similar to the skein relation for the Jones polynomial. HereKC, K�, and K0 are any
multi-knotoid diagrams inS2 which are the same except in a small disk where they
look like a positive crossing, a negative crossing, and a pair of disjoint embedded arcs,
respectively, see Fig. 7. (We call such a triple (KC, K�, K0) a Conway triple.) The
proof of (8.4.1) is the same as for knots, see [5] and [7].
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Fig. 7. A Conway triple in a disk.

9. The skein algebra of knotoids

9.1. The algebraB. In analogy with skein algebras of knots, we define a skein
algebra of knotoids inS2. Let G be the set of isotopy classes of multi-knotoids inS2.
Consider the Laurent polynomial ring3 D Z[q�1, z�1] and the free3-module3[G]
with basisG. Let B be the quotient of3[G] by the submodule generated by all vec-
tors qKC � q�1K� � zK0, where (KC, K�, K0) runs over the Conway triples of multi-
knotoids. The obvious multiplication of multi-knotoids (generalizing multiplication of
knotoids) turnsB into a 3-algebra. The algebraB has a unit represented by the triv-
ial knotoid. We will compute this algebra. In particular, wewill show that B is a
commutative polynomial3-algebra on a countable set of generators.

To formulate our results, recall the definition of the skein module of an oriented
3-manifold M (see [14], [12]). LetL be the set of isotopy classes of oriented links
in M including the empty link;. Three oriented linkslC, l�, l0 � M form a Conway
triple if they are identical outside a ball inM while inside this ball they are as in
Fig. 7. Additionally, the triple (;, ;, a trivial knot) is declared to be a Conway triple.
The skein moduleS(M) of M is the quotient of the free3-module3[L] with basis
L by the submodule generated by all vectorsqlC � q�1l� � zl0, where (lC, l�, l0) runs
over the Conway triples inM.

For an oriented surface6, the links in6�R can be represented by link diagrams
in 6 in the usual way. The skein moduleS(6 �R) is a3-algebra with multiplication
defined by placing a diagram of the first link over a diagram of the second link. The
empty link is the unit of this algebra.

For the annulusA D S1 � I , where I D [0, 1], the 3-algebraA D S(A � R)
was fully computed in [14]. We briefly recall the relevant results. Observe thatA D�r2ZAr , whereAr is the submodule generated by the links homological tor [S1] in
H1(A) D Z. Here [S1] 2 H1(A) is the generator determined by the counterclockwise
orientation of S1. Pick a point p 2 S1 and for eachr 2 Z, consider an oriented knot
diagram in A formed by the segment{p} � I and an embedded arcr � A leading
from (p, 1) to (p, 0) and passing everywhere over{p} � I (except at the endpoints).
The choice ofr is uniquely (up to isotopy inA) determined by the condition that the
resulting diagram is homological tor [S1] in H1(A). This diagram represents a vector
zr 2 Ar . By [14], A is a commutative polynomial3-algebra on the generators{zr }r¤0.
Note that z0 D (q � q�1)z�1 2 3 � A0 and that the group of orientation-preserving
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self-homeomorphisms ofA (generated by the Dehn twist aboutS1 � {1=2}) acts triv-
ially on A. The algebraA has been further studied by H. Morton and his co-authors,
see for instance [9].

Theorem 9.1. The3-algebrasA and B are isomorphic.

Proof. We call multi-knotoid diagrams inS2 D R2[{1} with leg 0 and head1
special. Any multi-knotoid diagram inS2 is isotopic to a special one. If two special
diagrams are isotopic inS2, then they are isotopic in the class of special diagrams.
Therefore, to computeB it is enough to use only special diagrams.

We can cut from any special multi-knotoid diagram inS2 small open regular neigh-
borhoods of the endpoints. The remaining part ofS2 can be identified withAD S1� I .
This allows us to switch from the language of special multi-knotoid diagrams inS2 to
the language of multi-knotoid diagrams inA whose legs and heads lie respectively on
the boundary circlesS1 � {0} and S1 � {1}. The latter diagrams are considered up to
the Reidemeister moves and isotopy inA. Note that the isotopy may move the legs
and the heads on�A; as a consequence there is no well-defined rotation number (or
winding number) of a diagram.

Every oriented link diagramL in A determines (possibly after slight deformation)
a multi-knotoid diagramL p D L[({p}� I ) in A, where{p}� I passes everywhere over
L. The Reidemeister moves and isotopies onL are translated into the Reidemeister
moves and isotopies onL p. Therefore the formulaL 7! L p defines a map from the set
of isotopy classes of oriented links inA�R to the setG of multi-knotoids in S2. This
map carries Conway triples of links to Conway triples of multi-knotoids and induces a3-homomorphism W A! B.

We claim that is an isomorphism. We first establish the surjectivity. Let us
call a multi-knotoid diagramK ascendingif the segment componentCK of K lies
everywhere over the other components, and moving alongCK from the leg to the head
we first encounter every self-crossing ofCK as an underpass. Any ascending diagram
K in A can be transformed by the Reidemeister moves and isotopy ofCK into a multi-
knotoid diagram of typeL p as above. Hence, the generators ofB represented by the
ascending diagrams lie in (A). Given a non-ascending multi-knotoid diagramK � A
with m crossings, we can change its overcrossings to undercrossings in a unique way to
obtain an ascending diagramK 0. Changing one crossing at a time and using the skein
relation, we can recursively expandK as a linear combination ofK 0 and diagrams with< m crossings. This shows by induction onm that the generator ofB represented by
K lies in  (A). Hence, is surjective.

One may use a similar method to prove the injectivity of . The idea is to define
a mapB ! A by K 7! K � CK on the ascending diagrams and then extend this to
arbitrary multi-knotoid diagrams using the recursive expansion above. The difficult part
is to show that this gives a well defined mapB! A. Then it is easy to show that this
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map is inverse to . This approach is similar to the Lickorish–Millett construction of
HOMFLYPT, see [7].

We give another proof of the injectivity of . We define for any integerN a
homomorphism�N W B ! A as follows. Given a multi-knotoid diagramK in A, we
connect the endpoints ofK by an embedded arc D K ,N � A such thatK [  is
homological to N[S1] 2 H1(A). Here the orientation ofK [  extends the one of
K . Note that such arc always exists and is unique up to isotopy constant on� .
We turn K [  into a diagram of an oriented link by declaring that passes every-
where overK (except at the endpoints). The isotopy class of this link is preserved
under the Reidemeister moves and isotopy ofK in A. Moreover, the transformation
K 7! K [ K ,N carries Conway triples of multi-knotoid diagrams inA to Conway
triples of links in A � R. Therefore this transformation defines a3-homomorphism�N W B ! A. It follows from the definitions that

(9.1.1) �N (a) D zN�r a

for any r 2 Z and anya 2 Ar .
Every vectora 2 Ker expands asa D P

r2Z ar , wherear 2 Ar for all r . For-
mula (9.1.1) implies that

P
r zN�r ar D 0 for all N 2 Z. Recall that eachar is a poly-

nomial in the generators{zs}s¤0. For anyr0 2 Z, we can takeN big enough so that the
generatorzN�r0 appears in the sum

P
r zN�r ar only as the factor in the termzN�r0ar0.

Since this sum is equal to zero,ar0 D 0. Thus,a D 0 and is an isomorphism.

9.2. Remarks.
1. Composing the projectionG ! B with  �1, we obtain a mapP W G ! A. This
map yields an invariant of multi-knotoids inS2 extending the HOMFLYPT polynomial
P of oriented links inS3: if l is an oriented link inS3 and l � is a multi-knotoid inS2

obtained by removing from a diagram ofl a small subarc� (disjoint from the cross-
ings), thenP(l �) D P(l ) 2 3 � A. Note thatl � 2 G may depend on the choice of the
component ofl containing� but depends neither on the choice of� on this compo-
nent nor on the choice of the diagram ofl . Formula (8.4.1) implies that the polynomialhh iiÆ is determined byP.
2. The results of this section can be reformulated in terms oftheta-links, see Re-
mark 6.5.3. One can define the skein relations for the theta-links as for links allowing
the two strands in the relations to lie on the link componentsor on the 0-labeled edge
of the theta-curve (but not on the�-labeled edges). The generalization of Theorem 6.2
to multi-knotoids mentioned in Remark 6.5.3 implies that the skein algebra of multi-
knotoidsB is isomorphic to the skein algebra of simple theta-links inS3.
3. One can similarly introduce the algebras of multi-knotoids (or, equivalently, of sim-
ple theta-links) modulo the bracket relation (8.1.1) or modulo the 4-term Kauffman skein
relation used to define the 2-variable Kauffman polynomial of links. The resulting alge-
bras are isomorphic to the corresponding skein algebras of the annulus computed in [14].
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10. Knotoids in R2

Since the knotoid diagrams inS2 are usually drawn inR2, it may be useful to
compare the setsK(R2) and K(S2). The inclusionR2 ,! S2 allows us to view any
knotoid diagram inR2 as a knotoid diagram inS2 and induces thus aninclusion map�W K(R2)! K(S2). Given a knotoid inS2, we can represent it by a normal diagram and
consider the equivalence class of this diagram inK(R2). This defines a map�W K(S2)!
K(R2). Clearly, � Æ � D id so that� is surjective.

As in Sections 2 and 3, we have three basic involutions rev, sym, and mir on
K(R2). The maps� and � are equivariant with respect to these involutions.

We now give examples of non-trivial knotoids inR2 that are trivial inS2, i.e., are
carried by� to the trivial knotoid inS2. Thus, � is not injective.

Fig. 1 represents a knotoidU 2 K(R2) and its images under the basic involutions.
These knotoids are calledunifoils. Note that (symÆmir Æ rev)(U ) D U . Using isotopy
and�1, one easily observes that the unifolis are trivial inS2.

Fig. 2 represents two knotoidsB1, B2 2 K(R2). These knotoids and their images
under the basic involutions are calledbifoils. As an exercise, the reader may check that
rev(B1) D B1, rev(B2) D mir(B2), and B2 is trivial in S2.

We claim that the unifoils and the bifoils are non-trivial knotoids (inR2). To prove
this claim, we define for knotoids inR2 a 3-variable polynomial []Æ with values in the
ring Z[ A�1, u�1, v]. Given a states 2 S(K ) on a knotoid diagramK � R2, every
circle component of the 1-manifoldKs bounds a disk inR2. This disk may either be
disjoint from the segment component ofKs or contain this segment component. Let
ps (resp.qs) be the number of circle components ofKs of the first (resp. the second)
type. Clearly,ps C qs D jsj � 1. Set

[K ]Æ D (�A3)�w(K )u�K �a X
s2S(K )

A�suks�a(�A2 � A�2)psvqs.

Standard computations show that this is an invariant of knotoids inR2. The polynomial
[K ]Æ is invariant under the reversion of knotoids and changes viaA 7! A�1 under mir-
ror reflection and symmetry inR2. For v D �A2 � A�2, we recover the polynomialhh iiÆ from Section 8.1.

Direct computations show that [U ]Æ D �A4 � A2v,

[B1]Æ D A4 C 2A6u2 C A8u2v and [B2]Æ D (A2 C A�2 C v)u2 C 1.

Therefore the knotoidsU , B1, B2 are non-trivial and mutually distinct.
Fig. 4 represents a knotoid' 2 K(R2) and its images under the involutions sym

and mir. It is easy to see that�(') D �(B1) and therefore the knotoid�(') 2 K(S2) (de-
noted' in the previous sections) is invariant under reversion. As we know, the knotoid�(') is non-trivial.
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