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Abstract

We give examples of degree functions d&— M U {—o0}, whereR is C[X, Y]
or C[X,Y,Z] and M is Z or N, whose behaviour with respect t©-derivations
D: R— R is pathological in the sense thedegDx) — deg) | x € R\ {0}} is not
bounded above. We also give several general results sth@guch pathologies do
not occur when the degree functions satisfy certain hysethe

1. Introduction

Let B be a ring and G, +, <) a totally ordered abelian group. A map
deg B - G U {—o0}

is called adegree functionif it satisfies, for allx, y € B,
(1) degk) = —oo iff x =0;
(2) degky) = degk) + degfy);
(3) degk + y) < max(degk), degf)).

It is easy to see that iB admits a degree function theB is either the zero ring
or an integral domain. Also, if de@ — GU{—oc} is a degree function and,y € B
are such that degj # degfy), then degf + y) = max(degk), degf)).

Let B be an integral domain and de® — G U {—oc} a degree function, where
G is a totally ordered abelian group. Given a derivatidon B — B,

U = {deg(Dx) —degf) | x € B\ {0}}

is a nonempty subset of the totally ordered Get {—oo}. If U has a greatest element,
we define dedp) to be that element; ifJ does not have a greatest element, we say
that degD) is not defined. Note that iD is the zero derivation then dddj is defined
and is equal to-oo; in fact the conditionD = 0 is equivalent to dedf) = —oco. Also
note that, in the special case = Z, degD) is defined if and only if the set is
bounded above.

Consider the associated graded ring Bjr(which is aG-graded integral domain
determined by the pairB, deg) (see Paragraph 1.9 for details). It is well known that
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each derivationD: B — B such thatdegD) is definedgives rise to a homogeneous
derivation grD): Gr(B) — Gr(B). The technique of replacind® by gr(D), called
“homogenization of derivations”, is used quite systenalycin the study ofG,-actions
on affine algebraic varieties. We stress that homogenizatguires prior verification
that degD) is defined with respect to the given degree function. Toifgldhe discus-
sion, we introduce the following notion:

DEFINITION 1.1. Let A C B be integral domains of characteristic zero, and let
G be a totally ordered abelian group. A degree function:d&@g> G U {—o0} is said
to betame over Aor A-tame if it satisfies:

deg@) is defined for allA-derivations D: B — B.
If deg is not tame overA, we say that it iswild over A or A-wild.

The present paper has two objectives:
I. To give examples ofk-wild degree functions degk[X, Y] — Z U {—oc0} and
deg: K[ X, Y, Z] — Z U {—o0}, wherek is a field of characteristic zero;
Il. to give results which state that degree functions sgtigf certain hypotheses
are tame.

There is a good measure of confusion in relation with degueetfons. Consider
the following statement:

(%) If B is an integral domain and a finitely generaté&talgebra then
all degree functions on B are tame over

Assertion () is false as it is contradicted by either one of Propositions 1.2 ard 1
(see below). However,x) has been used by several authors to justify the homogen-
ization of derivations. Examples: [4, Proof of Lemma 1], Pyoof of Lemma 5], [7,
Proof of Theorem 3.1]; in [2], a variahof (x) is stated on p.3 and implicitly used in
the proof of Proposition 2; a (necessarily incorrect) probf(x) is given in [1, 6.2],
and () is then used to prove the following false statement [1, Tanp 6.3]: for a
C-algebra B if there exists a degree functiateg: B — Z U {—oo} such thatGr(B)
is rigid, then B is rigid (Proposition 1.2 is a counterexample, Bsis not rigid but
Gr(B) = Kk[t, t~1] is rigid). We provide the correctionif there exists aC-tame degree
functiondeg: B — G U {—oc¢} such thatGr(B) is rigid, then B is rigid.

Also, one can find many examples in the literature where asiteonply omit to
raise the question whether d&(is defined, as if it were a priori clear that d&j(is
always defined. We hope that our examples will clear-up sofrthi® confusion.

linstead of assuming the is finitely generated, the variant assumes thatBpiig finitely gen-
erated. This variant is false: in Proposition 1.2, b&hand Gr@) are finitely generated but deg
is wild.

20One says thaB is rigid if the only locally nilpotent derivatiorD: B — B is the zero derivation.
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Sections 2 and 3 prove the following facts (the reader shooidpare these results
to the statement of Theorem 1.7, below).

Proposition 1.2. Letk be a field of characteristic zero and 8 k[X, Y] = k2.
Then there exists a degree functideg: B — Z U {—oo} satisfying
(@) degf) =0 for all A € k*;
(b) Gr(B) = K[t, t™];
(c) the onlyk-derivation D. B — B such thatdeg(D) is defined is the zero derivation.

In the above statement and throughout this paper, we wkite R to indicate
that A is a polynomial ring inn variables overR. The proof of Proposition 1.2 is
given in Section 2. The next fact is the special cage=¢ ki*” of Corollary 3.8; it
shows that wild degree functions with valuesMdo exist:

Proposition 1.3. Let k be an uncountable field of characteristic zero and=B
K[X, Y, Z] = k®l. Then there exists a degree functidag: B — N U {—oo} such that
deg@.) = O for all A € k* and with respect to which the degree &fdX: B — B is
not defined.

We have a similar result foB = k?, but with more restrictions ok:

Proposition 1.4. Letk be a function fieldl over an uncountable field of charac-
teristic zerg and let B= k[X, Y] = k[?. Then there exists a degree functidag B —
N U {—o0} such thatdegg.) = O for all A € k* and with respect to which the degree
of 3/0X: B — B is not defined.

Proposition 1.4 is an immediate consequence of part (e) efntgxt result, which
exhibits some pathologies with respect to the process @&neliig degree functions:

Proposition 1.5. Letky be an uncountable field of characteristic zeka a func-
tion field overky and k, the algebraic closure ok;. Consider the polynomial rings
Bo C By C By, where B = ki[X, Y] = k@, Then there exist degree functions

deg: B > NU{oo}, deg:B;—>NU{oo} and deg: B, - Z U {oo}

satisfying the following conditions

(@) if i = thendeg is the restriction ofdeg;

(b) for each i=0, 1, 2, deg(x) = O for all 1 € k{;

(c) deg is determined by the gradingoB= ),y R of By defined by Xe R, and
Y € R; but, for each i=1, 2, deg is not determined by a grading of;;B

3A function fieldis a finitely generated field extension of transcendenceedegt least 1.
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(d) Gr(B;) is affine overk; if i € {0, 2}, but not if i = 1;
(e) deg(D;) is defined if i= 0 but not if i € {1, 2}, where Q =9/9Y: B; — B;.

See Paragraph 3.7 for the proof of Proposition 1.5. The naifca degree function
determined by a gradings defined in Paragraph 1.9. It may be worthwile to state the
following consequence of Proposition 1.5:

Corollary 1.6. Let S be the set of degree functioeg: C[X, Y] — Z U {—oc}
satisfyingdeg@.) = 0 for all » € C*, deg(X) = 2 and deg({Y) = 3. Then there exist
elements d and’dof S satisfying

dlgix,y] = d'lgpx,y;, d is C-tame and dis C-wild.

See Paragraph 3.9 for the proof of Corollary 1.6.

The proof of Proposition 1.2 is quite simple, but those ofp@sitions 1.3-1.5
are more delicate because they involve constructing degireetions with nonnegative
valuesand which are still wild. The crucial step is the proof, in Lea 3.6.7, that
ord(f) < 0 for every nonzero element of the subringki[X, y] of ku((t)). The idea
that this inequality could be proved by using an expansiomma such as Lemma 3.2
was inspired by past frequentations with expansion teclasich la Abhyankar-Sathaye.

Section 4 proves an array of results which assert that ddgretions satisfying
certain hypotheses are tame. Some of those facts are suredhdn the following
statement, but note that the results of Section 4 are stronge

Theorem 1.7. Suppose that B is an integral domain containing a fieldf char-
acteristic zero. Let G be a totally ordered abelian group atet; B — G U {—o0} a
degree function. Therin each of the case&)—(d) below degis tame overk:

(a) B is k-affine anddegis determined by some G-grading of B.

(b) Gr(B) is k-affine and{deg) | x € B\ {0}} is a well-ordered subset of G.

(c) trdeg(B) < oo, Frac@) is a one-dimensional function field over the field of frac-
tions of the ring{x € B | degk) < 0}, and deg has values inN.

(d) trdeg(B) < oo and deg= deg, for some locally nilpotent derivatior\: B — B.

Here, FracB) denotes the field of fractions dB and ‘k-affine” means “finitely
generated as k-algebra”. Assertions (a), (b), (c) and (d) of Theorem 1.lfof@ from
Corollaries 4.8, 4.23, Proposition 4.24 and Corollary 4.E&pectively (also note that
(d) is a special case of (c)).

Assertions (b) and (c) of Theorem 1.7 appear to be new. The @as Z of The-
orem 1.7 (a) is well known, and since the general case hasatne proof we assume
that it is also known. Assertion (d) of Theorem 1.7 appeared3i Theorem 2.11,
p. 40], etc., with the mention that it was unpublished worktoé author. The material
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in Definitions 4.15—Proposition 4.24 appears to be new. Eselts given in Setup 4.1—
Definition 4.14 are generalizations and strengtheningsnofsa results.

Let us also mention that most of the errors that we pointed iouhe discus-
sion between Definition 1.1 and Proposition 1.2 can be fixedisipg the above The-
orem 1.7 in conjunction with the following observation (Lema 1.8 is an immediate
consequence of Lemma 4.11, below):

Lemma 1.8. Let B be an integral domain containing a fiekd of characteristic
zerq S C B a multiplicative sgtbEG: S*B — G U {—o0} a degree function(where
G is a totally ordered abelian groypand deg B — G U {—o0} the restriction ofDEG.
If DEG is tame overk then so isdeg

1.9. Conventions, notations and terminologies. Given a totally ordered group
G, it is understood thatc U {—oo} is totally ordered and satisfiesco < x for all
X € G. The same convention applies ¥ U {—oo}. In this article,N is the set of
nonnegative integers, i.e.,N.

By a “domain”, we mean an integral domain. Afis a domain then Frak denotes
its field of fractions. IfA € B are domains then trdg¢B) denotes the transcendence
degree of Fradf) over Fracf). The symbolA* denotes the set of units of a ring.
A polynomial ring inn variables overA is denotedAl". A subring A of a domainB
is said to befactorially closed in Bif the conditionsx,y € B andxy € A\ {0} imply
thatx,y € A.

If A C B are rings then DeR) (resp. Dek(B)) is the set of derivations (respg-
derivations)D: B — B.

Let B be a domain ands a totally ordered abelian group. Then edgkgradingg
of B determines a degree function ged®® — GU{—o0c} as follows. LetB = P, B
be the gradingy. Givenx € B, write X =) ;s Xi (X € B;) and consider the finite set
S ={i € G|x # 0}; then define degX) to be the greatest element & U {—oo}.
This is what we mean by a degree function “determined by aiggéd

Let B be a domain and degB — G U {—oo} a degree function, wher& is a
totally ordered abelian group. For eaclk G, let

Bi ={xeB|degk) <i}, Bi- ={xeB|degk) <i}, Bji; = Bi/Bi-.

The direct sum Gi§) = &, Byij is a G-graded integral domain referred to as s
sociated graded ringit is determined by B, deg). Note that GB) comes equipped with
the degree function dgg Gr(B) — G U {—oo} whereg denotes the grading G =
. Biij- One also defines a set map & — Gr(B) by gr(0)= 0 and, forx € B\ {0},
gr(x) = x+ Bi- € Byj;\ {0}, wherei = degf). The map gr preserves multiplication but,
in general, not addition. For akt € B, gr(x) is a homogeneous element of 8j(and
degk) = deg,(gr(x)).

As mentioned in the introduction, each derivatibn B — B such that dedd) is
defined gives rise to a homogeneous derivatioDyr(Gr(B) — Gr(B); although this
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is not needed in the present paper, let us recall the definiticet d = deg). If
d = —o0, set grD) = 0. If d # —oo thend € G and (for each € G) D mapsB; into
B(i +d) and B;- into B(i-t,-d)*. and so a ma[D[i]: B[i] — B[i+d] is defined byx + Bi- —
D(x) + Bg+ay-; then, given an element =} ;5 yi of Gr(B) (with y; € Byj), define
ar(D)(y) = >_; Dyij(yi). If D is nonzero then so is dgi), and if D is locally nilpotent
then so is gm).

2. Proof of Proposition 1.2

Let k be a field of characteristic zero.

2.1. Consider the fieldk((t)) of Laurent power series ovér and the order valu-
ation ord k((t)) - Z U {+o0}. Define

1) deg k((t)) — Z U {—oo}, deg(f) = —ord(f) for all f e k((t)).

Then deg is a degree function d({(t)) and it is easily verified that the associated
graded ring GHK((t))) is isomorphic tok[t, t1].

2.2. Note that if B is any ring such thak € B C k((t)) then the restriction
deg: B — Z U {—0o0}

of the degree function (1) is a degree function Brsatisfying deg{) = 0 for all 1
k*. Also, there is an injectivik-homomorphism GiB) < Gr(k((t))). As any ring A
satisfyingk € A C k[t, t™1] is k-affine, we see that GR) is k-affine.

Proof of Proposition 1.2. One can show that there exiqty € k((t)) such that
(t, f(t), f'(t)) are algebraically independent overand ordf (t) > 0. Choose such an
f(t) = ZT‘;O ajtj; let x =t~ andy = f(t) and consider the subalgebBa= K[x, y]
of k((t)). Note thatB = k. Define deg B — Z U {—oc0} as in Paragraph 2.2 and
note (as in Paragraph 2.2) that 8)(is k-affine and that deg) = O for all A € k*.
Note that degf — ag) is a negative integer; as deg(= 1, it follows that{degh) | h €
B\ {0}} = Z. From this, it is easy to deduce that the natural embeddinGr¢(B) into
Gr(k((t))) = k[t, t™1] is actually an isomorphism:

Gr(B) = k[t t 1.

For eachn > 1,

00 ) n-1 . o ) n-1 ) 'S} )
Xy =t =) gt/ "= "atl "+ Y ath "= ax" + ) apth "
j=0 j=0 j=n j=0 j=n
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so if we defineg, € B by g, = X"y — Y""g a;x"~, theng, = Y32 ajti ™", so

the set S= {n|deg@,) = 0} is infinite.

We havedg,/dy = x" and

-1 00 n-1
09 _ < . i _ i . -
_axn =nx"ty =Y (- agx™ It =t Y Capth = 3 (n— j)agti
j=0 j=0 j=0

n-1 ) 00 . n-1 ) [} .
= jati Mty napth M = t2”|: jyti 4y najtll]
j=0 j=n

j=0 j=n

= t2_n[an + é&n)

with o, = ?;%)jajtj‘l ande, = Z‘j"’:nnajtj—l. Notice that{an+en}52 ; is @ sequence
in k((t)) which converges tof’(t) with respect to thet§-adic topology.

Consider thek-derivationD = ud/ax —v d/dy: B — B, whereu, v € B, and as-
sume that dedd) is defined. Then there existse Z satisfying degD(g,)) —deg@n) <
d for all n > 1, so in particular

2 ordt"D(gn)) > n—d forall neS

On the other hand we have

(3) t"D(gn) = tn(u% - v%—%) = t[an + en]u — v = [y + en]X 2U— 0.

The right hand side of (3) is a convergent sequenck({t)), with limit f’(t)x2u—v;
so the sequenc@"D(gn)}2, is convergent and, by (2), must converge to O; so

() f'(t)xu—v =0.

If u#0 then (4) impliesf’(t) = x?v/u € k(x, y) = k(t, f(t)), which contradicts our
choice of f(t). Sou =0 and, by (4),y =0. SoD =0. []

3. Wild degree functions with values inN

NOTATIONS 3.1. For each finite subse® = {uy, ..., u,} of a ring A, define
n(S) =T], ui € A (where n(?) = 1 by convention). IfE is a set,Psn(E) denotes
the set of finite subsets dE and Pj,(E) is the set of nonempty finite subsets Bf

Lemma 3.2. Let (a)ien be a sequence of elements of a ring A. Define a se-
quence(Fi)ien in A[Y] = At by iy =Y and for each ie N, Fi.1; = F2—a. Then
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each nonzero element off ¥ has a unique expression as a finite sum

a1u(S) + - - + anp(N),
where N> 1, o € A\ {0} and S, ..., Sy are distinct finite subsets df | i € N}.

Proof. AsF; is monic of degree '2 we see thai(S) is monic for each finite
subsetS of {F; | i € N}, and S+ deg(9)) is a bijection from the set of finite subsets
of {F |i € N} to N. The lemma follows from this. ]

Lemma 3.3. Let L/K be an extension of fields of characterist&€ 2 and ¢/ a
subset of L satisfying
() u?eK foralluel,
(i) u(F)¢ K forall FeP; U.
Then the family(w(F))rep,,@y Of elements of L is linearly independent over K.

Proof. This is certainly well known but, in lack of a suitalbieference, we pro-
vide a proof. We imitate the proof that i1, ..., p, are distinct prime numbers then
[Q(/P1,---,/Pn) : Q] = 2", see for instance [8]. The first step is to prove that the set

¥ = {(F,G) € PinU)? | F # 0, FNG = ¢ and u(F) € K[G]}

is empty. Suppose the contrary, and chooBe&) € X which minimizes|G|. Note
that G # @ by (ii); pick g € G and letG’ = G\ {g}. By minimality of |G|,

(5) (F,G)¢x forall F ePs ).

Since u(F) € K[G] = K[G'][g] and g° € K by (i), we haveu(F) = a+ bg for some
a,b € K[G']. Using (i) again giveK > u(F)? = a? + 2abg+ b?g?; since chak # 2,
abg € K[G']. If ab # 0 theng € K[G'], so (g}, G') € £ contradicts (5). Ifa=10
then uw(F U {g}) = u(F)g = bg? € K[G'], so (F U {g}, G') € = contradicts (5). If
b =0 thenu(F) = a € K[G], so (F, G') € ¥ contradicts (5). These contradictions
show that® = @.

We now prove the assertion of the lemma, by contradictiorppBse thats,,..., $
are distinct elements Py, () such thatu(S,), ..., u(S) are linearly dependent over
K, and suppose that is the least natural number for which such sets exist. Observ
thatn > 2 and hencd J'_, § # (_; S. Pickue ;S\, S. Relabel the sets
S,...,§soastohavaie §N---NS,andu ¢ Sy U--- U S, and note that
1<m=<n-1. Choosea,..., a, € K not all zero such thaEi”=1 au(§) =0 and
note thatay, . .., a, € K* by minimality of n. Let S=J'; S. We have

uYy an(S\{u)=— Y aus)

i=1 i=m+1
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where the two sums belong #[S\ {u}] and where}_" ;& 1(S\{u}) # 0 by minimal-
ity of n. Thusu € K[S\ {u}] and consequently{(}, S\ {u}) € &, a contradiction. []

3.4. Consider the following conditions on a 4-tuplieg(k1, ko, U):
(i) ko C ky C ky are fields of characteristic zero ald is algebraic oveks;
(iiy U is an uncountable subset k§;
(iii) u? e kq for all u e ;
(iv) u(S) ¢ ki for eachS e P, (U);
(v) some element o#/ is transcendental ovel.
Note that, by Lemma 3.3, any 4-tuplio( kq, k2, U) satisfying (i)—(v) also satisfies:
(vi) the family (u(F))repq @y Of elements ok, is linearly independent ovek;.

Lemma 3.5. Let kp be an uncountable field of characteristic zeka a function
field overko and k, the algebraic closure ok;. Then there exists a subsit of ky
such that(ko, k1, k2, U) satisfies the conditions dParagraph 3.4Moreover if A is a
ring such thatko € A € k; and Frac(A) = ki, theni/ can be chosen in such a way
that ¥ € A for all u e /.

Proof. Choose a transcendence bdsis..,t,} of ki/kg such that{ty,...,t,} C A,
let R = Ko[ty,...,t)] andk = Koq(ty, ..., tn) = FracR. As k;/kq is a function field, we
haven > 1 and it makes sense to defifie= {t; — X | A € Ko}, which is an uncountable
set of prime elements dR satisfying:

If p,q are distinct elements of P, then ptq in R

Choose a subsét; of ko such thatx — x? is a bijection fromi4; to P. Then

e Ulekforall ueld;

o (S ¢k for eachS € Py (Uh).

By Lemma 3.3, the family 4(F))rep,, @) Of elements ofk, is linearly independent
over k; as [ki: k] < oo, it follows that E = {F € Psin(U1) | n(F) € kq} is a finite set.
ThusC = (Jg.¢ F is a finite subset of/; andi/ = 141\ C is uncountable. It is easily
verified that ko, k1, k2, &) satisfies the conditions of Paragraph 3.4. Moreouére A
for all u e Y. O

3.6. We now fix (Ko, k1, ko, ) satisfying the requirements of Paragraph 3.4. This
is in effect throughout Paragraph 3.6.

3.6.1. Let Xq, Xq, X5, ... be a countably infinite list of indeterminates over.
For eachn € N, let E, = {f € ky[Xo, ..., Xn] | deg,, f = 1}. Note that the set&,
are pairwise disjoint; wherf € E,, we write co(f) € ki[Xo, ..., Xn=1] \ {0} for the
coefficient of X, in f.
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For eachp e N, let X, be the set of serie5 € ki(Xo, X1, ... )((t)) of the form
(6) E=t3(fp 4 fpat® + fpat® 4o ) =t2 ) o™,
n=0

such thatf; € E; for all i > p. Given& € X, with notation as in (6), define

V(E) = {(a0, ..., ap) e K™ | foleo, ..., ap) # 0
and V., deg (fi(ao, ..., ap, Xps1, ..., X)) =1},
Lemma 3.6.2. Let pe N and& =t=3Y 1 fo.nt™ € =, (where f € E; for all
i > p). Let& = &2 — f2t° € ky(Xo, X1, . ..)((t)). Then
(@ & € Xpi1.

(b) If (2, ...,ap) € V(§) then there is a countable subset C lof such that for all
ap+l € k2 \ C! (aO! e ap+l) € V(s’)

Proof. A straightforward calculation gives
§ =82 fA O =t 3Q2f oy + @Fpfpya+ 2D +--)

=t 3(gp+1 + Opsot® + Gpaat® + ) =t73 Z Ops1nt™",
n=0

where
n+1

7) Op+1+n = D fpsifprapns forall neN.
i=0

Note thatgp;14n is equal to &, fpi11n plus a sum of terms of the fornd; f; with
i, ] < p+ 1+ n; this shows that

(8) g €E and cof)=2fyco(fi) forall i>p+1.

In particular,&’ € Xpy1.
Suppose thatag, . .., ap) € V(§). Then fy(ag, ..., ap) # 0 and

9) deg, fi(ao, ..., ap, Xpy1, ..., X)) =1 foral i>=p+1

Let C = {ap+1 € k2 | (@0, - - -, @p+1) € V(§)}; we have to show tha€ is countable.
Note thatC is a countable unionC = (J;Z,,, Ci, where

Cpi1 ={apr1 € k2| gpt1(a0, - - ., Aps1) = O}
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and, for each > p + 2,

Ci = {aps1 € ko | deg, gi(ao, - - -, Apt1, Xpy2, - -+, Xi) < 1}
Sincegpi1(ao, ..., apr1) = 2fp(a0, ..., ap) fpr1(a0, ..., apt1) Where fp(ag,...,ap) #0
and fpi1(ao, ..., ap, Xpy1) € ko[ Xp41] has degree 1 by the case= p+ 1 of (9), we
see thatCy; is a finite set. Let > p+ 2. Then cog;) = 2f, co(f;) by (8), so

Co(gl)(a01 sy apl Xp+1- sy Xifl)
= 2fp(a01 s ap) Co(fl)(a()v L a-py Xp+l! cey Xifl)'

Since fy(ao, ..., ap) # 0 and, by (9), cofi)(ao, ..., ap, Xpt1,..., Xi—1) # 0, we have
co@)(ao, - - - @p, Xpy1, - -+, Xi—1) € Ko[Xpya, ..., Xi—a] \ {0}
Consequently, there are only finitely maay,1 € k, satisfying
co@)(ao, - - ., apr1, Xpy2, ..., Xi—1) =0,

or equivalently

degy, Gi(do, ..., apr1, Xpy2, ..., Xi) < L.
So G is a finite set (for each) and it follows thatC is countable. []
3.6.3. For eachp € N we define a set map (well-defined by Lemma 3.6.2)
Xp—> Zpi1, § g
by settingé’ = &% — f2t~°, where the notation fot € T, is as in (6). Define a se-

quence £p)pen by settingéo = t3 302 ) Xpt3" € o and &1 = &, for all p € N.
Note thaté, € X, for all p € N, and let the notation be as follows:

o0
§p = t_sz fp,erntgn (fp.p+n € Epsn)-
n=0

By (7) we havefpi1 pt14n = Z;‘;} fp,p+i Tp.p+1+ni for all p,n e N, and in particular

Lemma 3.6.4. For each @ € U, there exists a sequende;)icn Of elements of
k, satisfying the following conditions

(@) ap = ug;
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(b) (ao, - - -, ap) € V(&p), for each pe N;
(€) p+— fpplao, ..., ap) is an injective map fronN to i/.

Proof. We define )icn by induction. Defineag = ug; note that &) € V(&)
and that fp o(ag) = ag = up € U.

Let p > 0 and assume thag(’_, is such thatag = uo, (a0, - - -, a) € V(&) for
alli €{0,..., p}, andi — fji(ao, ..., &) is an injective mapgo, ..., p} — U.

Defineeg = fii(ao,...,a) €U, 0<i < p. By Lemma 3.6.2, there exists a countable
setC C kz such that, for eacla, 1 € ko \ C, (o, ..., apy1) € V(5p11). By (10) we
have fyi1,pr1 = 2fp pfpptr1, SO

fD+1,p+1(aOa ..., ap, Xp+1) = 2fp,p(ao, Cey ap) fp,p+1(aoy ..., ap, Xp+1)
= 2e, fppr1(80, - - ., Ap, Xpt1)

€ kao[Xp4+1] is a polynomial of degree 1,

becausedp, ..., ap) € V(§p). Consequentlyx — fyi1p41(20, ..., ap, X) is a bijective
mapKky — Ko; asif \ {&y, ..., €p} is uncountable, we may choosg,1 € ky \ C such
that fy 1, pi1(30, ..., @py1) €U \ {€, ..., €}. Then @, ..., apr1) € V(£ps1) and
i — fii(ao,...,a) is an injective mapo0,..., p+ 1} — U. O

Corollary 3.6.5. There exist sequencés )icny and (e )ien Of elements ok, sat-
isfying
(@) fii(@o,...,a)=g for eachieN,;
(b) i — g is an injective map fronN to U/
(c) ag = g is transcendental oveko.

Proof. By Paragraph 3.4 (v), we may picl € U transcendental oveko; then
choose & )iy satisfying conditions (a)—(c) of Lemma 3.6.4 and get fi;(ay,-- ., a)
for eachi € N. L]

DEFINITION 3.6.6. Choose sequences)(cy and € )iy Of elements ok, sat-
isfying the conditions of Corollary 3.6.5. Define=t"2 andy =t=3Y 7 ja,t® €
ko((t)) and, for eachi € {0, 1, 2, consider the subrind;, = k;[x, y] of kx((t)) and
the degree function degB; — Z U {—oc} defined by deq f) = —ord(f), for f € B;.
Then By C By C By, deg is the restriction of degwheni < j, and (for each =0,1,2)
deg(x) =0 for all » € k{".

The notations of Definition 3.6.6 are fixed until the end ofdggaph 3.6. We will

now show thatx, y are algebraically independent over and that deg has values in
N U {—o0}. Let (2, 3} denote the submonoid ofZ( +) generated by{2, 3}.

Lemma 3.6.7. B; = ki? and deg(f) € (2, 3 for all f € By \ {0}.
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Proof.  Consider the subrinB of ki(Xo, Xy,...)((t)) whose elements are the series
D iez fit! satisfying fi € ki[Xo, X1,...]for all i e Z and f; =0 for i « 0, and the
homomorphism ok,-algebras

g: R=>ka((1), D filXo, Xu, .. )t = ) fi(ao, @, .. )t
i€Z i€Z
As &, € Xy C R, we may definey, = ¢(&p) € ko((t)) for eachp € N. Theny, =
t3Y 5 fp.pin(@o - - -, @pin)t™, S0 in particular

(11) Yp = €pt =3 + higher powers ot, for all peN.
Note thatyo =t=3) " pant® andyp 1 = p(§5— 2t %) = y5— fp.p(@0,...,8p)°t 7, so
(12) Yo=Yy and yp1=y;,—ex® foral peN.

As e% € ky for all p, this implies that y,)pen is @ sequence of elements & =
ki[x, y]. Consider the polynomial ring,[X, Y] = k[f] and letz: kq[X, Y] — By be
the ki-homomorphism sendin to x and Y to y. Also define the sequencé () pen
of elements ok;[X,Y] by Fo=Y andFp,; = F;—e5X? (p € N). Then (12) implies
that 7 (Fp) =y, for all pe N.

Given a finite subseS = {py, ..., pr} of N (with p; < --- < ps), let Fs =
[Tici Fo € kalX, Y1, ys =[Ti_; ¥p € ka[x, Y], andes = []i_; ey € kz (in particular
Fs =1,y =1 ande; = 1). Then (11) implies that, givea(X) € ki[X] \ {0},

13) 7 (a(X)Fs) = a(x)ys = Aest™ + higher powers ot,

for somex € ki andm € (-2, —3).
Let G € k¢[X, Y] \ {0}. By Lemma 3.2,

G = a1(X)Fg + - - - + an(X)Fg,,

whereN > 1, ¢;(X) € k1[X] \ {0} for eachi, and S, ..., Sy are distinct finite subsets
of N. Then (13) gives

N N
7(G) = ai(X)ys = > _(hest™ + higher powers ot)

i=1 i=1

for someisq, ..., An € K] andmy, ..., my € (—2,—3). By part (vi) of Paragraph 3.4
together with the fact thap — e, is injective, the elementsg, ..., eg, of ky are
linearly independent ovet;; so(G) # 0 and ord(xG) = min{my,...,my} € (—2,—3).
It follows that : k{[X, Y] — B; is bijective, soB; = k&z]. We also obtain degf) =
—ord(f) € (2,3 for all f € B;\ {0}, so the lemma is proved. []
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As ky/kq is algebraic, Lemma 3.6.7 implies thaty are algebraically independent
over ky, so:

Corollary 3.6.8. B = ki[zl fori =0,1,2

Lemma 3.6.9. Let A be a subring ok; satisfying & € A for all u € /. Consider
the subring Ax, y] = A2l of B, = kq[Xx, y], the degree functiomleg: Alx, y] - N U
{—oco} defined bydeg(f) = — ord,(f), and the A-derivatiorn/ay: A[X, y] — A[X, Y].
Thendeg@/dy) is not defined.

Proof. Consider the sequencg,)pen Of elements ofB; defined in the proof
of Lemma 3.6.7. Asyp =Yy € A[X, y] and ef) e A for all pe N, (12) implies that
Yp € AlX, y] for all p € N. Also, (11) shows that degf) = 3 for all p € N. Write
D = 3/dy, then D(yps1) = D(y5 — €5x®) = D(y3) = 2y,D(yp), so degDypi1) =
3+ degDy,). Consequently, de@yp) = 3p and hence defy,) — degfyp,) =3p—3
for all p € N. So degD) is not defined. ]

For eachi = 0,1,2, define thé;-derivationD; = 9/dy: B; — B;. By Lemma 3.6.9
we know that deg(D;) is not defined, so in fact:

Corollary 3.6.10. deg(D;) and deg,(D,) are not defined.
Lemma 3.6.11. {deg(f) | f € By \ {0}} = Z.

Proof. Consider the element = y?—agx3—2a;y—2apa, + a2 of ky[x,y]. Using
y=apt 3 +a +atd+ ... andx =t2, we find w = 2apast® + higher powers of,
so ord(w) > 0. Note thatw # 0, sincex, y are algebraically independent ovks.
So deg() is a negative integer and consequent®; 3, deg()) = Z, which proves
the lemma. O

Lemma 3.6.12. Gr(B,) is not affine oveik; and Gr(B,) is affine overks,.

Proof. The fact that G&,) is affine overk, follows from k, C B, C k»((t)) and
deg, = —ord, by Paragraph 2.2. Becaud® ¢ ki((t)), we cannot apply the same
argument and show that @) is affine. In fact Theorem 1.7 (b) implies that Bi]
is not affine ovelk;, because dgghas values irN (Lemma 3.6.7) and dg{D;) is not
defined (Corollary 3.6.10). ]

The fact thatag is transcendental ove (cf. Corollary 3.6.5 and Definition 3.6.6)
played no role up to this point. It is needed for the following
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Lemma 3.6.13. Let g be theN-grading B = Kko[X, y] = @,y R of By defined
by the conditions R= ko, x € Ry and ye R;. Thendeg, is the degree function de-
termined byg. Consequentlydeg,(Do) is defined andGr(Bp) is affine overko.

Proof. For each, j € N,
x'yl = alt=2-3 4 higher powers of,

and a is transcendental ovedy. It easily follows that if S is a nonempty finite subset
of N2 and Qij)i.pes is a family of elements okg \ {0}, then

ord( > Aijx‘yi) =min{—=2i —3j | (i, j) € S},

(i.)es

or equivalently, deg(Y" j.shijX'y') = max{2i +3j | (i,j) € S}. So deg is the degree
function determined by. A straightforward calculation shows that ¢éDo) is defined
and is equal to-3 (alternatively, deg(Do) is defined by Theorem 1.7). Since deg
determined by a grading dB,, we have GrBy) = By, so GrBp) is affine. O

3.7. Proof of Proposition 1.5. Let ko be an uncountable field of characteristic
zero, k; a function field overky and k, the algebraic closure df;. By Lemma 3.5,
there exists a sét such that Ko, k1, ko, /) satisfies the requirements of Paragraph 3.4;
then all results of Paragraph 3.6 are valid when appliekto K, k2, U). Define the
degree functions dedi = 0,1,2) as in Definition 3.6.6 and note that, by Lemma 3.6.7,
deg, and deg have values irN U {—oc}. Assertions (a) and (b) of Proposition 1.5 are
clear, and (c), (d), (e) follow from Corollary 3.6.10, Lem#nd.6.12 and 3.6.13 (note
that, for eachi = 1, 2, deg cannot be determined by a grading Bf because that
would imply that deg(D;) is defined, by Theorem 1.7). []

Corollary 3.8. Let A be a domain which contains an uncountable flelof char-
acteristic zerg and such that~rac(A) is a function field ovek. Consider AX, Y] =
APl and the A-derivatiord/aY: A[X, Y] — A[X, Y]. Then there exists a degree func-
tion deg: A[X, Y] - N U {—o0o} such thatdeg@) = O for all a € A\ {0}, and such
that deg@/adY) is not defined.

Proof. Letkg =Kk, k; = Frac(A) andk, the algebraic closure &f;. By Lemma 3.5,
there exists a séf such that Ko, k1, k2, &) satisfies the requirements of Paragraph 3.4
andu? € A for all u € 4. So we are done by Lemma 3.6.9. []

3.9. Proof of Corollary 1.6. There exist an uncountable field) of character-
istic zero and a function field; over ko such that the algebraic closure kf is C.
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Then the triple Ko, k1, ko = C) satisfies the hypothesis of Proposition 1.5. Let us de-
note byd’ the degree function dgg B, = C[X, Y] — Z U {—oc} given by Propos-
ition 1.5. Also consider the grading @[X, Y] defined by stipulating tha, Y are
homogeneous of degrees 2 and 3 respectively, and:I€[ X, Y] — Z U {—oco} be the
degree function determined by this grading. Using Promosil.5, it is easily verified
that d|grx,y; = d’|g[x,y) and thatd’ is wild over C. By Theorem 1.7 (a)d is tame
over C. Sod andd’ satisfy the desired conditions. ]

4. Some positive results

We prove several results which assert that degree funcsatisfying certain hy-
potheses are tame. The main results are Propositions 25,ahd 4.24.

SETUP 4.1. Throughout Section 4 we consider a trip, G, deg) whereB is
a domain of characteristic zer@ be a totally ordered abelian group and d&)—
G U {—o0} a degree function.

4.2. Let (B,G,deg) be as in Setup 4.1. O: B — B is a derivation, one defines
an auxiliary mapSp: B — G U {—o0} by §p(0) = —oo and, givenx € B\ {0}, §p(X) =
degDx) — degfk). Note that

degDx) = ép(x) + degk), for all x € B.

We also definesp(S) € G U {—oo} for certain subset$S of B. If Sis a nonempty
subset of B such that the subselis = {§p(X) | x € S} of G U {—oco} has a greatest
elementM, we definesp(S) = M. If Us does not have a greatest element, we leave
3p(S) undefined. We also defing, (J) = —oco. Note in particular thatp(S) is defined
for every finite subset of B. If S, $ are subsets oB then the equality §p(S) =
3p(S)” is to be understood as meaning: either b6§(S) and §p(S) are undefined,
or both are defined and are equal to the same eleme@tw{—occ}. We also observe
that the equality ded¥) = 6p(B) always holds (i.e., either both sides are undefined, or
both sides are defined and are equal to the same elemdat_of—oo}).

Define the transitive relatiorkp on the powerseP(B) of B by declaring that, for
S, S € P(B),

S=p S = VsesIsesdn(s) < ép(9).
Then it is clear that
(14) S=<p S andS <p S= §p(S) = 5p(S).
Noting thatSC S implies S=<p S, we obtain the following useful special case of (14):

(15) SC S andS <xp S= §p(S) = 5p(S).
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DEFINITION 4.3. Let B, G, deg) be as in Setup 4.1. By asObring of B we
mean a subringZ of B such that deg() = 0 for all x € Z \ {0}.

Lemma 4.4. Let (B, G, deg)be as inSetup 4.1 Let D: B — B be a derivation
and %, ..., X, € B.
(1) Sp(XaX2---Xn) < MaX<i<n Sp(X).
(2) If degfy + - - -+ xn) = maxg<i<n degf), thendp(xy + - - - + Xn) < Max<i<ndp(Xi).
(3) If Xq,...,Xy € Z for some0-subring Z of B thendp(Xg+- - - +X,) < Max<j<ndp(Xi).

Proof. We writes = §p. Givenx, y € B\ {0},
5(xy) = deg(D(xy)) — degky) = degfy Dx + x Dy) — degky)
< max(degy Dx), degk Dy)) — degky)
= max(degDx) + degfy), degDy) + degk)) — degky) = max@(x), 3(y));

assertion (1) follows by induction.
If deg(Xy + - - - + Xn) = max<j<n degf;) then

deg<D<Z xi>) = deg(Z Dxi> = max(degDx)) = max(s(x;) + deg):)
< max5(x) + maxdeg); = maxa(x) + de{Z xi),

so assertion (2) holds. Assertion (3) immediately follows. []

Lemma 4.5. Let (B, G, deg)be as inSetup 4.1and let AC Z be O-subrings of
B. Suppose that S is a subset of Z such that Z is algebraic of@}. Ahen for all
D e DerA(B), SD(Z) = 3D(S)

Proof. LetD e Dera(B) and lets = §p. Consider a product
(16) w=ax---X (withae Aandx,..., Xn € 9).

As §(a) = —oo, we haveéd(ax; ---xn) < max@(a), 8(x1), ..., 8(xn)) = max §(xi) by
Lemma 4.4, s&5(u) < §(s) for somes € S. Now consider an elemete A[S]. Then
& is a finite sumé& = 1 +-- -+ um, Where eachu; is a product of the form (16); so,
for eachi € {1,..., m}, there existss € S such thats(u;) < §(s); consequently we
may chooses € S such thats(u;) < §(s) holds for alli € {1,...,m}. AS u1,...,um €
Z, part (3) of Lemma 4.4 gives(&) < max 5(ui), so §(&§) < &(s). This shows that
AlS] =p S.
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Letbe Z\ {0}. As b is algebraic oveR = A[S], we may choose a polynomial
O(T) =) riT' e R[T]\ {0} (whereT is an indeterminate and € R) of minimal de-
gree such that®(b) = 0. Then 0= D®(b) = ®(P)(b)+ @'(b)Db and (using chaB = 0)
®'(b) € Z\ {0} imply deg@(®) (b)) = degDb) = §(b). Now &P (b) = 3", D(r;)b', so

8(b) = deg@® (b)) = deg(Z D(ri)bi) < miaxdeg(D(ri)bi)

and degD(ri)b') = deg@r;) = (r;) for eachi, so 8(b) < max 8(r;). It follows that
there exists € A[S] such that§(b) < é(r), i.e., we have shown thaZ <p A[S]. We
get Z <p S by transitivity ands(Z) = §(S) by assertion (15) of Paragraph 4.2. [

Proposition 4.6. Let G be a totally ordered abelian grouB = ;¢ B a
G-graded integral domain of characteristic zero adeég: B — G U {—oo} the de-
gree function determined by the grading. Assume that B iseljnigenerated as a
Bo-algebra and let A be a subring ofgBsatisfyingtrdeg,(Bo) < co. Thendegis tame
over A.

More preciselygiven any choice ofiz...,z, € By and homogeneous; X..,x, € B
such that B is algebraic over Az, ..., zn] and B= Bg[Xy, ..., Xnl,

deg@) = max{dp(z1), ..., ép(zm), Sp(X1), ..., dp(xy)} for all D e Dera(B).

Proof. Letz,...,zn € By andxy, ..., X, € B be as in the statement. L&
Dera(B) and let§ = §p. DefineM = max{dp(z1), ..., p(Zm), So(X1), ..., Sp(Xn)} (SO
M e G U {—o0}). It suffices to show tha&(x) < M for all x € B\ {0}. Indeed, if this
is true then dedp) = M.

Lemma 4.5 (withS= {z,...,z,} and Z = Byp) implies that§(Bp) = max<j<md(z),
so §(b) < M certainly holds for allb € By.

Let x € B\ {0}. Thenx is a finite sum,x = hy + --- + hy, where eachh; is
homogeneous and dégj < --- < deghy). Then dedf; + - -- + hy) = max degh),
so part (2) of Lemma 4.4 implies thath; + - - - + hy) < max §(h;). So it's enough
to show thats(h;) < M for all i, i.e., we may assume thatis homogeneous.

Suppose thak € By \ {0}, for somed € G. Thenx is a finite sumx = pu1+---+
m, Where eachu; € By \ {0} is @ monomial of the formu; = by x?l- xS with by € By
andeg; € N. We have degf; + --- + um) = max deg(i), so part (2) of Lemma 4.4
implies that§(x) = 8(uy+- -+ um) < max §(ui). So it's enough to show that(u;) <
M for all i. Part (1) of Lemma 4.4 give&(ui) < max@(h;),8(X1),...,8(Xn)), S08(ui) <
M and we are done. O

Corollary 4.7. Let G be a totally ordered abelian group = @, . Bi a G-graded
integral domain of characteristic zero amteg B — G U {—o0} the degree function de-
termined by the grading. Assume



TAME AND WILD DEGREE FUNCTIONS 71

(1) B has finite transcendence degree over a field
(2) B is finitely generated as agBalgebra.
Thendegis tame overk.
More preciselygiven any choice ofiz...,z, € By and homogeneous X..,x, € B
such that B is algebraic overk[z, ..., zy] and B= Bg[Xy, - . ., Xn],

degD) = maxX{ép(z1), ..., 8p(zZm), p(X1), ..., ép(Xn)} for all D e Dex(B).
Proof. Ask is necessarily included iBg, this is Proposition 4.6 wittA =k. [
The next two results are consequences of Corollary 4.7.

Corollary 4.8. Let k be a field of characteristic zeyaB a k-affine integral do-
main and G a totally ordered abelian group. dleg: B — G U {—o0} is the degree
function determined by some G-grading of tBen degis tame overk.

More preciselygiven any choice of homogeneous elements. XX, € B satisfying
B = K[Xxy, ..., X,], we havedeg(D) = max<i<n p(X;) for all D € Der(B).

Proof. Fix a gradingB = ), Bi which determines deg and note that= By.
Given homogeneous elememnts ..., X, € B satisfyingB = K[Xy,...,Xy], it is certainly
the case thaB = By[X,...,Xn]. We may also choosa,,...,zn € By such that eaclz; is
a monomial of the forrn(‘fl- --X3" (&; € N) and By is algebraic ovek|[z,...,zm]. Let
D € Der(B), then degD) = maxX{ép(z1),...,6p0(Zm),d0p(X1),...,0p(Xn)} by Corollary 4.7.
Part (1) of Lemma 4.4 give8p(z) < maxi<j<n ép(Xj), SO degD) = maxi<j<n ép(Xi).

O

Corollary 4.9. Let R be a domain of finite transcendence degree over a Kield
of characteristic zero and let B= R[Xy, ..., X,] = RI". Let G be a totally ordered
abelian group and define a G-grading on B by choodldg...,d,) € G" and declaring
that the elements of R{0} are homogeneous of degr@eand that(for each i) X; is
homogeneous of degree. d.etdeg B — GU{—o0o} be the degree function determined
by this grading. Therdegis tame overk.

More preciselyif z;, ..., zn € R are such that R is algebraic ové&fz, ..., zy],
thendeg@) = max{dp(zi), ..., dp(Zm), 6p(X1), ..., 8p(Xn)} for every De Dex(B).

Proof. LetB = P, Bi be the grading and choosg, ..., £&n € By such that
eachg is a monomial of the formX‘fl---Xﬁn (8; € N) and By is algebraic over
R[&1,...,En]; then By is algebraic ovek[zy,...,zZn, &1,...,En] @and B = B[ X4, ..., Xy].
If D € Der(B) then, by Corollary 4.7,

deg@) = max{ép(z1), - . -+ 6p(Zm), dp(61), - - - » Sp(EN)s 0D (X1), . . ., Ip(Xn)}

Part (1) of Lemma 4.4 give8p (&) < maxi<j<n 6p(X;), SO we are done. []
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Paragraph 4.10 and Lemma 4.11 are simple observations &dualization of de-
gree functions. These facts are used in the proctsCafrollaries 4.12, 4.14 and 4.24.
Note that Lemma 4.11 appeared in [6].

4.10. Let B be a domainG a totally ordered abelian group and deg§— G U
{—o0} a degree function. ISC B\ {0} is a multiplicative set, then deg has a unique
extension to a degree functiaveEc: S'B — G U {—oo}. Indeed, it is easily verified
that the mappeG defined byDEG(0) = —oo and DEG(X/s) = degi) — deg6) (for x €
B\ {0} ands e §) is a well-defined degree function and is the unique extenefodeg.

Lemma 4.11. Let B be a domain of characteristic zer8 € B\ {0} a multiplica-
tive sef G a totally ordered abelian groymnddeg B — GU{—o0} andDEG: S'B —
GU{—o0} degree functions such thdegis the restriction oDEG. Consider De Der(B)
and its extension SD e Der(S*B). Thendeg(D) is defined if and only ibEG(S™D)
is defined and if both degrees are defined then they are equal.

Proof. Asép: B — GU{—oo} is the restriction 0Bgip: S 1B — GU{—o0}, we
haveU < U’, where we defindJ = {8p(x) | x € B} andU’ = {851p(X) | x € S1B}.
We first observe that i € S then
17)

851p(1/s) = DEG((S 1D)(1/s)) — DEG(1/S)

= DEG(—D(s)/s?) — DEG(1/s) = deg(Ds) — 2 deg6) + deg§) = 8p(s).
Applying part (1) of Lemma 4.4 tés:p gives, for anyx € B ands € S
8s-1p(X/S) = ds1p(X(1/S)) = Max@s-1p(X), ds1p(1/s)) = max@p(x), dp(s)) € U.
This shows thatvcy- Iy’ < u. This, together withJ € U’, proves the lemma.[]

Recall that ifB is a domain of characteristic zero then each locally nilpbteriva-
tion A: B — B determines a degree function degB — N U {—oc} (cf. for instance
[3, 1.1.7]).

Corollary 4.12. Let B be a domain of finite transcendence degree over a kield
of characteristic zero. Letleg,: B — N U {—oc} be the degree function determined
by a locally nilpotent derivatio®A: B — B. Thendeg, is tame overk.

Moreover if t € B is such thatA(t) # 0 and A%(t) =0, and a, ..., zy € kerA
are such thatker A is algebraic overk[z, ..., zy], then for each De Der(B)

(18) deg (D) = max{6p(z1), . .., 6p(zm), Sp(t)}.

“Lemma 4.11 would also be used for proving Lemma 1.8, but thi®fpis omitted.
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Proof. LetA=kerA, a = A(t) € A\ {0} andS = {«" | n € N}. ThenS'B =
(SA)[t] = (STAM (cf. for instance [3, p. 27]). Moreover, ifEG: S™'B — N U {—o0}
denotes thé-degree then degis the restriction oDEG, so the hypothesis of Lemma 4.11
is satisfied. Apply either Corollaries 4.7 or 4.906G andS™'D < Der (S 'B): asStA
is algebraic ovek([zi, . .., Zn], DEG(S™D) = max{8s1p(z1), . . ., 8s1p(Zm), ds1p(t)}.
We have deg(D) = DEG(S™1D) by Lemma 4.11, so we are done. []

REMARK 4.13. Let the notations and assumptions be as in Corolldrg. 4Then
(18) can be rewritten (thanks to Lemma 4.5) as

deg, (D) = max{dp(ker A), 5p(t)}.

However, if we suppose that kBr # ker A then Corollary 2.16 on p.42 of [3] asserts
that deg (D) = dp(kerA); this last claim is not correct, as shown by the following
example. LetB = k[z,t] = ki@, A = 9/9t and D = z9/0z + t29/dt. As A(t) # 0,
A2(t) = 0 and kerA = Kk[Z], (18) gives deg(D) = max{8p(2),sp(t)} = max0,1} = 1,
while §p(kerA) = §p(k[2]) = O.

Here is another common situation where Lemma 4.11 is usefmpare with
Lemma 1.8):

Corollary 4.14. Let L =K[X{?, ..., X1 be the ring of Laurent polynomials in
n variables over a fielk of characteristic zerplet g be a G-grading of L where G
is some totally ordered abelian groppnd letdeg,: L — G U {—oc} be the degree
function determined by. Let B be a ring such thak[Xi, ..., X,] € B € L and
let deg: B — G U {—oc} be the restriction ofdeg,. Thendegis tame overk. More-
over if we also assume that each, ¥ a g-homogeneous element of L théegD) =
max<i<n 8p(X;) for all D € Der(B).

Proof. LetS= {X{--- X% | (e, ..., &) € N"} and note thatS™'B = L. Let
D € Der(B). By Corollary 4.8, deg(S‘lD) is defined; by Lemma 4.11, it follows
that degD) is defined and ded) = degg(SlD); in particular, deg is tame ovek.

Under the additional assumption that eaxhis homogeneous, Corollary 4.8 gives
deg,(S*D) = max{ds1p(X1), 8s1p(1/X1), . . ., 8s1p(Xn), 8s1p(1/Xn)}
= maX{(SD(Xl), ey 8D(Xn)}:
where for the last equality we used th&:p(1/X;) = dp(X) for eachi (see (17)

in the proof of Lemma 4.11). We already noted that d¥g& dng(S‘lD), SO we
are done. O
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Finite generation of the associated graded ring

We shall now study triplesR, G, deg) as in Setup 4.1 which satisfy the additional
condition that GrB) is a finitely generated algebra over a zero-subring (asaéxgd
in Lemma 4.18, below). For this type of consideration, thikofeing device is useful.

DEFINITION 4.15. Let B, G, deg) be as in Setup 4.1.
(1) By a subpair of (B, Gr(B)), we mean a pair &, A) where A is a subset ofB,
1e A, Ais a homogeneous subring of @) and:

M Each homogeneous element Afis of the form gr&) for somea € A.

(2) Let D € Der(B). By a D-subpair of (B, Gr(B)), we mean a subpairA, A) of
(B, Gr(B)) such thatsp(A) is defined.
(3) If (A, A) is a subpair of B, Gr(B)) and x € B, we define

(A, A)x = (Axa A[gr(x)])a

where A, is the collection of all elementb € B which can be written in the form
b=>)",ax" for someme N anday, ..., an € A satisfying:

(@) deg(ajxi) =degp) forall j such that a; #0.

REMARK 4.16. As in part (3) of Definition 4.15, consider a subpak, @) of
(B, Gr(B)) and x € B. Then AU {x} € A € R[x], where R is the subring ofB
generated byA.

Lemma 4.17. Let (B, G, deg)be as inSetup 4.1.
(1) If (A, A) is a subpair of(B, Gr(B)), then so is(A, A), for each xe B.
(2) Let D e Der(B). If (A, A) is a D-subpair of(B, Gr(B)), then so is(A, A)y for
each xe B. Moreoveyr §p(Ax) = dp(A U {x}).

Proof. Let (A, A) be a subpair of B, Gr(B)), let x € B, and consider A&, A), =
(Ax, Algr(x)]); we show that A, A), is a subpair of B, Gr(B)). We may assume that
X # 0, because4, A)g = (A, A). As 1€ A and A C A,, we have le A,. We have to
show that ify is a homogeneous element Afgr(x)] then § = gr(y) for somey € A,.
Note that this is clear ify = 0 (becauset implies Oe A, hence 0= Ay), so assume
y # 0. We have

y=> 3grx)
i=0

for somem e N and some homogeneous eleme#s. . ., &, € A satisfying

(29) deg§ gr(x))) = deg) for all j such that a #0.
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By (}), there existag, ..., an € A such that gi§) = & for all i. Since degﬁ,—xi) =
deg(gra;x')) = deg@y gr(x)!), (19) implies that deg(x') = deg(y) whenevera; # 0.
Consequently,

i gr(Z a x‘), if deg(Z a x‘) = deg§),
y=> grax)=1 '° i~
=0 0, if deg< axi> < deg(y).

i=0

Sincey # 0, it follows that deg) " ,ax') = degy) (so Y [ ,ax € Ay) and that
y=0r(>",ax"), soy=gr(y) for somey € A,. So (A, A) is indeed a subpair of
(B, Gr(B)), and assertion (1) is proved.

Let D € Der(B), assume that4, A) is a D-subpair of 8, Gr(B)) and letx € B.
To show that A, A), is a D-subpair of B, Gr(B)), we have to show thaip(Ay) is
defined. We may assume that# 0. Lety € Ay; then we may writey = Zim=0 ax
for someme N anday, ..., an € A such that {) holds, i.e.,

deg@;x!) = degfy) whenever a; # 0.

Write f(X) =Y ",aX'; theny = f(x) and Dy = f(®)(x) + f'(x) Dx.
If j is such thata; # O then

degD(aj)x') = 8p(a;) + degy) + degk’) = 8p(a;j) + degl;x!) = sp(a;) + degfy),

so degf (P)(x)) < 6p(x) + degfy) for somea € A. Also, if j > 0 is such thata; #
0 then

deg(ajx'~*D(x)) = degl;x’) — deg) + deg@(x)) = degfy) + 5o (),
so degf’(x)D(x)) < degly) + dp(x). Thus,

5o(y) + degy) = degD(y)) < max(degf °)(x)), deg(f'(x)D(x)))
= max@p(«) + degfy), degfy) + 5o (x))

and it follows thatsp(y) < max@p(«), 6p(x)). We have shown thaf <p AU {x}.
As 1€ A, we havex € Ay and henceAU {x} C Ay. Thus

(20) 6p(Ax) = dp(AU{x}),

by Paragraph 4.2. A8p(A) is defined, so isSp(A U {x}); so, by (20),56p(Ax) is de-
fined. This proves assertion (2). []
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Lemma 4.18. Given (B, G, deg)as in Setup 4.1the following hold.
(1) For any O-subring Z of B(cf. Definition 4.3), Gr8) is a Z-algebra.
(2) If degk) > 0 for all x € B\ {0} then the subring Z= {x € B | degfk) < 0} of
B is in fact aO-subring of B and is factorially closed in B. By1), it follows that
Gr(B) is a Z-algebra.
(3) If {degk) | x € B\ {0}} is a well-ordered subset of G thetegfk) > O for all
x € B\ {0}, i.e, the hypothesis of2) is satisfied.

Proof. LetZ be a O-subring ofB. If B;, Bi- and Byj; are defined as in Para-
graph 1.9 then the composi® — By — Bjg) — Gr(B) is an injective homomorphism
of rings Z — Gr(B), z— gr(z). This defines a structure of-algebra on GiB): if
ze Z and ¢ € Gr(B), thenzé = gr(2)&. Assertions (2) and (3) are trivial. ]

Lemma 4.19. Let (B, G, deg)be as inSetup 4.1and let Z be a0-subring of B.
Assume thaGr(B) is finitely generated as a Z-algeb(af. Lemma 4.18)and consider
elements ¥ ..., Xy € B satisfyingGr(B) = Z[gr(xi), . .., gr(X»)]-

(1) There exists a set E satisfyingWZ{xy, ..., X} € E C Z[Xxy, ..., Xy] and

(@) VxeB\(0)Tece degk — €) < degk)

(b) 8p(E) =6p(ZU{Xq,...,%n}) for every De Der(B) such thatsp(Z) is defined.
(2) If {degk) | x € B\ {0}} is a well-ordered subset of G then B Z[Xq, ..., Xn].

Proof. We have GB) = Z[Xy, ..., Xn], where we definex; = gr(x;) for all i.
Define Ag = Z € B and Ay = {gr(2) | z € Z} < Gr(B), and note that &g, Ao) is a
subpair of 8, Gr(B)). For 1<i <n, define @&, A)) = (A_1, A_1)x; then setE = A,
and note thaZ U {xy,..., %)} € E € Z[X4,..., %], by Remark 4.16. Also, &,, A,) is
(by Lemma 4.17) a subpair oB( Gr(B)) and A, = Ag[X1,...,%n] = Z[X1,..., %n] =
Gr(B); it follows that each homogeneous element of Br& A, is of the form gré)
for somee e E = A,; so E satisfies condition (a). LeD € Der(B) be such thaty(Z)
is defined; then Ao, Ao) is a D-subpair of 8, Gr(B)); so, by repeated application of
Lemma 4.17, An, Ay) is a D-subpair of 8, Gr(B)) and 8p(E) = 8p(An) = 8p(Z U
{X1,...,Xn}). So E satisfies (b).

We prove (2) by contradiction: assume tHaegk) | x € B\ {0}} is well-ordered
and B # Z[Xy,...,X]. Pickbg € B\ Z[x3,...,X%y] such that dedf) is the least element
of {degk) | x € B\ Z[X1,...,Xn]}. Then there existe € E C Z[Xy, ..., X5] such that
degbo — €) < degbo), and this leads to a contradiction. 8= Z[Xy, ..., Xn]- ]

REMARK 4.20. The assumption thdtlegk) | x € B\ {0}} is well-ordered, in
Lemma 4.19 (2), is needed. Indeed, consi@et= K[x, y] and deg B — Z U {—o0}
as in the proof of Proposition 1.2. Then dep& 1 and degy — ap) = —k where
k > 1. Definex; = x andx, = x®1(y —ap)?, then degf;) = 1 and degf,) = —1, so
Gr(B) = k[gr(x1), gr(x2)] (because GiB) = K[t, t~]). However, B # K[xy, X2].
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Proposition 4.21. Let (B, G, deg)be as inSetup 4.1and suppose that
(1) {degk) | x € B\ {0}} is a well-ordered subset of ;G
(2) Gr(B) is finitely generated as a Z-algebra
where Z= {x € B | degik) < 0} (cf. Lemma 4.18) Then the following hotd
(3) B is finitely generated as a Z-algebra
(4) if Ais a subring of Z such thatrdeg,(Z) < oo, thendegis tame over A.
More precisely let A be as in(4) and let z,...,z,€ Z and %, ..., X, € B be
such that Z is algebraic over [&, ..., zy] and Gr(B) = Z[gr(xd), . .., gr(x,)]; then
B = Z[X,...,X,] and

degD) = maxX{ép(z1), ..., dp(zZm), Sp(X1), ..., ép(Xn)}, for all D € Dera(B).

Proof. In view of Lemma 4.18, assumption (1) implies tlats a 0-subring ofB
and hence that GR) is a Z-algebra, so assumption (2) makes sense.z.et. ., zy €
Z and xy, ..., X, € B be such thatZ is algebraic overA[z, ..., zn] and GrB) =
Z[gr(xy), ..., gr(xy)]; then B = Z[Xq, ..., Xa] by Lemma 4.19. LetD € Dera(B). To
prove the proposition, we have to show tligi{x) < M for all x € B, where we define

M =maxXép(z), . .., dp(zm), dp(X1), - . ., 3p(Xn)}-

Choose a subsdE C Z[xy, ..., X,] satisfying the requirements of Lemma 4.19. By
Lemma 4.5,6p(Z) is defined and is equal to max<n dp(z); so E satisfies:

VxeB\(0}JecE degik — €) < degk) and 6p(E) = 6p(Z U {X1, ..., Xm}) = M.

By contradiction, assume that somes B satisfiesép(x) > M; then the setg = {i €
G | Ixep(degk) =i andsp(x) > M)} is not empty. By assumption (1), we may con-
sider the least elemeng of S. Now pick x € B such that deg() = igp anddp(x) > M;
note in particular thatp(x) > M and 6p(E) = M imply that x ¢ E. Choosee € E
such that deg(— €) < degk) and note that — e # 0; so degk — €) is an element of
G strictly less thanig. By minimality of ig, it follows thatsp(x —€) < M.

Note that degf) = degg). If deg(Dx) = degDe), it follows immediately that
3p(x) = Sp(e) < M, a contradiction; so de®Xx) # degDe) and consequently
degDx — De) = max(degDx), degDe)). Then

ép(x) + degk) = deg(Dx) = max(degDx), deg(De))
= degD(X — €)) = dp(x —€) + degk —e) < M + degk — e),
S0 dp(X) = M + degk — e) — degfk) < M, a contradiction. O

Corollary 4.22. Let B be an integral domain of finite transcendence degree ove
a field k of characteristic zero. Suppose thd¢g B — GU{—oc0} (where G is a totally
ordered abelian groupis a degree function satisfying the conditions
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(1) {degk) | x € B\ {0}} is a well-ordered subset of G

(2) Gr(B) is a finitely generated algebra over the ring=Z{x € B | degk) < 0}.
Thendegis tame overk and B is finitely generated as a Z-algebra. More precisely
if z1,...,zZnm€ Z and %, ..., X, € B are such that Z is algebraic ové{z, ..., zy]
and Gr(B) = Z[gr(Xa), - - -, gr(xn)], then B= Z[xq, ..., X,] and

degD) = maxX{ép(z1), ..., dp(zZm), Sp(X1), ..., ép(Xn)}, for all D e Der(B).

Proof. In view of Lemma 4.18, assumption (1) implies tlzatis a 0-subring of
B and hence that GB) is a Z-algebra, so assumption (2) makes sense. It is also
noted in Lemma 4.18 tha¥ is factorially closed inB; this implies thatk € Z, so
all hypotheses of Proposition 4.21 are satisfied with= k. The result follows from
Proposition 4.21. ]

Corollary 4.23. Let B be an integral domain containing a fiekd of character-
istic zero. Suppose thateg: B — G U {—oco} (where G is a totally ordered abelian
group) is a degree function satisfying the conditions
(1) {degk) | x € B\ {0}} is a well-ordered subset of ;G
(2) Gr(B) is a finitely generated-algebra.

Thendeg is tame overk and B is a finitely generatei-algebra. More preciselyif
X1, ..., Xn € B are such thaiGr(B) = K[gr(x1), . .., gr(x,)], then

(3) B=K[xg, ..., Xn];

(4) degD) = max{dsp(xi), ..., dp(xy)} for all D € Der(B);

(5) Z=K[z,...,zm], where we define Z {x € B | degk) < 0} and where z,...,zn
denote the elements ¢k, ..., x,} of degree0.

Proof. By Lemma 4.18, assumption (1) implies that= {x € B | degk) < 0}
is a 0-subring ofB (so Gr@B) is a Z-algebra) and is factorially closed iB. The last
condition implies thak € Z, so GrB) is ak-algebra and assumption (2) makes sense.

Let X1,..., X, € B\ {0} be such that GB) = k[gr(x1), ..., gr(x,)]. As k is a
0-subring of B (because&k € Z), Lemma 4.19 implies thaB = K[xy, ..., Xu].

Write Gr(B) = @, Bjij with notation as in Paragraph 1.9. Let Z — By be
the mapZ = By — Bo/Bo- = By, and note thaj is an isomorphism ok-algebras
and u(z) = gr(z) for all ze Z. Let z, ..., zy be the elements ofxy, ..., X5} of
degree 0; as GR) = k[gr(x1), ..., gr(x,)] where deg(gr)) = deg;) > 0 for eachi,
it follows that Bjg) = k[gr(z1), ..., 9r(zm)]. So the composité[z,...,zZn] — Z A Bioj
is surjective, and consequent® = K[z, ..., zn]. All hypotheses of Corollary 4.22 are
satisfied, so

deg@) = max{(ép(z1), . .., 6p(zZm), Sp(X1), . .., Sp(Xn)} = Max{dp(X1), . .., Sp(Xn)}

for every D € Del(B). ]
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Proposition 4.24. Let B an integral domain of finite transcendence degree over
a field k of characteristic zero andleg: B — G U {—o0o} a degree functionwhere G
is a totally ordered abelian group. Assume
(@) {degk) | x € B\ {0}} is a well-ordered subset of ;G
(b) FracB)/Frac(Z) is a one-dimensional function figldvhere Z denotes the subring
{x € B | degk) < 0} of B.
Thendegis tame overk. Moreovey the ordered monoiddeg) | x € B\ {0}} can be
embedded InN, +, <).

Proof. LetS=2Z\{0}, B'=S!B andZ' = S'Z = Frac@Z). By Paragraph 4.10,
deg extends to a degree function deB’ — G U {—oo}. Note that

(21) trdeg (B’) < oo,

22) {ded(x) | x € B\ {0}} is equal to{degk) | x € B\ {0}} and hence is a well-
ordered subset 05,

(23) Z' = {x € B"| ded(x) < 0}.

Let L = Frac®) and, using Paragraph 4.10 again, tefG: L — G U {—o0} be
the unique degree function which extends deg and.degt v: L — G U {oo} be the
valuation ofL defined byv(x) = —DEG(x). As degk) = 0 for all x € Z\ {0}, we note
that v is a valuation overZ’; as L/Z’ is a one-dimensional function field, it follows
thatv is a rank 1 discrete valuation; so the residue fieldf v is a finite extension of
Z" and{v(x) | x € L*} =~ Z. It follows that {deg{k) | x € B\ {0}} can be embedded in
(N, +, ).

Consider the associated graded ringsB3r(Gr(B’) = P, g By and Gr() deter-
mined by B,deg), B’,ded) and (L,DEG) respectively, and note that' = B[’0] C Gr(B).
As DEG extends degand deg extends deg, there are injective degree-preserving homo-
morphisms of graded rings, @} < Gr(B’) — Gr(L). Using thatv is a rank 1 discrete
valuation, we get Gi() = «[t, t~}] wheret is an indeterminate over. Thus

Z' € Gr(B) C «[t, t 1.

Now [k: Z'] < oo, sok[t,t ] is a finitely generated’-algebra of transcendence degree
1 over Z'; it follows that

(24) Gr(B) is finitely generated as &’-algebra.

Let D e Der(B), and considerS™D e Der(B’). By (21), (22), (23) and (24),
(B, G, ded) and Z’ satisfy the hypothesis of Corollary 4.22 and consequently
ded(S'D) is defined; by Lemma 4.11, ddpj is defined. So deg is tame ov&r

O
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REMARK 4.25. Let us indicate how to compute the value of @¥)g(n the above
proof. We havek C Z, because (Lemma 4.18) is factorially closed inB; so we may
choosez,, ..., zn € Z such thatZ is algebraic ovek[z, ..., z,]. Also note that
Gr(B) < Gr(B') is the localization: Gi8’) = S~* Gr(B); this and (24) imply that we
can choos&qy, ..., X, € B satisfying Gr8’) = Z'[gr(X1), ..., gr(x,)]. As Z’ is algebraic
overk[z, ..., zn] and Gr@’) = Z'[gr(X1), - . ., gr(X,)], Corollary 4.22 gives

ded(S™D) = max{8s1p(z), - - ., 8s1p(Zm), Ss1p(Xa), - - ., S51p(Xn)}

max{8p(z1), - - -, 60(Zm), 8p(X1), - - ., Sp(Xn)}.

Now Lemma 4.11 implies that deQj = ded(SD), so we conclude that

degD) = max{ép(z1), . . ., 6p(Zm), Sp(X1), . - ., Sp(Xn)}-

References

[1] A. Crachiola and S. Maubach: Rigid rings and Makar-Limanov techniquesarXiv:
1005. 4949v1, 2010.

[2] H. Derksen:More on the hypersurface % x2y 4+ 22 +t3 = 0 in C4, preprint, 1995.

[8] G. Freudenburg: Algebraic Theory of Locally Nilpotenefivations, Invariant Theory and Al-
gebraic Transformation Groups, VII, Springer, Berlin, 800

[4] L. Makar-Limanov: Facts about cancellatignpreprint, 1997.

[5] L. Makar-Limanov: Again x+ x?y + z> + t% = 0; in Affine Algebraic Geometry, Contemp.
Math. 369, Amer. Math. Soc., Providence, RI., 2005, 177-182.

[6] A. Nur: Locally nilpotent derivations and the cancellation prabjeMaster’s thesis, University
of Ottawa, 2010.

[7]1 P.-M. Poloni: Classificatioifs) of Danielewski hypersurfacearXiv:0912. 3241v1, 2009.

[8] R.L. Roth: Classroom noteson extensions of Q by square rootsmer. Math. Monthly78
(1971), 392-393.

Department of Mathematics and Statistics
University of Ottawa

Ottawa, KIN 6N5

Canada

e-mail: ddaigle@uottawa.ca



