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Abstract
The well-posedness of hyperbolic initial boundary value problems is linked to the

occurrence of zeros of the so-called Lopatinskiı̆ determinant. For an important class
of problems, the Lopatinskiı̆ determinant vanishes in the hyperbolic region of the
frequency domain and nowhere else. In this paper, we give a criterion that ensures
that the hyperbolic region coincides with the projection ofthe forward cone. We give
some examples of strictly hyperbolic operators that show that our criterion is sharp.

1. Introduction

In this paper, we consider initial boundary value problems for hyperbolic systems.
Such problems read:

(1)

8����<
����:

Lu WD �tuC dX
jD1

A j �x j u D F(t , x), (t , x) 2 RC � RdC,

Bu(t , y, 0)D g(t , y), (t , y) 2 RC � Rd�1,
u(0, x) D f (x), x 2 RdC,

where the spatial domain is the half-spaceRdC D fx 2 Rd, xd > 0g and the notation
x D (y, xd) is used. TheA j ’s are N � N real matrices, andB is a p� N real matrix.
We always assumed � 2 in what follows.

The well-posedness of (1) can be characterized with the helpof a complex valued
function1, that is known as the Lopatinskiı̆ determinant and that depends on the vari-
ables (z, �), z 2 C with Im z � 0 and � 2 Rd�1. We refer to the original articles
[5, 9, 10] as well as to the book [2, Chapter 4] for a detailed description of the theory.
The function1 can be chosen to be positively homogeneous of degree 0 with respect
to the variables (z, �). If 1 does not vanish on the closed half-spherefIm z� 0, jzj2Cj�j2 D 1g, then (1) is strongly well-posed, meaning that source termsin L2 give rise
to a unique solutionu in L2 that depends continuously on the data. When1 vanishes
in the open half-spherefIm z< 0, jzj2 C j�j2 D 1g, (1) is ill-posed.

In [1], an open class of weakly well-posed problems has been exhibited. This
so-called WR class is made of problems for which1 does not vanish in the open
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half-sphere but vanishes at first order in the so-called hyperbolic region of fIm zD 0,jzj2 C j�j2 D 1g. Problems in the WR class arise naturally in shock wave theory in
fluid dynamics, see e.g. [2, Chapter 15], and in other variousphysical contexts. Such
problems give rise to amplification and weak stability phenomena for geometric optics
expansions (see e.g. the review [7] and the references therein) and to an increase in the
speed of propagation (see e.g. [4]).

In this paper, we aim at finding aneasyway of determining whether a given prob-
lem of the form (1) belongs to the WR class. There are two main points in such an
analysis. One should first locate the so-called hyperbolic region. Then, after comput-
ing the Lopatinskĭı determinant1, one should look for zeros of1 in the hyperbolic
region. If one could easily locate the hyperbolic region1, half of the job would already
be done. We thus raise the problem of trying to locate the hyperbolic region as eas-
ily as possible. More precisely, we are interested in finding acriterion that allows to
compute easily the hyperbolic region in terms of the so-called forward cone.

Our criterion involves the decomposition of the characteristic polynomial as a prod-
uct of irreducible factors, see Theorem 2 below. When the irreducible factor associated
with the extreme eigenvalues has degree 2, the hyperbolic region coincides with the
projected forward cone. This criterion covers some well-known examples such as the
linearized Euler equations, the wave equation and the elasticity system. We also give
some examples of irreducible hyperbolic polynomials of degree 3 or 4 for which the
hyperbolic region does not coincide with the projected forward cone. This shows that
our criterion is sharp. The conclusion to be drawn from our results is that, in general,
it is difficult to locate the hyperbolic region and consequently to determine whether a
problem belongs to the WR class.

Notation. In all this article, � denotes a frequency vector inRd that is decom-
posed as� D (�, � ) with � 2 Rd�1, � 2 R. For instance, (0, 1) denotes the last vector
of the canonical basis ofRd. The coordinates of� 2 Rd are denoted�1, : : : , �d. If
(� , � ) 2 R�Rd, we define�(� , � ) D (� , �) 2 R�Rd�1 the vector obtained by deleting
the last coordinate of� . In view of the notation used in the introduction,� has to be
understood as the real part of the complex numberz. Since we are interested in the
behavior of the Lopatinskiı̆ determinant for realz, we shall only use the notation� in
what follows andz will no longer appear.

2. Main results

Let us consider the operatorL in (1) and introduce the symbol

(2) A(� ) WD dX
jD1

� j A j , � 2 Rd.

1This region only depends on the hyperbolic operatorL and does not depend on the boundary
conditions encoded in the matrixB.
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The characteristic polynomial ofL is

(3) P(� , � ) WD det(� I C A(� )), (� , � ) 2 R � Rd.

We make the following assumption of hyperbolicity with constant multiplicity.

ASSUMPTION 1. There exist some real valued analytic functions�1, : : : , �q onRd n f0g and some integers�1, : : : , �q such that the characteristic polynomialP defined
by (3) satisfies

8(� , � ) 2 R � (Rd n f0g), P(� , � ) D qY
jD1

(� C � j (� ))� j , �1(� ) < � � � < �q(� ).

Moreover, the� j (� )’s are semi-simple eigenvalues of the matrixA(� ) (their geometric
and algebraic multiplicity are equal).

For simplicity, we also assume that the boundaryfxd D 0g is non-characteristic, that is:

ASSUMPTION 2. The matrixAd is invertible.

The two main objects used in this paper are the so-called forward cone and hyper-
bolic region, and are defined as follows, see e.g. [2, Chapters 1 and 4].

DEFINITION 1. • The characteristic variety of the operatorL is CharL WDf(� , � ) 2 R � Rd=P(� , � ) D 0g. The forward cone0 is the connected component of
(1, 0) in the complementary set of CharL.
• The hyperbolic regionH is the set of all (� , �) 2 R � Rd�1 n f(0, 0)g such that
the matrix

(4) A (� , �) WD �A�1
d (� I C A(�, 0)),

is diagonalizable with real eigenvalues.

The nonzero elements of�0 always belong to the hyperbolic regionH , see [2,
Chapter 8]. Recall that�(� , � ) D (� , �). Thanks to the fact thatH is a symmet-
ric cone:

(� , �) 2 H , s 2 R n f0g H) (s� , s�) 2 H ,

we have

(5) (�0 [ ��0) n f(0, 0)g � H .
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In this paper, we are interested in characterizing the operators L for which the oppo-
site inclusion in (5) holds, meaning that the hyperbolic region H coincides with the
projected forward cone�0 and its symmetric set��0. If these regions coincide, then
it is easier to determine whether the initial boundary valueproblem (1) belongs to the
WR class since we would already know the region where the zeros of the Lopatinskiı̆
determinant should be sought.

Let us first begin with the special (easy) case when the spectrum of Ad is either
positive or negative.

Proposition 1. Let Assumptions 1and 2 hold. Then we have either�1(0, 1)> 0
or �q(0, 1)< 0 if and only if �0 D R�Rd�1. In that case, we haveH D R�Rd�1 nf(0, 0)g, and H is connected.

We now consider the general case whereAd has positive and negative eigenvalues. Our
first main result is the following.

Theorem 1. Let Assumptions 1and 2 hold, and assume that the inequalities�1(0, 1)< 0 < �q(0, 1) hold. Then�0 and ��0 are two disjoint connected compo-
nents ofH . Consequently, we haveH D �0 [ ��0 if and only if H has exactly
two connected components.

Our purpose is now to give necessary or sufficient conditionson the operatorL
that ensure thatH has two connected components. Our criterion below involvesthe
decomposition ofP as a product of irreducible factors. We therefore recall thefollow-
ing result.

Proposition 2 ([2]). Let Assumption 1hold. Then the characteristic polynomial
P splits as

(6) P(� , � ) D JY
jD1

Pj (� , � )� j ,

where the polynomials Pj are normalized by Pj (1, 0)D 1 and satisfy the following
properties:
• each Pj is a homogeneous polynomial of(� , � ),
• the Pj ’s are irreducible inR[� , � ] and pairwise distinct,
• for � 2 Rd n f0g, the roots of each Pj ( � , � ) are real and simple,
• for � 2 Rd n f0g, the roots of Pj ( � , � ) and Pk( � , � ) are pairwise distinct if j¤ k.

Up to reordering thePj ’s, we can always assume that��1(� ) is a root of P1( � , � ) for
all � . This convention is used from now on. Our criterion is the following.
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Theorem 2. Let Assumptions 1and 2 hold, and assume that the inequalities�1(0, 1)< 0 < �q(0, 1) hold. Assume furthermore that in the decomposition(6), P1

has degree2. ThenH D �0 [ ��0.

As we shall see with some explicit examples below, the criterion of Theorem 2
is optimal. More precisely, there are examples of strictly hyperbolic operatorsL with
P1 of degree 3 or 4 such that the corresponding hyperbolic region H has more than
two connected components. In [1, p. 1080], the authors expected2 that for hyperbolic
operators with constant multiplicity,H would coincide with�0[��0. Our examples
show that this is unfortunately not true. As a matter of fact,we believe that in space
dimension 2, as soon as the degree ofP1 is greater than or equal to 3, it may happen
that H has more than two connected components.

We shall also give an example whereP1 has degree 3 and where we still have
H D �0 [ ��0. Therefore the criterion of Theorem 2 is not a necessary and suf-
ficient condition. However Theorem 2 predicts that the only general case where the
hyperbolic region is easily computable corresponds to a polynomial P1 of degree 2.
This situation occurs for the linearized Euler equations, as well as for the wave equa-
tion or the elasticity system (these were the examples treated in [1]). When the degree
of P1 is greater than or equal to 3, the hyperbolic region can have many connected
components, and it may become difficult to check the WR condition for the system
(1) since the hyperbolic region must then be determined by computing the spectrum of
A , which may be difficult, especially when the sizeN of the system is large.

3. Proof of the main results

We recall that the forward cone0 coincides with the setf(� , � ) 2 R � Rd=� C�1(� ) > 0g, see e.g. [2, Chapter 1]. In a similar way, there holds�0 D f(� , � ) 2 R �Rd=� C �q(� ) < 0g. We also recall that0 and�0 are open and convex.

3.1. Proof of Proposition 1. Let us first assume that�1(0, 1)> 0, or in other
words that Ad has only positive eigenvalues. Let (�0, �0) 2 R � Rd�1. We introduce
the function

g W � 2 R 7�! �0 C �1(�0, � ).

The homogeneity and continuity properties of�1 show thatg(� ) � ��1(0, 1) as� tends
to C1. Consequently there exists a real number�0 such thatg(�0) > 0, and we get
(�0, �0) 2 �0. A similar proof with � tending to�1 works if we consider the case�q(0,1)< 0. This argument gives the equality�0 D R�Rd�1 if we assume�1(0,1)> 0
or �q(0, 1)< 0.

2And so did the author of this article until he found the examples given at the end of this article!
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Let us now assume that we have�0 D R � Rd�1. Since (0, 0)2 �0, there exists�0 2 R n f0g such that�1(0, �0) > 0. We have

�1(0, � ) D ���1(0, 1), if � � 0,�j� j�q(0, 1), if � � 0.

This shows that we have either�1(0, 1)> 0 (when�0 > 0) or �q(0, 1)< 0 (when�0 <
0). The proof of Proposition 1 is complete.

In the case of Proposition 1, the hyperbolic regionH is connected and�0 D��0, even though0 and�0 are disjoint.

3.2. Proof of Theorem 1. We now assume that the inequalities�1(0, 1)< 0<�q(0, 1) hold. Then the proof of Proposition 1 above shows that (0, 0)� �0 [ ��0.
More precisely,�0 does not contain any element of the form (� , 0) with � � 0, and��0 does not contain any element of the form (� , 0) with � � 0.

Let us first begin with the following result.

Lemma 1. The sets�0 and��0 are open, convex, and their intersection is empty.

Proof of Lemma 1. It is clear that� is linear and surjective, so� maps convex
open sets onto convex open sets. Since0 and �0 are convex open sets, we can al-
ready conclude that�0 and��0 are convex open sets. It remains to show that their
intersection is empty.

Let us assume that (� , �) 2 �0 \ ��0. In particular, we necessarily have� ¤ 0
(otherwise� > 0 and� < 0). Moreover there exist some real numbers�1, �q such that

� C �1(�, �1) > 0, � C �q(�, �q) < 0.

For all j D 1, : : : , q, we introduce the real analytic function:

f j W � 2 R 7! � C � j (�, � ).

Following an argument used in the proof of Proposition 1, we know that f1(� ) tends
to �1 as � tends to�1. In the same way,fq(� ) tends toC1 as � tends to�1.
The intermediate value Theorem shows that bothf1 and fq vanish at least twice: there
exist �

1
< �1 and �

q
< �q such that

f1
��

1

� D f1(�1) D fq
��

q

� D fq(�q) D 0.

If 2 � j � q � 1, we have

f j (�1) D � C � j (�, �1) > � C �1(�, �1) > 0, f j (�q) < 0.
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This shows that there exists a real number�
j

such that f j
��

j

� D 0. It is not difficult

to check that theq C 2 real numbers�
1
, : : : , �

q
, �1, �q are pairwise distinct.

The polynomialP(� , �, � ) D f �1
1 � � � f

�q
q has degreeN, and we have shown that

�
1
, : : : , �

q
are roots of multiplicity at least equal to�1, : : : , �q and �1, �q are roots of

multiplicity at least equal to�1, �q. We thus obtain

N � 2�1 C �2 C � � � C �q�1 C 2�q D N C �1 C �q,

which is a contradiction. The proof of Lemma 1 is complete.

Our goal now is to show that�0 is the connected component of (1, 0) inH , and
similarly that��0 is the connected component of (�1, 0) in H .

We first use the fact thatH is open. This is indeed a consequence of the block
structure condition proved in [8] for the matrixA defined in (4). We thus know that
the connected components ofH are also open. Let� denote the connected compo-
nent of (1, 0) inH and let us assume that�0 ¤ �, or in other words that�0 is
strictly included in�. We thus consider an element (�0, �0) 2 � n �0. The set�
is open and connected. It is therefore pathwise connected. Let us consider a con-
tinuous pathf(�s, �s), s 2 [0, 1]g in � that joins (�0, �0) and (1, 0). Consider now
s WD inffs 2 [0, 1], (�s, �s) 2 �0g. It is standard to show that (�s, �s) belongs to the
boundary of�0.

Up to now, we have constructed an element (� , �) 2 H \ �(�0). In particular,
we have� ¤ 0. We are going to show that (� , �) is a glancing mode for which the
matrix A (� , �) is not diagonalizable. We know that (� , �) is the limit of a sequence
((�n, �n))n2N of elements of�0. For all integern there exists a real number�n such
that �nC�1(�n, �n) > 0. The sequence ((�n, �n))n2N is bounded because it converges so
the sequence (�n)n2N is necessarily bounded. Up to extracting a subsequence, (�n)n2N
converges towards a real number� , and we obtain

� C �1(�, � ) � 0.

The quantity� C �1(�, � ) cannot be positive because (� , �) belongs to the boundary of�0 and not to�0. We thus have� C �1(�, � ) D 0. Moreover, we have���1(�, � ) D 0
for otherwise we could find a real number� close to� such that� C�1(�, � ) > 0. We
have thus obtained

� C �1(�, � ) D ���1(�, � ) D 0,

which means that (� , �) is a so-called glancing mode. For such frequencies, the matrix
A is not diagonalizable, see [8]. For the sake of completeness, we briefly recall the
proof of this claim. First of all, we have Ker(A (� , �) � � I ) D Ker(� I C A(�, � )) so
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the geometric multiplicity of the eigenvalue� equals�1. Moreover, we can write

� C �1(�, � ) D (� � � )2#1(� ),

where#1 is smooth in a neighborhood of� . A simple calculation then gives

det(A (� , �) � � I ) D (� � � )2�1#2(� ),

where#2 is smooth in a neighborhood of� . This shows that the algebraic multiplicity
of the eigenvalue� equals at least 2�1, so A (� , �) is not diagonalizable. This is a
contradiction because (� , �) has been assumed to belong toH .

We have therefore proved that�0 is the connected component of (1, 0) inH , and
in a similar way��0 is the connected component of (�1, 0) in H . In particular,H
has at least two connected components, and the proof of Theorem 1 follows.

3.3. Proof of Theorem 2. Let us first observe thatP1 can not have degree 1.
Otherwise,�1 would be a linear function of� . In particular, we would have�1(�� ) D��1(� ) for all � 2 Rd. But we also have�1(�� ) D ��q(� ) so q would equal 1, and
this is incompatible with the assumption thatAd has two distinct eigenvalues.

Let us assume from now on thatP1 has degree 2. BecauseP1 is homogeneous of
degree 2, we haveP1(�1(� ),�� )D 0 for all � . Applying to�� , we getP1(��q(� ),� )D
0 for all � , so we obtain

P1(� , � ) D (� C �1(� ))(� C �q(� )).

Consider now (� ,�) 2H . In particular, the characteristic polynomial of the matrix
A (� , �) has real roots. We compute

det(� I �A (� , �)) D (det A�1
d )P(� , �, � ),

so P(� , �, � ) has only real roots. Using the decomposition (6),P1(� , �, � ) has only
real roots. Let�1 2 R satisfy P1(� , �, �1) D 0. We have either� C �1(�, �1) D 0 or�C�q(�, �1)D 0. In the first case, we necessarily have���1(�, �1)¤ 0, otherwise (� ,�)
would be a glancing mode and, as we have seen at the end of the proof of Theorem 1,
A (� , �) would not be diagonalizable. Consequently, there exists� close to �1 such
that � C �1(�, � ) > 0, and (� , �) 2 �0. In the second case, similar arguments lead to
(� , �) 2 ��0. We have thus obtainedH � �0 [ ��0. Together with the inclusion
(5), the proof of Theorem 2 is complete.
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4. Some examples

The linearized isentropic Euler equations. We consider the isentropic Euler
equations and linearize them around a state that corresponds to a positive density� > 0,

and a velocityuD ued, with ed the last vector of the canonical basis ofRd. We assume
that the fluid is incoming and subsonic, that is

0< u < c,

with c the sound speed corresponding to the density�. In space dimensiond, the
characteristic polynomial of the corresponding linear operator L splits as follows:

P(� , �, � ) D ((� C u� )2 � c2(j�j2 C �2))(� C u� )d�1.

The matrix Ad has one negative eigenvalue andd positive eigenvalues (counted with
their multiplicity). The hyperbolic regionH is given by

H D f(� , �) 2 R � Rd�1=� 2 > (c2 � u2)j�j2g,
and has two connected components, which is consistent with the result of Theorem 2.

The wave equation. Even though the analysis above is done for first-order sys-
tems, we feel free, as in [1], to apply the results in the case of higher order hyperbolic
equations or systems. For instance, in the case of the wave equation, the characteristic
polynomial is

P(� , � ) D � 2 � j� j2.

The hyperbolic regionH is given by

H D f(� , �) 2 R � Rd�1=� 2 > j�j2g,
and has two connected components, which is consistent with the result of Theorem 2
becauseP has degree 2.

The elasticity system. The linear elasticity system reads

�2
t t z� div(�(rzCrzT )C (� � �)(div z)I ) D 0, z 2 Rd,

with � > 0, � > 0 the Lamé coefficients. The characteristic polynomial splits as

P(� , � ) D (� 2 � c2
sj� j2)d�1(� 2 � c2

pj� j2),

with c2
s D � and c2

p D �C �. As expected from Theorem 2, the hyperbolic region has
two connected components, and it is given (see [1, p. 1091]) by

H D f(� , �) 2 R � Rd�1=� 2 > c2
pj�j2g.
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We refer to [1] for examples of WR problems in the case of the wave equation or the
elasticity system.

From now on, we only consider the cased D 2, so� 2 R. In that case, we recall
the result of [3, 6] that any homogeneous hyperbolic polynomial may be represented
under the form (3) with suitable real symmetric matricesA1, A2. (This is Lax’ con-
jecture.) We therefore work directly with the characteristic polynomial P and forget
about the matricesA j ’s.

Examples with an irreducible polynomial of degree 3. The following example
is taken from [11, p. 426]:

(7) P(� , �, � ) D � 3 � 3(�2 C �2)� C �3.

Using Cardano’s rule (Lemma 12.1 in [11]), it is straightforward to check that for
(�, � )¤ 0, P( � , �, � ) has three simple real roots. It is also straightforward to check that
P is irreducible inR[� , �, � ] so the only factor in (6) isP itself with multiplicity 1.
The hyperbolic region corresponds to the (� , �) 2 R2 n f(0, 0)g such thatP(� , �, � )
has three simple roots. Cardano’s rule shows thatH D f(� , �) 2 R2=� 2 > 3�2g, so H

has two connected components. This is a case where the irreducible factor associated
with extreme eigenvalues has degree 3 butH still has two connected component, so
H D �0[��0. The example of the polynomial (7) shows that the condition in The-
orem 2 is only sufficient and is not necessary. However, it does not seem possible to
improve the criterion in Theorem 2 as shown with the two examples below.

Let us now introduce the polynomial

(8) P(� , �, � ) D � 3 � 3(�2 C �2)� C �3 C �3.

Again, it is straightforward to check thatP is irreducible inR[� , �, � ]. Cardano’s rule
shows that for (�, � ) ¤ 0, P( � , �, � ) has three simple real roots. The hyperbolic region
H is the set of (� ,�) such thatP(� ,�, �) has three simple real roots. This is equivalent
to asking that the polynomialP(� , �, � C � ) has three simple real roots. We compute

P(� , �, 4C � ) D 43 � 3� 24C (�3 � 3��2 � � 3).

Applying Cardano’s rule, we get

H D f(� , �) 2 R2=4� 6 > (�3 � 3��2 � � 3)2g.
The regionH is depicted in black in Fig. 1, where we can see thatH has four con-
nected components. We now give a quick argument that shows why H has four con-
nected components3. We introduce the homogeneous polynomial:

Q(� , �) WD 4� 6 � (�3 � 3��2 � � 3)2 D (� 3 � 3�2� C �3)(3� 3 C 3�2� � �3).

3I warmly thank the referee for his/her indications on this point.
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Fig. 1. The hyperbolic region (in black) with four connected
components for the third degree polynomialP in (8).

The roots of the polynomialX3 � 3X C 1 are computed by using Cardano’s method,
and we obtain

X3 � 3X C 1D (X � a1)(X � a2)(X � a3), ak WD 2 cos

�
2k�
9

�
, k D 1, 2, 3.

Using Cardano’s method again, we see that the polynomial 3X3C3X�1 has only one
real rootb that is given by the following formula:

b WD 1

3

�
3(3Cp

21)

2

�1=3 � � 2

3(3Cp
21)

�1=3
.

There holds

a3 < 0< b < a2 < a1.

We can thus factorize the polynomialQ and obtain

Q(� , �) D (� � a3�)(� � b�)(� � a2�)(� � a1�) QQ(� , �),

where QQ is a homogeneous polynomial of degree 2 that is positive when(� ,�)¤ (0, 0).
Consequently, we have

H D f(� , �) 2 R2=(� � a3�)(� � b�)(� � a2�)(� � a1�) > 0g
D f(� , �) 2 R2=(� � a3�)(� � a1�) > 0g
[ f(� , �) 2 R2=(� � b�)(� � a2�) < 0g,
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Fig. 2. The hyperbolic region (in black) with six connected com-
ponents for the fourth degree polynomialP in (9).

and H has four connected components.
The example (8) shows that when the irreducible factor associated with extreme

eigenvalues has degree 3, the equalityH D �0 [ ��0 may not hold anymore. We
give another example of this fact below with an irreducible factor of degree 4 for which
the computations are even easier.

An example with an irreducible polynomial of degree 4. The following result
is elementary.

Lemma 2. Let a, b 2 R. Then the polynomial X4 � 2aX2 C b has four simple
real roots if and only if a> 0, b > 0 and a2 > b.

Let us then define the polynomial

(9) P(� , �, � ) D � 4 � 4(�2 C �2)� 2 C �4 C �4.

Lemma 2 shows that for (�, � ) ¤ 0, P( � , �, � ) has four simple real roots. We now
considerP as a polynomial in� . We can apply Lemma 2 again:P(� , �, � ) has four
simple real roots if and only if the following inequalities hold:

� 2 > 0, � 4 � 4� 2�2 C �4 > 0, 3� 4 C 4� 2�2 � �4 > 0.

We thus get

H D �
(� , �) 2 R2

�p
7� 2

3
�2 < � 2 < (2�p3)�2 or (2Cp

3)�2 < � 2

�
.

The hyperbolic regionH is depicted in black in Fig. 2. It has six connected compo-
nents, soH ¤ �0 [ ��0.
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