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Abstract
Let F be a smooth flow on a smooth manifoldM and D(F) be the group of

diffeomorphisms ofM preserving orbits ofF. We study the homotopy type of the
identity componentsDid(F)r of D(F) with respect to distinct Whitney topologiesWr ,
(0� r �1). The main result presents a class of flowsF for which Did(F)r coincide
for all r and are either contractible or homotopy equivalent to the circle. The group
Did(F)0 was studied in the author’s paper [13]. Unfortunately that article contains
a gap in estimations of continuity of local inverses of the so-called shift map. The
present paper also repairs these estimations and shows thatthey hold under additional
assumptions on the behavior of regular points ofF.

1. Introduction

Let M be a smooth (C1), connected,m-dimensional manifold possibly non-compact
and with or without boundary. Let alsoF be a smooth vector field onM tangent to�M
and generating a global flowF W M � R! M. Denote by6F (or simply by6) the set
of singular points ofF .

Let E(F) be the subset ofC1(M, M) consisting of mapsf such that
(1) f (o) � o for every orbito of F ;
(2) f is a local diffeomorphism at every singular pointz 2 6F .

Let alsoD(M) be the group ofC1-diffeomorphisms ofM and

D(F)
defD E(F) \D(M)

be the group ofdiffeomorphisms preserving orbits of F.
For everyr D 0, 1,: : : , 1 denote byEid(F)r (resp.Did(F)r ) the path-component

of the identity map idM in E(F) (resp.D(F)) with respect to the weakWr Whitney
topology, see Definition 1.4. In particularEid(F)0 (resp.Did(F)0) consists of mapsf
which are homotopic to idM in E(F) (resp.D(F)).

Define the following map' W C1(M, R) ! C1(M, M) by '(�)(x) D F(x, �(x))
for � 2 C1(M, R) and x 2 M. We will call ' the shift mapalong orbits ofF and
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denote bySh(F) its image'(C1(V , R)) in C1(M, M). Then the following inclusions
hold true:

Sh(F) � Eid(F)1 � � � � � Eid(F)1 � Eid(F)0.

The idea of replacing the time in a flow map with a function was extensively used
e.g. in [8, 3, 31, 12, 27, 10] for reparametrizations of measure preserving flows and in-
vestigations of their mixing properties, see also [19, §1].Smooth shifts functions were
applied in [13, 15, 16, 14, 17] for study of homotopical properties of certain infinite
dimensional groups of diffeomorphisms and their actions onspaces of smooth maps.
Also in [19, 18] some applications to parameter rigidity of vector fields are given.

SupposeF is linearizable at eachz 2 6F , see e.g. [29, 30, 32, 2, 11]. In [13]
the author in particularclaimed that if in addition M is compact, thenDid(F)0 and
Eid(F)0 are either contractible or homotopy equivalent to the circle S1 when endowed
with W1-topologies. Unfortunately, it turned out that in such a generality this state-
ment fails and it is necessary to put additional restrictions on the behavior of regular
orbits of F . In fact it was shown thatSh(F) D Eid(F)0 and the mistakes appeared in
estimations of continuity of local inverses of', see [13, Definition 15, Theorem 17,
Lemma 32] and also Remarks 7.4 and 8.1 for detailed discussion.

Furthermore, the above description ofDid(F)0 was essentially used in another au-
thor’s paper [15] concerning calculations of the homotopy types of stabilizers and orbits
of Morse functions on surfaces.

The aim of the present paper is to repair incorrect formulations and proofs of [13]
and using [14, 19, 17] extend the classes of vector fields for which the homotopy types
of Eid(F)r andDid(F)r can be described (Theorem 3.5). In particular it will be shown
that the results of [13] used in [15] remain true (Theorem 3.7).

1.1. Structure of the paper. For the convenience of the reader and due to the
length of the paper we will now briefly describe its contents.

In §2 we recall the notion of shift map and review (correct) results obtained in
[13]. Also notice that if a flowF of a vector fieldF is not global, then we can find
a smooth function� W M ! (0,C1) such that the flowF0 generated by vector field
F 0 D �F is global, e.g. [6, Corollary 2]. Moreover,F and F 0 have the same orbit
structure, whenceE(F) D E(F0) and D(F) D D(F0). Thus it could always be assumed
that F is global. Nevertheless, in §10 and §11 we will consider restriction F jW of
F to open subsetsW � M and compare shift maps ofF and F jW. The latter vector
field usually generates non-global flow, therefore in this paper it is chosen to work with
local flows from the beginning. In particular, the domain of shift map ' of F changes
to certain open and convex subsetfunc(F) � C1(M, R).

In §3 we introduce a certain class of vector fieldsF (M) on M and formulate the prin-
cipal result of the paper: for everyF 2 F (M) its shift map' is a local homeomorphism of
func(F) onto its imageSh(F) with respect toS1-topologies (Theorem 3.5). It follows that
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Sh(F) is either contractible or homotopy equivalent to the circle, and so is the subspace of
Sh(F) consisting of diffeomorphisms. On the other hand, in [18] it is considered a class of
vector fieldsF 0(M) which containsF (M) and such that for everyF 2 F 0(M) the image
of its shift mapSh(F) coincides with eitherEid(F)1 or Eid(F)0 for eachF 2 F (M). Thus
we obtain thatEid(F)r (Did(F)r ) coincide with each other at least for allr � 1 and these
spaces are either contractible or have homotopy type ofS1. As an application we prove
Theorem 3.7 which extends [15, Theorem 1.3]. The rest of the paper is devoted to the
proof of Theorem 3.5.

The assumptions of Theorem 3.5 imply that' is locally injective, therefore in
order to prove this theorem it suffices to show that' is open with respect toS1 top-
ologies. In §4 we present a characterization ofSr ,s-openness of' for some r , s �
0, (Theorem 4.2). First we describe local inverses of'V as certaincrossed homo-
morphismsand then show that like for homomorphisms of groupsSr ,s-openness of the
whole map' is equivalent toSs,r -continuity of its local inverse definedonly on arbi-
trary smallSs-neighbourhood of the identity map idM .

Further in §5 we recall notorious examples of irrational flows on the torus and
some modifications of them. It is shown that shift maps of these flows are not local
homeomorphisms onto their images. This provides counterexamples to [13, Theorem 1]
and illustrates certain properties prohibited by Theorem 3.5.

In §6 we repair [13, Lemma 28] by giving sufficient conditionsfor Sr ,s-openness
of ' to be inherited by regular extensions of vector fields.

§7 summarizes the formulas for local inverses of shift maps of linear flows ob-
tained in [13] and “reduced” Hamiltonian flows of homogeneous polynomials in two
variables obtained in [19, 14]. Estimations of continuity of these formulas for linear
flows were based on incorrect “division lemma” [13, Lemma 32], see Remark 7.4. We
will show how to avoid referring to this lemma.

§8 provides a correct version of [13, Theorem 17], see Theorem 8.2. It reduces
verification of openness of' to openness of a familyf'Vi g of “local shift maps” cor-
responding to any locally finite coverfVi g of M e.g. by arbitrary small smooth closed
disks. The essentially new additional object here is a finitesubset30 � 3 which ap-
pears due to the construction (8.3) ofS1-open setN and by existence of singular-
ities for which “local shift map” isS1,1-open but notSr ,d(r )-open for some function
d W N ! N. Without finiteness of30 the shift map' is open if its image is endowed
with the so-calledvery-strong topology, [9]. This effect appears of course only on non-
compact manifolds.

§9 splits the “global analytical problem” of verification ofopenness of local shift
map 'V into the following two problems
(i) openness of local shift map'W,V corresponding to the restrictionF jW to arbitrary
open neighbourhoodW of V , and
(ii) openness of the imageSh(FW, V) in Sh(F, V).
Due to Theorem 8.2 the setV can also be taken arbitrary small. Hence to solve (i)
it suffices to consider vector fields inRn. Thus (i) is a “local analytical” problem. Its
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Fig. 1. D-submanifoldsV and W.

solutions for certain vector fields are given in §7.
§10 and §11 present sufficient conditions for resolving (ii)at regular and singular

points respectively (Theorem 10.1 and Lemma 11.2). In both cases the assumptions on
F are formulated in the terms of dynamical systems theory, andso the problem (ii)
can be regarded as a “global topological” one. In the regularcase these conditions are
also necessary. Moreover, in the singular case they are relevant with the notion of an
isolated block introduced by C. Conley and R. Easton in [4], see Lemma 11.5.

Finally in §12 we prove Theorem 3.5.

1.2. Preliminaries. Put N0 D N [ f0g and NN0 D N [ f0,1g.
Let M be a smooth manifold of dimensionm. Glue to M a collar �M � [0, 1) by

the identity map�M �0! �M and denote the obtained manifold byM 0. If �M D ¿,
then M 0 D M. Evidently, M 0 has a smooth structure in which it is diffeomorphic with
the interior IntM. Moreover M is a closed subset ofM 0 and �M 0 D ¿. We will call
M 0 a collaring of M, see Fig. 1.

DEFINITION 1.3. A closed subsetV � M will be called aD-submanifoldif there
exists anm-dimensional submanifoldV 0 � M 0 possibly with boundary and such that
V D M \ V 0 and the intersection�M \ �V 0 is transversal, see Fig. 1.

Denote by IntV the interior of V in M. Then IntV D V n �V 0. We will also say
that V is a D-neighbourhoodof every pointz 2 Int V .

Let V � M be a D-submanifold. If V \ �M D ¿, then V is a manifold with
boundary, otherwise,V is a manifold with cornersin which �M \ �V 0 is set of cor-
ners. Evidently,M is a D-submanifold of itself, and eachz2 Int M has arbitrary small
D-neighbourhoods each diffeomorphic to a closedm-disk.

Let N be another smooth manifold,N 0 be its collaring, andf W V ! N be a map.
We say that f is of classCr , r 2 NN0, (embedding, immersion, etc.) if it extends to a
Cr map (embedding, immersion, etc.)U ! N 0 from some open neighbourhoodU of
V in M 0 into the collaringN 0 of N.

Then it is well-known thatf is Cr if, and only if, the restrictionf jInt Vn�M is Cr

and all its derivatives have continuous limits whenx tends to some pointy 2 �V 0, see
e.g. [33, 28, 24, 5] for manifolds with boundary and e.g. [22,Proposition 2.1.10] for
manifolds with corners.
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Denote byCr (V , N), r 2 NN0, the space of allCr maps V ! N. Then similarly
to [7] this space can be endowed withweak Wr - and strong Sr -topologies. If V is
compact thenWr andSr coincide for allr 2 NN0. For a subsetX � Cr (V , N) denote by
(X )r

W (resp. (X )r
S) the setX with the inducedWr -topology (resp.Sr -topology), r 2 NN0.

DEFINITION 1.4. A homotopyH W V� I ! N will be called anr -homotopy, (r 2NN0), if for every t 2 I the mapHt D H ( � , t)W V ! N is Cr and all its partial derivatives
in x 2 V up to orderr are continuous in (x, t). In other words,H is an r -homotopy
if and only if it yields a continuous pathI ! Cr (V , N) from the standard topology of
I to the Wr -topology of Cr (V , N).

Hence for everyf 2 X its path connected component in (X )r
W consists of allg 2

X which arer -homotopic to f in X .
Now let V1, V2 be D-submanifolds of some smooth manifolds,N1, N2 be two smooth

manifolds,X � C1(V1, N1) andY � C1(V2, N2) be two subsets, andF W X ! Y be
a map.

DEFINITION 1.5. We say thatF is Wr ,s-continuous(-open, etc.) for somer , s 2NN0 if it is continuous (open, etc.) as a mapF W (X )r
W ! (Y)s

W.

Similarly we can defineSr ,s-continuous(-open, etc.) maps with respect to strong
topologies.

Notice that the statement thatF is W1,1-continuous at some x2 X means that
for everys� 0 and aWs-open neighbourhoodVF(x) � Y of F(x) there existr � 0 and
a Wr -neighbourhoodUx � X of x both depending ons and VF(x) such thatF(Ux) �
VF(x). But in general such a map can be notWr ,s-continuous for anyr , s, see e.g. [23,
p. 93 Equation (2)], and [25].

2. Shift map

Let F be a vector field onM tangent to�M. Then for everyx 2 M its orbit
with respect toF is a unique mappingox W R � (ax, bx) ! M such thatox(0)D x and
(d=dt)ox D F(ox), where (ax, bx) � R is the maximal interval on which a map with the
previous two properties can be defined. By standard theoremsin ODE the following
subset ofM � R

dom(F) D [
x2M

x � (ax, bx),

is an open, connected neighbourhood ofM � 0 in M �R. Then thelocal flow of F is
the following map

F W M � R � dom(F) ! M, F(x, t) D ox(t).
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Fig. 2. Domaindom(F) of the flow F of the vector fieldF(x) D
x2 d=dx.

If M is compact, thendom(F) D M � R, e.g. [26].
Notice that if x 2 M is either fixed or periodic forF, then x � R � dom(F).

EXAMPLE 2.1. Let F(x) D x2 d=dx be a vector field onR1. Then it is easy to
see that it generates the following local flowF(x, t) D x=(1� xt). HenceF is defined
on the subsetdom(F) � R2 bounded by the hyperbolaxt D 1, see Fig. 2.

Let V � M be either an open subset or aD-submanifold andiV W V � M be
the identity inclusion. Denote byE(F, V) the subset ofC1(V , M) consisting of maps
f W V ! M such that (i) f (o \ V) � o for every orbit o of F , and (ii) f is an em-
bedding at every singular pointz 2 V \6F . Let alsoD(F, V) � E(F, V) be the subset
consisting of immersionsV ! M.

Let Eid(F, V)r andDid(F, V)r be the path-components ofiV in the spacesE(F, V)
andD(F, V) respectively endowed with the corresponding topologiesWr .

Denote by func(F, V) the subset ofC1(V , R) consisting of functions� whose
graph0� D f(x, �(x))W x 2 Vg is contained indom(F). Then we can define the follow-
ing map

'V W C1(V , R) � func(F, V) ! C1(V , M)

by 'V (�)(x) D F(x,�(x)). We will call 'V the (local) shift mapof F on V and denote
its image inC1(M, M) by Sh(F, V). Put

0CV D f� 2 func(F, V) W d�(F)(x) > �1, 8x 2 Vg,
where d�(F) is a Lie derivative of� along F . Since func(F, V) is an S0-open and
convex subset ofC1(V , R) and the map

LF W C1(V , R) ! C1(V , R), LF (�) D d�(F)

is evidently linear andS1,0 continuous, we see that0CV is convex andS1-open inC1(V ,R).
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It also follows from [13, Lemma 20 and Corollary 21] that

(2.1) 0CV D '�1
V (Did(F, V)1), Sh(F, V) � E(F, V).

Lemma 2.2 ([17]). The following inclusions hold true:

'V (0CV ) � Did(F, V)1 � � � � � Did(F, V)r � � � � � Did(F, V)0,

Sh(F, V) � Eid(F, V)1 � � � � � Eid(F, V)r � � � � � Eid(F, V)0.

If Sh(F, V) � Eid(F, V)r , then 'V (0CV ) D Did(F, V)r .

The set ker('V )
defD '�1

V (iV ) will be called thekernel of 'V .

Lemma 2.3. The following properties of shift map hold true:
(1) 'V is Wr ,r - and Sr ,r -continuous for all r� 0, [13, Lemma 2].
(2) d�(F) D 0 for every� 2 ker('V ), [13, Lemma 7].
(3) Let �,� 2 func(F, V). Then, [13, Lemma 7],the following conditions are equivalent:

(a) 'V (�) D 'V (�)
(b) � � � 2 func(F, V) and 'V (� � �) D iV , i.e. � � � 2 ker('V ).

(4) 'V is locally injective with respect to each ofWr - or Sr -topologies offunc(F, V)
if and only if 6F \ V is nowhere dense in V, [13, Proposition 14].
(5) Suppose that V is connected and that V\6F is nowhere dense in V . Then, [13,
Theorem 12 (2)],

(a) either ker('V ) D f0g and thus'V is injective. This case holds if V contains
either a non-periodic point ofF or a fixed point z2 V \6F such that the tangent
linear flow TzFt on the tangent space TzM is the identity;
(b) or ker('V ) D fn�gn2Z for some smooth� W V ! (0,1). In this case V�R D
dom(F), so func(F, V) D C1(V , R).

3. Main result

Let M be a smooth manifold of dimensionm. We will introduce a classF (M)
of smooth vector fieldsF on M satisfying certaintopological conditions on regular
points and certainanalytical conditions on singular points. The main result describes
the homotopy types of the identity path components ofE(F) andD(F). First we give
some definitions.

Recurrent points. Let F be a vector field onM and z 2 M be a regular point
of F , i.e. F(z) ¤ 0. Then z is called recurrent if there exists a sequencefti gi2N of
real numbers such that limi!1jti j D 1 and limi!1 F(z, ti ) D z. In particular, every
periodic point is recurrent.
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First recurrence map. Let z be a periodic point ofF , oz be its orbit, andB �
M be an open (m � 1)-disk passing throughz and transversal tooz. Then we can
define a germ atz of the so-calledfirst return (or Poincaré) map RW (B, z) ! (B, z)
associating to everyx 2 B the first point R(x) at which the orbitox of x first returns
to B. It is well-known thatR is a diffeomorphism atz, e.g. [26].

Reduced Hamiltonian vector fields. Let g W R2 ! R be a homogeneous poly-
nomial of degreep � 2, so we can write

(3.1) g D L l1
1 � � � L la

a � Qq1

1 � � � Qqb

b ,

where L i is a non-zero linear function,Q j is an irreducible overR (definite) quadratic
form, l i , q j � 1, L i =L i 0 ¤ const for i ¤ i 0, and Q j =Q j 0 ¤ const for j ¤ j 0. Denote

D D L l1�1
1 � � � L la�1

a � Qq1�1
1 � � � Qqb�1

b .

Then g D L1 � � � La � Q1 � � � Qb � D and D is the greatest common divisor of the partial
derivativesg0x and g0y. The following vector field onR2:

F(x, y) D �g0y
D

��x
C g0x

D

��y

will be called thereduced Hamiltonianvector field of g. In particular, if g has no
multiple factors, i.e.l i D q j D 1 for all i , j , then D � 1 andF is the usualHamiltonian
vector field of g.

Notice that dg(F) � 0 and the coordinate functions ofF are homogeneous
polynomials of degree degF D aC 2b� 1 being relatively prime in the ring of poly-
nomialsR[x, y].

“Elementary” singularities. Let F be a vector field onRk. It can be regarded as
a mapF W Rk ! Rk. Define the followingtypes(Z), (L), and (H) of such vector fields.

Type (Z). F(x) � 0.
Type (L). F(x) D �(x) � Ax, where A is a non-zero (k� k)-matrix, and� W Rn !

(0,C1) is a C1 strictly positive function. Let�1, : : : , �k be all the eigen values of
A taken with their multiplicities. We can also assume thatA has areal Jordan normal
form. Then we will distinguish the following particular cases.
(L1) <(� j ) ¤ 0 for some jD 1, : : : , k;
(L2) The real Jordan normal form has a block



0 1
0 1� � � � � �

0 1
0



9>>>>>=
>>>>>;

n, n � 2I
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(L3) The real Jordan normal form has a block



0 b
b 0

1 0
0 1� � � � � � � � �
0 b
b 0

1 0
0 1
0 b
b 0



9>>>>>=
>>>>>;

2n, n � 2, b ¤ 0.

In all other casesA is similar to the matrix:



0 b1�b1 0 � � �
0 bn�bn 0

0 � � �
0


, n � 1, b j ¤ 0, 8 j D 1, : : : , n.

Then we will also distinguish the following two cases:
(L4) there exists� > 0 such that bj � 2 Z for all j ;
(L5) such a number� as in (L4) does not exist.

Type (H). F(x, y) D �(x, y) � (�g0y=D, g0x=D) for some strictly positiveC1 func-

tion � W R2 ! (0,C1), and a homogeneous polynomial (3.1) such thataC2b�1� 2,
so F is not of type (L). Again we separate the following cases:
(HE) a D 0 and b� 2, i.e. g is a product of at least two distinct definite quadratic
forms and has no linear multiples. In this case0 2 R2 is a degenerate globalextreme
of g;
(HS) a � 1 and aC 2b� 3, so g has linear multiples. In this case0 2 R2 is a degen-
erate saddlecritical point for g.

REMARK 3.1. The types (L), (H), (HE), and (HS) coincide with the onescon-
sidered in [18].

Also notice that in the case (L4) almost all orbits ofF are periodic, while in the
case (L5) almost all orbits are non-periodic and recurrent.

Regular extensions and products of vector fields. Let M, N be manifolds,
GW M ! T M be a vector field onM, and F be a vector field onM � N. Then F can
be regarded as a mapF W M � N ! T M � T N. We say thatF is a regular extension
of G if

F(x, y) D (G(x), H (x, y)), (x, y) 2 M � N,



424 S. MAKSYMENKO

for some smooth mapH W M � N ! T N, so G is the “first” coordinate function of
F and does not depend ony, see e.g. [1, 32]. IfH does not depend onx, so it is a
vector field onN, then

F(x, y) D (G(x), H (y))

will be called theproduct of G and H . Moreover, if H � 0, i.e.

F(x, y) D (G(y), 0),

then F is said to be atrivial extensionof G.
In the caseN D Rn we will also say thatF is a (regular or trivial)n-extension.

Evidently, a regular (trivial)m-extension of a regular (trivial)n-extension is a regular
(trivial) (mC n)-extension, see e.g. [32, 13]. The following simple statement is left for
the reader:

Lemma 3.2. (a) A trivial extension is the same as a product with zero vector field;
(b) a product of vector fields is a regular extension of each of them;
(c) every non-zero linear vector field is a regular extension of alinear vector field

defined by one of the following matrices: kak,  a b�b a

, (b ¤ 0), or
 0 1

0 0

.

DEFINITION 3.3. Let z2 F and (T) denotes one of the types (Z), (L), (L1), etc.,
defined above. We will say that the germ ofF at z is of type(T)0 if the germ of F
at z is equivalent to a regular extension of some vector field of type (T). By6(T) and6(T)0 we will denote the set of singular points ofF or types (T) and (T)0 respectively.

Evidently, a singular point can belong to distinct types.

DEFINITION 3.4. We will say that aC1 vector field F on a C1 manifold M
belongs to classF (M) if it satisfies the following conditions:
(a) F is tangent to�M and6F is nowhere dense inM;
(b) every non-periodic regular point ofF is non-recurrent;
(c) for every periodic pointz of F the germ atz of its first recurrence mapRW (D, z) !
(D, z) is either periodic or the tangent mapTzRW TzD ! TzD has eigen value� such thatj�j ¤ 1;
(d) for everyz 2 6F the germ ofF at z is either

(�) a product of finitely many vector fields each of which is of type (L) or (H),
or
(��) belongs to one of the types (L1)0, (L2)0, (L3)0, or (H)0, but z is an isolated
singular point ofF .

Thus if the germ ofF at z is a regular extension of an (L4)-vector field, thenF
must in fact be a product of such a vector field with vector fields of types (L) or (H)
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only. Also notice that singularities of type (L5) are not allowed at all since they have
recurrent orbits. Moreover, we will present examples of vector fields with singularities
of type (L5) for which the statement of our main result fails,see the end of §5.

The following theorem summarizes the results obtained in [18] and in this paper.

Theorem 3.5 (cf. [13, Theorem 1] and [18]). Let F 2 F (M), ' be the shift map
of F, and 0C D f� 2 func(F) W d�(F)(x) > �1, 8x 2 Mg. Then

Sh(F) D Eid(F)1, '(0C) D Did(F)1.

If 6 D 6(L)0 [6(HS)0 , then Sh(F) D Eid(F)0 and '(0C) D Did(F)0.

Suppose that the closure6 n (6(L1)0 [6(L2)0) is compact(this is always true for
compact M). Then both maps

' W func(F) ! Eid(F)1, 'j0 W 0 ! Did(F)1

are either homeomorphisms orZ-covering maps with respect toS1-topologies. If M
is compact, then the inclusionDid(F)1 � Eid(F)1 is a homotopy equivalence and both
spaces are either contractible or homotopy equivalent to the circle. If F has at least
one non-closed orbit, or a singular point at which the linear part(i.e. 1-jet) of F van-
ishes, thenDid(F)1 and Eid(F)1 are contractible.

The first statement about the image of shift maps is established in [18] under more
general assumptions onF . Therefore we will be proving the second part of Theorem 3.5,
see §12. Notice that in comparison with [13, Theorem 1] two additional assumptions are
added: “non-ergodicity” condition (like absence of recurrent orbits) and compactness of
certain subset of singular points. On the other hand the classes of admissible singularities
for F are extended due to results of [14, 19, 20].

3.6. Functions on surfaces. As an application of Theorem 3.5 we will now
show that [15, Theorem 1.3] which used incorrect results of [13] remains true. More-
over, we extend the latter theorem to a large class of functions on surfaces with de-
generate homogeneous singularities satisfying certain “secondary” non-degeneracy con-
ditions.

Let M be a compact surface,P be either the real lineR or the circleS1. For a
smooth mapf W M ! P denote by6 f the set of its critical points. Let alsoS( f )D fh 2
D(M)W f ÆhD f g be the stabilizer off with respect to the action ofD(M) on C1(M, P)
andSid( f ) be the identity component ofS( f ) with respect to theW1-topology.

Theorem 3.7 (cf. [15, Theorem 1.3]). Let f 2 C1(M, P). Suppose that
(i) f takes constant values on connected components of�M and has no critical points
on �M;
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(ii) for every z2 6 f the map f isC1 equivalent near z to a homogeneous polynomial
gz without multiple factorssuch thatdeggz � 2.

If M is orientable and6 f consists of non-degenerate local extremes only, i.e. f
is a Morse map without critical points of index1, then Sid( f ) is homotopy equivalent
to the circle. In all other casesSid( f ) is contractible as well.

Sketch of proof. It suffices to assume thatM is orientable. A non-orientable case
will follow from an orientable one by arguments of [15, §4.7].

Similarly to [15, Lemma 5.1] using (i) and (ii) it is possibleto construct a vector
field F on M with the following properties:
(A) d f (F) D 0, in particularF is tangent to�M;
(B) F(z) D 0 if and only if z 2 M is a critical point ofF , i.e.6F D 6 f ;
(C) for every critical pointz 2 6 f there exists a local presentationf W R2 ! R of f
in which zD 0, f is a homogeneous polynomial of degree� 2 and without multiple
factors, andF(x, y) D (� f 0y, f 0x) is a Hamiltonian vector field off .
Then it follows from (A), (B), and arguments of [15, Lemma 3.5] thatSid( f ) D Did(F)1.

Notice that F belongs to classF (M). Indeed, conditions (a) and (b) are evident.
Moreover, for each periodic point ofF its first recurrent map is the identity, which
implies (c).

Finally by (C) each non-degenerate saddle off is of type (L1), each non-degenerate
local extreme off is of type (L4), while all degenerate critical points off are of types
(H). This implies (d).

HenceSid( f ) D Did(F)1 is either contractible or homotopy equivalent toS1. If M
is orientable and6 f consists of non-degenerate local extremes only, thenf is Morse
and belongs to one of the types (A)–(D) of [15, Theorem 1.9]. In this case the cor-
responding shift map is not injective, whenceSid( f ) is homotopy equivalent toS1.

In all other cases' is injective and soSid( f ) is contractible. Indeed, iff has a
saddle critical point thenF has a on-closed orbit, while iff has a degenerate local
extremez then j 1F(z) D 0.

4. Openness of'
Let V � M be a D-submanifold. Our aim is to find sufficient conditions for the

shift map 'V W func(F, V) ! Sh(F, V) to be a local homeomorphism with respect to
S1-topologies. Since'V is Sr ,r -continuous for allr 2 NN0, this is equivalent toS1,1-
openness of'V . Moreover, as'V is locally injective, we can also require that its local
inverses areS1,1-continuous and defined onS1-open subsets ofSh(F, V).

In this section we show thatSr ,s-openness of'V for somer ,s2 NN0 is equivalent to
Ss,r -continuity of its local inverse definedonly on some neighbourhood of the identity
inclusion iV W V � M in Sh(F, V).
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DEFINITION 4.1. Let A be a group andS be a semigroup with unite. Then
the right action of S on A is a map�W A � S ! A such that� � e D � and � �
( f g) D (� � f ) � g for all � 2 A and f , g 2 S. A map � W S! A is called acrossed
homomorphismif

� ( f g) D (� ( f ) � g)� (g).

Suppose for the moment thatF generates a global flowF. Put S D Sh(F) and
AD func(F) D C1(M, R). Then A is an abelian group and by [13, Equation (8)]S is
a subsemigroup ofC1(M, M) acting from the right onA as follows:

� Æ sW M
s�! M

��! R, � 2 A, s 2 S.

Suppose also that the shift map' of F is injective, i.e.,' W C1(M, R) ! Sh(F) is a
bijection. Then it follows from [13, Equation (8)] that the inverse map

� D '�1 W Sh(F) ! C1(M, R)

is a crossed homomorphism, i.e.

� ( f Æ g) D � ( f ) Æ gC � (g), 8 f , g 2 S.

If ' is not injective, then the local inverse of' near idM is a “local crossed homo-
morphism”. Moreover, if F is not a global flow, thenfunc(F) is an open subset of
C1(M, R) containing the zero function, i.e. a “local group”.

Notice that if Sh(F) were a group and'�1 were a homomorphism, then continuity
of '�1 would be equivalent to its continuity at the unit element idM only, which of
course is a simpler problem. In our caseSh(F) is just a semigroup,'�1 is a local
crossed homomorphism, andfunc(F, V) is in general a local group. Nevertheless we
will now show that continuity of local inverses of' is equivalent to continuity of the
local inverse of' at iV W V � M.

Theorem 4.2. Let V� M be a D-submanifold and r, s 2 NN0. Then the following
conditions are equivalent:
(1) The shift map'V W func(F, V) ! Sh(F, V) is Sr ,s-open;
(2) For every� 2 func(F, V) there exists anSs-neighbourhoodN f of f D 'V (�) in
Sh(F, V) and anSs,r -continuous section of'V , i.e. a map

� W N f ! C1(V , R),

such that� ( f ) D � and 'V Æ � D id(N f ). In other words

f (x) D F(x, � ( f )(x)),

for all g 2 N f and x2 V .



428 S. MAKSYMENKO

(3) Property (2) holds for the zero function� D 0W V ! R and the identity inclusion
f D 'V (0) D iV W V � M.

Proof. (1)) (2). Suppose that'V W func(F, V) ! Sh(F, V) is Sr ,s-open. Since'V is locally injective with respect to theS0-topology, condition (1) means that for every� 2 func(F, V) there exists anSr -open neighbourhoodM� in func(F, V) such that
a) the restriction'V jM� W M� ! 'V (M�) is a bijection,
b) 'V (M�) is Ss-open inSh(F, V), so 'V (M�) D Sh(F, V)\N f , for someSs-open
N f neighbourhood off D 'V (�) in C1(V , M),
c) the inverse map�V D '�1

V W 'V (M�) !M� is Ss,r -continuous.

ThenN f
defD 'V (M�) D Sh(F, V) \N f and �V satisfy condition (2).

The implication (2)) (3) is evident.
(3) ) (1). It suffices to show that for every� 2 func(F, V) there exists an

Sr -open neighbourhoodM� in func(F, V) satisfying conditions a)–c) above. Condi-
tion (3) means that such a neighbourhoodM0 exists for the zero function0.

For every� 2 C1(V , R) define the following subset ofC1(V , M)

U� D f f 2 C1(V , M) W ( f (x), �(x)) 2 dom(F), 8x 2 Vg
and consider a mapq� W U� ! C1(V , M) defined by

q�( f )(x) D F( f (x), �(x)), f 2 U�, x 2 V .

It is easy to see thatU� is S0-open inC1(V , M). Also notice that,q� is Sr ,r -continuous
for all r 2 NN0 and thatiV 2 U� if and only if � 2 func(F, V).

Lemma 4.3. The image of q� coincides withU�� and q�� is its inverse, i.e.,
q�� D q�1� W U�� ! U�. Thus q� is an Sr ,r -homeomorphism(8r 2 NN0) between the
S0-open setsU� and U��.

Proof. Let f 2 U�, i.e. (f (x), �(x)) 2 dom(F) for all x 2 V . Then

(q�( f )(x), ��(x)) D (F( f (x), �(x)), ��(x)) 2 dom(F),

q�� Æ q�( f )(x) D F(F( f (x), �(x)), ��(x)) D F( f (x), �(x) � �(x)) D f (x).

Henceq�(U�) � U�� andq�� Æq� D idU� . Interchanging� and�� will give the result.

Now we turn to the proof of Theorem 4.2. For every� 2 func(F, V) set

M� defD (M0 \ '�1
V (U�)C �) \ func(F, V).

ThenM� is Sr -open in func(F, V).
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Moreover� 2 M�. Indeed, since� 2 func(F, V), we have thatiV 2 U�, whence
0 2 '�1

V (iV ) � '�1
V (U ) and thus� 2M�.

We will show thatM� satisfies the conditions a)–c) above.
a) The restriction of'V to M� is 1-1, since so is'V jM0.

Conditions b) and c) are implied by the following lemma:

Lemma 4.4. Let M0� � M� be anySr -open subset. Then'V (M0�) is Ss-open
in Sh(F, V).

Proof. DenoteM0
0 DM0���. ThenM0

0 �M0\'�1
V (U�) and by the condition b)

for M0 there exists anSs-open subsetN 0 of C1(V , M) such that

'V (M0
0) D Sh(F, V) \N 0.

Define the followingSr ,r -homeomorphism

a� W C1(V , R) ! C1(V , R), a�(�) D � C �.

Then we obtain the following commutative diagram:

(4.1)

M0
0

'V K
a� K

'V (M0
0) D Sh(F, V) \N 0 \ U�

q�K
M0� 'V KSh(F, V) \ q�(N 0 \ U�)

simply meaning thatF(x,�(x)C�(x)) D F(F(x,�(x)),�(x)) for all � 2M0 and x 2 V .
We claim that

'V (M0�) D Sh(F, V) \ q�(N 0 \ U�).

Indeed, by (4.1),'V (M0�) � Sh(F, V) \ q�(N 0 \ U�).
Conversely, letg 2 Sh(F, V) \ q�(N 0 \ U�), i.e., there exist� 2 func(F, V) and

f 2 N 0 \ U� such that

(4.2) g(x) D F(x, �(x)) D F( f (x), �(x)), 8x 2 V .

Then f (x) D F(x, �(x) � �(x)), i.e. f 2 Sh(F, V) and therefore

f D 'V (� � �) 2 Sh(F, V) \N 0 \ U� D 'V (M0
0).

Thus there exists 2M0
0, possibly distinct from� � �, such that f D 'V ( ). Denote� 0 D  C �. Then� 0 2M0� and

g(x) D F( f (x), �(x)) D F(F(x,  (x)), �(x)) D F(x, � 0(x)).
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In other words,g D 'V (� 0) 2 'V (M0�). Lemma 4.4 and Theorem 4.2 are completed.

5. Examples when shift map is not open

In this section we discuss four examples of well-known flows whose shift maps turn
out not to be homeomorphisms onto their images. They have similar nature, but are
given on different types of manifolds. These examples also provide counterexamples to
[13, Theorem 1]. All manifolds in this section are compact, therefore we will not dis-
tinguish weak and strong topologies. In all the examples below our vector fields will
satisfy the assumptions of the following simple lemma:

Lemma 5.1. Let F be a vector field on a compact manifold M tangent to�M.
Suppose that the shift map' of F is injective and for every r2 N0, a Wr -neighbourhood
N of idM , and arbitrary large T> 0 there exists t2 R, regarded as a constant func-
tion t W M ! R, such thatjt j > T and Ft D '(t) 2 N . Then' is not Wr ,s-open for
any r, s 2 NN0. In particular, ' is not a homeomorphism onto its image with respect to
W1-topologies ofC1(M, R) and Sh(F).

Proof. Consider the followingW0-neighbourhood of the zero function:

M0 D f� 2 C1(M, R) W j�(x)j < 1g.
Suppose that there exists aWr -neighbourhoodN of idM such thatN � '(M0). By
assumption there exists a constant functiont > 1 such that'(t) 2N . Since' is inject-
ive, andt �M0, we obtain that'(t) � '(M0), whenceN � '(M0). This contradiction
implies that' is not Wr ,s-open for anyr , s 2 NN0.

Irrational flow. For simplicity we will consider the irrational flow onT2. Let� 2 R be an irrational number andF be theirrational flow on the 2-torusT2 D R2=Z2

given by F(x, y, t) D (x C t , yC t=�).

Lemma 5.2. The shift map' W C1(T2, R) ! C1(T2, T2) of F is not Wr ,s-open
for any r, s 2 NN0.

Proof. Notice that every orbit ofF is non-closed and everywhere dense, so' is
injective. First we give convenient formulas for the metrics generatingWr -topologies
on C1(T2, T2). Let f W T2 ! T2 be aC1 map. Then f lifts to someZ2-equivariant
map Qf D ( Qf1, Qf2)W R2 ! R2. Let I 2 D [0, 1]� [0, 1] � R2 be the fundamental domain
for the covering mapp W R2 ! T2. Define ther -th norm of f by

k f kr D X
jD1,2

 
sup

(x,y)2I 2

min(fj Qf j jg, 1� fj Qf j jg)C X
1�i1Ci2�r

sup
(x,y)2I 2

���� � i1Ci2 Qf j�xi1�yi2

����
!

,
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where fjt jg is the fractional part of the absolute value oft 2 R.
Let " > 0 andN r" D f f 2 C1(T2, T2)W k f �idT2kr < "g be a baseWr -neighbourhood

of idT2 D '(0) 2 C1(T2, T2) for some" > 0. We will show that there exists arbitrary
large (by absolute value)n 2 Z such that'(n�) D Fn� 2 N r" . Then our lemma will
follow from Lemma 5.1.

Notice thatFn�(x, y) D (xCn�, yCn) � (xCn�, y) for all n 2 Z, i.e., Fn� is just
a “rotation along the first coordinate”. Since this map is defined by adding constants to
coordinates, it follows from formula fork f kr that for eachr 2 N0 the distance between
idT2 and Fn� with respect to theWr -topology is equal to

kFn� � idT2kr D min(fjn�jg, 1� fjn�jg)
and therefore does not depend onr .

Since� is irrational, the setT� D fmin(fjn�jg, 1�fjn�jg)gn2Z is everywhere dense
in S1 D R=Z. Hence there are arbitrary large (by absolute value)n 2 Z such thatkFn� � idT2kr < ", i.e. Fn� 2 N r" .

Irrational flows on a solid torus. Let D2 D fz 2 C W jzj � 1g be the unit disk
in the complex plane,T D S1 � D2 be the solid torus, and� be an irrational num-
ber. Define the following flow onT by F(�, z, t) D (� C t mod 1,e2� t=�z). Then by
the arguments similar to Lemma 5.2 is can be shown thatF satisfies assumptions of
Lemma 5.1.

The main feature of this example is thatF has periodic orbit D S1 � 0 and all
other ones are recurrent. LetB D 1�D2 be andRW B ! B be the first recurrence map
of  defined byR(z) D e2�=�z, i.e. it is the rotation by 2�=�. Then R is not periodic,
eigen values of its tangent mapT0R at 02 B have modulus 1, and the iterations ofR
can be arbitrary close to idB. ThusF satisfies all assumptions but (b) of Definition 3.4
of classF (T2).

Periodic linear flows. Given �1, : : : , �n 2 R define the following linear flow onR2n D Cn by

(5.1) F(z1, : : : , zn, t) D (ei�1t z1, : : : , ei�nt zn).

Evidently, the closed 2n-disk Dr of radiusr and centered at the origin is invariant with
respect toF.

Lemma 5.3. The following conditions are equivalent:
(1) F� D idCn for some� > 0, i.e. � j � 2 Z for all j D 1, : : : , n;
(2) every z2 Cn is either fixed or periodic with respect toF;
(3) at least one point zD (z1, : : : , zn) with all non-zero coordinates is periodic.
A flow satisfying one of these conditions will be calledperiodic.
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Proof. The implications (1)) (2)) (3) are evident. (3)) (1) Let z 2 Cn be a
periodic point with all non-zero coordinates and� be the period ofz with respect to
F. Then ei� j �zj D zj ¤ 0 for all j D 1, : : : , n, whence� j � �=2� 2 Z.

Lemma 5.4. If F is not periodic then its shift map' is injective and is not
Wr ,s-open for any r, s 2 NN0.

Proof. By Lemma 5.3 every pointz 2 Cn with all non-zero coordinates is non-
periodic and it is easy to see that its orbit is dense on some open subset of the sphere
S2n�1jxj D �Djxj of radius jxj. In particular, this orbit is non-closed, whence the shift
map of F is injective. Then similarly to Lemma 5.2, we can find arbitrary large t 2 R
such thatFt is arbitrary close to idR2n in any of Wr -topologies.

Flow on S2n, n � 2. We will now extend the last result for the construction of a
flow on the sphereS2n with two fixed points at which this flow is linear.

Let R2n
1 andR2n

2 be two copies ofR2n D Cn. Define a diffeomorphism� W R2n
1 nf0g ! R2n

2 nf0g by �(z)D z=kzk2, wherekzk is the usual Euclidean norm inR2n. Then� maps every sphere of radiusr centered at 0 to the sphere of radius 1=r . Gluing R2n
1

andR2n
2 via � we obtain a 2n-sphere.

Notice that Equation (5.1) defines the flows onR2n
1 andR2n

2 so that the following
diagram is commutative:

R2n
1 n f0g � K
Ft K

R2n
2 n f0g

FtK
R2n

1 n f0g � KR2n
2 n f0g.

Hence these flows determine a unique flowF0 on S2n with two fixed points. Moreover,
F0 is linear on the chartsR2n

1 andR2n
2 at these points.

Now suppose thatF is not periodic. Then we can find arbitrary larget 2 R such
that Ft is arbitrary close to idR2n in any of Wr -topologies. This implies thatF0 satisfies
assumptions of Lemma 5.1.

6. Regular and trivial extensions

The results of this section will allow to estimate continuity of shift maps for vector
fields of types (L) and (H).

Let M, N be two manifolds,G be a vector field onM, F be some regular exten-
sion, and NG be the trivial extension ofG on M � N. Thus

F(x, y) D (G(x), H (x, y)), NG(x, y) D (G(x), 0),
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for some smooth mapH W M � N ! T N. By F, NG, and G we will denote the corres-
ponding local flows, and by', N , and the corresponding shift maps ofF , NG, and
G. It is easy to see that

(6.1) dom(F) � dom( NG) D dom(G) � N.

Moreover,

(6.2) F(x, y, t) D (G(x, t), H(x, y, t)), NG(x, y, t) D (G(x, t), y),

for some smooth mapH W dom( NG) ! N.
Let V � M �N be a connected compactD-submanifold. Then it follows from (6.1)

that func(F, V) is W0-open infunc( NG, V). Define the map

P W Sh(F, V) ! Sh( NG, V)

by the rule: if f 2 Sh(F, V), and f (x, y) D (A(x, y), g(x, y)), then P( f )(x, y) D
(A(x, y), y). It follows from (6.2) that P is well defined and isWr ,r -continuous for
every r 2 N0. Moreover, we have the following commutative diagram:

(6.3)

func(F, V)
'V K,

K N V

K
Sh(F, V)

PK
func( NG, V)

N V KSh( NG, V).

Theorem 6.1. Suppose that6G is nowhere dense in M and thatN V is Wr ,s-open
for some r, s 2 NN0.
(1) If N V is injective, then 'V is Wr ,s-open as well.
(2) If 'V is Wr ,s-open, then P is locally injective with respect to theWs-topology
of Sh(F, V).
Suppose in addition thatN V is also Ws,t -open for some t2 NN0.
(3) If P is locally injective with respect to theWs-topology of Sh(F, V), then 'V is
Wr ,t -open.
(4) If both N V and 'V are not injective, then P is locally injective with respect to the
W0-topology of Sh(F, V), whence, by (3), 'V is Wr ,t -open.

Proof. (1) If N V W func( NG, V) ! Sh( NG, V) is a bijection, it follows from (6.3)
that so is'V . Let M � func(F, V) be aWr -open subset. Then

'V (M) D P�1 Æ N V (M)

is Ws-open inSh(F, V) due toWr ,s-openness ofN V and Ws,s-continuity of P.
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(2) Let � 2 func(F, V) and f D 'V (�). We will find a Ws-neighbourhood off
such thatPjN is 1-1.

Since both'V and N V areWr ,s-open and locally injective with respect toW0-topologies
of func(F, V) and func( NG, V) respectively, there exists aWr -neighbourhoodM of � in
func(F, V) such thatN D 'V (M) is aWs-neighbourhood off in Sh(F, V) and the restric-
tions of'V and N V to M are 1-1. Then it follows from (6.3) thatPjN is 1-1 as well.

(3) LetM � func(F, V) be aWr -open subset and� 2M. We will show that there
exists aWs-neighbourhoodM0 � M of � such that'V (M0) is Wt -open inSh(F, V).
Since� 2M is arbitrary, we will obtain that'V (M) is Wt -open inSh(F, V).

It follows from Wr ,s-openness ofN V jM andWs,s-continuity of P that the setP�1 ÆN V (M) is a Ws-open neighbourhood of'V (�) in Sh(F, V). Moreover, sinceP is locally
injective with respect to theWs-topology of Sh(F, V), there exists aWs-neighbourhood
N � P�1 Æ N V (M) of 'V (�) such that the restrictionPjN W N ! Sh( NG, V) is injective.

DenoteM0 DM \ '�1
V (N ). We claim that

'V (M0) D P�1 Æ N V (M0) \N ,

whence'V (M0) will be Wt -open inSh(F, V). Indeed,

P�1 Æ N V (M0) \N
(6.3)D P�1 Æ P Æ 'V (M0) \N

injectivity of PjND 'V (M0).
(4) Suppose that bothN V and 'V are not injective. We will show that for some

m> 0 there exists a freeP-equivariant action of the groupZm on Sh(F, V) such that
P( f ) D P(g) if and only if f , g belongs to the sameZm-orbit. This will give us
a decomposition

P W Sh(F, V)
q�! Sh(F, V)=Zm

��! Sh( NG, V)

in which q is a covering map, and� is a bijection with the imageP(Sh(F, V)) �
Sh( NG, V). Then q will be locally injective with respect to theW0-topology sinceZm

is a finite group. Hence so will beP.
By Lemma 2.3 (5b)func( NG, V) D func(F, V ) D C1(V ,R), ker( N V ) D fnN�gn2Z, and

ker('V ) D fn�gn2Z for some smooth functionsN�, � W M � N ! (0,1) such that

NG(x, y, t C N�(x, y)) � NG(x, y, t), F(x, y, t C �(x, y)) � F(x, y, t).

In other words

(6.4)
(G(x, t C N�), y) D (G(x, t), y),

(G(x, t C �), H(x, y, t C �)) D (G(x, t), H(x, y, t)).

It follows that NG(x, y, t C �) D (G(x, t C �), y) D (G(x, t), y) D NG(x, y, t), whence� 2 ker( N V ), i.e. � D mN� for somem 2 Z.
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In particular, by (2) of Lemma 2.3,N� is constant along orbits ofF . Since for every� 2 func(F, V) the map'V (�) preserves every orbit ofF , we have thatN� Æ 'V (�) D N�,
whence

'V ( N�) Æ 'V (�)
[13, Equation (8)]D 'V (� C N� Æ 'V (�)) D 'V (� C N�).

Then we can define an action� of the groupZm on Sh(F, V) by

k � f D 'V (k N�) Æ f , k 2 Zm, f 2 Sh(F, V).

Evidently this action is free and by (6.4) is equivariant with respect toP.
Moreover, let f D 'V (�), g D 'V (�) for some�, � 2 func(F, V) and suppose

that P( f ) D P(g), i.e. N V (�) D N V (�). Then it follows from (3) of Lemma 2.3 that� � � D k N� for somek 2 Z, whence f D 'V (k N�) Æ g. Moreover, since� D mN�, we
may takek modulom. In other words,P( f ) D P(g) if and only if f D k�g for some
k 2 Zm.

7. Vector fields of types (L) and (H)

The following lemma shows that property of openness of shiftmaps near singular
points is invariant under reparametrizations.

Lemma 7.1 (cf. [20].). Let F be aC1 vector field on M, � W M ! (0,C1) a
C1 strictly positive function, and GD �F. Let also V� M be a D-submanifold and'V and V be shift maps for F and G respectively. Then Sh(F, V) D Sh(G, V). More-
over, 'V is Sr ,s-open iff so is V .

Proof. Define the functions� W dom(F) ! R and � W dom(G) ! R by

�(x, s) D Z s

0
�(G(x, � )) d� , �(x, s) D Z s

0

d��(F(x, � ))
.

Then it is well-known that for eachf 2 func(F, V) and g 2 func(G, V), see e.g. [20],

G(x, g(x)) D F(x, �(x, g(x))), F(x, f (x)) D G(x, �(x, f (x))),

for all x 2 V . Define the following map

� W func(G, V) ! func(F, V), � (g)(x) D �(x, g(x)).

Then � is a homeomorphism with respect to topologiesWr for all r , and its inverse is
given by ��1( f )(x) D �(x, f (x)). Moreover V D 'V Æ � . Hence'V is Sr ,s-open iff
so is V .
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Thus for the study of vector fields of types (L) and (H) is suffices to consider
linear and reduced Hamiltonian vector fields only.

Lemma 7.2 ([19, 14]). Let gW R2 ! R be a homogeneous polynomial, G be its
reduced Hamiltonian vector field, F be a trivial n-extension of G onRn �R2, and V
be a D-neighbourhood of0 2 RnC2. Then the shift map'V of F is W1,1-open. If
degG � 2, i.e. G is of type(H), then for every regular n-extension of G its shift map
is W1,1-open as well.

Proof. It follows from [19, 14] that the shift mapN V of NG has aW1,1-continuous
local section on some neighbourhood of the identity inclusion iV W V � RnC2, see also
[19, Theorem 11.1]. By Theorem 4.2 this impliesW1,1-openness of V .

Moreover, if degG � 2, i.e. the linear part ofF at 0 vanishes, then by Lemma 2.3'V is injective. Hence by (1) of Theorem 6.1 the shift map ofG is W1,1-open as well.

Lemma 7.3. Let B be a non-zero(k�k)-matrix, G(y)D By be the corresponding
linear vector field onRk, G(y, t) D eBt y be its flow, and F be a vector field onRnCk

being a regular(possibly trivial) n-extension of G with respect to the origins ofRnCk

and Rk as indicated in the third column of the table below. Let also V� RnCk be a
D-neighbourhood of the origin0 2 RnCk. Then the shift map'V of F is Wr ,s-open for
the values r, s described in the following table.

type B F openness of'V

1 (L1) B D kak, a ¤ 0, regular Wr ,rC1, r � 0

2 (L1) B D  a �b
b a

, a, b¤ 0 regular Wr ,rC2, r � 0

3 (L2) B D  0 1
0 0

, regular Wr ,rC1, r � 0

4 (L3) B D


0 �b 1 0
b 0 0 1
0 0 0 �b
0 0 b 0

, b ¤ 0 regular W1,1
5 (L4) B D  0 �b

b 0

, b ¤ 0 trivial W1,1

6 B D


0 �b1
b1 0

...
0 �bl
bl 0


, l � 2

6a (L4)
(a) b j � 2 Z for some� > 0 and all
j D 1, : : : , l (periodic case)

trivial W1,1
6b (L5) (b) otherwise(non-periodic case) — —
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Proof. In Cases 1–3 we will first suppose thatF is a trivial n-extension ofG.

Then F is linear and is generated by the following matrix
 0n 0

0 B

, where 0n is the

zero (n � n)-matrix. Let � denote the coordinates inRn.
CASE 1. In this caseF(� , x) D ax�=�x, (a ¤ 0), F generates the following

global flow F(� , x, t) D (� , xeat) on RnC1, 'V is injective (becauseF has non-closed
orbits), its imageSh(F, V) consists of mapsf D ( f1, f2) 2 C1(V , Rn � R) satisfying
the following conditions:

f1 � � , f2(� , 0)D 0,
� f2(� , 0)�x

> 0, x f2(� , x) > 0 (8x ¤ 0),

and the inverse mapping'�1
V W Sh(F, V) ! C1(V , R) is given by

(7.1) '�1
V ( f )(� , x) D 1

a
ln

f2(� , x)

x
D 1

a
ln
Z 1

0

� f2(� , t x)�x
dt,

see [13, Equation (23) and (27)]. Hence'�1
V is WrC1,r -continuous for allr � 0, whence'V is Wr ,rC1-open.

CASE 2. We will regardRnC2 asRn �C. Sincea ¤ 0, we have thatF has non-
closed orbits, whence again its shift map'V is injective but now the imageSh(F, V)
can not be described so simply as in the previous cases. Let� 2 C1(V , R) and f D
( f1, f2) D 'V (�) 2 C1(V , Rn � C). Then f1 � � . Notice that we can define complex
conjugate Nf2 and its partial derivatives� Nf2=�z and � Nf2=� Nz in z and Nz in a usual way.
Then it follows from [13, Equation (29) and Lemma 34] that

�(� , z) D 1

2a
ln

Im(! f2 d Nf2( N!))

Im(!z N!)
D 1

2a
ln

Im(! � f2 � ((� Nf2=�z)!C (� Nf2=� Nz) N!))

y(a2 C b2)

and that the numerator of the last fraction is equal to zero, when y D 0. It follows
from this formula and the Hadamard lemma that the expressionof � via f contains
partial derivatives off up to order 2. Hence'�1

V is WrC2,r -continuous for allr � 0.
CASE 3. Now F(� , x, y)D y�=�x for (� , x, y) 2 RnC2 and it generates the follow-

ing flow F(� , x, y, t)D (� , xCyt, y). Then'V is again injective (sinceF has non-closed
orbits), its imageSh(F, V) consists of mappingsf D ( f1, f2, f3) 2 C1(V , Rn �R�R)
such that

f1 � � , f2(� , x, 0)D 0, f3 � y,

and the inverse map'�1
V W Sh(F, V) ! C1(V , R) is given by

(7.2) '�1
V ( f ) D f2(� , x, y) � x

y
D Z 1

0

� f2(� , x, ty)�y
dt,

see [13, Equation (26)]. Hence'�1
V is WrC1,r -continuous for allr � 0.
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Since in Cases 1–3'V is injective, it follows from (1) of Theorem 6.1 that the
same estimations of continuity of'�1

V hold for regular extensions ofG.
Notice that in the remaining Cases 4–6F is a regularn-extension of the linear

vector fieldG5 D �by�=�xCbx�=�y defined by the matrixB5 D  0 �b
b 0

. In fact, it

is easy to see that this vector field is the Hamiltonian vectorfield of the homogeneous
polynomial g(x, y) D (b=2)(x2 C y2). Also notice that the shift map'V of any trivial
extensionF of G5 is not injective and its kernel ker('V ) consists of integer multiples
of constant function 2�=b.

CASE 5. It follows from Lemma 7.2 that local inverses of'V areW1,1-continuous.
An independent proof ofW1,1-continuity of'V for this case is also given in [21] under
more general settings. Notice that in this case we claim nothing about openness of shift
maps of regular extensionsF of G5, since due to Theorem 6.1 it is necessary to have
additional information aboutF .

CASE 4. We will regardR4 asC2. Suppose at first thatF is a trivial n-extension
of G. Since G is a regular 2-extension ofG5, we see thatF is a regular (n C 2)-
extension ofG5. Let also NG be a trivial (nC 2)-extension ofG5. Thus F and NG are
defined onRn � C � C and generate the following global flows:

F(� , z1, z2, t) D (� , eibt (z1 C tz2), eibt z2), NG(� , z1, z2, t) D (� , z1, eibt z2).

Denote� D 2�=b and let V � Rn � C2 be a D-neighbourhood of 02 Rn � C2. For
every � 2 C1(V , R) put

f(�)(� , z1, z2) D eib�(� ,z1,z2)z1, g(�)(� , z1, z2) D eib�(� ,z1,z2)z2,

Then the shift maps'V and N V of F and G respectively are given by

(7.3) 'V (�) D (� , f(�)C � � g(�), g(�)), N V (�) D (� , z1, g(�)).

Similarly to (6.3) defineP W Sh(F, V) ! Sh( NG, V) by the following rule: if h D
(� , f , g) 2 Sh(F, V) � C1(V , Rn � C � C), then P(h)(� , z1, z2) D (� , z1, g(z1, z2)).
Evidently, N V D P Æ 'V .

By Case 5 the shift mapN V W C1(V , R) ! Sh( NG, V) is W1,1-open. We claim
that so is'V W C1(V , R) ! Sh(F, V). Since G has non-closed orbits,N V is always
injective, whence it will follow from (1) of Theorem 6.1 thatthe shift map of any
regular extension ofG is W1,1-open as well.

By (3) of Theorem 6.1 it suffices to show thatP is locally injective with respect
to the W1-topology. Evidently, �1

V Æ  V (�) D f� C �ngn2Z, whence we obtain from
(7.3) that

P�1 Æ N V (�) D f'V (�)C (0, �n � g(�), 0) j n 2 Zg.
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Now, define the followingC1
W-neighbourhood of'V (�) in Sh(F, V):

N D �
f 2 Sh(F, V) k f � 'V (�)k1

V < j� j
4

�
.

We claim that the restrictionPjN is 1-1.
Since'V is injective map, it suffices to establish thatn D 0, whenever both'V (�)

and 'V (� C �n) belong toN for some� 2 C1(V , R). Notice that

kg(�)k1
V � jg(�)0z2

j(z1,z2)D0 D jeib �(ibz2� 0z2
C 1)j(z1,z2)D0 D 1.

Then

k'V (�) � 'V (� C �n)k1
V � k'V (�) � 'V (�)k1

V C k'V (� C �n) � 'V (�)k1
V

� j� j
2

.

On the other hand,

k'V (�) � 'V (� C �n)k1
V D k(0, �ng(�), 0)k1

V � j�nj.
Hencen D 0.

CASE 6a. In this caseF is a regular extension ofG5. Since the flowF is peri-
odic, we have that the shift maps ofF and G5 are not injective and by Case 5 the
shift map ofG5 is W1,1-open. Then by (4) of Theorem 6.1 so is the shift map ofF .

CASE 6b. In this case'V is injective, but as it is shown in Lemma 5.4 its inverse
map is not evenW1,1-continuous.

Lemma 7.3 is completed.

REMARK 7.4. Incorrect estimations of continuity of local inversesof 'V given in
[13, pp. 199–200] were bases on at the following “division lemma”, which was wrongly
formulated1 in [13].

Lemma 7.5 (cf. [13, Lemma 32]). Let F be eitherR or C, V � F be a D-
submanifold, and ZW C1(V ,F)! C1(V ,F) be a map defined by the formula: Z(�)(x)D
x � �(x). If F D R then the inverse map Z�1 W im Z ! C1(V , F) is WrC1,r -continuous
for all r � 0. If F D C, then Z�1 is only W1,1-continuous.

The caseF D R easily follows from the Hadamard lemma, see also [25]. The caseF D C is more complicated and can be established by methods of [19,14] but during
the proof of Lemma 7.3 we avoided referring to it.

1In [13, Lemma 32] it was claimed thatZ�1 is Wr ,r -continuous for allr 2 NN0. But the latter
inequality in the proof of [13, Lemma 32] actually showsWr ,r -continuity of Z but not of its inverse.
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8. Fragmentation

The aim of this section is to repair [13, Theorem 17] by givinga sufficient condi-
tion for the shift map'W func(F) ! Sh(F) to be either a homeomorphism or an infinite
cyclic covering map with respect toS1-topologies, see Theorem 8.2.

REMARK 8.1. The error occurred in the third paragraph of [13, Theorem 17],
where it was claimed that “. . . the imageNi D 'Ui (M

0
i ) is a Cr

W-neighbourhood of
f jUi in C1(Ui , M) for all r 2 N0.” First of all this phrase contains a misprint: in-
stead ofC1(Ui , M) the author supposed to be written im'Ui . But nevertheless the
statement thatNi is Cr

W-open in im 'Ui does not follow from the assumptions of [13,
Theorem 17] and must be included into the formulation of “section” property (S)0 of
[13, Definition 15]. This is the point which was missed.

Theorem 8.2 (cf. [13, Theorem 17]). Let F be a vector field on M such that6F is nowhere dense. Suppose that there exists a2 N0, a function dW N0 ! N0, a lo-
cally finite coverfVi gi23 of M by D-submanifolds, and a finite(possibly empty) subset30 � 3 such thatfInt Vi gi23 is also a cover of M, and the local shift map

'Vi W func(F, Vi ) ! Sh(F, Vi )

is S1,1-open if i2 30 and Sr ,d(r )-open for all r� a if i 2 3 n30. Then the shift map

' W func(F) ! Sh(F)

is S1,1-open. Moreover, if 30 D ¿, then ' is Sr ,d(r )-open for every r� a.
Hence if'W func(F) ! Sh(F) is injective, then it is a homeomorphism with respect

to S1-topologies. Otherwise, ' is a Z-covering map.

Proof. The proof follows the line of [13, Theorem 17]. Since6F is nowhere
dense, there exists a continuous functionÆ W M ! (0,1) such that for every periodic
point x of period �x we have thatÆ(x) < 3�x, see [13, Proposition 14].

Let � 2 func(F), r � a, dr be a metric on the manifoldJr (M,R) of r -jets, �W M !
(0, 1) be a strictly positive continuous function such that� < Æ, and

M
defD f� 2 func(F) j dr ( j r�(x), j r�(x)) < �(x), 8x 2 Mg

be a baseSr -neighbourhood of�, where j r�(x) denotes ther -jet of � at x. Then the
restriction of ' to M is injective, [13, Proposition 14]. We will show that'(M) is
S1-open in Sh(F) and if 30 D ¿, then '(M) is evenSd(r )-open in Sh(F). This will
complete Theorem 8.2.

For everyi 2 3 let

(8.1) Mi
defD f� 2 func(F, Vi ) W dr ( j r�(x), j r�(x)) < �(x), 8x 2 Vi g
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be anSr -neighbourhood of�jVi in func(F, Vi ). It follows from assumption about open-
ness of'Vi that

'Vi (Mi ) D Sh(F, Vi ) \Ni ,

whereNi is S1-open inC1(Vi , M) for i 2 30 andSd(r )-open fori 2 3n30. Moreover,
the restriction of'Vi to Mi is one-to-one.

Let pi W C1(M,R)! C1(Vi ,R) andqi W C1(M, M)! C1(Vi , M) be the “restriction
to Vi ” maps. Then we have the following commutative diagram

(8.2)

func(F)
' K

pi K
Sh(F)

qiK
func(F, Vi )

'Vi KSh(F, Vi ).

By definition ' and 'Vi as surjective. It also follows from definitions offunc(F) and
func(F, Vi ) and assumption thatVi is a D-submanifold, that every� 2 C1(V , R) ex-
tends to someN� 2 C1(M, R). Moreover, if � 2 func(F, Vi ), we can assume thatN� 2
func(F), whencepi (func(F))D func(F, Vi ). Thereforeqi is surjective as well. It follows
from definition that

M D\
i23 p�1

i (Mi ).

Put

(8.3) N
defD[

i23 q�1
i (Ni ).

SincefVi gi23 is a locally finite cover and30 is finite2, it follows from [13, Lemma 18]
thatN is S1-open inC1(M, M) and evenSd(r )-open if30 D ¿. We will now show that

(8.4) '(M) D Sh(F) \N .

This will complete our theorem.
It follows from (8.2) and (8.3) that'(M)� Sh(F)\N . Conversely, letg 2 Sh(F)\

N . ThengjVi D qi (g) 2 Sh(F, Vi )\Ni D 'Vi (Mi ) for all i 2 3 and gD '(� 0) for some� 0 2 C1(M,R). We have to find (possibly another) function� 2M such thatgD '(�).
Since the restriction of'Vi to Mi is injective, gjVi D 'Vi (�i ) for a unique�i 2Mi .

It remains to show that�i D � j on Vi \ Vj for all i , j 2 3. SincefInt Vi gi23 is a
cover of M as well, the family of functionsf�i gi23 will define a unique smooth func-
tion � 2Si23 p�1

i (Mi ) DM such that�jVi D �i and'(�) D g. This will prove (8.4)
and complete our theorem.

2If 30 were infinite, thenN would be open in the so-called very-strong topology, see [9]
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Let x 2 Int Vi \ Int Vj for somei , j 2 3. Then g(x) D F(x, �i (x)) D F(x, � j (x)).
If x is a non-periodic regular point, then�i (x) D � j (x).
If x is periodic of period�x, then�i (x)�� j (x)D b�x for someb 2 Z. But j�i (x)�� j (x)j � j�(x) � �i (x)j C j�(x) � � j (x)j < 2Æ(x) < �x, whenceb D 0.
Thus �i D � j on (IntVi \ Int Vj ) n 6F . Since6F is nowhere dense, we see that�i D �i on all of Vi \ Vj as well.

9. Replacing M with an open subset

Theorem 8.2 reduces the verification of openness of the shiftmap to openness of a
family of shift mapsf'Vi g, wherefVi g is any locally finite cover ofM by D-submanifolds.
Our next aim is to “localize” the verification an openness of'V by replacing all the mani-
fold M with an open neighbourhoodW of V .

Let F be a vector field onM, W � M be a connected, open subset, andFW W W �R � dom(FW) ! W be the local flow generated by the restrictionF jW of F to W. Then

dom(FW) � dom(F) \ (W � R)

and F D FW on dom(FW). Let V � W be a D-submanifold. Thenfunc(FW, V) is an
S0-open subset offunc(F, V), and the corresponding shift map'W,V of FW coincides
with 'V on func(FW, V), i.e.

(9.1) 'W,V D 'V jfunc(FW,V) W func(FW, V) ! Sh(FW, V) � Sh(F, V).

The following statement characterizes openness of'V via openness of'W,V .

Theorem 9.1. Let V� W be a D-submanifold, and r, s2 NN0. Then the following
conditions(A)–(C) are equivalent:
(A) The shift map'V is Sr ,s-open;
(B) The shift map'W,V is Sr ,s-open and its image Sh(FW, V) is Ss-open in Sh(F, V),
i.e. there exists anSs-open subsetN � C1(V , W) such that

Sh(F, V) \N D Sh(FW, V).

(C) The shift map'W,V is Sr ,s-open and there exists anSs-neighbourhoodN of the
identity inclusion iV W V � M in C1(V , M) such that

Sh(F, V) \N � Sh(FW, V).

Proof. (A)) (B). Sincefunc(FW, V) is anS0-open subset offunc(F, V) and'V

is an Sr ,s-open map, it follows that the restriction

'V jfunc(FW ,V) D 'W,V
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is an Sr ,s-open map and its imageSh(FW, V) is Ss-open inSh(F, V).
The implication (B)) (C) is evident.
(C) ) (A). Suppose that'W,V is Sr ,s-open. Then by (2) of Theorem 4.2 there

exists anSs-neighbourhoodU of the identity inclusioniV W V � W in C1(V , W) and
an Ss,r -continuous section of'W,V defined onU 0 D U \ Sh(FW, V):

� W Sh(F, V) � Sh(FW, V) � U 0 ��! func(FW, V) � func(F, V),

i.e., 'W,V Æ � D idU 0 .
SinceSh(F, V)\N � Sh(FW, V) andC1(V , W) is anS0-open subset ofC1(V , M),

we obtain thatU 00 D U 0 \ N is an Ss-neighbourhood ofiV W V � M in C1(V , M).
Moreover,'V coincides with'W,V on func(FW, V). Therefore� is also a section of'V defined onU 00. Then by (2) of Theorem 4.2'V is Sr ,s-open.

Emphasize that in this theoremW is an arbitrary open neighbourhood ofV .

10. Openness ofSh(FW , V) in Sh(F): Regular case

Let z be a regular point ofF , i.e. F(z) ¤ 0. In this section we present necessary
and sufficient conditions forWr ,r -openness of local shift map'V , where V is arbi-
trary smallD-neighbourhood ofz, see Theorem 10.2. As a consequence we will obtain
the following

Theorem 10.1. Suppose that z is a regular point of F having one of the follow-
ing properties:
(a) z is non-periodic and non-recurrent;
(b) z is periodic and the germ at z of its first recurrence map RW (B, z) ! (B, z) is
periodic;
(c) z is periodic and the tangent map TzRW TzB ! TzB has at least one eigen value� such thatj�j ¤ 1.
Then for any sufficiently small connected D-neighbourhood Vof z the corresponding
shift map'V of F is Wr ,r -open for all r� 1. Moreover, if z satisfies either(a) or (b),
then 'V is W0,0-open as well.

The proof will be given in §10.8.
Since z is a regular point ofF , there exist" > 0, a neighbourhoodW0 of z, and

a diffeomorphism

� W W0 ! Rn�1 � (�4", 4")
such that in the coordinates (y, s) on W0 induced by� we have that

F((y, s), t) D (y, sC t),
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Fig. 3. Flow box.

whenevers, sC t 2 (�4", 4"). We will call W0 a 4"-flow-box atz, see Fig. 3. Let also
W D ��1(Rm�1�(�","))� W0 be the “central”"-flow-box atz. For everyD-submanifold
V � W denote

(10.1) UV D f� 2 func(F, V) W 'V (�)(V) � Wg.
Then func(FW, V) � UV and

(10.2) 'V (UV ) D Sh(F, V) \ C1(V , W)

is a W0-open neighbourhood ofiV in Sh(F, V).
Let p1 W W0 ! Rm�1 and p2 W W0 ! (�4", 4") be the standard projections. Then

we can define two mapsP1 W UV ! C1(V , Rm�1) and P2 W UV ! C1(V , (�", ")) by

P1(�) D p1 Æ 'V (�) W V
'V (�)���! W � Rm�1 � (�", ") p1�! Rm�1,

P2(�) D p2 Æ 'V (�) W V
'V (�)���! W � Rm�1 � (�", ") p2�! (�", "),

for � 2 UV . Thus'V (�) D (P1(�), P2(�)).

Theorem 10.2. Let V� W be aconnectedcompact D-submanifold, and 0W V !R be the zero function.
(1) Then the map P1 is locally constant with respect to theW0-topology ofUV and its
image P1(UV ) � C1(V , Rm�1) is at most countable.
(2) The shift map'V W func(F, V) ! Sh(F, V) is Wr ,r -open if and only if P1(0) is an
isolated point of P1(UV ) in C1(V , Rm�1) with respect to theWr -topology.

Proof. (1) We need the following lemma:

Lemma 10.3. Let �, � 2 UV . Then one of the following conditions holds true:
(i) j�(x) � �(x)j < 2" for all x 2 V ,
(ii) �(x) � �(x) > 6" for all x 2 V ,
(iii) �(x) � �(x) > 6" for all x 2 V .
Moreover, condition (i) implies that
(iv) P1(�) D P1(�) and P2(�) D P2(�)C � � �.
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Proof. Define the following three open, mutually disjoint subsets ofV :

K1 D fx 2 V W j�(x) � �(x)j < 2"g,
K2 D fx 2 V W �(x) � �(x) > 6"g,
K3 D fx 2 V W �(x) � �(x) > 6"g.

Let x 2 V and suppose thatj�(x) � �(x)j � 2", i.e. x � K1. Since W is the central"-flow-box of a 4"-flow-box, and

'V (�)(V) [ 'V (�)(V) � W,

we see thatj�(x)� �(x)j > 6", i.e. x 2 K2[ K3. Thus V D K1[ K2[ K3. SinceV is
connected andK i are open and disjoint, we obtain thatV coincides with one of them.

(i) ) (iv). Denote f D 'V (�), g D 'V (�), and � (x) D �(x) � �(x). Then

(10.3) g(x) D F(x, �(x)) D F(F(x, �(x)), �(x) � �(x)) D F( f (x), � (x))

for all x 2 V . Suppose thatj� j < 2" on all of V . Recall thatF(y, sI t) D (y, sC t)
whenevers, t , sC t 2 (�4", 4") and y 2 Rm�1. Since jP2(�)j, jP2(�)j < ", we obtain
that jP2(�)C � j < 3" and

(P1(�), P2(�)) D g
(10.3)D F(P1(�), P2(�)I � ) D (P1(�), P2(�)C � ).

Hence P1(�) D P1(�) and P2(�) D P2(�)C � � �.

Corollary 10.4. Define the followingequivalencerelation onUV by

� � � if and only if j� � �j < 2".
Then every class isW0-open and by(iv) of Lemma 10.3the map P1 is defined on the
equivalence classes, whence P1 is locally constant.

Moreover, there is a well-defined strict order on the equivalence classes of�: if
A and B are two distinct classes of� then

A > B if and only if � � � > 6"
on V for some� 2 A and � 2 B. Hence there are at most countable many classes of�, and therefore the image of P1 is at most countable.

Proof. We have only to show that the definition of “>” does not depend on a
particular choice of� and �. Let �0 2 A and � 0 2 B be another functions. Then

�0 � � 0 D (�0 � �)C (� � �)C (� � � 0) > �2" C 6" � 2" D 2".
Hence by Lemma 10.3,�0 � � 0 > 6" as well.
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This corollary proves statement (1) of Theorem 10.2.
(2) Let A0 be the equivalence class of� containing the zero function0, i.e. A0 Df� 2 UV W j�j < 2"g. Then it is easy to see that

A0 D func(FW, V), whence Sh(FW, V) D 'W,V (A0) D 'V (A0).

Thus we obtain the following commutative diagram

A0 D func(FW, V)

'W,VD'VK
, KUV

'VK
, K func(F, V)

'VK'V (A0) D Sh(FW, V)

p�1 K
, K 'V (UV ) D Sh(F, V) \ C1(V , W)

p�1K
, KSh(F, V)

P1(A0) , K im P1.

Lemma 10.5. The image Sh(FW, V) is Wr -open in Sh(F, V) for some r2 N0

if and only if P1(0) D P1(A0) is an isolated point of the imageim P1 D P1(UV ) �
C1(V , Rm�1) with respect to theWr -topology.

Proof. Sufficiency. Suppose thatP1(0) is an isolated point of imP1 in the
Wr -topology, i.e.P1(0) is a Wr -open subset of imP1. Since p�1 is Wr ,r -continuous, we
obtain thatSh(FW, V) D 'V (A0) is Wr -open in 'V (UV ) being Wr -open in Sh(F, V).
HenceSh(FW, V) is Wr -open in Sh(F, V) as well.

Necessity. Conversely, suppose thatP1(0) is not isolated in imP1 with the
Wr -topology. We will construct a sequence of functionsf�i g such that
(i) P1(�i ) ¤ P1(0),
(ii) the sequencef'V (�i )g converges toiV W V � M in the Wr -topology.
It will follow from (i) that 'V (�i ) � Sh(FW, V) D 'V (A0), and in particular�i � A0 D
func(FW, V) for all i 2 N. Then from (ii) we will obtain thatSh(FW, V) D 'W,V (A0) is
not a Wr -neighbourhood ofiV in Sh(F, V), i.e.Sh(FW, V) is not Wr -open inSh(F, V).

Since P1(0) is not isolated in imP1, there exists a sequence of classesfAi g distinct
from A0 such that their imagesP1(Ai ) converge toP1(A0) in the Wr -topology.

It is easy to see that for everyi 2 N there exists a function�i 2 Ai such that
P2(�i )(x, s) D P2(0)(x, s) D s. Indeed, take any� 0i 2 Ai and set�i D � 0i � P2(� 0i ).

We claim that the sequencef�i gi2N satisfies conditions (i) and (ii). Property (i)
holds sinceP1(�i ) D P1(Ai ) ¤ P1(A0) for all i 2 N.

Moreover, we have thatP2(�i ) D P2(0) D p2 Æ iV and fP1(�i )g � C1(V , Rm�1)
converges toP1(0)D p1ÆiV in Wr -topology. Hence'V (�i ) converges toiV with respect
to the Wr -topology. This proves (ii).

Lemma 10.6. The map'W,V is Wr ,r -open for all r� 0.
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Proof. Notice that

func(FW, V) D f� 2 C1(V , R) W j�(y, s)j < ", jsC �(y, s)j < "g,
and

'W,V (�)(y, s) D (y, �(y, s)C s).

Hence

Sh(FW, V) D f f 2 C1(V , W) W p1 Æ f (y, s) D y, jp2 Æ f j < "g.
and the inverse map'�1

W,V W Sh(FW, V) ! func(FW, V) is given by

'�1
W,V ( f )(y, s) D p2 Æ f (y, s) � s.

Evidently, this map isWr ,r -continuous for allr 2 NN0, whence'W,V is Wr ,r -open.

Now statement (2) of Theorem 10.2 follows from Lemmas 10.5, 10.6, and state-
ment (B) of Theorem 9.1. Theorem 10.2 is completed.

10.7. Periodic case. Let z be a periodic point ofF . We will show that for a
sufficiently small flow-box atz the images of�-classes defined inCorollary 10.4can
be described in terms of that first recurrence map of orbit oz of z only, see (10.5).

Let � be the period ofz, B be a codimension one open disk which transversally
intersects the orbitoz at z, and RW (B, z) ! (B, z) be the first recurrence map. Let also" < �=5 and� W W0 ! Rm�1� (�4", 4") be a 4"-flow-box at z. DecreasingW0 we can
assume, in addition, that

(10.4) oz \ W0 D F(z� (�4", 4")),
B � W, and B is transversal to all orbits ofW0, so that the restrictionp1jB W W0 �
B ! Rm�1 is a diffeomorphism. Put

d D (p1jB)�1 Æ p1 W V
p1�! Rm�1 (p1jB)�1�����! B.

Then d preserves the first coordinate.
Let W � W0 be the central"-flow-box, V � W be a connectedD-neighbourhood

of z, and A be the�-class ofUV . Then it follows from (10.4) that there exists a unique
k 2 Z such thatj�(z) � k� j < " for every � 2 A, and

(10.5) P1(A) D p1 Æ Rk Æ d W V
d�! B

Rk�! B
p1�! Rm�1.
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10.8. Proof of Theorem 10.1. Due to Theorem 10.2 it suffices to find a
4"-flow-box neighbourhoodW0 of z such that for every connectedD-neighbourhood
V of z, contained in the central"-flow-box neighbourhoodW, the imageP1(0) is an
isolated point ofP1(UV ) in the Wr -topology, wherer � 0 in the cases (a) and (b), and
r � 1 in the case (c).

(a) Suppose thatz is non-recurrent. Then there exist" > 0, and a 4"-flow-box
neighbourhoodW0 of z such thatF(z, t) 2 W0 iff jt j < 4". Let W � W0 be the cen-
tral "-flow-box and V � W be a connectedD-neighbourhood. Then it follows from
Lemma 10.3 that there exists only one equivalence class of�. Hence imP1 D P1(0),
and thusP1(0) is isolated in imP1 in any of Wr -topologies.

Suppose thatz is periodic. LetB be a codimension one open disk which transver-
sally intersects the orbitoz at z, RW (B, z) ! (B, z) be the first recurrence map, and
W0, W, and V be such as in §10.7.

(b) If the germ ofR at z is periodic of some periodq, then we can assume that
there exists an open neighbourhoodE � B of z such thatR(E) D E and d(V) � E.
Then it follows from (10.5) that the image ofP1 is finite and consists ofq points.
Hence P1(0) is isolated in imP1 in any of Wr -topologies.

(c) Suppose that the tangent mapTzRW TzB ! TzB has at least one non-zero
eigen vectorv 2 TzB � TzV with eigen value� such thatj�j ¤ 1. ThenTzRk(v)D �kv.
Let Tz p1 W TzB ! T0Rm�1 be the tangent map ofp1 at z and u D Tz p1(v). Then for
every classA corresponding to somek 2 Z we have that

Tz(P1(A))
(10.5)D Tz(p1 Æ Rk Æ d)(v) D �ku.

Since j�j ¤ 1, we see thatP(0) is isolated in imP1 in any of Wr -topologies forr � 1.

11. Openness ofSh(FW , V) in Sh(F): Singular case

Let W � M be an open subset andV � W be a D-submanifold. Similarly
to (10.1) put

(11.1) UV D f� 2 func(F, V) W 'V (�)(V) � Wg.
Then func(FW, V) � UV and

(11.2) 'V (UV ) D Sh(F, V) \ C1(V , W)

is a W0-open neighbourhood ofiV in Sh(F, V). We will now present a sufficient con-
dition which guarantees thatfunc(FW, V) D UV . Due to (11.2) this will imply that

(11.3) Sh(FW, V)
defD 'V (func(F, V)) D 'V (UV ) D Sh(F, V) \ C1(V , W)
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a) b)

Fig. 4.

is W0-open in Sh(F, V). In particular, we will prove (11.3) for vector fields of types
(Z), (L), (H) and their products.

DEFINITION 11.1. Let V � W be a subset. We will say that a pair (W, V) has
proper boundary intersectionproperty (p.b.i.) if for anyx 2 V , a 2 R, and T > 1
such that
• F(x, �a) 2 W for � 2 [0, 1)[ fTg, but
• F(x, a) 2 Fr(W) D W n W,
there exists� 0 2 (1, T) such thatF(x, � 0a) � W, see Fig. 4 a).

Roughly speaking, if the orbitox of any x 2 V leavesW for a certain amount of
time and comes back intoW, then during this time it must leave the closureW. In
Fig. 4 b) the pair (W, V) does not satisfy p.b.i. The following lemma is the crucial
implication of p.b.i.:

Lemma 11.2. Let z2 W, F(z)D 0, and V� W be a connected D-neighbourhood
of z such that(W, V) has p.b.i. Thenfunc(FW, V) D UV .

Proof. Let � 2 UV , so F(x, �(x)) 2 W for all x 2 W. We have to show that� 2 func(FW, V). It suffices to verify that the following subset ofV :

K� D fx 2 V W F(x, s�(x)) 2 W for all s 2 I D [0, 1]g
coincides with all ofV . Notice that z 2 K�. Moreover, sinceW is open in M, it
follows that K� is open inV . Therefore it suffices to show thatV n K� is open inV
as well. SinceV is connected, we will get thatK� D V .

Let x 2 V n K�. Then x D F(x, 0 � �(x)) and F(x, 1 � �(x)) belong toW and there
exists �0 2 (0, 1) such thatF(x, ��(x)) 2 W for all � 2 [0, �0) while F(x, �0�(x)) 2
Fr(W). Now it follows from p.b.i. for the pair (W, V) that there exists� 0 2 (�0, 1) such
that F(x, � 0�(x)) � W.

Then there is an open neighbourhoodVx of x in V such that

F(y, � 0�(y)) � W
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for all y 2 Vx. HenceVx � V n K�, and thusV n K� is open inV .

The following simple lemma is left for the reader.

Lemma 11.3. (1) If (W, V) has p.b.i., then for every subset V0 � V the pair
(W, V 0) also has that property.
(2) Let W0 be an open neighbourhood ofW. Then(W, V) has property p.b.i. with
respect to F if and only if it has this property with respect tothe restriction FjW0 . In
other words, p.b.i. is determined by the behavior of F on arbitrary small neighbour-
hood of W only.
(3) For every x2 W denote byx the connected component of ox \ W containing x.
Suppose thatFr(W) is a smooth submanifold of M and for every x2 V its orbit ox

is transversal toFr(W) at each y2 x \ Fr(W) whenever such a point exists. Then
(W, V) has p.b.i.

11.4. Isolating blocks. Statement (3) of Lemma 11.3 is relevant with one of the
principal results of [4]. An open subsetU � M is an isolating neighbourhoodfor the
flow F if ox � U for all x 2 Fr(U ) D U n U . A closed F-invariant subsetX � M
is isolated, if X is the maximal invariant subset of some isolating neighbourhood U
of X.

Let W be a compactD-submanifold ofM and w D W n Int W be its boundary.
Denote

wC D fx 2 w W 9" > 0 with F(x � (�", 0))\ W D ¿g,
w� D fx 2 w W 9" > 0 with F(x � (0, ")) \ W D ¿g,
� D fx 2 w W F is tangent towg.

Then W is called anisolating block for F if wC \ w� D � and � is a smooth sub-
manifold of w with codimension one. ThuswC and w� are submanifolds (possibly
with corners if so isW) of w with common boundary� . It follows that the interior of
an isolating block is an isolating neighbourhood. Moreover,from (3) of Lemma 11.3
we obtain

Lemma 11.5. If W is an isolating block, then for any subset V� Int W the pair
(Int W, V) has p.b.i.

Theorem 11.6 ([4]). Let X � M be a closed isolatedF invariant subset and
U � X be its isolating neighbourhood. Then there exists an isolating block W such
that X� Int W � U.

This result was established for the case whenW is a manifold with boundary, but
if �M is F-invariant andX\�M ¤¿, then the proof easily extends toD-submanifolds.
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Corollary 11.7. Suppose z is an isolated singular point of F. Then there exista
base� D fW�g�2A of open neighbourhoods of0 2 Rk such that for every W2 � and
any subset V� W the pair (W, V) has p.b.i.

11.8. Semi-invariant sets. We say thatW is negatively(positively) invariant with
respect toF if for every x 2 W and t � 0 (t � 0) such that (x, t) 2 dom(F) we have
F(x, t) 2 W. In this case we will also say thatW is semi-invariant.

Lemma 11.9. If W is semi-invariant with respect toF, then for any subset V�
W the pair (W, V) has p.b.i.

Proof. Notice that ifx, F(x, T a) 2 W for somea 2 R and T > 1, then it follows
from semi-invariance ofW that F(x, �a) 2 W for all � 2 [0, T ]. Hence there are no
x 2 V , a 2 R and T > 1 satisfying assumptions of Definition 11.1. Therefore (W, V)
has p.b.i.

11.10. Product of flows. For i D 1, 2 let Mi be a manifold,Fi be a vector field
on Mi , Wi � Mi be an open subset, andVi � Wi be a subset. DenoteM D M1 � M2

and W D W1�W2. Consider the product of these vector fieldsF(x, y) D (F1(x), F2(y))
on M. It generates a local flowF(x, y, t) D (F1(x, t), F2(y, t)).

Lemma 11.11. Suppose that(Wi , Vi ) has p.b.i. with respect to Fi , (i D 1, 2), and
let V � V1 � V2 be a subset. Then(W, V) has p.b.i. with respect to F.

Proof. Let x D (x1, x2) 2 V , a 2 R, and T > 1 be such that

F(x, �a) D (F1(x1, �a), F2(x2, �a)) 2 W, � 2 [0, 1)[ fTg,
F(x, a) D (F1(x1, a), F2(x2, a)) 2 Fr(W) D (Fr(W1) � W2) [ (W1 � Fr(W2)).

In particular,Fi (xi , a) 2 Fr(Wi ) for at least one indexi D 1, 2. For definiteness assume
that F1(x1, a) 2 Fr(W1). Since x1 2 V1, it follows from p.b.i. for (W1, V1) that there
exists � 0 2 (1, T) such thatF1(x1, � 0a) � W1. Then F(x, � 0a) � W as well. Hence
(W, V) has p.b.i. with respect toF .

Corollary 11.12. Let F be a product of vector fields of types(L) or (H) on Rm.
Then there exist a base� D fW�g�2A of open neighbourhoods of0 2 Rk such that for
every W2 � and any subset V� W the pair (W, V) has p.b.i. In particular, if V is
a connected D-neighbourhood of0, then func(FW, V) D UV and thus by(11.2)

Sh(FW, V) D Sh(F, V) \ C1(V , W)

is W0-open in Sh(F, V).
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Proof. Due to Lemma 11.11 it suffices to assume thatF is of type (L) or (H).
If F is of type (HE), then 0 has an arbitrary small invariant neighbourhoodsW and
by Lemma 11.9 (W, V) has p.b.i. for any subsetV � W. If F is of type (HS) thenf0g � R2 is an isolated invariant subset of any of its small neighbourhood, whence
existence ofW follows from Theorem 11.6, though it can easily be constructed without
referring to this theorem.

It remains to consider the case whenF(x) D Bx, where B is a Jordan cell corres-
ponding either to some eigen valuea 2 R or to the pair of complex conjugatea� ib,
(a, b 2 R).
1) If a > 0 (a < 0), then, e.g. [26], 0 has arbitrary small positively (negatively)

F-invariant neighbourhoodsW. Moreover, if B D  0 �b
b 0

, then 02 R2 has arbitrary

small F-invariant neighbourhoodsW. Then again by Lemma 11.9 such neighbourhoods
have desired properties.

2) Suppose thatB D


0 1� � �
0 1

0

 is nilpotent. Then the coordinate functions ofF are

given by the following formulas:

F1(x, t) D x1 C x2t C x3
t2

2!
C � � � C xm

tm�1

(m� 1)!
, Fi D �Fi�1�t

,

for i D 2, : : : , m. In particular, for eachx 2 Rm these functions are polynomials int
of degree� m� 1. Hence for everyNr > 0 there existsT > 0 such that ifjx0j < Nr and
x0 is not a fixed point ofF, thenkF(x, t)k strictly monotone increases when increases
t > T (decreasest < �T).

For every r � 0 let Vr � Rm be the closedm-disk of radiusr centered at the
origin and Wr D Int(Vr ) be its interior. SinceF(0, t) D 0 for all t 2 R, it follows that
for every R> 0 there existsr < Nr such thatF(Vr � [�T , T ]) � WR, i.e.kF(x, t)k < R
for kxk � r and jt j � T . We claim that the pair (WR, Vr ) has p.b.i.

Suppose that for somex 2 Vr anda 2 R we haveF(x, �a) 2 WR for � 2 [0, 1) and
F(x, a) 2 Fr(WR)D �VR, i.e.kF(x, �a)k < R andkF(x, a)k D R. Then jaj > T , whencekF(x, t)k strictly monotone increases when increasesjt j. In particular,kF(x, �a)k > R
for all � > 1, i.e.F(x, �a) � VR D WR.
3) Suppose that� D ib, (b ¤ 0), is purely imagine butmD 2k � 4 for somek � 2.

Then regardingRm as Ck we have that in complex coordinatesA D


ib 1� � �
ib 1

ib

.

Hence the coordinate functions ofF are given by formulae similar to the case 2). De-
note zD (z1, : : : , zk) and p(z, t) D z1 C z2t C z3t2=2!C � � � C zktk�1=(k � 1)!. Then

F1(z, t) D eib p(z), Fi D eib �Fi�1�t
, i D 2, : : : , k.
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Since jeibj D 1, it follows thatkF(x, t)k satisfies monotonicity conditions analogous to
the case 2). Then by the similar arguments we obtain that for every R> 0 there exists
r > 0 such that the pair (WR, Vr ) has property p.b.i.

12. Proof of Theorem 3.5

Let F be a vector field of classF (M). It follows from results of [18] thatSh(F)D
Eid(F)k, wherek D 1 if 6 ¤ 6(L)0 [6(HS)0 and k D 0 otherwise.

Therefore we should prove that the map' W func(F) ! Sh(F) is a homeomorphism
with respect toS1-topologies. Actually we want to apply Theorem 8.2.

Claim 12.1. Suppose that F belongs to classF (M).
(1) If z 2 6, then for any sufficiently small connected compact D-neighbourhood V of
z the shift map'V W func(F, V) ! Sh(F, V) is W1,1-open. Moreover, if z 2 6(L1)0 [6(L2)0 , then 'V is evenWr ,rC2-open for all r� 0.
(2) If z is a regular point of F, then for any sufficiently small connected compact D-
neighbourhood V of z the shift mapping'V W func(F, V) ! Sh(F, V) is Wr ,r -open for
all r � 1.

Proof. By (C) Theorem 9.1 it suffices to find a neighbourhoodW of z such that
for every connectedD-neighbourhoodV � W of z
(i) the shift map'W,V W func(FW, V) ! Sh(FW, V ) is Wr ,s-open for the corresponding
valuesr , s, and
(ii) its image Sh(FW, V) is Wk-open inSh(F), wherek D 0 in the cases (1), andk D 1
in the case (2).

(1) Let z 2 6F . Then by definition of classF (M) there exists a neighbourhood
W of z on which in some local coordinates either
(a) F is a product of finitely many vector fieldsG1, : : : , Gn each of which belongs
to one of the types (Z), (L), or (H), or
(b) F belongs to one of the types (L1)0, (L2)0, (L3)0, (H)0 and z is an isolated singular
point of F .

DecreasingW we can also assume thatSh(FW, V) is W0-open inSh(F), i.e. con-
dition (ii) is satisfied. In the case (a) this follows from Corollary 11.12, while in the
case (b) from Corollary 11.7.

Then (i) directly follows from Lemmas 7.1–7.3.
(2) Suppose thatz is a regular point forF . SinceF belongs toF (M), it follows

that the assumptions of Theorem 10.1 are satisfied, whence for any sufficiently small
D-neighbourhood ofz the shift map'V is Wr ,r -open for allr � 1.

For every z 2 M let Vz be a neighbourhood guaranteed by Claim 12.1. By as-

sumption of Theorem 3.5 the set6 n (6(L1)0 [6(L2)0) is compact.
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Therefore using paracompactness ofM we can find a locally finite coverfVi gi23
of M by compact connectedD-submanifolds and a finite subset30 � 3 such that the
map'Vi is W1,1-open for i 2 30 and Wr ,rC2-open for allr � 0 wheneveri 2 3 n30.
Hence by “fragmentation” Theorem 8.2' is a local homeomorphism with respect to
S1-topologies. All other statements concerning homotopy types ofDid(F)r andEid(F)r

follow by the arguments of the proof of [13, §9]. Theorem 3.5 is completed.
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