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Abstract
We consider the operation of Whitehead double on a compoofeat link and

study the behavior of Milnor invariants under this operatidvie show that this op-
eration turns a link whose Milnor invariants of lengthk are all zero into a link
with vanishing Milnor invariants of lengthx 2k + 1, and we provide formulae for
the first non-vanishing ones. As a consequence, we obtaienstats relating the
notions of link-homotopy and selA-equivalence via the Whitehead double opera-
tion. By using our result, we show that a Brunnian libkis link-homotopic to the
unlink if and only if the link L with a single component Whitehead doubled is self
A-equivalent to the unlink.

1. Introduction

In this paper, we consider the operation of Whitehead doublere generally of
Whiteheadn-double, on a component of a link, and we study the behaviovlidrfior
invariants under this operation. Milnor invarianig (1) of an m-component linkL,
where | =ijip---ix with 1 <i; <m, can be thought of as some sort of “higher order
linking number” of the link. See Section 2 for a definition.

A typical example is the Whitehead link, which is a Whitehedalble of the
Hopf link. The linking number of the Hopf link (which coinad with Milnor invariant
(12)) is £1, whereas the Whitehead link has linking number 0. On theroftand,
the Whitehead link has some nontrivial higher order Milnoraimants: its Sato—Levine
invariant for instance, which is equal ter(1122), is+1. Our main result, stated be-
low, generalizes this observation.

Let K be a component of a link in S*, regarded a$ ({0} x S*) for some em-
beddingh: D?x St — S*\ (L \ K), such thatK andh((0, 1)x S') have linking number
zero. Letn be a (nonzero) integer. Consider in the solid tofus= D? x S' the knot
W, depicted in Fig. 1.1. The kndi(W,) is called theWhitehead n-double of Kand
it is denoted byW,(K).

Given anm-component linkL = K; U --- U Ky, in S*, we denote byw! (L) the
link (L \ K;) U W, (K;) obtained by Whitehead-double on thei™™ component ofL.
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k ~
n negative full twists n positive full twists

Fig. 1.1. The knotV, for n < 0 andn > O respectively.

Note that the case = £1 coincides with the usual notion of (positive or negative)
Whitehead double.

Theorem 1.1. Let L be an m-component link in®Sand let n (# 0) be an in-
teger. If all Milnor invariantsz, (Ji) of L of length|Ji| < k are zero(k > 1), then
all Milnor invariants zzy; )(1i) of Wi (L) of length|li| < 2k + 1 are zero. Moreover
if 7z (Pi) # 0, 7 (Qi) # 0 with P = pypz--- px, Q = 2+ - - Gk (possibly P= Q)
such that p #1i, q; # i for all 1 < j <k, then we have the following formulae for
the first non-vanishing Milnor invariants of WL)

Pw Ly (PiQI) = 2np (Pi)i (QI),
Rw (P Qi) = —np (Pi)i (Qi).

REMARK 1.2. In the case of a 2-component link, the formulae given Ire-T
orem 1.1 for the first nonvanishing Milnor invariants WA(L) provide, as an imme-
diate corollary, a generalization of a result of Shibuya #mel second author [14] as
follows: Let L = K; U K, in S%. Letn # 0 be an integer, and lét,(L) be obtained

by Whiteheadn-double on a component df. Then the Sato—Levine invariam of
Wh(L) satisfies

B2(Wa(L)) = n(Ik(K1, K2))%.

(Note that the Sato—Levine invariant @f,(L) is well-defined, as Theorem 1.1 ensures
that the link has zero linking number.)

Recall that two links ardink-homotopicif they are related by a sequence of am-
bient isotopies andelf crossing changeswvhich are crossing changes involving two
strands of the same component, see the left-hand side of Rigln particular, a link is
called link-homotopically trivialif it is link-homotopic to the unlink. It has long been
known that Milnor invariants with no repeating indices areaimants of link-homotopy
[5]. Like crossing change, tha-move is an unknotting operation [6]. Here we consider
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KX A=\

Fig. 1.2. A crossing change andzsmove.

the notion ofself A-movefor links, which is a local move as illustrated in the right-
hand side of Fig. 1.2 involving three strands of the same cmm@pt. Two links are
self A-equivalentif they are related by a finite sequence of ambient isotopnek self
A-moves. SelfA-equivalence is a generalized link-homotopy, i.e., seléquivalence
implies link-homotopy. The selfA-equivalence was introduced by Shibuya [10, 11],
and was subsequently studied by various authors [2, 7, 8,94, 16]. A link isself
A-trivial if it is self A-equivalent to the unlink.
The following is a consequence of our main result.

Corollary 1.3. Let L be an m-component link irf 8hich is not link-homotopically
trivial. Then for any n(# 0) and i (1 <i < m), W/ (L) is not selfA-trivial.

Recall now that a linkL is Brunnian if all proper sublinks of. are trivial. The
next result shows that the converse of Corollary 1.3 alsd$h&r Brunnian links.

Theorem 1.4. Let L be an m-component Brunnian link irf.SLet n (# 0) and
i (1<i <m) be integers. Then L is link-homotopically trivial if and grif W (L) is
self A-trivial.

Observe that am-component Brunnian link always has vanishing Milnor inaats
of length < m — 1 since these are Milnor invariants of sublinks of a Brunnienk,|
which are trivial links. So Theorem 1.1 implies that all Mimimvariants of W/ (L) of
length< 2m—1 are zero for any choice of £i < m andn (# 0). In other words, for
m-component Brunnian links, Whitehead doubling kills all Mif invariants of lengthk<
2m — 1. It follows from a more general result (stated and prove&éction 4) that an
additional Whitehead doubling, on either the same or amatbenponent of the link,
actually kills all Milnor invariants, as the resulting link is always a boundink, see
Corollary 4.2.

The rest of the paper is organized as follows. In Section 2 egall the definition
of Milnor invariants and prove Theorem 1.1. In Section 3 wevprthe two statements
relating Whitehead doubling and seff-equivalence, namely Corollary 1.3 and The-
orem 1.4. In Section 4 we consider more general satellitestooctions, involving a
knot which is null-homologous in the solid torus. When apglitwice to a Brunnian
link, such a construction always yields a boundary link.
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2. Milnor invariants

J. Milnor defined in [4, 5] a family of invariants of orientedrdered links inS?,
known as Milnor's-invariants.

Given anm-component linkL in S°, denote byrz(L) the fundamental group of
S\ L, and bymq(L) the g" subgroup of the lower central series ofL). We have
a presentation ofr(L)/mq(L) with m generators, given by a meridian of the it
component ofL. So for 1<i < m, the longitudel; of the i component ofL is
expressed modulay(L) as a word in they;’s (abusing notations, we still denote this
word by ;).

The Magnus expansion @) of |; is the formal power series in non-commuting
variablesXi, ..., Xm obtained by substituting £ X; for «j and 1—- Xj + X?—X? 4 --
fore;t, 1<j<m

Let | =ijip---ik—1] be a multi-index (i.e., a sequence of possibly repeatin@@s)
among{1,..., m}. Denote byu(l) the coefficient ofX;, - - - X;_, in the Magnus ex-
pansionE(l;). Milnor invariant 7z, (1) is the residue class gf (1) modulo the greatest
common divisor of allx (J) such thatd is obtained froml by removing at least one
index, and permutating the remaining indices cyclicallye @all || | = k the length of
Milnor invariant zz, (1).

The indeterminacy comes from the choice of the meridianor, equivalently,
from the indeterminacy of representing the link as the gl@f a string link [3].

Proof of Theorem 1.1. Without loss of generality, we may @ggpthati = m.
We give the proof of the casa < 0. The casen > 0 is strictly similar and we
omit it.

We denote by, ..., am-1, om anda meridians ofKy, ..., Kn_1, Ky and Wy (Kp,)
respectively, such thaty, ..., am generater(L)/mq(L) and oy, .. ., am—1, @ generate
7 (W(L)) /g (WER(L)).

The Magnus expansion of the longitulige 7 (L)/mq(L) of K, written as a word
in a1, ..., an, has the form

E(m) =1+ purix---ie, MX;, -+ Xi, =14 (X, ..., Xm),

whereE(xj) =1+ X forall 1 <i <m.

Now consider the Whiteheaddouble ofK,,, and consider2+ 1 elementsyg, ay,...,
an of S*\ W(L) as represented in Fig. 2.1. Lé{lm) = |, whereg: m(L)/mq(L) —
7 (WN(L))/mq(W(L)) is the natural map that majes to itself (1 <i < m — 1) and
mapsam to a,ra. (Abusing notation, we still denote kay, 0 < i < 2n, the corresponding
elements int (WI'(L))/7q(WI(L)).)



WHITEHEAD DOUBLE AND MILNOR INVARIANTS

Fig. 2.1. The Whitehead-double of K, for n < 0.

It follows from repeated uses of Wirtinger relations that

ap =1 1al,
axy = RaR™", forall r >1,
ax,1=RaR D foral r>0

where R = al~*a!l. In particular we have that
#(am) = ayra = R"a™*R™"a.

Let E(a) = 1+ X denote the Magnus expansion af Observe that

E(R) = E(al ta ) = (1 + X)E( H(1 - X)E() + Ox(2)

=14+ X —E(HXE() + 0x(2),

and

E(RY) =E( tala™) = E(I7Y)(1 + X)E()(L— X) + Ox(2)

=1- X+ E("HXEQ) + 0x(2),

where Ox(2) denotes terms which contaiX at least 2 times. So we have

E(¢(am)) = (14 X — E(THXE()"(1 - X)
x (1= X+ E("HXE)"A + X) + Ox(2)
= (1 +nX—nE(l HXE(N)(1-X)
x (1—nX+nE("HYXED)A + X) + Ox(2)
=14 Ox(2).

375



376 J.-B. MEILHAN AND A. YASUHARA

This implies that

E() =1+ f(Xq,..., Xm1, Ox(2))
=1+ fl(Xl ,,,,, Xm—l) + f2(X1 """ K1, X)’

where

fl(Xl, ey mel) = f(Xl, ey mel, 0) € O(k)

f2(X1 ..... Xn—1, X) = f(X1 ..... Xm-1, 0)((2)) — f1(X1 ..... Xm_j_) € O(k + 1),

and O(u) denotes terms of degree at leas{the degree of a monomial in th¥; is
simply defined by the sum of the powers). Similarly we have

EQH) =1+9(Xs, ..., Xm-1, Ox(2))
= 1 + gl(X11 LI | mel) + gZ(le LI | meli X)y
whereg; (X1, ..., Xme1) € O(K) and g2(Xq, . .., Xm_1, X) € O(k + 1).
Let fll f21 glv gz denOte fl(X11 ceey Xm—1)1 f2(X11 ey Xm—11 X)! gl(xly ey Xm—l)a
02(X1, ..., Xm_1, X) respectively, and set = f;+ f, andg = g, + @». SetE(a™?) =
1-X4+X2-X34+...=1+4+Y. Note that (1+ f)A+g)=1+g(1+ f)=1

and (1+ X)X +Y)=(1+Y)1+ X) =1, hencef +g=—-fg=—gf € O(2k) and
X+Y =-XY = -Y X One can check, by induction, that

E(R™) =1+ n(Xf—gY+ XfY+gXf)+ Ok +2),

{E(R“) = 1+n(gY — Xf + XgY + gY ) + Ok + 2),
E(@R)"N) =L+ Y)" + @+ Y)"f— f(L+Y) +n@Yf— fgY) + Ok + 2).

Since the preferred longitude, of W'(Kp) is presented imr (W'(L))/7q(Wi(L))
by the word

Lm=la7ayt - a5t Iyt a5t sastarta® = (@ tR)"R™"IR"a",
we have
E(Lm) =+ DA +)"+@+Y)"f - f@Q+Y)"+n(gYf— fgY)]
x [14+n(Xf—-gY+ XfY+gXf)(1+9)
x [1 4+ n(@Y — Xf 4+ XgY +gY f))1 + X)"

=[A+Y)"+n@fXf— f2X - X)L+ X)"+ Ok + 2)
=1+n@RfXf—ffX—Xff)+ Ok +2).
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Becausef € O(k), the first non-trivial terms in the Magnus expansiB(L,) are
of degree R + 1. It follows that all Milnor invariantsizym)(Im) of length [Im| <
2k + 1 of WI"(L) are zero.

Moreover, we actually have

E(Lm) = 1+ nQRFXF — f1fX — Xf1 1) + O2k + 2).

So if g (Pm) # 0, iz (Qm) # 0 for some multi-indicesP = p1--- px, Q =01 --- Gk
(P # Q) with pj #m, g; #mfor all 1 < j <k, then

f1 = (PmM)Xp, -+ Xp + % (QM)Xg, - - Xq, + O(K),

and it follows from the above formula that

E(Lm) =1+ 2nm (Pm)i (Pm)Xp, - -+ Xp X Xp, - -+ Xp,
+ 20z (PM)Zz (QM)Xp, - -+ Xp X Xg, -+ + Xg,
+ 27z (QmM)zz, (PM)Xg, « - - Xg X Xp, -+ - Xp,
+ 2n (QM)z (QM)Xg, - - - Xge X Xgy =+ - Xq
—ne  (Pm)z (Pm)Xp, - -+ Xp Xp, -+ Xp X
—n (PM)z (QM)Xp, -+ Xp, Xqy -+ Xg X
— N (QM)z (PM)Xg, +++ Xg Xpy +++ Xp X
— N (QM)7E (QM)Xg, - -+ Xg Xg, -+ Xge X
—n (Pm)zz (PM)X Xp, -+ Xp Xp, = Xpy
— 7z (PMZ (QM)X Xp, -+ Xp Xg, + - Xq,
— Nz (QM)Z (PM)X Xg, - -+ Xg Xp, * + + Xpye
7L (QMITEL(QM)X Xy - - X X, - -+ X + O2K + 1)

which implies the desired formulae for the first nonvanighiMilnor invariants
of W'(L). O

REMARK 2.1. One may wonder what happens when we consider, in the-defin
ition of a Whiteheadh-double, an odd number of half-twists in place roffull twists.
For a link L, denote bij)dd(L) any link obtained by such a satellite construction
with an odd number of half-twists on thd" component ofL. Then we can prove
the following: If all Milnor invariants ofL with length < k vanish, then for any multi-
index li with |li| <k+1, EW(i)dd(L)(I i) =2+, (1), wherer; is the number of times
that the indexi appears inl.
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3. On self A-equivalence

In this section we provide the proofs for Corollary 1.3 anceditem 1.4.

We need the following additional notation. Given a muliiléx |, we denote by ()
the maximum number of times that any index appears.ifror exampley(1123)= 2
andr(1233212)= 3.

Proof of Corollary 1.3. LetL be an m-component link which is not link-

homotopically trivial. Then by [4] there exists some mutidex | = ii---i, with
r(1) =1 such thatx, (1) # 0 and7x (J) = 0 for all multi-index J with length |J| <
[I] andr(J) = 1.

Let n (#0) andi (1 <i < m) be integers. Ifl does not contain, then
Rwi)(1) = TL(1) # 0. So Wi(L) is not link-homotopically trivial. Hencew;(L)
is not self A-trivial. Suppose thatl containsi. By “cyclic symmetry” ([5, The-
orem 6]), we may assume thgt =i. By Theorem 1.1, the linRV/ (L) thus satisfies
Hwiy(M) # 0 for some multi-indexM with r(M) < 2. Since Milnor invariants with

r <2 are self A-equivalence invariants [1]W!(L) is not self A-trivial. O

Proof of Theorem 1.4. Lelt be anm-component Brunnian link. Lat (# 0) andi
(1 <i <m) be integers. By Corollary 1.3 we already know thais link-homotopically
trivial if Wi (L) is self A-trivial. Let us prove that the converse is also true.

The link L being Brunniang, (1) =0 if 1 does not contain an index ifi,...,m}.
Moreover, ifL is link-homotopically trivial, thergz, (1) =0 for any | withr(l1)=1. In
particularze, (1) = 0 for all ||| <m, and by Theorem 1.1 the linW(L) thus satisfies
fwi (1) =0 for all [1] =2m+1. This implies thafzy; (1) = 0 for any multi-index
| with r(1) < 2. By [16, Corollary 1.5], we have that (L) is self A-trivial. O

4. From Brunnian links to boundary links

4.1. Boundary links from satellite construction. In this section we consider a
more general satellite construction.

Let L = Ky U--- U Ky be anm-component link inS?, and leth;: D? x St —
S® be an embedding such thhf({0} x S') is the i!" componentK; of L (as in the
introduction, we assume tha¢; and h((0, 1) x S') have linking number zero). Now,
instead of the knobV, depicted in Fig. 1.1, consider in the solid torlis= D? x St
a fixed knotXC which is null-homologous inf. Denote byW,‘C(L) the link (L \ Kj) U
h; (). We have the following result.

Theorem 4.1. Let L= K;U---UK,, be an m-component link in3Sand let C,
K’ be two null-homologous knots in the solid torus T. Then
(i) If L\ K; is a boundary linkthen W.(WL.(L)) is a boundary link.
(i) If L\ (Ki UK;) is a boundary link and KU K is null-homotopic in 3\ (L \
(Ki U Kj)), then V\]C(W,jc,(L)) is a boundary link.
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3

Fig. 4.1. The boundary link&v";',(B) and W*,(B).

) ) )

Vi1 Yia Yip

Yio

Fig. 4.2. The linkL;.

Note that in particular a Brunnian link always satisfies the conditions in (i) and
(ii). It follows that a link obtained from a Brunnian link byaking twice Whitehead
double (on either the same or another component of the liitls) &l Milnor invariants.

Corollary 4.2. Let L be an m-component Brunnian link if.S.et p g (pq # 0)
and i, j € {1,..., m} (possibly equdl be integers. Then the link W(L), obtained by
respectively Whitehead p-double and Whitehead g-doubl¢hent™ and [ compo-
nents of L is a boundary link.

Fig. 4.1 below illustrates this result in the case of the Borean ringsB.

4.2. Proof of Theorem 4.1. Before proving Theorem 4.1, we will introduce the
notion of band presentation of a link.

Let Li = yioU i1 U y2U---Uyp be alink as illustrated in Fig. 4.2. Ldt; U
-+ ULy be a split union of the linkd 1, ..., Ly, and letA = J A;; be a disjoint
union of disksAjj; (1<i <m; 1< j < p) such thatd Ajj; = %; and A;; N (Uk Yo) =
Ajj N yip consists of a single point. It is known [15] that amcomponent linkL in
a 3-manifold M which is null-homotopic inM can be expressed as a band sum of
L1 U---ULm, which is contained in a 3-ball i, along mutually disjoint bandb;;
(I1<i=m 1=<j<np), disjoint from intA, such thath;; connecty; and ([, o).
This presentation is called lsand presentatiorof L, andL, U---U Ly, is called the
base link

1The result is given in [15] foknotsin S, but it can be easily extended to the link case.
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Proof of Theorem 4.1. (i) We may suppose that m without loss of gener-
ality. Since Ky U ---U Kpy_1 is a boundary link, it bounds a disjoint union of sur-
facesE = E; U---U Ep_1. Denote byWi (K, the m™ component oW, (L). Since
Wi (Km) is null-homologous inhy(D? x St), it is null-homotopic inS®\ (L \ Kp).
Hence there is a band presentationVgé (K,) such that the base link is disjoint from
E and such that the intersections of each band &nare ribbon singularities. So
Wi:(Km) N E is a union of copies of°, which are the endpoints of these ribbon sin-
gularities. By tubing the surfacels; suitably at these endpoints, we obtain a union of
mutually disjoint surface$,..., Fm—1 such thatF = 0K; and F;NWy(K,) = @ for all
1<i <m-1. Since them™ component ofWZ(W{ (L)) bounds a Seifert surfacky
in a regular neighborhood dlVi (Kr), it follows that the components aV(WZ (L))
boundm mutually disjoint Seifert surfaceBy, ..., Fnq.

(i) We may suppose thdt=m—1 and j = m without loss of generalityK; U
--- U Km_2 being a boundary link, it bounds a disjoint union of surfaées= E; U
-+ U Em_a. SinceKy_1 U Ky, is null-homotopic inS*\ (Ky U---U Kp_2), there is a
band presentation okn,_1 U K, such that the base link is disjoint frof8 and such
that the intersections of each band aBdare ribbon singularities. By tubing the sur-
facesE; suitably at the endpoints of theses singularities, we akaaiinion of mutually
disjoint surfacesFy, ..., Fm_2 such thatF = 0K; and F N (K1 U Ky) = @ for all
1<i <m-2. Since theri—1)" andm" components ofV?*(W (L)) bound a dis-
joint union Fy_1 U Fy, of Seifert surfaces in a regular neighborhoodkgf_1 U Ky, it
follows that the components ON,@‘l(W,Q,(L)) bound m mutually disjoint Seifert sur-
facesF, ..., Fn. O
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