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Abstract
In this paper we extend the concept of weakly polymatroidal ideals to monomial

ideals which are not necessarily generated in one degree, and show that any ideal in
this class has linear quotients. As an application we study some vertex cover ideals
of weighted hypergraphs.

Introduction

Hibi and Kokubo in [21] introduced weakly polymatroidal ideals as a generaliza-
tion of polymatroidal ideals. They considered ideals whichare generated in the same
degree. In this paper we extend their definition to ideals which are not necessarily gen-
erated in one degree. We show that these ideals have linear quotients, and consequently
are componentwise linear.

Let RD K [x1, : : : , xn] be the polynomial ring inn variables over a fieldK and
I � R be a monomial ideal. Recall thatI has linear quotients, if there exists a system
of minimal generatorsf1, f2, : : : , fm of I such that the colon ideal (f1, : : : , fi�1) W fi
is generated by a subset offx1, : : : , xng for all i . Ideals with linear quotients were
introduced by Herzog and Takayama in [19].

For a homogeneous idealI � R and d � 1, we denote by (Id) the ideal generated
by all forms of degreed in I . The ideal I is calledcomponentwise linearif for each
d, (Id) has a linear resolution. Componentwise linear ideals wereintroduced by Herzog
and Hibi in [10] and they proved that the Stanley–Reisner ideal I1 is componentwise
linear if and only if I1_ is sequentially Cohen–Macaulay (see [10], [18]).

In general it is hard to prove that an ideal is componentwise linear. A criteria for
an ideal being componentwise linear are given in [5]. On the other hand, if an ideal
has linear quotients, then it is componentwise linear, as shown in [22]. If, in addition,
I is a monomial ideal, thenI even has componentwise linear quotients, see [23].

Due to these facts one would expect that a weakly polymatroidal ideal is component-
wise weakly polymatroidal. However, Example 1.8 shows thatthis is in general not the
case. Nevertheless, if all generators of the weakly polymatroidal ideal are of same degree,
then all components of the ideal are weakly polymatroidal. This is a consequence of The-
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orem 1.6 where we show more generally that ifI is a weakly polymatroidal ideal andm
is the graded maximal ideal of polynomial ring, thenmI is again weakly polymatroidal.

In Section 2 we study classes of ideals which are weakly polymatroidal. The ideals
we study are vertex cover ideals of weighted hypergraphs, introduced in [16]. LetV be
a finite set andE be a finite collection of nonempty subsets ofV . ThenH D (V , E)
is called ahypergraphand the elements ofE are called the edges ofH. A vertex
cover of H is a subset ofV which meets every edge ofH. Any vertex cover ofV
can be considered as a (0, 1) vectorc D (c1, : : : , cn), where

∑

A2E(H) ci � 1 for all
A 2 E(H). Given a hypergraphH and an integer valued function! W E(H) ! N,
A! !A, the pair (H, !) is called aweighted hypergraph. For k 2 N, a k-cover is
defined as a vectorc 2Nn that satisfies the condition

∑

i2Aci � k!A for any A 2 E(H).
For a nonempty subsetAD fa1, : : : , ar g of V let PA D (xa1, : : : , xar ). For a weighted

hypergraph (H, !), the idealAk(H, !) D ⋂A2E(H) Pk!A
A is called theideal of k-covers

of (H, !). The graded vertex cover algebraA(H, !) is defined as
⊕

k�0 Ak(H, !). If!A D 1 for any A 2 E(H), then A(H, !) is denoted byA(H).
The fundamental question we want to address in this paper is the following: for

which weighted hypergraph (H, !) are all its ideals ofk-covers componentwise linear?
We call a hypergraph with this propertyuniformly linear. To classify all uniformly
linear hypergraphs is quite hopeless. It is known by a resultof Francisco and Van Tuyl
that the ideal 1-covers of any chordal graph is componentwise linear, see [8]. However
it seems to be unknown whether chordal graphs are uniformly linear.

In this paper we consider the following classes of uniformlylinear weighted hyper-
graphs. Actually, we show in all these cases that for anyk the ideal ofk-covers is
either weakly polymatroidal or componentwise weakly polymatroidal.
(1) G is a Cohen–Macaulay bipartite graph (see Theorem 2.2).
(2) Let H be a hypergraph on the vertex set [n] satisfying one of the following con-
ditions:

(a) H has only two facets (see Theorem 2.3).
(b) E(H) D fK , J1, : : : , Jsg and there exists an integert such that

⋂s
iD1 Ji D Ji \

Jj D [t ] for all i ¤ j and K \ Ji D ; for i D 1, : : : , s (see Theorem 2.4).
(c) E(H) D fK , J1, : : : , Jsg with Ji [ Jj D [n] for all i ¤ j (see Theorem 2.5).

Herzog and Hibi in [9] showed that the ideal ofk-covers of a Cohen–Macaulay bipart-
ite graph has linear quotients. The result in (1) is inspiredby their work. Francisco and
Van Tuyl in [7] among other results proved that the ideals ofk-covers of hypergraphs
in (a), and (c) in the case thatK D ; are componentwise linear.

1. Weakly polymatroidal ideals

Let RD K [x1, : : : , xn] be a polynomial ring over the fieldK . For any monomial
ideal I , let G(I ) be the minimal set of generators ofI andm(u) be the greatest integer
i for which xi divides u. For u D xa1

1 � � � xan
n , we denoteai by degxi

(u). For a and b
in Nn we havea >lex b if and only if the left-most nonzero entry ina� b is positive.
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DEFINITION 1.1. A monomial idealI is called weakly polymatroidal if for every
two monomialsuD xa1

1 � � �xan
n >lex v D xb1

1 � � �xbn
n in G(I ) such thata1 D b1, : : : , at�1 D

bt�1 and at > bt , there existsj > t such thatxt (v=x j ) 2 I .

The monomial idealI is calledstable if, for any monomialu in I and i < m(u)
one hasxi (u=xm(u)) 2 I . From the above definition one can see that each stable ideal
is weakly polymatroidal. In [1]weakly stableideals are defined as a generalization of
stable ideals and it was shown that every weakly stable idealgenerated in degreed
has a linear resolution. Also, in that paper an explicit formula for the Betti numbers
of such ideals were given. A squarefree monomial idealI is called weakly stable if for
every squarefree monomialsu 2 I and u0 D u=m(u) the following condition (�) holds:

(�) For every integerl � Supp(u) such thatl < m(u0), there exists an integeri 2
Supp(u) with i > l such thatxl (u=xi ) 2 G(I ).

From the definition of weakly stable ideals, it is easy to see that each weakly
stable ideal which is generated in one degree is weakly polymatroidal. The following
example shows that the converse of the above statement is nottrue.

EXAMPLE 1.2. The idealI D (x1x3x5, x1x3x6, x1x4x6, x2x4x6) is weakly poly-
matroidal, but there exists no permutation of variables such that I is weakly stable.

First we prove the following theorem for weakly polymatroidal ideals.

Theorem 1.3. Any weakly polymatroidal ideal I has linear quotients.

Proof. Let G(I ) D fu1, : : : , umg, whereu1 > u2 > � � � > um in the lexicographical
order with respect tox1 > x2 > � � � > xn. We show thatI has linear quotients with re-
spect tou1, : : : , um. Let ui andu j be in G(I ) andui >lex u j . We can assume thatui D
xa1

1 � � � xan
n and u j D xb1

1 � � � xbn
n and for somet , 1� t � n we havea1 D b1, : : : , at�1 D

bt�1 and at > bt . Therefore there existsl > t such thatxt (u j =xl ) 2 I . Thus the set
A D fuk W xt (u j =xl ) 2 (uk)g is nonempty. Letus 2 A be the unique element such that
for any uk 2 A (k ¤ s), we have either deg(uk) > deg(us) or deg(uk) D deg(us) and
uk <lex us. Assume thatxt (u j =xl ) D ush for someh 2 R. If xt j h, then u j D ush0 for
someh0 2 R, which is a contradiction by the assumption thatu j 2 G(I ). So we have

xbtC1
t j us.

We claim thatus >lex u j . By contradiction assume thatus <lex u j . Let us D
xc1

1 � � �xcn
n , c1D b1,: : : ,cr�1D br�1 andcr < br for some 1� r � n. SincexbtC1

t j us, one
hasr < t . Then from the definition of weakly polymatroidal, one hasw D usxr =xk 2 I
for somek > r . Sincer < l , xr j h and soxkh=xr 2 R. Fromw(xkh=xr ) D xt (u j =xl ),w >lex us and deg(w)D deg(us), we havew � G(I ). Let w D us0h0 for some 1� s0 �m
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and 1¤ h0 2 R. Then deg(us0) < deg(w) D deg(us) which is a contradiction, since
us0 2 A. Therefore one hasush 2 (u1, : : : , u j�1). Since (ush W u j ) D xt , the proof is
complete.

From [23, Theorem 2.7] we have the following

Corollary 1.4. Any weakly polymatroidal ideal has componentwise linear quo-
tients.

REMARK 1.5. Let I D hu1, u2, : : : , ur i be a weakly polymatroidal ideal with re-
spect to the orderingu1 >lex u2 >lex> � � � >lex ur on G(I ). With the notation in the
proof of above theorem forui >lex u j there existsl > t , s < j and h 2 R such that
xt (u j =xl ) D ush. Therefore, for eachk < r , the idealI 0 D hu1, : : : , uki is again weakly
polymatroidal.

It is known that the product of any two polymatroidal ideals is again polymatroidal,
see [4, Theorem 5.3]. This is not the case for weakly polymatroidal ideals. The ideal
I D (x2

1x2, x2
1x3, x1x2

3, x2x2
3, x1x3x4) is weakly polymatroidal, butI 2 does not even have

linear resolution. However, we have

Theorem 1.6. Let I be a weakly polymatroidal ideal andm be the maximal ideal
of R. ThenmI is again weakly polymatroidal.

Proof. Let G(I ) D fu1, : : : , umg, whereu1 > u2 > � � � > um in the lexicographical
order with respect tox1 > x2 > � � � > xn. Let w1 andw2 be elements ofG(mI ) andw1 >lex w2. Consider the setsA D fu 2 G(I ) W w1 D xi u for some 1� i � ng and
B D fv 2 G(I ) W w2 D x j v for some 1� j � ng. Let u 2 A and v 2 B be the greatest
elements inA and B with respect to lex order, respectively. Assume thatw1 D xi u D
xa1

1 � � � xan
n and w2 D x j v D xb1

1 � � � xbn
n , ai D bi for i < t and at > bt . One hasu D

xa1
1 � � � xai�1

i � � � xan
n and v D xb1

1 � � � xb j�1
j � � � xbn

n . First we consider the caset < i . We
have u >lex v. If t > j , then j is the smallest index with degx j

(u) > degx j
(v). Then

x j (v=xl ) 2 I for somel > j and we havex j v D xlw for somev <lex w 2 I . Sincexlw
is in G(mI ), one hasw 2 G(I ) which is a contradiction by the way of choosingv. So
t � j and t is the smallest index with degxt

(u) > degxt
(v). Thereforext (v=xl ) 2 I for

somel > t and soxt (x j v=xl ) D x j (xtv=xl ) is in mI .
Let t � i . If j D i , then the result is clear. Ifj < i , thenu >lex v, so j is the first

index such thata j D degx j
(u) > degx j

(v) D b j �1. Thereforex j (v=xl ) is in I for some
l > j and we havex j v D xlw for somew 2 G(I ), w >lex v, which is a contradiction.

Therefore, one can assume thatj > i . If i < t , thenv >lex u, sincebi D degxi
(v) >

degxi
(u) D ai � 1. Then there existsl > i such thatxi (u=xl ) 2 I . So uxi D wxl for

somew 2 G(I ), wherew >lex u which is a contradiction. Lett D i . Then xtv D
xt (x j v=x j ) 2 I and j > t , which completes the proof.
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As an immediate consequence of the above theorem we have

Corollary 1.7. Let I be a weakly polymatroidal ideal generated by monomialsin
one degree. Then I is componentwise weakly polymatroidal.

Proof. Assume that the minimal generators ofI are of degreed. Then for any
j � 0 we have (IdC j ) D m

j I , wherem is the maximal ideal ofR. Therefore by the
above theorem (IdC j ) is weakly polymatroidal.

A weakly polymatroidal ideal for which the minimal generators are not of the
same degree, is not necessarily componentwise weakly polymatroidal. The following
example shows this fact.

EXAMPLE 1.8. The idealI D (x1x3, x2x3, x1x4x5, x2x4x5) D (x1, x2)\ (x3, x4)\
(x3, x5) is weakly polymatroidal. But there exists no permutation of variables such that
(I3) is weakly polymatroidal.

2. Some applications

As the first application we consider the ideal ofk-covers of a Cohen–Macaulay
bipartite graphG. Let P be a finite poset associated toG, see [11, Theorem 3.4],
and let J(P) be the distributive lattice consisting of all poset idealsof P, ordered by
inclusion. Recall that a subsetI � P is a poset ideal ofP if for all x 2 I and y 2 P
such thaty < x, one hasy 2 I . Let P D fp1, : : : , png and SD K [x1, : : : , xn, y1, : : : , yn]
be the polynomial ring in 2n variables over a fieldK . To each poset idealI of P we
associate the monomialuI D∏pi2I xi

∏

pi2PnI yi . The squarefree monomial ideal ofS
generated by all monomialsuI with I 2 J(P) is denoted byHP. The idealHP is in
fact the ideal of 1-covers ofG. Herzog and Hibi in [11, Theorem 3.4] proved that a
bipartite graphG with vertex partitionX [ Y is Cohen–Macaulay if and only if there
exists a labeling on the verticesX D fx1, : : : , xng and Y D fy1, : : : , yng such that:
(i) xi yi are edges fori D 1, : : : , n;
(ii) if xi y j is an edge, theni � j ;
(iii) if xi y j and x j yk are edges, thenxi yk is an edge.
In [9] it was shown that the powers ofHP have linear quotients. In the following we
show that the powers ofHP are even weakly polymatroidal.

The following lemma was proved in [20, p. 99]. For the convenience of the reader
we give a proof of it.

Lemma 2.1. Let G be a Cohen–Macaulay bipartite graph as above. Then each
element of the set of minimal generators of the ideal of k-covers of G,

⋂

A2E(G) Pk
A,

can be written as uB1 � � � uBk , where Bi 2 J(P) and Bk � � � � � B1.
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Proof. By [16, Theorem 5.1] we know that the vertex cover algebra of G is stand-

ard graded, therefore it follows that
⋂

A2E(G) Pk
AD (⋂A2E(G) PA

)kD (HP)k. Let uA1, : : : ,
uAk 2 HP. From [14, Theorem 2.2] we haveuAi[A j and uAi\A j are elements ofHP for
any i and j . Then we can write

uAi uA j D uAi[A j uAi\A j .

By induction we show thatuA1 � � �uAk can be written asuA01 � � �uA0k such thatA0i � A01
for all 2 � i � k. Let uA1 � � � uAk�1 D uA01 � � � uA0k�1

such thatA0i � A01 for all 2� i �
k � 1. Then

uA1 � � � uAk D (uA01uAk

)(

uA02 � � � uA0k�1

)

D (uA01[AkuA01\Ak

)(

uA02 � � � uA0k�1

)

.

We haveA01\ Ak � A01[ Ak and A0i � A01[ Ak for all 2� i � k� 1 and the assertion
holds. Now we show that one can writeuA1 � � � uAk D uB1 � � � uBk such thatBk � � � � �
B1. By the above statements we can assume thatuA1 � � � uAk D uA01 � � � uA0k such that
A0i � A01 for all 2� i � k. By induction assume thatuA02 � � �uA0k D uB2 � � �uBk such that

Bk � � � � � B2. Since
⋃k

iD2 Bi D⋃k
iD2 A0i � A01, settingB1D A01 we haveBk � � � � � B1

and uA1 � � � uAk D uB1 � � � uBk .

Theorem 2.2. Let G be a Cohen–Macaulay bipartite graph as above. Then the
ideal of k-covers of G,

⋂

A2E(G) Pk
A, is weakly polymatroidal.

Proof. Consider the ordering on the variables corresponding to the vertices ofG
such thatx1 > x2 > � � � > xn > y1 > � � � > yn. Let uA1 � � � uAk >lex vB1 � � � vBk be two
elements in the minimal generating set of

⋂

A2E(G) Pk
A such thatAk � � � � � A1 and

Bk � � � � � B1 (see Lemma 2.1). Then there existst � 1, the smallest integer such that
i D degxt

(uA1 � � � uAk ) > degxt
(vB1 � � � vBk ).

It is easy to see that for any elementuA01 � � � uA0k 2 (HP)k with A0k � � � � � A01 we
have A0i D fl W degxl

(uA01 � � � uA0k ) � i g. Thus t 2 Ai and t � Bi and soyt j uBi . For
any j < t such that j 2 Ai , we have j 2 Bi . Otherwise degx j

(vB1 � � � vBk ) < i and
since degx j

(uA1 � � � uAk ) � i we have degx j
(uA1 � � � uAk ) > degx j

(vB1 � � � vBk ) which is a
contradiction by assumption thatt is the smallest integer with this property.

Let L D fl < t W l 2 Ai g. Then as was shownL � Bi . For any l such thatxl yt 2
E(G), the labeling on the vertices ofG implies that l < t . Moreover l 2 Ai , since
Supp(uAi ) is a minimal vertex cover ofG which does not containyt . Thereforef1 �
l � nW xl yt 2 E(G)g � L. We haveuAi anduBi are in HP, i.e. Supp(uAi ) and Supp(uBi )
are minimal vertex covers ofG. Then from f1 � l � n W xl yt 2 E(G)g � Bi , we havefxl W l 2 Bi g [ fyl W l 2 Bc

i , l ¤ tg [ fxt g is again a minimal vertex cover ofG, equiva-
lently w D uBi[ftg is in HP. Then (vB1 � � � vBk )xt=yt D vB1 � � � vBi�1vBi[ftgvBiC1 � � � vBk is
in
⋂

A2E(G) Pk
A. Moreover, we have (vB1 � � � vBk )xt=yt >lex vB1 � � � vBk , which completes

the proof.
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The result of the above theorem seems to be true for any weighted Cohen–Macaulay
bipartite graph as we checked in many examples.

Next we consider some classes of weighted hypergraphs for which all ideals of
k-covers are either weakly polymatroidal or componentwise weakly polymatroidal. In
[7, Corollary 3.2] it is shown that any idealI D Pa

J \ Pb
K is componentwise linear and

[7, Remark 3.3] shows that they are not necessarily polymatroidal. Here we show that
these ideals are weakly polymatroidal.

Theorem 2.3. Let J and K be subsets of[n]. Let I D Pa
J \ Pb

K � K [x1, : : : , xn].
Then I is weakly polymatroidal.

Proof. Let N1 D J\K , N2 D J n (J\K ) and N3 D K n (J\K ). Let xl ,1, : : : , xl ,nl

be the variables correspond to the integers inNl for l D 1, 2, 3. Consider the ordering
on the variables ofR such thatx1,1> � � �> x1,n1 > � � �> x3,1> � � �> x3,n3. Let u andv
be two monomials inG(I ) such thatu>lex v. Assume thatuD u1u2u3 andv D v1v2v3,

whereul D xel ,1

l ,1 � � � xel ,nl
l ,nl

and vl D x
e0l ,1
l ,1 � � � xe0l ,nl

l ,nl
, for l D 1, 2, 3. First letx1,i be the first

index such thate1,i > e01,i . There existsxl , j in Supp(v) with x1,i > xl , j , sincev ­ u.
The elementh D x1,i (v=xl , j ) is in I . Let xl ,i be the first index such thatel ,i > e0l ,i for
l D 2 or 3. Sinceu1 D v1, we have deg(u2) D a � deg(u1) D a � deg(v1) D deg(v2).
Then there existsxl , j in Supp(v) with j > i . The elementh D xl ,i (v=xl , j ) has desired
properties.

Theorem 2.4. Let K, J1, : : : , Js be subsets of[n] such that
⋂s

iD1 Ji D Ji \ Jj D [t ]
for all i ¤ j and K \ Ji D ;. Let I D Pa0

K \ Pa1
J1
\ � � � \ Pas

Js
� K [x1, : : : , xn]. Then

I is weakly polymatroidal.

Proof. Let PK D (y1, : : : , yl ) and PJi D (z1, : : : , zt , xi ,1, : : : , xi ,bi ) for all i . Consider
the following ordering on the variables ofR.

y1 > � � � > yl > z1 > � � � > zt > x1,1 > � � � > x1,b1 > � � � > xs,1 > � � � > xs,bs.

Any monomialu in I can be written asf D w1w2u1 � � �us, wherew1 2 K [y1, : : : , yl ],w2 2 K [z1, : : : , zt ], and ui 2 K [xi ,1, : : : , xi ,bi ] for i D 1, : : : , s. For any monomial
f D w1w2u1 � � �us 2 G(I ) we have deg(w1) D a0, deg(ui ) D ai � l , where deg(w2) D l .
Let f D w1w2u1 � � � us and g D w0

1w0
2u01 � � � u0s be two monomials inG(I ) such that

f >lex g. We will denote the exponent of any variablex in f , by f (x). Let x be the
first variable such thatf (x) > g(x). The following cases may be considered:

CASE (a). Letx D yi for some 1� i � l . Since deg(w1)D deg(w0
1), then for some

j > i we havey j 2 Supp(w0
1). Then lethD x(g=y j ). We havehD w00

1w00
2u001 � � �u00s, where

deg(w00
1) D deg(w0

1), deg(w00
2) D deg(w0

2) and deg(u00i ) D deg(u0i ) for all i . Thush 2 I .
CASE (b). Let x D zt for some 1� t � k. Since f ­ g, there exists a variable

x < y 2 Supp(g), where y D zj for some j > t or y D xi , j for some i , j . Then let
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hD x(g=y). We havehD w00
1w00

2u001 � � �u00s. If yD zj , then deg(w00
1)D deg(w0

1), deg(w00
2)D

deg(w0
2) and deg(u00i )D deg(u0i ) for all i . If yD xi , j , then deg(w00

1)D deg(w0
1), deg(w00

2)D
deg(w0

2)C 1 and deg(u00i ) � deg(u0i ) � 1 for all i . Thush 2 I .
CASE (c). Let x D xl ,i for some 1� t � k. Sincew1 D w0

1 and w2 D w0
2, we

have deg(u j ) D deg(u0j ) for any j . Therefore there exists aj 0 > j such thatg(xl , j 0) >
0. Then h D x(g=xl , j 0 ) is in I , since h D w00

1w00
2u001 � � � u00s and deg(w00

1) D deg(w0
1),

deg(w00
2) D deg(w0

2) and deg(u00i ) D deg(u0i ) for all i .

Example 1.8 shows that the ideals considered in the above theorem are not neces-
sarily componentwise weakly polymatroidal.

Theorem 2.5. Let J1, : : : , Js, K be subsets of[n] such that Ji [ Jj D [n] for all
i ¤ j and K � [n]. Let I D Pa1

J1
\ � � �\ Pas

Js
\ Pb

K � K [x1, : : : , xn]. Then(Id) is weakly
polymatroidal for any d.

Proof. Rename the variables toz1, : : : , zk, z01, : : : , z0k0 , x1,1, : : : , x1,b1, y1,1, : : : , y1,c1, : : : ,
xs,1,:::,xs,bs, ys,1,:::, ys,cs such that variableszj (1� j � k) correspond to the integers in
(
⋂s

iD1 Ji

)\ K , the variablesz0j (1� j � k0) correspond to the integers in
(
⋂s

iD1 Ji

) n
K , the variablesxi , j correspond to the integers in [n] missing from Ji [ K and the
variablesyi , j correspond to the integers inK missing from Ji . Since Ji [ Jj D [n],
any r 2 [n] is missing at most one of theJi . For any l , 1� l � s the only variables
which do not appear inJl are xl ,1, : : : , xl ,bl , yl ,1, : : : , yl ,cl .

Consider the orderingz1 > � � � > zk > z01 > � � � > z0k0 > y1,1 > � � � > y1,c1 > � � � >
ys,1 > � � � > ys,cs > x1,1 > � � � > x1,b1 > � � � > xs,1 > � � � > xs,bs on the variables ofR.
For any f 2 I we can write f D w1w2v1 � � �vsu1 � � �us, wherew1 2 K [z1, : : : , zk], w2 2
K [z01, : : : , z0k], ul 2 K [xl ,1, : : : , xl ,bl ] and vl 2 K [yl ,1, : : : , yl ,cl ]. Therefore f 2 (Id) if
and only if deg(f ) D d and
(1) deg(ui )C deg(vi ) � d � ai for i D 1, : : : , k,
(2) deg(w2)C deg(u1)C deg(u2)C � � � C deg(us) � d � b.

Let f D w1w2u1 � � � usv1 � � � vs and g D w0
1w0

2u01 � � � u0sv01 � � � v0s be two monomials
in G(Id) such that f >lex g. The exponent of any variablex in f , is denoted byf (x).
Let x be the first variable such thatf (x) > g(x). We are going to find a variabley< x
such thath D x(g=y) 2 Id. The following cases may be considered:

CASE (a). Let x D zt for some 1� t � k. Since deg(f ) D deg(g), there exists a
variable y 2 Supp(g) such thaty < x. Since we do not have any condition on deg(w1),
the monomialh D x(g=y) admits conditions (1) and (2) which implies thath 2 Id.

CASE (b). Let x D z0t for some 1� t � k0. If there exists a variabley 2 Supp(g),
where y D z0k for somek > t or y D xl ,i for somel , i , then h D x(g=y) admits con-
ditions (1) and (2). Otherwise deg(u01) D � � � D deg(u0s) D 0 and deg(w0

2) < deg(w2).
Then for any variablek in Supp(g) with k < z0t , the elementh D x(g=k) has desired
properties (there exists suchk, otherwiseg j f ).
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CASE (c). Let x D yl ,i . If there exists a variablek 2 Supp(g), where k D yl , j

for j > i or k D xl , j for some j , then h D x(g=k) has desired properties. Otherwise,
deg(v0l ) < deg(vl ) and deg(u0l ) D 0. Since deg(f ) D deg(g), for some l 0 > l we have
ul 0 ¤ 0 or vl 0 ¤ 0. Therefore there exists a variablek 2 Supp(g), k D xl 0,i 0 or k D yl 0,i 0 .
Then the monomialh D x(g=k) has desired properties.

CASE (d). Let x D xl ,i . If xl ,k 2 Supp(g) for somek > i , then h D x(g=xl ,k) has
desired properties. Otherwise we have deg(u0l ) < deg(ul ). Since deg(v0l ) D deg(vl ), we
have deg(u0l )C deg(v0l ) < d � al . Then there exists a variablexl 0, j 2 Supp(u0lC1 � � � u0s).
The elementh D x(g=xl 0, j ) has desired properties.

The above theorem improves [7, Theorem 3.1].

REMARK 2.6. TheI D Pa1
J1
\� � �\Pas

Js
\Pb

K \Pb0
K 0 � K [x1,:::, xn], where J1,:::, Js

are subsets of [n] such thatJi [ Jj D [n] for all i ¤ j and K , K 0 � [n]. Such ideals are
not necessarily componentwise linear. For example the ideal I D (x1, x2) \ (x3, x4) \
(x2, x3)\(x1, x4) is an ideal as described above, but is not componentwise linear. Hence
Theorem 2.5 can not be extended to the case that we add to the edges J1, : : : , Js more
than one random edge.
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