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Abstract
In this paper we extend the concept of weakly polymatroidehls to monomial
ideals which are not necessarily generated in one degréestaw that any ideal in
this class has linear quotients. As an application we stugiyesvertex cover ideals
of weighted hypergraphs.

Introduction

Hibi and Kokubo in [21] introduced weakly polymatroidal &ls as a generaliza-
tion of polymatroidal ideals. They considered ideals whigk generated in the same
degree. In this paper we extend their definition to idealsctvldire not necessarily gen-
erated in one degree. We show that these ideals have linetienis, and consequently
are componentwise linear.

Let R = KJ[xg, ..., X,] be the polynomial ring im variables over a field and
I C R be a monomial ideal. Recall thathaslinear quotients if there exists a system
of minimal generatorsf;, fp,..., f, of | such that the colon idealf{, ..., fi_1): f
is generated by a subset @fi,..., x5} for all i. Ideals with linear quotients were
introduced by Herzog and Takayama in [19].

For a homogeneous ide&dlC R andd > 1, we denote bylg) the ideal generated
by all forms of degreed in |. The ideall is calledcomponentwise lineaif for each
d, (Ig) has a linear resolution. Componentwise linear ideals wereduced by Herzog
and Hibi in [10] and they proved that the Stanley—Reisnealide is componentwise
linear if and only if 15+ is sequentially Cohen—Macaulay (see [10], [18]).

In general it is hard to prove that an ideal is componentwiiseat. A criteria for
an ideal being componentwise linear are given in [5]. On therohand, if an ideal
has linear quotients, then it is componentwise linear, @asvehin [22]. If, in addition,
| is a monomial ideal, theih even has componentwise linear quotients, see [23].

Due to these facts one would expect that a weakly polymattaigal is component-
wise weakly polymatroidal. However, Example 1.8 shows that is in general not the
case. Nevertheless, if all generators of the weakly polyorddl ideal are of same degree,
then all components of the ideal are weakly polymatroidaisTs a consequence of The-
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orem 1.6 where we show more generally thakt i a weakly polymatroidal ideal and
is the graded maximal ideal of polynomial ring, thet is again weakly polymatroidal.

In Section 2 we study classes of ideals which are weakly patyoidal. The ideals
we study are vertex cover ideals of weighted hypergraplimydaced in [16]. LetV be
a finite set ande be a finite collection of nonempty subsets \6f Then# = (V, E)
is called ahypergraphand the elements oE are called the edges off. A vertex
cover of H is a subset ofV which meets every edge &. Any vertex cover ofV
can be considered as a (0, 1) vector (cg, ..., C,), Where ZAeE(H) ¢ > 1 for all
A € E(H). Given a hypergrapi{ and an integer valued functio® : E(#) — N,
A — wp, the pair i, o) is called aweighted hypergraphFor k € N, a k-coveris
defined as a vectar € N" that satisfies the conditioh;_,C > kwa for any A e E(H).
For a nonempty subsei = {ay,..., &} of V let Pao = (Xa, ..., Xg ). For a weighted
hypergraph T, ), the ideal Ax(H, w) = ﬂAGE(H) PK‘”A is called theideal of k-covers
of (H, w). The graded vertex cover algebM{(H, ) is defined agP,., Ac(H, w). If
wa = 1 for any A € E(H), then A(H, ) is denoted byA(H).

The fundamental question we want to address in this papéreidallowing: for
which weighted hypergraphH, ») are all its ideals ok-covers componentwise linear?
We call a hypergraph with this propergyniformly linear To classify all uniformly
linear hypergraphs is quite hopeless. It is known by a resfulirancisco and Van Tuyl
that the ideal 1-covers of any chordal graph is componertiifear, see [8]. However
it seems to be unknown whether chordal graphs are uniforméat.

In this paper we consider the following classes of uniforfigar weighted hyper-
graphs. Actually, we show in all these cases that for knthe ideal ofk-covers is
either weakly polymatroidal or componentwise weakly podyroidal.

(1) G is a Cohen—Macaulay bipartite graph (see Theorem 2.2).
(2) Let H be a hypergraph on the vertex sef Eatisfying one of the following con-
ditions:

(&) H has only two facets (see Theorem 2.3).

(b) E(H) ={K, Ji,..., Js} and there exists an integéersuch that)’_; J = J N

Jj=[tJforali#jandKnNJ =0 fori=1,...,s (see Theorem 2.4).

() E(H) =1{K, J,..., I} with J U J; =[n] for all i # j (see Theorem 2.5).
Herzog and Hibi in [9] showed that the ideal kfcovers of a Cohen—Macaulay bipart-
ite graph has linear quotients. The result in (1) is insplvgdheir work. Francisco and
Van Tuyl in [7] among other results proved that the idealk-afovers of hypergraphs
in (@), and (c) in the case th#& = @ are componentwise linear.

1. Weakly polymatroidal ideals

Let R= K[Xg,..., Xs] be a polynomial ring over the fiel&k. For any monomial
ideal I, let G(I) be the minimal set of generators bfand m(u) be the greatest integer
i for which x; dividesu. Foru = x{*...x&, we denoteg by deg, (u). Fora andb
in N" we havea > b if and only if the left-most nonzero entry ia— b is positive.
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DerINITION 1.1. A monomial ideal is called weakly polymatroidal if for every
fwo monomialsu = xfl- S XE >y v = xlfl- . -xr?” in G(I) such thata; = by,...,a_1 =

br—1 anda > by, there existsj >t such thatx;(v/x;) € I.

The monomial ideal is calledstableif, for any monomialu in I andi < m(u)
one hasx;(u/Xmw)) € . From the above definition one can see that each stable ideal
is weakly polymatroidal. In [1weakly stabledeals are defined as a generalization of
stable ideals and it was shown that every weakly stable ideakrated in degred
has a linear resolution. Also, in that paper an explicit folanfor the Betti numbers
of such ideals were given. A squarefree monomial idea called weakly stable if for
every squarefree monomialse | andu’ = u/m(u) the following condition §) holds:

(%) For every integet ¢ Supp() such thatl < m(u’), there exists an integere
Supp() with i > | such thatx (u/x) € G(I).

From the definition of weakly stable ideals, it is easy to de&t teach weakly
stable ideal which is generated in one degree is weakly patiwidal. The following
example shows that the converse of the above statement isusot

EXAMPLE 1.2. The ideall = (X1X3Xs5, X1X3Xg, X1XaXe, X2X4Xg) IS Weakly poly-
matroidal, but there exists no permutation of variableshahat | is weakly stable.

First we prove the following theorem for weakly polymatraiddeals.
Theorem 1.3. Any weakly polymatroidal ideal |1 has linear quotients.

Proof. LetG(l) = {uy,..., Uy}, whereu; > u, > --- > up in the lexicographical
order with respect tox; > X > --- > X5. We show thatl has linear quotients with re-
spect touy, ..., um. Letu; andu;j be in G(1) andu; > Uj. We can assume that =
X3¢ ...x& anduj = x*---x? and for somet, 1<t <nwe havea; =by,...,a_1 =
br—1 anda; > by. Therefore there exists > t such thatx(u;/x) € |I. Thus the set
A = {ug: X (uj/x) € (uk)} is nonempty. Letus € A be the unique element such that
for any ux € A (k # s), we have either degf) > deglis) or deg(y) = degls) and
Uk <jex Us. Assume thaix;(uj/x) = ush for someh € R. If x | h, thenu; = ush’ for
someh’ € R, which is a contradiction by the assumption thgte G(I). So we have
X | Us.

t

We claim thatus >ex Uj. By contradiction assume thats < Uj. Let us =
Xt XS, ¢ =by,...,¢1=b_; andc < by for some 1<r <n. Sincextb‘*1 | us, one
hasr < t. Then from the definition of weakly polymatroidal, one has= usx, /xx € |
for somek > r. Sincer <|, x | h and soxch/x € R. From w(xch/X;) = Xc(uj /%),
w >jex Us and deg@) = deglis), we havew ¢ G(1). Let w = ugh’ for some 1<s' <m
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and 1# h' € R. Then degfsy) < degw) = deg{is) which is a contradiction, since
Uy € A. Therefore one hassh € (uy, ..., uj_1). Since (sh : uj) = x, the proof is
complete. O

From [23, Theorem 2.7] we have the following

Corollary 1.4. Any weakly polymatroidal ideal has componentwise lineao-qu
tients.

REMARK 1.5. Letl = (ug, Uy, ..., u;) be a weakly polymatroidal ideal with re-
spect to the orderin@l; >jex Up >jex> *++ >lex Ur 0N G(I). With the notation in the
proof of above theorem fou; > U; there existd >t, s < j andh € R such that
X(uj/x) = ush. Therefore, for eachk <r, the ideall’ = (uy, ..., ux) is again weakly
polymatroidal.

It is known that the product of any two polymatroidal idealsagain polymatroidal,
see [4, Theorem 5.3]. This is not the case for weakly polyoidat ideals. The ideal
| = (X2xa, X2X3, X1X3, XoX3, X1X3X4) is weakly polymatroidal, but? does not even have
linear resolution. However, we have

Theorem 1.6. Let | be a weakly polymatroidal ideal and be the maximal ideal
of R. Thenml is again weakly polymatroidal.

Proof. LetG(l) = {uy,..., Uy}, whereu; > u, > --- > Uy, in the lexicographical
order with respect tox; > Xo > --- > X,. Let w; and w, be elements of5(ml) and
w1 >lex w2. Consider the setd = {u € G(I): w; = xu for some 1<i < n} and
B={veG(l): wy=xjv for some 1< j <n}. Letue A andv € B be the greatest
elements inA and B with respect to lex order, respectively. Assume that= x;u =
XSt x% and wp = Xjv = xfl---xr?n, a =1b fori <t anda > b. One hasu =
X . .oxd o ox@ andy = X x?‘_l .-~ xP. First we consider the cage<i. We
haveu > v. If t > |, thenj is the smallest index with ngu) > deg(J (v). Then
Xj(v/%) €| for somel > j and we havexjv = xyw for somev <jex w € |. Sincexjw
is in G(ml), one hasw € G(I) which is a contradiction by the way of choosing So
t < j andt is the smallest index with dedu) > deg, (v). Thereforex;(v/x) € | for
somel >t and sox(Xjv/x) = Xj(Xv/X) is in ml.

Lett>i. If j =i, then the result is clear. If < i, thenu > v, S0 j is the first
index such thag; = deg(j (u) > deg(j (v) =b; —1. Thereforex;(v/x) is in | for some
| > j and we havexjv = xw for somew € G(I), w >ex v, Which is a contradiction.

Therefore, one can assume that i. If i <t, thenv > U, sinceb; = deg, (v) >
deg, (u) = & — 1. Then there exists > i such thatxj(u/x) € I. Soux = wx for
somew € G(l), wherew >|x U which is a contradiction. Let = i. Thenxv =
X (Xjv/xj) € | and j > t, which completes the proof. 0
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As an immediate consequence of the above theorem we have

Corollary 1.7. Let | be a weakly polymatroidal ideal generated by monomiials
one degree. Then | is componentwise weakly polymatroidal.

Proof. Assume that _the minimal generatorslofire of degreed. Then for any
j = 0 we have [¢g4+j) = m!l, wherem is the maximal ideal ofR. Therefore by the
above theoreml(, ;) is weakly polymatroidal. ]

A weakly polymatroidal ideal for which the minimal genenatcare not of the
same degree, is not necessarily componentwise weakly ptigidal. The following
example shows this fact.

EXAMPLE 1.8. The ideall = (X1X3, XoX3, X1X4X5, XoXaXs5) = (X1, X2) N (X3, X4) N
(X3, Xs) is weakly polymatroidal. But there exists no permutatidrvariables such that
(I3) is weakly polymatroidal.

2. Some applications

As the first application we consider the ideal lofcovers of a Cohen—Macaulay
bipartite graphG. Let P be a finite poset associated @, see [11, Theorem 3.4],
and let J(P) be the distributive lattice consisting of all poset ideafsP, ordered by
inclusion. Recall that a subsétC P is a poset ideal oP if for all xe | andy € P
such thaty < x, one hasy e |. Let P = {ps,..., pn} and S= K[Xg,..., Xn, Y1,..., ¥n]
be the polynomial ring in 12 variables over a fiel&K. To each poset idedl of P we
associate the monomial =[], Xi [[,cp\ ¥i- The squarefree monomial ideal &f
generated by all monomials, with | € J(P) is denoted byHp. The idealHp is in
fact the ideal of 1-covers os. Herzog and Hibi in [11, Theorem 3.4] proved that a
bipartite graphG with vertex partitionX UY is Cohen—Macaulay if and only if there
exists a labeling on the vertices = {xi,..., Xa} andY = {yi, ..., ¥a} such that:

(i) xvy; are edges for =1,...,n;

(i) if xy; is an edge, them < j;

(i) if xy; andx;yx are edges, thew; y, is an edge.

In [9] it was shown that the powers dfl have linear quotients. In the following we
show that the powers dflp are even weakly polymatroidal.

The following lemma was proved in [20, p.99]. For the coneaci of the reader
we give a proof of it.

Lemma 2.1. Let G be a Cohen—Macaulay bipartite graph as above. Then each
element of the set of minimal generators of the ideal of lewf G ﬂAeE(G) PX,
can be written as g, - - - ug,, where Be J(P) and K € --- € By.
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Proof. By [16, Theorem 5.1] we know that the vertex cover ltgeof G is stand-

ard graded, therefore it follows thl ) PA = (Naceo) Pa)* = (Hp)*. Letun,,...,
Ua, € Hp. From [14, Theorem 2.2] we hauey,a; anduana, are elements oHp for
anyi and j. Then we can write

UaUpa; = UpuaUana;-

By induction we show thati, - - -ua, can be written asia - --Uy such thatAl € A
forall 2<i <k. Letua, ---Up_, =Ux ---Upx_ such thatAl € A) for all 2<i <
k—1. Then

Upy - Uac = (UaUA) (Upg - UA)
= (unualana) (Ua, - - U, ).

We have Al N Ay € AjU A and Al € AJ U A for all 2<i <k—1 and the assertion
holds. Now we show that one can writg, - --ua, = Ug, - - -Ug, Such thatBy C--- C
B;. By the above statements we can assume that - - Us, = Ux -+ - Uy sSuch that
A € A forall 2<i <k. By induction assume thata, - --Ua = Ug,---Up, such that
B« C--- C By. SincelJ'_, B = '_, A € A}, settingB; = A} we haveB, C--- C B,
andup, ---Ua, = Ug, - Up,. O

Theorem 2.2. Let G be a Cohen—Macaulay bipartite graph as above. Then the
ideal of k-covers of G(\acg() PX, is weakly polymatroidal.

Proof. Consider the ordering on the variables correspgntinthe vertices ofG
such thatx; > Xp > -++ > Xy > y1 > -+ > yn. Letup, -+ -Up >jex Up, - - - Vg, bE tWO
elements in the minimal generating set (Ofy.g(g) PX such thatA, € --- € A; and
By € --- C By (see Lemma 2.1). Then there exists 1, the smallest integer such that
i =deg, (ua, ---Ua) > deg (vs, - - vB,)-

It is easy to see that for any elemant; ---uax € (Hp)X with A, C--- C A} we
have Al = {l: deg,(ua ---ux) > i}. Thust € A andt ¢ Bj and soy; | ug. For
any j <t such thatj € A;, we havej € B;. Otherwise de)g(vBl---ka) < i and
since deg (Ua, ---Ua) = i we have deg(ua, ---Ua) > deg (vs, - vg,) wWhich is a
contradiction by assumption thatis the smallest integer with this property.

Let L ={l <t:l € Aj}. Then as was showh C B;. For anyl such thatxy; €
E(G), the labeling on the vertices db implies thatl < t. Moreoverl € A;, since
Supply) is a minimal vertex cover ofs which does not contaity;. Therefore{l <
I <n:xy: € E(G)} € L. We haveup, andug are inHp, i.e. Supp(a) and Suppdg,)
are minimal vertex covers of. Then from{l1 <1 < n: xy; € E(G)} C B;, we have
{x:1eBlU{y:leBIl #t}U({x]} is again a minimal vertex cover db, equiva-
Iently w = Up ujt) is in Hp. Then @Bl v UBk)Xt/yt = U, ' " UB_, VB U{t}VUBi,1 "~ " UBy is
in ﬂAeE(G) P,‘f\. Moreover, we haveug, - - - vg )X/t >lex Us, * - - V., Which completes
the proof. Ul
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The result of the above theorem seems to be true for any vesigbbhen—Macaulay
bipartite graph as we checked in many examples.

Next we consider some classes of weighted hypergraphs fachwddl ideals of
k-covers are either weakly polymatroidal or componentwisskly polymatroidal. In
[7, Corollary 3.2] it is shown that any idedl= P2 PP is componentwise linear and
[7, Remark 3.3] shows that they are not necessarily polyoidat. Here we show that
these ideals are weakly polymatroidal.

Theorem 2.3. Let J and K be subsets @fi]. Let | = P2N PP C K[xq,..., Xn].
Then | is weakly polymatroidal.

Proof. LetN; =JNK, N =J\(JNK) andN; = K\ (JNK). Let X 1,...,Xn
be the variables correspond to the integerdNjnfor | = 1, 2, 3. Consider the ordering
on the variables oR such thatx;,; > -+ > Xy n, > -+ > X3,1> -+ > Xgp,. Letu andv

be two monomials irG(1) such thatu >, v. Assume thati = u;u,uz andv = v1v,vs,

whereu, = X7 - - - xﬁh”l' andvy = xﬁf “e xﬁ;,”l', for| =1, 2, 3. First letx;; be the first

index such thak;; > €};. There existsx j in Suppg) with x;; > X j, sincev { u.
The elemenh = x3i(v/x,j) is in I. Let x; be the first index such tha ; > g ; for
| =2 or 3. Sinceu; = vy, we have deg(,) = a — deg{l;) = a — deg,) = degy).
Then there exists; j in Suppg) with j > i. The elemenh = x;(v/x ;) has desired
properties. O

Theorem 2.4. Let K, Jy,..., Js be subsets dfn] such that’_; J = J N J; = [t]
foralli #jand KNJ =0. Let | = P NP N---NPECK[Xy,...,X]. Then
| is weakly polymatroidal.

Proof. LetPx = (y1,...,¥) and Py = (z1,...,%,% 1,..., Xi,p,) for all i. Consider
the following ordering on the variables d@t.

Yi> >N >21> >4 >X1> 0> Xy >0 > Xg 1> 00 > Xg by

Any monomialu in | can be written asf = wiw,u; - - - Us, Wwherew; € K[y, ..., Wl
wy € K[zg,...,z], andu; € K[Xi1,..., X ] for i =1,...,s. For any monomial
f = wywyuy---us € G(I) we have degf,) = ag, deg(ii) = g —1, where degg,) = 1.
Let f = wiwou;---Us and g = wjwsU] - -- u; be two monomials inG(l) such that
f >ex 9. We will denote the exponent of any variabtein f, by f(x). Let x be the
first variable such thaf (x) > g(x). The following cases may be considered:

CASE (a). Letx =y for some 1<i <I. Since degf;) = deg@}), then for some
j > i we havey; € Suppf?). Then leth = x(g/y;). We haveh = wjwsuj- - -ug, where
degw}) = deg@3), degfw;) = degws) and deg() = deg(y;) for all i. Thush e I.

Case (b). Letx = z for some 1<t < k. Since f } g, there exists a variable
X <y € Supp@), wherey = z; for somej >t or y = x; ; for somei, j. Then let
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h = x(g/y). We haveh = wjwyu?---ug. If y = zj, then deg@?) = degfw;), degws;) =
deg(ws;) and deg() = deg(i)) for alli. If y = x; j, then deg¢?) = deg(w;), degw5) =
degw5) + 1 and deg() > deg{i/) — 1 for alli. Thush e I.

CASE (c). Letx = x; for some 1<t < k. Sincew; = w; and wy; = w), we
have deg(;) = deg(ij) for any j. Therefore there exists g > j such thatg(x,j) >
0. Thenh = x(g/x,j-) is in I, sinceh = wfwjuy ---ul and deg@]) = degw?),
deg(wsy) = degw5) and deg(;) = degx) for all i. ]

Example 1.8 shows that the ideals considered in the abowedimeare not neces-
sarily componentwise weakly polymatroidal.

Theorem 2.5. Let J,..., Js, K be subsets ofn] such that Ju J; = [n] for all
i #jand Kc[n]. Let | = Pj‘fﬂ---m Pism PP C K[Xy,...,X)]. Then(lg) is weakly
polymatroidal for any d.

Proof. Rename the variables 19,...,2,7},..., 2y, X0,1,- -+ X1bys Y, 10 - Yicar- - -
Xs,15.+) Xs,bs1 Y5, 10+ Ys,c, SUCh that variables; (1 < j <k) correspond to the integers in
(Ni=1 J) N K, the variablesz; (1< j < k') correspond to the integers if;_; J) \
K, the variablesx; j correspond to the integers im][ missing from J U K and the
variablesy; ; correspond to the integers ik missing fromJ.. Since J U J; = [n],
anyr € [n] is missing at most one of thg,. For anyl, 1 <| < s the only variables
which do not appear i} arex1,..., Xip, ¥i,1,--- Yi.q-

Consider the ordering; > - >z > 2| >--->Z, > Y11> > Yi¢ > -+ >
Ys1> o> Vs > X1,1> o0 > Xgp, > -0 > X1 > -+ > Xgp, ON the variables oR.
For any f € | we can writef = wywovy---vsUy- - -Us, Wherew; € K[z, ..., %], wp €
Klz;, ..., z], e K[Xi1,...,Xn] and vy € K[V 1,..., ¥i,q]- Thereforef e (lg) if
and only if degf) =d and
(1) deg(i) +degi) <d—a fori =1,...,Kk,

(2) degfwz) + degli1) + deg(iz) + - - - + deglis) =d —b.

Let f = wywauy---Usvy---vs and g = wjwsu] - - - ULV] - - - v; be two monomials
in G(lg) such thatf > g. The exponent of any variabbe in f, is denoted byf (x).
Let x be the first variable such thdt(x) > g(x). We are going to find a variablg < x
such thath = x(g/y) € l4. The following cases may be considered:

CAsE (a). Letx =z for some 1<t < k. Since degf) = deg(@), there exists a
variabley € Suppg) such thaty < x. Since we do not have any condition on deg,
the monomialh = x(g/y) admits conditions (1) and (2) which implies tHate 1.

Cask (b). Letx =z for some 1<t < k'. If there exists a variablg € Suppg),
wherey = z_for somek >t or y = x; for somel, i, thenh = x(g/y) admits con-
ditions (1) and (2). Otherwise dag( = --- = degly) = 0 and degg,) < degws).
Then for any variable&k in Supp@) with k < z, the elementh = x(g/k) has desired
properties (there exists sudh otherwiseg | f).
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CASE (c). Letx = y;. If there exists a variabl& € Supp@), wherek =y ;
for j >i or k=x,; for somej, thenh = x(g/k) has desired properties. Otherwise,
degy) < degf) and degg)) = 0. Since degf{) = deg@), for somel’ > | we have
U # 0 or vy # 0. Therefore there exists a variatdes Supp@), k = x-ir or K = yi .
Then the monomiah = x(g/k) has desired properties.

CAsSE (d). Letx =x.i. If x x € Supp@) for somek > i, thenh = x(g/x «) has
desired properties. Otherwise we have dg€gk deg(y). Since deg{) = deg@y), we
have deg(j) + degfy) < d —a. Then there exists a variable ; € Supp(y,, - - - ug).
The element = x(g/x,;) has desired properties. ]

The above theorem improves [7, Theorem 3.1].

REMARK 2.6. Thel = P3n---NPENPENPY C K[Xy,...,X], where Jy,..., Js
are subsets ofn] such thatJ UJ; =[n] for all i # j andK, K’ C [n]. Such ideals are
not necessarily componentwise linear. For example thel itlea (X1, X2) N (X3, X4) N
(x2,%3)N (X1, X4) is an ideal as described above, but is not componentwisarirHence
Theorem 2.5 can not be extended to the case that we add to ges &d..., Js more
than one random edge.
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