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Abstract
We study the structure ofsymplectic quandles, quandles which are also

R-modules equipped with an antisymmetric bilinear form. We show that every
finite dimensional symplectic quandle over a finite fieldF or arbitrary field F of
characteristic other than 2 is a disjoint union of a trivial quandle and a connected
quandle. We use the module structure of a symplectic quandleover a finite ring to
refine and strengthen the quandle counting invariant.

1. Introduction

A quandle is a non-associative algebraic structure whose axioms may be under-
stood as transcriptions of the Reidemeister moves. The term“quandle” was introduced
by Joyce [7], though quandles have been studied by other authors under various names
such as “distributive groupoids” [9] and (for a certain special case) “Kei” ([14], [13]).
Several generalizations of quandles have been defined and studied, includingauto-
morphic sets(see [3]) andracks (see [6]) where the axioms are derived from regu-
lar isotopy moves,virtual quandles(see [8]) where additional structure is included for
modeling virtual Reidemeister moves, andbiquandlesandYang-Baxter sets, which also
have axioms derived from the Reidemeister moves but use a different correspondence
between algebra elements and portions of link diagrams.

Quandles have found applications in topology as a source of invariants of topolog-
ical spaces. In particular, finite quandles are useful for defining computable invariants
of knotted circles inS3 and other 3-manifolds as well as generalizations of ordinary
knots such as virtual knots, knotted surfaces inS4, etc.

In [15], an example of a quandle structure defined on a moduleM over a com-
mutative ring R with a choice of antisymmetric bilinear formh , i : M � M ! R
is given. In this paper we study the structure of this type of quandle, which we call
a symplectic quandle1. Our main result says that every symplectic quandleQ over a
field F (of characteristic other than 2 ifF is not finite) is almost connected, that is,
Q is a disjoint union in the sense of [3] of a trivial quandle anda connected quandle.
Symplectic quandles are not just quandles but alsoR-modules; we show how to use
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1After the completion of this paper, we were reminded that symplectic quandles are also called

quandles of transvections.
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the R-module structure of a finite symplectic quandle to enhance the usual quandle
counting invariant.

The paper is organized as follows. In Section 2 we recall the basic definitions
and standard examples of quandles. In Section 3 we define symplectic quandles, give
some examples and show that symplectic quandles are almost connected. In Section 4
we give an application of symplectic quandles to knot invariants, defining a new family
of enhanced quandle counting invariants associated to finite symplectic quandles.

2. Quandle basics

We begin with a definition from [7].

DEFINITION 1. Let Q be a set and⊲: Q�Q ! Q a binary operation satisfying
(i) for all a 2 Q, a ⊲ a = a,
(ii) for all a, b 2 Q, there is a uniquec 2 Q such thata = c ⊲ b, and
(iii) for all a, b, c 2 Q, (a ⊲ b) ⊲ c = (a ⊲ c) ⊲ (b ⊲ c).

Axiom (ii) says that the quandle operation⊲ has a right inverse⊲�1 such that (x ⊲

y) ⊲
�1 y = x and (x ⊲

�1 y) ⊲ y = x. It is not hard to show thatQ is a quandle under
⊲
�1 (called thedual of (Q, ⊲)) and that the two operations distribute over each other.

Standard examples of quandle structures include:

EXAMPLE 1. Any set Q is a quandle under the operationx ⊲ y = x, called a
trivial quandle. We denote the trivial quandle of ordern by Tn.

EXAMPLE 2. The finite abelian groupZn is a quandle underx ⊲ y = 2y�x. This
is sometimes called thecyclic quandleof order n.

EXAMPLE 3. Any groupG is a quandle under the following operations:
• x ⊲ y = y�1xy, or
• x ⊲ y = y�nxyn, or
• x ⊲ y = s(xy�1)y wheres 2 Aut(G).

EXAMPLE 4. Any module overZ[t�1] is a quandle under

x ⊲ y = t x + (1� t)y.

Quandles of this type are calledAlexander quandles. See [1] and [10] for more.
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EXAMPLE 5. For any tame link diagramL, there is a quandleQ(L) defined by
a Wirtinger-style presentation with one generator for eacharc and one relation at each
crossing.

Q(L) = ha, b, c j a ⊲ b = c, b ⊲ c = a, c ⊲ a = bi.

This knot quandleis in fact a classifying invariant of knots and unsplit linksin S3 and
certain other 3-manifolds up to orientation-reversing homeomorphism of the ambient
space. Elements of a knot quandle are equivalence classes ofquandle words in the arc
generators under the equivalence relation generated by thequandle axioms. See [7] and
[6] for more.

DEFINITION 2. Let Q = fx1, x2, : : : , xng be a finite quandle. The matrixMQ with
MQ[i , j ] = k wherexk = xi ⊲ x j for all i , j 2 f1, 2,: : : , ng is the quandle matrixof Q.
That is, MQ is the operation table ofQ without the “x”s.

EXAMPLE 6. The quandleQ = Z3 = f1, 2, 3g (note that we use 3 for the repre-
sentative of the coset 0 + 3Z so that our row and column numbers start with 1 instead
of 0) with i ⊲ j = 2 j � i has quandle matrix

MQ =

2
4 1 3 2

3 2 1
2 1 3

3
5.

3. Symplectic quandles

We begin this section with a definition (see [15]).

DEFINITION 3. Let M be a finite dimensional free module over a commutative
ring with identity R and let h , i : M � M ! R be an antisymmetric bilinear form
such thathx, xi = 0 for all x 2 M. Then M is a quandle with quandle operation

x ⊲ y = x + hx, yiy.

The dual quandle operation is given by

x ⊲
�1 y = x� hx, yiy.

If R is a field and the form is non-degenerate, i.e., ifhx, yi = 0 for all y 2 M implies
x = 02 M, then M is symplectic vector spaceand h , i is a symplectic form; thus it is
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natural to refer to suchM assymplectic quandles. For simplicity, we will use the term
“symplectic quandle overR” to refer to the general case whereR is any ring andh , i
is any antisymmetric bilinear form. Ifh , i is non-degenerate, we will say (M, ⊲) is
a non-degenerate symplectic quandle over R. M and M 0 are isometric if there is an
R-module isomorphism� : M ! M 0 which preserves the bilinear formh , i.

DEFINITION 4. A quandle isinvolutory if ⊲ = ⊲
�1. Note that involutory quandles

are also calledkei (see [7], [13] and [14] for more).

Proposition 1. If M is a symplectic quandle over a ring R of characteristic2,
then M is involutory.

Proof. If M is a symplectic quandle over a ringR of characteristic 2, then for
any x, y 2 M we have

x ⊲ y = x + hx, yiy = x� hx, yiy = x ⊲
�1 y.

DEFINITION 5. Let Q and Q0 be quandles withQ\ Q0 = ;. Then we can make
Q [ Q0 a quandle by definingx ⊲ y = x when x 2 Q and y 2 Q0 or when x 2 Q0 and
y 2 Q. This is thedisjoint unionof Q and Q0 in the sense of Brieskorn [3]. IfQ and
Q0 are finite then the matrix ofQ [ Q0 is the (n + m)� (n + m) block matrix

MQ[Q0 =

�
MQ row
row MQ0

�

where row indicates that all entries are equal to their row number and we denoteQ =fx1, : : : , xng, and Q0 = fxn+1, : : : , xn+mg.
Every quandleQ can be decomposed as a disjoint union of a trivial subquandle

D = fx 2 Q j x ⊲ y = x and y ⊲ x = y 8y 2 Qg
and a non-trivial subquandleQ n D. Both D and Q n D may be empty, andQ n D
may contain trivial subquandles. CallD the maximal trivial componentof Q.

EXAMPLE 7. The quandleQ with matrix MQ below has maximal trivial compo-
nent D = fx5g and Q n D = fx1, x2, x3, x4g.

MQ =

2
666664

1 1 1 2 1
2 2 2 3 2
3 3 3 1 3
4 4 4 4 4
5 5 5 5 5

3
777775
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Notice that even thoughfx1, x2, x3g is a trivial subquandle, it is not part of the maximal
trivial component because of the way in which it is embedded in the overall quandle.

Proposition 2. Let Q be a symplectic quandle over R. Then the maximal trivial
component of Q is the submodule of R on whichh , i is degenerate.

Proof. For anyx 2 Q we havex⊲0 = x + hx, 0i0 = x and 0⊲ x = 0+ h0, xix = 0, so
0 is in the maximal trivial component ofQ. More generally, letD be the submodule
of Q on which h , i is degenerate, i.e.,

D = fx 2 Q j hx, yi = 0, 8y 2 Qg.
Then for anyd 2 D we havex ⊲ d = x + 0d = x and d ⊲ x = d + 0x = d, so D is a trivial
subquandle ofQ and Q is the disjoint union ofD and Q n D in sense of Definition 5.
If x 62 D, then there is somey 2 Q with hx, yi 6= 0 so thatx ⊲ y 6= x; athen Q n D is
non-trivial and D is precisely the submodule ofQ on which h , i is degenerate.

Corollary 3. If Q is a nondegenerate symplectic quandle, then the maximal triv-
ial component of Q is D= f0g.

We will now restrict our attention to the case whereM is a free module over a
PID R. It is a standard result (see [2] for example) that such anM equipped with a
nondegenerate antisymmetric bilinear form must be even dimensional, with basisfbi j
i = 1, : : : , 2ng such that

hx, yi =

*
2nX
i =1

xi bi ,
2nX
i =1

yi bi

+
=

2nX
i =1

�(i )�i xi yi +�(i ) where �(i ) =

�
1 i odd�1 i even,

�2i = �2i�1, and each�i is either 1 or a nonunit inR. Such a basis is called asym-
plectic basis. The �i s are calledinvariant factors, and the set with multiplicities of
invariant factors determines the symplectic module structure up to isometry (i.e.,h , i-
preserving isomorphism ofR-modules). In particular, ifR is a field, then we may
choose our basis so that�2i = �2i�1 = 1 for all i = 1, : : : , n.

In matrix notation withx, y row vectors, we havehx, yi = xAyT where A is a
block diagonal matrix of the form

A =

2
66666666664

0 �2 0 0 � � � 0 0��2 0 0 0 � � � 0 0
0 0 0 �4 � � � 0 0
0 0 ��4 0 � � � 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 0 �2n

0 0 0 0 � � � ��2n 0

3
77777777775

.
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It is clear that isometricR-modules are isomorphic as quandles. Conversely, a
symplectic quandle structure onRn determines the antisymmetric bilinear formh , i
uniquely up to choice of basis: for a basisfbi j i = 1, : : : , 2ng of R2n we have

bi ⊲ b j � bi = hbi , b j ib j = �i j b j

and sincefbi g is a basis, the�i j thus determined is unique. Changing bases to get
a symplectic basis, we then obtain the invariant factors. Thus the quandle structure
together with theR-module structure ofM determine the invariant factors and hence
determineh , i, and we have:

Theorem 4. Let Q and Q0 be non-degenerate2n-dimensional symplectic quandles
over a PID R. Then Q and Q0 are isomorphic as quandles iff they are isometric.

Our search through examples of finite symplectic quandles ofsmall cardinality over
Zn for n non-prime has failed to yield any examples of symplectic quandles which are
isomorphic as quandles but not isometric asR-modules. Thus, we have

Conjecture 1. Two symplectic quandles of the same dimension overZn are iso-
morphic as quandles if and only if they are isometric.

The following example shows that cardinality alone does notdetermineR or the
rank of Q.

EXAMPLE 8. Let R = Z2 and F = Z2[t ]=(t2 + t + 1). Both R and F are fields of
characteristic 2, and the symplectic vector spaces

V = R4, hx, yi = x

2
664

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

3
775yT

and

V 0 = F2, hx, yi = x
�

0 1
1 0

�
yT
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are both symplectic quandles of order 16. From their quandlematrices

MV =

2
66666666666666666666666666664

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 4 3 2 2 8 7 2 2 12 11 2 2 16 15
3 4 3 2 3 8 3 6 3 12 3 10 3 16 3 14
4 3 2 4 4 7 6 4 4 11 10 4 4 15 14 4
5 5 5 5 5 5 5 5 13 14 15 16 9 10 11 12
6 6 8 7 6 6 4 3 14 13 6 6 10 9 6 6
7 8 7 6 7 4 7 2 15 7 13 7 11 7 9 7
8 7 6 8 8 3 2 8 16 8 8 13 12 8 8 9
9 9 9 9 13 14 15 16 9 9 9 9 5 6 7 8
10 10 12 11 14 13 10 10 10 10 4 3 6 5 10 10
11 12 11 10 15 11 13 11 11 4 11 2 7 11 5 11
12 11 10 12 16 12 12 13 12 3 2 12 8 12 12 5
13 13 13 13 9 10 11 12 5 6 7 8 13 13 13 13
14 14 16 15 10 9 14 14 6 5 14 14 14 14 4 3
15 16 15 14 11 15 9 15 7 15 5 15 15 4 15 2
16 15 14 16 12 16 16 9 8 16 16 5 16 3 2 16

3
77777777777777777777777777775

and

MV 0 =

2
66666666666666666666666666664

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 6 5 8 7 14 16 15 13 10 11 9 12
3 3 3 3 11 9 10 12 7 6 8 5 15 16 13 14
4 4 4 4 16 13 15 14 12 11 10 9 8 6 5 7
5 6 8 7 5 2 16 11 5 14 12 3 5 10 4 15
6 5 7 8 2 6 9 13 10 3 6 15 14 4 12 6
7 8 6 5 15 10 7 2 3 9 13 7 11 7 16 4
8 7 5 6 12 14 2 8 16 8 3 11 4 13 8 9
9 11 10 12 9 3 6 16 9 7 14 4 9 15 2 8
10 12 9 11 14 7 3 10 6 10 4 16 2 5 10 13
11 9 12 10 3 11 13 5 15 4 11 8 7 2 14 11
12 10 11 9 8 15 12 3 4 13 5 12 16 12 6 2
13 16 15 14 13 4 11 6 13 12 7 2 13 8 3 10
14 15 16 13 10 8 14 4 2 5 9 14 6 14 11 3
15 14 13 16 7 12 4 15 11 15 2 6 3 9 15 5
16 13 14 15 4 16 5 9 8 2 16 10 12 3 7 16

3
77777777777777777777777777775

we can easily see thatV and V 0 are not isomorphic as quandles by checking that the
quandle polynomialsqpV (s, t) = s16t16 + 15s8t8 and qpV 0(s, t) = s16t16 + 15s4t4 are not
equal (see [11] for more).
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DEFINITION 6. A quandleQ is connectedif it has a single orbit, i.e., if every
elementz 2 Q can be obtained from every other elementx 2 Q by a sequence of
quandle operations⊲ and dual quandle operations⊲�1. A quandle isalmost connected
if it is a disjoint union in the sense of Definition 5 of its maximal trivial component
and a single connected subquandle.

Our main result says that symplectic quandlesQ over a finite field or infinite field
F of characteristic other than 2 are almost connected; in particular, if h , i is non-
degenerate then the subquandleQ n f0g is a connected quandle. Connected quandles
are of particular interest for defining knot invariants since knot quandles for knots (i.e.,
single-component links) are always connected. In particular, the image of a quandle
homomorphism f : Q(L) ! T from a knot quandle toT always lies within a single
orbit of the codomain quandleT , though of coursef need not be surjective.

For the remainder of this section, letQ be a symplectic quandle over a fieldF
and choose a symplectic basisfbi g with invariant factors�2i = 1 for i = 1, : : : , n.

Lemma 5. If any component xi of x =
P2n

i =1 xi bi 2 Q is nonzero then for any
j 2 f1, : : : , 2ng there is az = x ⊲ y 2 Q with zj 6= 0 for somey 2 Q. That is, we can
change a zero component to a nonzero component using a quandle operation, provided
at least one other component ofx is nonzero.

Proof. Supposexi 6=0 andx j =0. Then choose� 2F such that� 6=�(i )xi=(�( j )x j +�( j ))
or, if x j +�( j ) = 0, � 6= ��(i )xi . and definey = bi +�(i ) + �b j . Then we have

x ⊲ y = x + (�(i )xi � �( j )x j +�( j )�)y

and the j -th component ofz = x ⊲ y is

zj = 0 + (�(i )xi � ��( j )x j +�( j ))�
which is nonzero by our choice of�.

Lemma 6. For any x =
P2n

i =1 xi bi 2 Q and for any� 2 F, we can add(or sub-
tract) �2xi to (or from) xi +�(i ) with quandle operations and dual quandle operations.

Proof.

x ⊲ �bi +�(i ) = x + (�(i )xi�)�bi +�(i ) = x + �(i )�2xi bi +�(i )

and similarly

x ⊲
�1 �bi +�(i ) = x� �(i )�2xi bi +�(i ).
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Lemma 7. If the characteristic ofF is not 2, then for anyx 6= 0, we can change
any component xi of x to any value z2 F with quandle operations and dual quandle
operations.

Proof. Write xi = z +w. By Lemma 5 we may assume thatxi +�(i ) 6= 0. Then

x ⊲wbi = x + (�(i + �(i ))xi +�(i )w)wbi

and the new quandle element hasi -th component equal to

xi + �(i + �(i ))xi +�(i )w2 = z +w + �(i + �(i ))xi +�(i )w2

= z + �(i + �(i ))xi +�(i )

� w�(i + �(i ))xi +�(i )
+w2

�
.

Let us denotej = i + �(i ). If the characteristic ofF is not 2, then we can complete
the square to obtain

xi + �( j )x jw2 = z + �( j )x j

 
1

4x2
j

+
w�( j )x j

+w2

!
� �( j )x j

1

4x2
j

= z + �( j )x j

�
1

2x j
+ �( j )w�2 � �( j )x j

�
1

2x j

�2

.

Then by Lemma 6 we can remove both terms via quandle operations and dual quandle
operations to obtainz in the i -th component, as required.

Lemma 8. In a finite fieldF of characteristic2, every element ofF is a square.

Proof. The mapf : F! F given by f (x) = x2 is a homomorphism of fields since

f (x + y) = (x + y)2 = x2 + 2xy + y2 = x2 + y2 = f (x) + f (y)

and

f (xy) = (xy)2 = x2y2.

Then ker(f ) = f0g since F has no zero divisors; thusf is injective and, sinceF is
finite, surjective. In particular, every� 2 F satisfies� = �2 for some� 2 F.

Taken together, Lemmas 5, 6, 7 and 8 imply:

Theorem 9. Let F be a field of characteristic other than2, or a finite field of
characteristic2. Then every symplectic quandle overF is almost connected.
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If R is not a field, then symplectic quandles overR need not be almost connected,
as the next example shows.

EXAMPLE 9. The symplectic quandleV 00 = (Z4)2 with bilinear form

hx, yi = x
�

0 2
2 0

�
yT

has quandle matrix

MV 00 =

2
66666666666666666666666666664

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 10 12 10 12 2 2 2 2 10 12 10 12
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 12 10 12 10 4 4 4 4 12 10 12 12
5 7 5 7 5 15 5 15 5 7 5 7 5 15 5 15
6 8 6 8 14 6 14 6 6 8 6 8 14 6 14 6
7 5 7 5 7 13 7 13 7 5 7 5 7 13 7 13
8 6 8 6 16 8 16 8 8 6 8 6 16 8 16 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
10 10 10 10 2 4 2 4 10 10 10 10 2 4 2 4
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 4 2 4 2 12 12 12 12 4 2 4 2
13 15 13 15 13 7 13 7 13 15 13 15 13 7 13 7
14 16 14 16 6 14 6 14 14 16 14 16 6 14 6 14
15 13 15 13 15 5 15 5 15 13 15 13 15 5 15 5
16 14 16 14 8 16 8 16 16 14 16 14 8 16 8 16

3
77777777777777777777777777775

.

V 00 has maximal trivial componentD = fx1, x3, x9, x11g, but the nontrivial component
V 00nD has disjoint orbit subquandlesfx2, x4, x10, x12g, fx5, x7, x13, x15g andfx6, x8, x14, x16g
and hence is not connected. For comparison with the order 16 symplectic quandles in
Example 8, the quandle polynomial forV 00 is qpV 00(s, t) = 4s16t16 + 12s8t8.

4. Symplectic quandles and knot invariants

The primary application for finite quandles has so far been inthe construction
of link invariants. Given a finite quandleT we have the quandle counting invariantjHom(Q(L), T)j, the quandle 2-cocycle invariants8� (L, T) and the specialized sub-
quandle polynomial invariants8qp(L) described in [4] and [11] respectively. The con-
nected component of a symplectic quandle over a finite field isa finite connected quandle
which generally has a number of nontrivial subquandles, making this type of quandle well
suited for the specialized subquandle polynomial invariant. In this section we describe
two additional ways of getting extra information about the knot or link type from the set
of homomorphisms from a link quandle into a finite symplecticquandle.
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One easy way to get more information out of the setjHom(Q(L), T)j is to count
the cardinalities of the image subquandles for eachf 2 Hom(Q(L), T); even if T is
connected, the smallest subquandle ofT containing the images of generators ofQ(L)
need not be the entire quandleT . If instead of counting 1 for each homomorphism
f , we count the cardinality of the image off , we obtain a set with multiplicities
of integers, which we can convert into a polynomial for easy comparison with other
invariant values by converting the elements of the set to exponents of a variableq and
converting the multiplicities to coefficients. Thus we have

DEFINITION 7. The enhanced quandle counting invariantof a link L with re-
spect to a finite target quandleT is given by

8E(L, T) =
X

f 2Hom(Q(L),T )

qjIm( f )j.
This enhanced quandle counting invariant can be understoodas a decomposition

of the usual quandle counting invariant into a sum of counting invariants over all sub-
quandles of our target quandle with the restriction that we only count surjectivehomo-
morphisms onto each subquandle.

For any subquandleS� T of a finite quandleT , let SH(Q(L), S) be the set of
surjective quandle homomorphisms from a link quandleQ(L) onto S and letSQ(T) be
the set of all subquandles ofT . Then

8E(L, T) =
X

S2SQ(T )

jSH(Q(L), S)jqjSj.
Because symplectic quandles are not just quandles but alsoR-modules, we can

take advantage of theR-module structure of a finite symplectic quandleT to further
enhance the counting invariant.

DEFINITION 8. Let T be a finite symplectic quandle over a (necessarily finite)
ring R and let L be a link. Then for eachf 2 Hom(Q(L), T), let �( f ) be the cardi-
nality of the R-submodule spanned by Im(f ) � T (note that Im(f ) itself need not be
a submodule). Then thesymplectic quandle polynomialof L with respect toT is

8sqp(L, T) =
X

f 2Hom(Q(L),T )

qjIm( f )jz�( f ).

Note that in Definition 8 the finite target quandleT has a fixedR-module struc-
ture; in the case of a counterexample to Conjecture 1, i.e., if two symplectic quandles
exist which are isomorphic as quandles but not as modules, then we would expect two
such symplectic quandles to define distinct symplectic quandle polynomial invariants.
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In particular, if R is not a field then we must be careful to specify theR-module struc-
ture of T and our choice of bilinear form.

The following example demonstrates that8sqp contains more information than the
quandle counting invariant alone.

EXAMPLE 10. The two pictured virtual links have the same value for thequandle
counting invariant with respect to the symplectic quandleT = (Z3)2 but different values
for 8sqp(L, T).

L1 :

jHom(Q(L1), T)j = 1058sqp(L1, T) = 9qz+ 72q2z3 + 24qz3

L2 :

jHom(Q(L2), T)j = 1058sqp(L2, T) = qz+ 72q2z3 + 24q3z3 + 8qz3

Proposition 10. If T = K 2n is the nondegenerate symplectic quandle of dimen-
sion 2n over the Galois field K= GF(pm) for a prime p, then 8sqp(Unknot,T) =
qz+ (p2nm� 1)qzpm

.

Proof. Every element of Hom(Q(Unknot),T) is a constant map into a single ele-
ment of T . The zero map contributesq1z1 = qz to the sum, while each of the nonzero
constant maps has image subquandle consisting of a single element ofT which spans a
dimension 1 subspace; hence each of thesep2nm�1 maps contributesqzpm

to the sum.

Specializingz = 1 and q = 1 in 8sqp(L, T) yields the quandle counting invariantjHom(Q(L), T)j. Specializingz = 1 yields the enhanced quandle counting invariant8E(L, T).
Our initial computations suggest that these symplectic quandle polynomial invariants

are quite non-trivial for virtual links, though the fact that finite symplectic quandles tend to
have rather large cardinality (jRj2n) means that more efficient computing algorithms may
be required to explore these invariants in greater detail. Our Maple software is able to
compute8sqp(L, T) for links with smallish numbers of crossings for symplectic quandles
of order� 81 in a relatively short amount of time, but the time requirement increases
rapidly asjRj andn increase.
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