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Abstract
In this note we study finite semifield planes which admit an irreducible planar

Baer collineation. This continues previous work of N. Johnson [5].

1. Introduction

In [5] N. Johnson investigates semifield planes of orderq4, q = p f , p a prime,
which have rank 2 over the kernel and which admit a planar Baercollineation� of
order r , where r is a p-primitive prime divisor ofq + 1. He proves that such planes
are obtained from semifield panes of orderq2 and rank 2 by an elegant construction
due to Hiramine et al. [3] (and generalized by Johnson [6]). In this note we remove
the restriction on the rank and weaken slightly the assumption on� by assuming that� is an irreducible Baer collineation, that is� acts irreducibly on [X, � ] for any fiber
X being fixed by� . In Section 2 we show that these planes have usually a structure
which is a natural generalization of the rank 2 case. Howeverthere is an additional
possibility which we call the indecomposable case. In Section 3 we discuss a com-
puter enumeration of semifield planes of order 28 and 54 which admit an irreducible
Baer collineation. We find examples which are genuinely of rank 4, i.e. can not be
obtained from a rank 2 example by the operations associated with the cubical array of
a semifield [8]. In Section 4 we present three series of semifield planes genuinely of
rank � 4 admitting irreducible Baer collineations. While two series belong to known
classes of semifield planes the third series generalizes some examples of Section 3 and
it seems that this class has not been described in the literature before.

2. Irreducible planar Baer collineations on semifield planes

Set V = K n, K = GF(p), p a prime and let6 � GL(V) [ 0 be a spread set of
a (pre-)semifield, i.e.6 is an additive group. Let : V ! 6 be an arbitrary group
isomorphism. Then we can associate with6 a pre-semifieldS = S(6): the additive
group is (V , +) and the semifield multiplication is defined byx � y = x (y).
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Set W = V2 and define as usual byS = S6 = fV(1), V(� ) j � 2 6g the associated
spread. HereV(1) = 0� V and V(� ) = f(v, v� ) j v 2 Vg, � 2 6 (the notation agrees
with [9]). Finally, we denote byP = P(W, S) = P6 the translation plane defined byS.

Let � 2 GL(W) induce a planar Baer collineation, i.e.n = 2m, dimW0 = dimW1 =
n where W0 = CW(�) = ker(� � 1), W1 = [W, � ] = Im(� � 1) and � fixes pm + 1
fibers. LetY be any fiber which is fixed by� . We call � an irreducible planar Baer
collineation if� as a GF(p)-linear Operator is irreducible onY\W1; i.e.Y = (Y\W1)�
(Y\W0). We choose our notation such thatV(1) and V(0) are fixed by� . Following
Johnson [5] we choose bases of these spaces according to the decompositionsV(0) =
(V(0)\W1)� (V(0)\W0) and V(1) = (V(1)\W0)� (V(1)\W1). Hence (the notion�-morphism stands for a homomorphism of GF(p)h�i-modules):

Lemma 2.1. With the assumptions from above one has:
(a) With respect to the decomposition W= V(0) � V(1) the collineation� has a
matrix diag(X , Y), X , Y 2 GL(n, p), with X = diag(P, 1), Y = diag(1,Q), P, Q 2
GL(m, p) and j� j = jPj = jQj.
(b) The matrix representation T: 6! K n�n has the form

T(� ) =

�
T11(� ) T12(� )
T21(� ) T22(� )

�
,

with quadratic blocks of size m. � acts on T(6) by T(� � ) = X�1T(� )Y. The maps
Ti j : 6 ! K m�m are �-morphisms with respect to the actions T11(� � ) = P�1T11(� ),
T12(� � ) = P�1T12(� )Q, T21(� � ) = T21(� ), and T22(� � ) = T22(� )Q.

The following result generalizes Section 2 of [5].

Proposition 2.2. We use the assumptions and the notations of the lemma:
(a) m = 2k and j� j divides pk + 1.
(b) Set60 = C6(�) and 61 = [6, � ]. Then6 = 60 �61 and j60j = j61j = pm.
(c) Choosing the basis of W in a suitable way one has P= Q. Moreover L= K [Q]
is a subring of Km�m which is isomorphic toGF(pm).
(d) There exists a semifield spread set6̄ � K m�m and an additive bijection�: L ! 6̄
with:

T(60) =

��
0 u�(u) 0

�
u 2 L

�

(e) We have a�-morphism� : L ! T12(61) such that

T(61) =

��
u �(u)
0 upk

�
u 2 L

�
.
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Moreover there exists a matrix B2 K m�m such that�(u) =
P

ai Q�i BQi where u has
the form u= f (Q), f 2 K [X], f =

P
ai Xi .

(f) Let j� j = pk + 1. Then � = 0 (i.e. B = 0) for p > 2. For p = 2 let � act via
conjugation with Q on Km�m. There exists a�-subspace U of Km�m of order 23m

with B 2 U .

Proof. By our assumptions� is a p0-element and6 = 60 � 61 by the theorem
of Maschke.

Let 0 6= � 2 60. Then T11(� ) = P�1T11(� ), T12(� ) = P�1T12(� )Q and T22(� ) =
T22(� )Q. This implies T11(� ) = T22(� ) = 0 (as Q (P�1) acts fixed-point-freely on
K m�m by right (left) multiplication) andT12(� ), T21(� ) 2 GL(m, p). Moreover there
exist �, � 2 GF(pm) having the order ofj� j, such that�, �p, : : : , �pm�1

are the eigen-
values of P and�, �p, : : : , �pm�1

are the eigenvalues ofQ. Since both operators are
irreducible the eigenvalues in either case are pairwise different. Act with� on K m�m

via X� = P�1X Q. Then T12(� ) is fixed under this action. As� has onK m�m the
eigenvalues��pi�p j

, 0� i , j �m�1 we must have�pi
= �p j

with i , j suitable chosen.
Then P and Q have the same minimal polynomial overK and are therefore conjugate
in GL(m, p). By choosing an appropriate basis ofV(0)\ W1 we can assumeP = Q.
Again as Q is irreducibleL = K [Q] ' GF(pm) and CK m�m(Q) = L. Thus T12(� ) 2 L.
(b), (c) and (d) follow.

Assume now 06= � 2 61. Since61 = [61, � ] we seeT21(� ) = 0. Then there exist
A, C 2 GL(m, p) and B 2 K m�m with

T(� ) =

�
A B
0 C

�
.

The transformation diag(1,A, C�1, 1)2 GL(W) commutes with� . Considering the as-
sociated basis transformation we may assumeA = C = 1. As61 = h� � i j i = 0, 1, 2,: : : i
we see that� has the form described in (e).

SupposeQ and Q�1 have different minimal polynomials overK . Then we have
a f =

P
i ai Xi 2 K [X] with f (Q�1) = 0 6= f (Q) and

T

 X
i

ai � � i

!
=

�
0 �
0 f (Q)

� 2 61,

a contradiction. Hence there exists ak with ��1 = �pk
, i.e.�pk+1 = 1 respectively. Thusj� j = jQj is a divisor of (p2k � 1, pm � 1) = pt � 1, wheret = (2k, m). Irreducibility

implies m = 2k and j� j divides pk + 1. (a) and (e) follow.
Assume finallyj� j = pk + 1 and consider first the casep > 2. Pick 0 6= � 2 61

as above. ThenQ0 = Q(pk+1)=2 = �1 and�2�1[T(� ), � (pk+1)=2] = 1 2 61 which implies
B = 0.
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Now consider the casep = 2 and assumeB 6= 0. Then the mappingsT11, T12, T22 are
all �-monomorphisms intoK m�m. HenceT11(61) ' T12(61) ' T22(61) as�-modules.
The lemma shows thatT11(61) and T22(61) are isomorphic toK m where D : h�i !
GL(K m) is the natural action on this space via multiplication withQ. On the other
hand T12(61) is a �-submodule of1 = K m�m with the actionX� = Q�1X Q. Choose8 2 GL(m, 2) such thatQ8 = Q2 (see [4], Kapitel II, 7.3 Satz, p.187). Then

1 =
m�1M
j =0

8 j L,

is a decomposition into�-modules. Obviously, the module8 j L induces the repre-
sentationD1�2 j � D2 j�1 and� has on this module the eigenvalues�2 j�1, (�2 j�1)2, : : : ,
(�2 j�1)2m�1

. Assume thatB projects nontrivially into8 j L. Then �2 j�1 2 f�, �2, : : : ,�2m�1g, i.e. �2l�2 j +1 = 1 with a suitably chosenl . We conclude

2l � 2 j + 1� 0 (mod 2k + 1).

We claim that solutions only occur for (l , j ) = (0, 1), (k� 1, 2k� 1), (k + 1, k) in that
case. Then assertion (f) will follow.

In order to prove the claim we distinguish 4 cases according as to whether or not
j (l ) � k or j (l ) > k. Assume firstj , l � k. Then j2l �2 j +1j � 2k and thus 2l �2 j +1 =
0. This forces j = 1, l = 0. Assume nextj , l > k. As 2k � �1 (mod 2k + 1) we have�2l�k + 2j�k + 1� 0 (mod 2k + 1) and hencej = k, l = k + 1 by the previous case. But
this contradictsj > k. The casel � k < j leads to j = 2k � 1, l = k� 1 in a similar
manner. The casej � k < l implies j = k, l = k + 1.

REMARKS. (a) Use the notation of the proposition. If� = 0 then the grouph�i can be extended in Aut(P6) to a cyclic grouph��i of order pk + 1 of planar
collineations (�� = diag(Q�, 1, 1, Q�) with Q� 2 L of order pk + 1).
(b) If P6 has the kernelF ' GF(q), q = pm, and if � is a F-linear map we see
that T12(� � ) = T12(� ) for � 2 6. Hence� = 0. These assumptions are satisfied in the
situation of Johnson [5] and thus the results of Section 2 of [5] are a consequence of
Proposition 2.2.

DEFINITION. Use the notation of the proposition. We call6 decomposableif
T12(61) = 0 (i.e.� = 0) and indecomposableif T12(61) 6= 0 (i.e.� 6= 0). Let MinRk(6)
be the minimum of the dimensions of the associated pre-semifield over the seminuclei
(left, right, and middle nucleus).

REMARK . Consider the cubical array associated with6 (see Knuth [8]). Clearly,
any member60 of the cubical array admits a planar irreducible Baer-collineation too.
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On the other hand the kernel of6 and of60 can be different (see [1]); indeed the op-
erations associated with a cubical array permute the roles of the left, right, and middle
nuclei by the natural action of the group Sym(3) (recall thatthe left nucleus is iso-
morphic to the kernel ofP6 as we are using the conventions of [9], p.24). In order to
obtain examples which aregenuinelydifferent from the examples provided by [5] we
are interested in the following questions.
• Are there indecomposable examples?
• Are there examples6 with MinRk(6) > 2?
The next result concerns the computation of the seminuclei.

Denote byKl , Km, Kr the left, middle and right nucleus of the pre-semifieldS =
S(6). The multiplicative groupsK �

l , K �
m, K �

r are isomorphic to the groups of ((0, 0),L1)-
homologies, ((0),V(1))-homologies, and of ((1), V(0))-homologies, [9], p.24. Using
coordinates we therefore obtain

Kl ' kl = f(X, Y) 2 (GL(n, p) [ 0)2 j X A = AY, A 2 T(6)g,
Km ' km = fX 2 GL(n, p) [ 0 j XT(6) � T(6)g,
Kr ' kr = fX 2 GL(n, p) [ 0 j T(6)X � T(6)g.

The planar collineation acts onkm by conjugation withX (notation of Lemma 2.1),
on kr by conjugation withY, and onkl by conjugation with (X , Y). Finally, for u =
f (Q) 2 L, f 2 K [X], we denote the elements of60 and61 corresponding tou by

s0(u) =

�
0 u�(u) 0

�
, s1(u) =

�
u �(u)
0 ū

�

where ū = upk
.

Lemma 2.3. Use the notation from above.
(a) kl is the field of pairs(diag(u,u), diag(u,u)), u 2 L with �(v)u = u�(v) and�(v)u =
u�(v) for all v 2 L.
(b) km is the field of matricesdiag(u, ū), u 2 L with �(uv) = ū�(v) and �(uv) = u�(v)
for all v 2 L.
(c) kr is the field of matricesdiag(u, ū), u 2 L with �(vu) = �(v)ū and�(vu) = �(v)ū
for all v 2 L.

Proof. (b) SupposeA =
�

A11 A12
A21 A22

� 2 km�Ckm(�). Then 06= B = AX � A 2 km

and B =
�

B11 B12
B21 0

�
with detB12 6= 0 6= detB21. Let M be the additive group generated

by B, BX , BX 2
, : : : . Then jMj � pm: The row space (column space)K m is under the

natural actionQ : v 7! vQ (Q : vt 7! Qvt ) an irreducible GF(p)hQi-module. Hence
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B12, B12Q, B12Q2, : : : generate (as an additive group) a group of order� pm. As B2 2
km � M we see that evenjkmj � pm+1 holds. On the other hand6 is a vector space
over km. This implies jkmj = pn. Hence6 is Desarguesian. However a Desarguesian
spread does not admit an irreducible, planar Baer collineation, a contradiction. Hence� centralizeskm. This shows that 06= A 2 km has the formA = diag(A1, A2) with
Ai 2 GL(m, p) and A6i = 6i , i = 0, 1. Form As1(1) 2 61 we deduceA1 = u 2 L and
A2 = ū. Finally As1(v) = s1(uv) implies u�(v) = �(uv) for all v 2 L. Similarly one
obtainsū�(v) = �(uv) for all v 2 L.

(c) follows by symmetry.
(a) By considering the action of� on kl one observes as before that� centralizes

kl . This shows that the elements inkl have the form (diag(A1, A2), diag(B1, B2)). From
diag(A1, A2)s1(1) = s1(1)diag(B1, B2) we deduceAi = Bi 2 L and as diag(A1, A2)s0(1) =
s0(1) diag(A1, A2) we seeA1 = A2 = u 2 L. Finally we getu�(v) = �(v)u and u�(v) =�(v)u from diag(u, u)si (v) = si (v) diag(u, u), i = 0, 1.

3. Small orders

Semifields of order 24 and 34 are known [2]. For order 24 the example with an
irreducible planar Baer collineation has dimension 2 over the kernel. For order 34 all
8 examples with such collineations have MinRk(6) = 2. By a straightforward com-
puter enumeration we determined the semifield planes of order 28 and 54 with this
property. We summarize the results; more details are displayed on my home page:
www.mathematik.uni-kl.de/~dempw/dempw IrrCol.semi.html.

ORDER 28. There are 14 semifield planes which admit an irreducible planar Baer
collineation. They are all decomposable and for 13 of them wehave MinRk(6) = 2.
For the remaining spread set6 we have MinRk(6) = 4. A multiplication of an as-
sociated semifieldS(6) (which is identified as a GF(2)-space with with GF(16)2) is
given by

(u, v) � (x, y) = (ux + v(z12x + z8x̄) + v̄(x + z3x̄), uy + vx̄).

Here z is a generator of GF(16)� with z4 + z + 1 = 0 andx̄ = x4.
ORDER 54. There are 36 semifield planes which admit an irreducible planar Baer

collineation. For 21 spread sets we have MinRk(6) = 2. For remaining the 15 semi-
field planes MinRk(6) = 4 holds. Moreover 9 of these semifield planes are decompos-
able and 6 indecomposable. We now describe the multiplication rules of the associated
semifields in the case MinRk(6) = 4. For this purpose we identifyS(6) with GF(25)2

and denote byz generator of GF(25)� with z2� z+ 2 = 0. The 9 decomposable spread
sets are partitioned in 3 cubical arrays each of them having 3members. We present
the multiplication rule for representatives from each cubical array. It has the form

(u, v) � (x, y) = (ux + v(ay + bȳ) + v̄(cy + dȳ), uy + vx̄)
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with (a, b, c, d) = (za0 , zb0 , zc0 , zd0) and (a0, b0, c0, d0) is one of the following quadruples

(13, 14, 14, 22), (14, 15, 5, 6), (20, 20, 12, 19),

and x̄ = x5. The 6 indecomposable spread sets represent 6 cubical arrays with one
member. The multiplication has the form

(u, v) � (x, y) = (ux + bv ȳ, uy + aūx + vx̄)

with (a, b) 2 f(z5, z7), (z13, z9), (z, 1), (z9, z8), (z, z), (z5, z)g.
In the indecomposable case it is not difficult to see that a semifield with the oppo-

site multiplication (i.e. (x, y) Æ (u, v) = (u, v) � (x, y)) is isotopic to a semifield of type
II in the notation of Knuth [8], p.215.

4. Series with MinRk(Σ) � 4

We present three series of semifield planesP6 admitting irreducible, planar Baer
collineations and with MinRk(6) � 4. Two of these series are described for instance
by Knuth in [8] while the third series generalizes examples of the previous section.

In this section we will use Oyama’s [10] description of vectors and matrices which
for convenience we sketch briefly. LetF = GF(q) and E = GF(qm). The vector space
Fm is identified with theF-space0Fm of vectors of the form ((a)) = (a, aq, : : : , aqm�1

) 2
Em, a 2 E. The F-endomorphisms of0Fm form the F-space0Fm�m of matrices
(ai j ) 2 Em�m with the propertyai +1, j +1 = aq

i j , 0� i , j <m (indices are read modulom).
Such a matrix is determined by it’s first column and thus we define [a0, : : : , am�1]t :=
(ai j ) if (a0, : : : , am�1) = (a00, : : : , am�1,0). Set

Tk(a) =
m�1X
i =0

aqi
Ek+i ,i .

Then [a0, : : : , am�1]t =
Pm�1

i =0 Ti (ai ). We have the multiplication rules

Tj (u)Tk(v) = Tj +k(uqkv), Tk(a)�1 = Tm�k(a�qm�k
), a 6= 0.

The main advantage of Oyama’s notation is that the cyclic Singer groupfT0(u) j u 2
E � f0gg of order qm � 1 is a group of diagonal matrices.

We apply these notations to the notions of Section 2. We haveW = V � V with

V = 0F
N � 0F

N
wherem = N � r and q = pr , p a prime. We write (u, v) for a typical

element inV instead of (((u)), ((v))). The matrices of a spread set will have the form

�
A B
C D

�
, A, B, C, D 2 0GL(N, F) [ 0
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where 0GL(N, F) is the group of invertible elements in0F N�N . The matricesT0(u),
u 2 E, form a field L of matrices isomorphic toE (see Proposition 2.2). The planar
collineation� has the form diag(T0(u), 1, 1,T0(u)) where u 2 E� has orderpk + 1 in
the decomposable case (has an order dividingpk + 1 in the indecomposable case).

EXAMPLE 4.1. Set K = F = GF(p), p a prime and E = GF(pm), m = 2k.
Choosea, b 2 f0, : : : , m� 1g such thatE 6= Epb+1Epja�bj+1Epb+k�1 and pick g 2 E �
Epb+1Epja�bj+1Epb+k�1. The exponents ofp are always read modulom = 2k in this
example. Then

(u, v) � (x, y) = (ux + gv pa
ypb

, uy + vxpk
)

defines a semifield multiplication onV . It can easily be seen that no zero divisors
occur. In fact it is also not hard to see that this semifield is isotopic to a semifield
defined in [8] on p.215 by (7.16). Let6 be the spread set associated with this
semifield andT(6) it’s coordinatization. It has the formT(6) = fs(x, y) j x, y 2 Eg
where

s(x, y) =

�
T0(x) T0(y)

Ta(gypb
) T0(xpk

)

�
.

Then6 is invariant under� and the mappings�, � of Proposition 2.2 have the form�(T0(y)) = Ta(gypb
) and �(T0(x)) = 0. In particular6 is decomposable. We have:

(1) kl ' GF(p(a,m)), km ' GF(p(a+k�b,m)), kr ' GF(p(k�b,m)):
By Lemma 2.3 the elements(u, 0) lies in km iff for all y

Ta(g(uy)pb
) = �(T0(uy)) = T0(ū)�(T0(y)) = T0(upk

)Ta(gypb
) = Ta(gupa+k

ypb
).

This showsupb
= upa+k

and thuskm ' GF(p(a+k�b,m)). The other assertions follow
similarly.
(2) For any choice ofa, b, g we have MinRk(6) < n = 2m. If p > 2 or if p = 2
and k is odd one can choosea, b, g such that MinRk(6) = m:

MinRk(6) = n and m = 2k implies (a + k� b, 2k) = (k� b, 2k) = (a, 2k) = 1. But
then a, k� b are odd and 2 divides (a + k� b, 2k), a contradiction.

Assume first p > 2 and let g be a nonsquare inE. Then a = 2, b = 1, imply
MinRk(6) = m.

Assume nowp = 2. The condition for the existence of a semifield multiplication
of the desired type is equivalent to (22k � 1, 2b+k � 1, 2ja�bj + 1, 2b + 1)> 1. This in
turn is equivalent to

a2 > b2 = k2

wherex2 denotes the 2-part of a positive integerx: Recall that (2x +1, 2y�1) = 2(x,y) +1
iff x=(x, y) � 1, y=(x, y) � 0 (mod 2) (and = 1 otherwise) and (2x +1, 2y +1) = 2(x,y) +1
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iff x=(x, y) � y=(x, y) � 1 (mod 2) (and = 1 otherwise). Then (22k�1, 2b+1)> 1 and
(2b+k�1, 2b +1)> 1 imply b2 = k2 and (2ja�bj +1, 2b +1)> 1 implies a2 > b2. On the
other hand ifa2 > b2 = k2 we observe (22k�1,2b+k�1,2ja�bj+1,2b+1) = 2(a,b,k)+1> 1.
If k is odd we can takea = 2, b = 1 as before. Now (2) follows.

CONCLUSION. The preceding examples show that in any characteristic there ex-
ist decomposable semifield planesP6 with arbitrary large MinRk(6) and which admit
irreducible planar Baer collineations.

For the next two examples we haveF = GF(q), E = GF(q2), with q = pk, p a
prime. We writex̄ for xq.

EXAMPLE 4.2. First we generalize the indecomposable examples of order 54 from
Section 3. Letq be an odd prime power. Choosea, b 2 E such thatyq+1 + ay� b 6= 0
for y 2 E. Then the multiplication

(u, v) � (x, y) = (ux + bv ȳ, uy + aūx + vx̄)

is a semifield multiplication of a semifield which is isotopicto an opposite semifield of
Knuth type II (see [8], (7.17.II)). The semifield spread set6 has the coordinatization

T(6) = S(a, b) = fs(x, y) j x, y 2 Eg � 0F
4�4

wheres(x, y) is given by

s(x, y) =

�
T0(x) T0(y) + T1(ax)
T0(bȳ) T0(x̄)

�
.

Note that dets(x, y) 6= 0 for any nontrivial (x, y) 2 E � E by our choice ofa and b.
The mappings�, � of Proposition 2.2 have the form�(T0(y)) = T0(bȳ) and�(T0(x)) =
T1(ax). In particular we are in the indecomposable case. Assume� = diag(T0(Æ), 1, 1,
T0(Æ)), is a planar Baer collineation.
(1) � has order 3 and dividesq+1. The collineation is irreducible iffq = p is a prime� �1 (mod 3):

The first row ofs(x, y)� is (T0(xÆ�1), T0(y) + T1(axÆ1�q)). We deduceÆ�1 = Æ1�q,
i.e. j� j = 3 asj� j divides pk + 1 = q + 1. In order to be an irreducible Baer collineation
T0(Æ) must be irreducible as aK -linear operator on0F2 (note that this is a stronger
requirement than assuming merely the irreducibility as aF-linear operator). This forces
k = 1 and p � �1 (mod 3).
(2) MinRk(6) = 4:

By 2.3 an element inkm has the form diag(T0(w), T0(w̄)), w 2 E. To computekm

we must determine thesew 2 E with

T1(aw̄x) = T0(w)T1(ax) = T0(w)�(T0(x)) = �(T0(wx)) = T1(awx)
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for all x 2 E. This showsw 2 F and thuskm ' F . A similar computation shows
kr ' F . To determinekl we inspect the equation

T1(aw̄x) = T0(w)�(T0(x)) = �(T0(x))T0(w) = T1(awx)

which again forcesw 2 F . Hencekl ' F and MinRk(6) = 4 follows.

CONCLUSION. For any odd primep � �1 (mod 3) there exist indecomposable
semifield planesP6 of order p4 with MinRk(6) = 4 which admit irreducible planar
Baer collineations of order 3.

EXAMPLE 4.3. Now we generalize the decomposable rank 4 examples of orders

44 and 54. We consider the additive groupS(a, b, c, d) = fs(x, y) j x, y 2 Eg � 0F
4�4

wheres(x, y) is defined by

s(x, y) =

�
T0(x) T0(y)

T0(ay + bȳ) + T1(cy + dȳ) T0(x̄)

�
.

Denote byn : E ! F the norm and by tr :E ! F the trace. A computation shows

dets(x, y) = n(x)2 + n(y)2(n(a) + n(b)� n(c)� n(d))� n(x)n(y) tr(b)

� n(x) tr(ay2) + n(y) tr((ab̄� cd̄)y2).

Suppose that we have chosen the parametersa, b, c, d such thatT(6) = S(a, b, c, d) is
the coordinatization of a (decomposable) spread set6. Then we deduce from Proposi-
tion 2.2 thatP6 admits an irreducible planar Baer collineation of orderq + 1. Clearly,
every seminucleus has a subfield isomorphic toF . Similar computations as in Exam-
ples 4.1 and 4.2 showkl ' E iff c = d = 0, km ' E iff a = d = 0, andkr ' E iff
a = c = 0. Therefore we have MinRk(6) = 4 if at least two of the parametersa, c, d
are nontrivial. The semifield multiplication has the form

(u, v) � (x, y) = (ux + v(ay + bȳ) + v̄(cy + dȳ), uy + vx̄).

The following lemma (and forq = 5 by Section 3) shows that the parametersa, b, c, d
always can be chosen such thata, c, d 6= 0 and thatS(a, b, c, d) is a spread set.

Lemma 4.4. Use the notations ofExample 4.3and assume q> 3 and q 6= 5.
There exist a, b, c, d 2 E such that S(a, b, c, d) is a spread set. In addition one can
choose a, c, d to be not0.

Proof. We first show that one can choose non-zerou,v 2 E such that the mapping
du,v : E � E ! E defined by

du,v(x, y) = n(x) + un(y) + vy2
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has zero only for (x, y) = (0, 0). Then we choosea, b, c, d 2 E such that dets(x, y) =
n(du,v(x, y)) for (x, y) 2 E � E and that in additiona, c, d 6= 0. Then dets(x, y) 6= 0
for any nontrivial (x, y) 2 E � E, and the assertions of the lemma follow.

Let E = F [�]. If q is odd we can assume�2 = t 2 F � F2 and if q is even we
can assume�2 = t� + 1, t 2 F , chosen suitably.

STEP 1. Write elementsz 2 E as z = z1 + �z2, z1, z2 2 F . Choose 06= u 2 E,
0 6= v2 2 F such thatv2 � u2 6= 0 and if charF = 2 in additionu2 6= 0 (but otherwise
arbitrary).

Assume first thatq is odd. Thenn(x) = x2
1 � t x2

2, y2 = y2
1 + ty2

2 + 2�y1y2. This
shows

du,v(x, y) = n(x) + u1n(y) + v1(y2
1 + ty2

2) + 2tv2y1y2

+ �((u2 + v2)y2
1 + (v2 � u2)ty2

2 + 2v1y1y2).

We now choosev1 such that

Q(X, Y) = (u2 + v2)X2 + 2v1XY + (v2 � u2)tY2

is a anisotropic quadratic form, i.e. the discriminantD = 4(v2
1 � (v2

2 � u2
2)t) is a non-

square. For the existence of such av1 recall that a nondegenerate quadratic form over
F in two variables represents all elements ofF . Therefore fora 6= 0 the setF2+a(F�)2

contains a nonsquare. This implies thatF2 + a contains a nonsquare too. Taking
a = (v2

2 � u2
2)t the claim aboutv1 follows.

This showsdu,v(x, y) 2 E � F for (x, y) 2 E � E�. Hencedu,v(x, y) 6= 0 for
(x, y) 6= (0, 0).

Assume now thatq is even. Then tr(�) = t , �̄ = ��1 and n(x) = x2
1 + x2

2 + t x1x2,
y2 = y2

1 + y2
2 + �ty2

2. Hence

vy2 = v1(y2
1 + y2

2) + tv2y2
2 + �(v1ty2

2 + v2y2
1 + v2y2

2 + t2v2y2
2).

This implies

du,v(x, y) = R + �((u2 + tv1 + v2 + t2v2)y2
2 + (u2 + v2)y2

1 + tu2y1y2)

with R 2 F . Choosev1 2 F such that

Q(X, Y) = (u2 + v1t + v2 + t2v2)Y2 + (v2 + u2)X2 + tu2XY

is a anisotropic quadratic form. The existence of such av1 follows from the fact that
for 0 6= �0 2 F at least one of the polynomialsf� (X) = X2 +�0X +�, � 2 F , must be
irreducible. As beforedu,v(x, y) 6= 0 for (x, y) 6= (0, 0).

STEP 2. First we observe that

n(du,v(x, y)) = n(x)2 + n(x)n(y) tr(u) + n(y)2(n(u) + n(v))

+ n(x) tr(vy2) + n(y) tr(ūvy2).
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This together with the condition that dets(x, y) = n(du,v(x, y)) for any (x, y) 2 E � E
shows that the parametersa, : : : , d must satisfy the equations

n(u) + n(v) = n(a) + n(b)� n(c)� n(d),(1.1)

tr(u) = � tr(b),(1.2)

v = �a,(1.3)

ūv = ab̄� cd̄.(1.4)

Eliminating a we have

n(u) = n(b)� n(c)� n(d),(2.1)

tr(u) = � tr(b),(2.2)

cd̄ = �v(b̄ + ū).(2.3)

Assume first thatq is odd. Thenb1 =�u1 by (2.2) and by (2.3)c = vd̄�1(b2+u2)�
and thereforen(c) = n(v)n(d)�1(�t)(b2 + u2)2. Thus n(d) must be a solution of the
equation

X2 + t(b2
2 � u2

2)X � t(b2 + u2)2n(v) = 0

whose discriminant isD = (b2 + u2)2(t2(b2 � u2)2 + 4tn(v)). We claim that one can
chooseb2 such thatD is a square and thatb2 + u2 6= 0, i.e.a, c, d 6= 0. This is implied
by the following observation (where we chooseA = t2, B = 4tn(v), X = b2 � u2, and
Y = 1):

Claim. Let Q(X, Y) = AX2 + BY2 be a nondegenerate quadratic form over F.
Then there exist at least2 elementsw1, w2 2 F� such that the value of Q at(X, Y) =
(wi , 1), i = 1, 2, is a nontrivial square.

One knows thatQ has every element inF� preciselyq + 1 times as a value ifQ
is elliptic andq�1 times as a value ifQ is hyperbolic. Consider pairs inL = F�� F�
which has the partition

L =
[
f 2F� F�( f , 1).

The values ofQ on the elements of a classF�( f , 1) differ only by squares. The set
F� � f0g [ f0g � F� produces at most 2(q � 1) nontrivial squares. ThusQ has onL
at least (q � 1)2=2� 2(q � 1) = (q � 1)(q � 5)=2 times as a value a nontrivial square.
As q > 5, there is at least one class whose values are nontrivial squares, say a class
of F�( f , 1). Then the values of two classes, that ofF�( f , 1) and that ofF�( f , �1)
are nontrivial squares. The claim follows.
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We now assume thatq is even. Equations (2.1)–(2.3) lead tou2 = b2 and

(b1 + u1)2 + tu2(b1 + u1) = n(c) + n(d),(3.1)

cd̄ = v(b̄ + ū).(3.2)

Then c = vd̄�1(b1 + u1) and thereforen(d) must be a solution of the equation

X2 + ((b1 + u1)2 + tu2(b1 + u1))X + (b1 + u1)2n(v) = 0.

Chooseb1 = u1 + tu2 and d such thatn(d) = tu2
p

n(v). Then the equation holds and
Step 2 is done anda, c, d 6= 0 if we takeu2 6= 0 in Step 1.

CONCLUSION. For any prime powerq � 4 there exist decomposable semifield
planesP6 which admit irreducible planar Baer collineations of orderq + 1 and with
MinRk(6) = 4.

REMARKS. We keep the notations of this section.
(a) To verify the existence of the examples of Example 4.3 we use a particular con-
struction in Lemma 4.4; there may be more ways to obtain such examples. How-
ever by a rough estimate we see that this special method already produces at least
q(q � 1)(q2 � 1) examples of orderq4.
(b) Our investigation raises more questions than they answer. The following problems
deserve further attention:

• Find decomposable examples of orderp4n, p a prime, with MinRk(6) = 4n.
So far only for p4, p � 5, and MinRk(6) = 4 the series of Example 4.3 provide
such examples.
• Find more indecomposable examples, in particular examplesin characteristic
2 and/or examples with a large order of� .

ACKNOWLEDGMENT. We take the opportunity to thank Norman Johnson who
pointed out to us [7] that the examples of Example 4.1 admit irreducible planar Baer
collineations.
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