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Abstract

In this note we study finite semifield planes which admit aeducible planar
Baer collineation. This continues previous work of N. Jaim$5].

1. Introduction

In [5] N. Johnson investigates semifield planes of ordérq = pf, p a prime,
which have rank 2 over the kernel and which admit a planar Ra#imeation of
orderr, wherer is a p-primitive prime divisor ofq + 1. He proves that such planes
are obtained from semifield panes of ordgr and rank 2 by an elegant construction
due to Hiramine et al. [3] (and generalized by Johnson [61).tHis note we remove
the restriction on the rank and weaken slightly the assumpbin 7z by assuming that
7 is an irreducible Baer collineation, that is acts irreducibly on X, ] for any fiber
X being fixed byx. In Section 2 we show that these planes have usually a steuctu
which is a natural generalization of the rank 2 case. Howélere is an additional
possibility which we call the indecomposable case. In $ec8 we discuss a com-
puter enumeration of semifield planes of ordérahd 3 which admit an irreducible
Baer collineation. We find examples which are genuinely atkrd, i.e. can not be
obtained from a rank 2 example by the operations associaitbdtie cubical array of
a semifield [8]. In Section 4 we present three series of sdnifilanes genuinely of
rank > 4 admitting irreducible Baer collineations. While two saribelong to known
classes of semifield planes the third series generalizeg sxamples of Section 3 and
it seems that this class has not been described in the literaiefore.

2. lIrreducible planar Baer collineations on semifield plans

SetV = K", K =GF(p), p a prime and let2 € GL(V) U0 be a spread set of
a (pre-)semifield, i.eX is an additive group. Lety: V — X be an arbitrary group
isomorphism. Then we can associate wEha pre-semifieldS = S(X): the additive
group is ¥, +) and the semifield multiplication is defined by y = Xy (y).
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SetW =V?2 and define as usual h§ = Sy, = {V(c0), V(0) | o € X} the associated
spread. Heré/(c0) =0x V andV (o) ={(v,vo) | v e V}, o0 € T (the notation agrees
with [9]). Finally, we denote by = P(W, S) = Py the translation plane defined I8

Let 7 € GL(W) induce a planar Baer collineation, ie= 2m, dimWy = dimW, =
n where Wy = Cw() = ker(r — 1), Wy = [W, 7] = Im(zx — 1) andx fixes p™ + 1
fibers. LetY be any fiber which is fixed byr. We call = an irreducible planar Baer
collineation if v as a GFp)-linear Operator is irreducible oinWy; i.e.Y = (YNW,)®
(YNWp). We choose our notation such thd{oo) and V(0) are fixed byr. Following
Johnson [5] we choose bases of these spaces according te¢begositionsv (0) =
(V(0)NWp) & (V(0)NWp) and V(o0) = (V (c0) NWp) & (V (00) "W). Hence (the notion
sw-morphism stands for a homomorphism of @R )-modules):

Lemma 2.1. With the assumptions from above one :has
(a) With respect to the decomposition WV (0) & V(co) the collineationz has a
matrix diag¢x, ), X, Y € GL(n, p), with X = diag(P, 1), Y = diag(1,Q), P, Q €
GL(m, p) and |z| = |P| =|Q.
(b) The matrix representation TX — K™" has the form

_ [ Tulo) Taao)
T)= ( Toi(o)  Tao(o) >’

with quadratic blocks of size mr acts on TX) by T(c”) = X 1T(s)). The maps
Tij: £ — K™M are x-morphisms with respect to the actiong;(5™) = P 1T11(0),

T]_z(()’") = P71T12(0’)Q, T21(U”) = T21(O'), and T22(O’") = T22(O’)Q.
The following result generalizes Section 2 of [5].

Proposition 2.2. We use the assumptions and the notations of the lemma
(@ m=2k and || divides ff + 1.
(b) SetXp=Cx(r) and £, =[Z, n]. ThenX =X X; and |Xo| = |Z1] = p™.
(c) Choosing the basis of W in a suitable way one has ®. Moreover L= K[Q]
is a subring of K™™ which is isomorphic taGF(p™).
(d) There exists a semifield spread setc K™M and an additive bijectionr: L — >

with:
={( 0)|vet]

(e) We have ar-morphismpg: L — Ti2(X;) such that

T(El):{<g i%?) ueL}.
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Moreover there exists a matrix 8 K™™ such thatg(u) =Y & Q~'BQ where u has
the form u= f(Q), f e K[X], f =Y aX'.

() Let|z|=p<¥+1. Thenp=0 (.e. B=0)for p> 2. For p=2 let = act via
conjugation with Q on KM, There exists ar-subspace U of K*™ of order 23™

with Be U.

Proof. By our assumptions is a p’-element and: = Xg @ X; by the theorem
of Maschke.

Let O 70 € Xp. Then Tll(O') = P_lTll(O'), T12(O') = P_lTlg(O')Q and T22(O') =
To2(0)Q. This implies T1a(o) = Tao(c) = 0 (as Q (P~Y) acts fixed-point-freely on
K™M py right (left) multiplication) andTi2(0), T21(0) € GL(m, p). Moreover there
exist A, u € GF(p™) having the order ofr|, such thatx, AP, ..., AP" " are the eigen-
values of P and , uP, ..., uP" " are the eigenvalues d. Since both operators are
irreducible the eigenvalues in either case are pairwiseréifit. Act withm on K™M
via X™ = P71XQ. Then Twx(o) is fixed under this action. Az has onK™™ the
eigenvaluesrp'upj, 0<i,j <m-—1 we must have.P = ;P with i, suitable chosen.
Then P and Q have the same minimal polynomial ovEr and are therefore conjugate
in GL(m, p). By choosing an appropriate basis 6{0) N W; we can assumé = Q.
Again asQ is irreducibleL = K[Q] ~ GF(p™) and Cxm«m(Q) = L. ThusTix(c) € L.
(b), (c) and (d) follow.

Assume now O£ o € X;. SinceX; =[Xq, ] we seeT,i(0) = 0. Then there exist
A, C € GL(m, p) and B € K™™ with

T4 2).

The transformation diag(1, C~%, 1) € GL(W) commutes withr. Considering the as-
sociated basis transformation we may assueC =1. As ¥; = (a”i |1i=0,1,2,...)
we see thad has the form described in (e).

SupposeQ and Q! have different minimal polynomials ovef. Then we have
af=Y,aX eK[X]with f(Q)=0% f(Q) and

T(iZa@a”i> = (8 f(*Q)> € =1,

a contradiction. Hence there exist&avith A~1 = AP, j.e.AP*1=1 respectively. Thus
|7| =|Q]| is a divisor of * — 1, p™ — 1) = p! — 1, wheret = (2k, m). Irreducibility
implies m = 2k and || divides p*+ 1. (a) and (e) follow.

Assume finally|| = pX + 1 and consider first the cage> 2. Pick 0% o € ¥,
as above. ThemQo = QP*Y/2=_1 and—2![T (), #(P*/2] = 1 € %; which implies
B=0.
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Now consider the casp =2 and assum®& # 0. Then the mapping$;1, T12, T2, are
all z-monomorphisms intd ™™, HenceTy1(X1) =~ T12(X1) =~ T22(Z1) asw-modules.
The lemma shows thaf;1(XZ;) and T,x(X;) are isomorphic toK™ where D: (7) —
GL(K™) is the natural action on this space via multiplication wigh On the other
hand T12(21) is a w-submodule ofA = K™™ with the actionX™ = Q~1X Q. Choose
® e GL(m, 2) such thatQ® = Q? (see [4], Kapitel I, 7.3 Satz, p.187). Then

A= oL,

m-1
=0

is a decomposition intor-modules. Obviously, the modul®!L induces the repre-
sentationD¥2 ~ D21 andx has on this module the eigenvalugd—1,(x2-1)2, ..,
(212" Assume thatB projects nontrivially intod/L. ThenA? 1 e {A, A2, ...,
22"y, ie.22-2+1 = 1 with a suitably choseh. We conclude

2 -2/+1=0 (mod ¥+1).

We claim that solutions only occur fot,(j) = (0, 1), k — 1, & — 1), (k+ 1,k) in that
case. Then assertion (f) will follow.

In order to prove the claim we distinguish 4 cases accords¢pavhether or not
j) <korj()>k. Assume firstj,| <k. Then|2 —21 +1] < 2 and thus P—2/ +1 =
0. This forcesj =1, | =0. Assume nexf,| > k. As X = —1 (mod ¥+ 1) we have
—2-k4+2i-k+1=0 (mod ¥+1) and hencg =k, | =k+1 by the previous case. But
this contradictsj > k. The casd <k < j leads toj =2k — 1,1 =k — 1 in a similar
manner. The cas¢ <k < | implies j =k, | =k+1. O

REMARKS. (a) Use the notation of the proposition. # = 0 then the group
() can be extended in AWRg) to a cyclic group(z*) of order pX + 1 of planar
collineations f* = diag@Q*, 1, 1, Q*) with Q* € L of order p* + 1).
(b) If Py has the kernelF ~ GF(g), g = p™, and if = is a F-linear map we see
that Ti2(0™) = Tio(o) for o € . Hencep = 0. These assumptions are satisfied in the
situation of Johnson [5] and thus the results of Section 25pfafe a consequence of
Proposition 2.2.

DEeFINITION. Use the notation of the proposition. We call decomposablef
T12(X1) =0 (i.e. 8 = 0) andindecomposablé Ti»(X1) #0 (i.e.8 #0). Let MinRk(X)
be the minimum of the dimensions of the associated pre-sglchifiver the seminuclei
(left, right, and middle nucleus).

REMARK. Consider the cubical array associated with(see Knuth [8]). Clearly,
any memberX’ of the cubical array admits a planar irreducible Baer-nebition too.
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On the other hand the kernel &f and of ¥’ can be different (see [1]); indeed the op-
erations associated with a cubical array permute the rdldiseoleft, right, and middle
nuclei by the natural action of the group Sym(3) (recall ttie left nucleus is iso-
morphic to the kernel oPy as we are using the conventions of [9], p.24). In order to
obtain examples which argenuinelydifferent from the examples provided by [5] we
are interested in the following questions.

e Are there indecomposable examples?

e Are there examplex with MinRk(X) > 27?

The next result concerns the computation of the seminuclei.

Denote byK,, Ky, K; the left, middle and right nucleus of the pre-semifi€éd:
S(X). The multiplicative group¥*, K., K;* are isomorphic to the groups of ((0, Q),)-
homologies, ((0)V(c0))-homologies, and of ), V(0))-homologies, [9], p.24. Using
coordinates we therefore obtain

K~k ={(X,Y) e (GL(n, ppUO)¥| XA=AY, Ac T(2)},
Km >~ km ={X € GL(n, pp)UO| XT(E) € T(2)},
Ki >~k ={X eGL(n, p)ul| T(Z)X C T(E)}.
The planar collineation acts oky, by conjugation withX’ (notation of Lemma 2.1),

on k; by conjugation with), and onk; by conjugation with &, ))). Finally, for u =
f(Q) e L, f € K[X], we denote the elements afy and X; corresponding tai by

2=, o) 5@=(5 "¢

— 3
whereu =uP".

Lemma 2.3. Use the notation from above
(@) ki is the field of pairqdiag, u), diag(, u)), u € L with a(v)u = ua(v) and B(v)u =
up(v) for all v e L.
(b) kn is the field of matricesliag(u, u), u € L with a(uv) = ua(v) and g(uv) = uB(v)
for all vel.
(c) k is the field of matricesliagu, u), u € L with a(vu) = «(v)u and B(vu) = B(v)u
forall vel.

Proof. (b) Suppose = (ﬁil A12> € km — Ci, (). Then 0% B= A" — Ac ky,

1 Ax
and B = ( gi Béz> with detBy, # 0 # detB,;. Let M be the additive group generated
by B, BY, B**,.... Then|M| > p™ The row space (column spack)" is under the

natural actionQ: v — vQ (Q: v' = Quv!) an irreducible GF)(Q)-module. Hence
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Bio, B12Q, B12Q?, ... generate (as an additive group) a group of ordep™. As B? ¢
kn — M we see that eveiky| > p™?* holds. On the other hanel is a vector space
over k. This implies|ky| = p". HenceX is Desarguesian. However a Desarguesian
spread does not admit an irreducible, planar Baer collioeat contradiction. Hence
m centralizesky,. This shows that G A € ky, has the formA = diag(A:, Ay) with
A € GL(m, p) and AY; =%, i =0, 1. FormAs(1) € X; we deduceA; =u e L and
A; = u. Finally As(v) = s;(uv) implies ug(v) = B(uv) for all v € L. Similarly one
obtainsua(v) = a(uv) for all v € L.

(c) follows by symmetry.

(&) By considering the action of on k; one observes as before thatcentralizes
k. This shows that the elements linhave the form (diagdi, A2), diag(Bi, Bz)). From
diag(Az, A2)s1(1) =s1(1) diag®Bs, Bo) we deduceA; = B € L and as diagh;, A2)so(1) =
So(1) diag(A1, A2) we seeA; = A, =u € L. Finally we getua(v) = a(v)u andup(v) =
B(v)u from diag(, u)s (v) = s(v) diag(u, u), i =0, 1. ]

3. Small orders

Semifields of order 2and 3 are known [2]. For order 2the example with an
irreducible planar Baer collineation has dimension 2 over kernel. For order“3all
8 examples with such collineations have MinRi(= 2. By a straightforward com-
puter enumeration we determined the semifield planes ofra8leand 5 with this
property. We summarize the results; more details are disdlaon my home page:
www. mat hemat i k. uni -kl . de/ ~denpw/ denmpw.l rr Col . semi . htnl .

ORDER 28, There are 14 semifield planes which admit an irreducibleal@aer
collineation. They are all decomposable and for 13 of themhaee MinRkE) = 2.
For the remaining spread s& we have MinRkE) = 4. A multiplication of an as-
sociated semifieldS(XZ) (which is identified as a GF(2)-space with with GF@)6js
given by

(U, v) (X, y) = (Ux+v(z?x + 2°%) + v(x + 2°X), uy + vX).

Here z is a generator of GF(16)with z* + z+ 1 = 0 andx = x*.

ORDER 5%, There are 36 semifield planes which admit an irreduciblegi@aer
collineation. For 21 spread sets we have MinBKE 2. For remaining the 15 semi-
field planes MIinRKE) =4 holds. Moreover 9 of these semifield planes are decompos-
able and 6 indecomposable. We now describe the multiphicatiles of the associated
semifields in the case MinRK() = 4. For this purpose we identif§(X) with GF(25¥
and denote by generator of GF(25)with z2—z+2 =0. The 9 decomposable spread
sets are partitioned in 3 cubical arrays each of them havimgeghbers. We present
the multiplication rule for representatives from each cabiarray. It has the form

(U, v) % (X, y) = (ux+v(ay +by) +v(cy +dy), uy + vx)
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with (a, b, ¢, d) = (%, 2%, z°, 2%) and @&, b, ¢/, d) is one of the following quadruples
(13, 14, 14, 22), (14, 15,5, 6), (20, 20, 12, 19),

and X = x°. The 6 indecomposable spread sets represent 6 cubicalsanidly one
member. The multiplication has the form

(u, v) % (X, y) = (Ux + bvy, uy +aux + vXx)

with (a, b) € {(2°, Z°), (%3, 2°), (z, 1), @&, ), (z, 2), (Z°, 2)}.

In the indecomposable case it is not difficult to see that aifegdchwith the oppo-
site multiplication (i.e. X, y) o (u, v) = (u, v) * (X, y)) is isotopic to a semifield of type
Il in the notation of Knuth [8], p.215.

4. Series with MinRk(X) > 4

We present three series of semifield plafgs admitting irreducible, planar Baer
collineations and with MinRKL) > 4. Two of these series are described for instance
by Knuth in [8] while the third series generalizes exampléshe previous section.

In this section we will use Oyama'’s [10] description of vastand matrices which
for convenience we sketch briefly. L& = GF(Q) and E = GF@@™). The vector space
F™ is identified with theF-space’F™ of vectors of the form &)) = (a, aq,...,aqm’l) €
E™ a e E. The F-endomorphisms ofF™ form the F-space®F™™ of matrices
(a5j) € E™™ with the propertya41,j+1 = aﬂ 0<i,j <m (indices are read modulm).
Such a matrix is determined by it's first column and thus wengefao, . . ., am_1]' :=
(aj) if (a0, - - -, @m-1) = (@0, - - -, Bm-1,0). Set

m-1
Tk(a) = Z aq Ek+i,i-
i=0

Then fg, ..., an_1]' = Zi”;gl'l'i(ai). We have the multiplication rules
T (WT() = TaUTv), Te@ =T (@), az0.

The main advantage of Oyama’s notation is that the cyclig&irgroup{To(u) | u €
E — {0}} of orderg™ — 1 is a group of diagonal matrices.
We apply these notations to the notions of Section 2. We Nave V x V with
V =°FN x °FN wherem=N.r andq=p', p a prime. We write ¢, v) for a typical
element inV instead of ((()), ((v))). The matrices of a spread set will have the form

A B o
(c D), A, B,C, D e°L(N, F)uO
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where °GL(N, F) is the group of invertible elements fFN*N. The matricesTy(u),
u € E, form a field L of matrices isomorphic t& (see Proposition 2.2). The planar
collineation has the form diagl(u), 1, 1, To(u)) whereu € E* has orderpk + 1 in
the decomposable case (has an order dividihg 1 in the indecomposable case).

ExaMPLE 4.1. SetK = F = GF(p), p a prime andE = GF(p™), m = 2k.
Choosea, b € {0,..., m— 1} such thatE # EP"*1EP*"*1EP™ 1 and pickg e E —
EPIEPHIEP™ -1 The exponents ofp are always read modulo = 2k in this
example. Then

(U, v) * (x, y) = (ux+goPy?, uy+ vx®)

defines a semifield multiplication ol. It can easily be seen that no zero divisors
occur. In fact it is also not hard to see that this semifieldsistapic to a semifield
defined in [8] on p.215 by (7.16). LeE be the spread set associated with this
semifield andT(X) it's coordinatization. It has the fornT(X) ={s(x, y) | X, y € E}
where

o, y):< Tk To(y) )

Ta(gy™) To(x?')

Then X is invariant underr and the mappings, 8 of Proposition 2.2 have the form
a(To(y)) = Ta(gypb) and B(To(x)) = 0. In particularX is decomposable. We have:
(1) k =~ GF(p®M), kn 2= GF(p@*Pm), k =~ GF(p* ™).

By Lemma 2.3 the elemerd(u, 0) lies in kg, iff for all y

Ta(g(uy)P") = a(To(uy)) = To(@a(To(y)) = ToP)Ta(gy™) = TalguP™y).

a+k

This showsu? = uP™ and thusky, ~ GF(p@*Pm) The other assertions follow
similarly.
(2) For any choice ofa, b, g we have MinRKE) <n=2m. If p>2 orif p=2
and k is odd one can choosa, b, g such that MinRKkE) = m:

MinRk(X) =n and m =2k implies @+k—b, 2k) = (k — b, 2k) = (a, 2k) = 1. But
thena, k —b are odd and 2 dividesa( k — b, 2k), a contradiction.

Assume firstp > 2 and letg be a nonsquare ifE. Thena=2, b=1, imply
MinRk(X) = m.

Assume nowp = 2. The condition for the existence of a semifield multiptica
of the desired type is equivalent to%2- 1, 2tk — 1, 23bl+1 2 +1)> 1. This in
turn is equivalent to

a2>b2:k2

wherex, denotes the 2-part of a positive integer Recall that (2+1, 2 —1) = 2% +1
iff x/(x,y)=1, y/(x,y) =0 (mod 2) (and = 1 otherwise) and*@®@1, 2 +1) = 2%¥) +1
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iff x/(X,y)=y/(Xx,y)=1 (mod 2) (and =1 otherwise). Then*2-1,2+1)> 1 and
(2% —1,22+1)> 1 imply by =k, and (2P +1, 2+1)> 1 implies a, > b,. On the
other hand ifa, > b, =k, we observe (F—1, 221,23 bl+1 P+1)=20abk4+1 1,
If k is odd we can takea=2, b=1 as before. Now (2) follows.

CoNcLuUsION. The preceding examples show that in any characteristie the-
ist decomposable semifield planBg with arbitrary large MinRkE) and which admit
irreducible planar Baer collineations.

For the next two examples we hawe = GF(), E = GF@?), with g = p*, p a
prime. We writex for x9.

EXAMPLE 4.2. First we generalize the indecomposable examples ef &drom
Section 3. Letg be an odd prime power. Chooseb € E such thatyd**+ay—b #0
for y € E. Then the multiplication

(u, v) % (X, y) = (UX + bvy, uy +aux + vXx)

is a semifield multiplication of a semifield which is isotopi@ an opposite semifield of
Knuth type Il (see [8], (7.17.11)). The semifield spread 3&thas the coordinatization

T(X)=9a, b)={s(x,y) | x,ye E} < o4 where s(x, y) is given by
_({ To(x) To(y) + Ta(ax)
o y)= (To(b)_’) To(®) )

Note that des(x, y) # 0 for any nontrivial &, y) € E x E by our choice ofa andb.
The mappingsy, 8 of Proposition 2.2 have the forma(To(y)) = To(by) and B(To(X)) =
Ti(ax). In particular we are in the indecomposable case. Assurmadiag(To(s), 1, 1,
To(8)), is a planar Baer collineation.

(1) 7 has order 3 and divideg+1. The collineation is irreducible ifff = p is a prime
= —1 (mod 3):

The first row ofs(x, y)™ is (To(x672), To(y) + Ti(axs*~9)). We deduces—* =19,
i.e.|r| =3 as|r| divides pk+1=q+1. In order to be an irreducible Baer collineation
To(8) must be irreducible as &-linear operator orF? (note that this is a stronger
requirement than assuming merely the irreducibility ds-lnear operator). This forces
k=1andp=-1 (mod 3).

(2) MinRk(Z) = 4:

By 2.3 an element irky, has the form diadp(w), To(w)), w € E. To computeky,

we must determine these € E with

Ti(awx) = To(w)Ta(ax) = To(w)B(To(X)) = B(To(wX)) = T1(awXx)
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for all x € E. This showsw € F and thusk, >~ F. A similar computation shows
k- ~ F. To determinek, we inspect the equation

Ti(awx) = To(w)B(To(X)) = B(To(X)) To(w) = Ta(awx)
which again forcesv € F. Hencek ~ F and MinRk({) = 4 follows.

CONCLUSION. For any odd primep = —1 (mod 3) there exist indecomposable
semifield planesPs of order p* with MinRk(Z) = 4 which admit irreducible planar
Baer collineations of order 3.

ExaMPLE 4.3. Now we generalize the decomposable rank 4 examplesdefor
4* and 9. We consider the additive grouf(a, b, ¢, d) = {s(x, y) | X, y € E} € °F**
wheres(x, y) is defined by
sx. y) :< To(x) To(y) )
’ To(ay + by) + Ta(cy +dy)  To(X)

Denote byn: E — F the norm and by trE — F the trace. A computation shows

dets(x, y) = n(x)? + n(y)*(n(@) + n(b) — n(c) — n(d)) — n(x)n(y) tr(b)
—n(x) tr(ay?) + n(y) tr((ab — cd)y?).

Suppose that we have chosen the parametdosc, d such thatT(X) = S(a, b, ¢, d) is
the coordinatization of a (decomposable) spreadisefThen we deduce from Proposi-
tion 2.2 thatPx admits an irreducible planar Baer collineation of order 1. Clearly,
every seminucleus has a subfield isomorphid-to Similar computations as in Exam-
ples 4.1 and 4.2 showy ~ E iff c=d =0, k, ~ E iff a=d =0, andk =~ E iff
a=c=0. Therefore we have MinRK() = 4 if at least two of the parametess c, d
are nontrivial. The semifield multiplication has the form

(U, v) % (X, y) = (ux + v(ay + by) + v(cy + dy), uy + vXx).

The following lemma (and fog =5 by Section 3) shows that the parametarb, c, d
always can be chosen such tlatc, d # 0 and thatS(a, b, c, d) is a spread set.

Lemma 4.4. Use the notations ofExample 4.3and assume ¢ 3 and q # 5.
There exist ab, ¢, d € E such that &, b, ¢, d) is a spread setIn addition one can
choose ac, d to be notO.

Proof. We first show that one can choose non-2enroe E such that the mapping
dy,: E x E — E defined by

dy,o(X, Y) = N(X) +un(y) + vy
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has zero only forX, y) = (0, 0). Then we choosa, b, ¢, d € E such that des(x, y) =
n(d, ,(x, y)) for (X, y) € E x E and that in additiom, ¢, d # 0. Then des(x, y) #0
for any nontrivial &, y) € E x E, and the assertions of the lemma follow.

Let E = F[a]. If q is odd we can assume’ =t € F — F? and if q is even we
can assume? =ta +1, t € F, chosen suitably.

STEP 1. Write elementz € E asz=2z; +az, 71,2 € F. Choose G2u € E,
0 # v € F such thatv, +u, # 0 and if cha- = 2 in additionu, # 0 (but otherwise
arbitrary).

Assume first thag is odd. Thenn(x) = X2 — tx2, y? = y2 +ty2 + 2ay;y,. This
shows

du,u(X, ¥) = N(X) + uin(y) + vi(yZ + ty3) + 2tvoyrys

+a((Uz + v2)YZ + (v2 — Uty + 2u1y1Yo).
We now chooses; such that
Q(X, Y) = (Uz + v2)X? + 2v1 XY + (v — Ut Y?

is a anisotropic quadratic form, i.e. the discrimindt= 4(v? — (v5 — u3)t) is a non-
square. For the existence of suchiarecall that a nondegenerate quadratic form over
F in two variables represents all elementsFaf Therefore fora # 0 the setF2+a(F*)?
contains a nonsquare. This implies that + a contains a nonsquare too. Taking
a = (v2 — u)t the claim abouty; follows.

This showsd, ,(x,y) € E — F for (x,y) € E x E*. Henced, (X, y) # 0 for
(x,y) # (0, 0).

Assume now thay is even. Then trf) =t, & = o~ and n(x) = x? + x3 + tx; Xy,
y? = y2 +y2 +atys. Hence

vy? = vi(YZ + Y5) +tvays +a(vatys + vaYf + vay5 + t2uy3).
This implies
du,v(X, Y) = R+a((Uz + tog + v + t?02)y5 + (Uz + v2) Y5 +tuayyo)
with R € F. Choosev; € F such that
Q(X, Y) = (Uz + vit + vy + t20) Y2 + (v + Un) X2 + tups XY

is a anisotropic quadratic form. The existence of such dollows from the fact that
for 0 #ap € F at least one of the polynomialfs(X) = X2 +aoX + 8, B € F, must be
irreducible. As befored, ,(x, y) # O for (X, y) # (O, 0).
STeEP 2. First we observe that
n(du,o(X, ¥)) = n(X)? +neN(y) tr(u) + n(y)*(n(u) + n(v))

+n(x) tr(vy?) + n(y) tr(tvy?).
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This together with the condition that d€i, y) = n(d, ,(x, y)) for any k, y) € E x E
shows that the parametess. . ., d must satisfy the equations

(1.1) n(u) + n(v) = n(a) + n(b) — n(c) — n(d),
(1.2) tr(u) = — tr(b),

(1.3) v=—a,

(1.4) v =ab — cd.

Eliminating a we have

(2.1) n(u) = n(b) — n(c) — n(d),
(2.2) tr(u) = — tr(b),
(2.3) cd = —v(b + ).

Assume first thaty is odd. Therb; = —u; by (2.2) and by (2.3 = vd_’l(b2+u2)a
and thereforen(c) = n(v)n(d)(—t)(b, + uy)?>. Thus n(d) must be a solution of the
equation

X2+ (b2 — UR)X — (b, + Uz)2n(v) = 0

whose discriminant isD = (b, + u)?(t?(b, — uy)? + 4tn(v)). We claim that one can
chooseb, such thatD is a square and thd, +u, # 0, i.e.a,c,d # 0. This is implied
by the following observation (where we chooge=t2, B = 4tn(v), X =h, — u,, and
Y =1):

Claim. Let Q(X,Y)= AX%+ BY? be a nondegenerate quadratic form over F
Then there exist at leag elementswy, w, € F* such that the value of Q diX, Y) =
(wi, 1), i =1, 2, is a nontrivial square

One knows thatQ has every element ifr* preciselyg + 1 times as a value ifQ
is elliptic andg—1 times as a value ifQ is hyperbolic. Consider pairs if = F* x F*
which has the partition

c=J Fi(f, 0.

feF*

The values ofQ on the elements of a clads*(f, 1) differ only by squares. The set
F* x {0} U {0} x F* produces at most g(— 1) nontrivial squares. Thu® has on.

at least ¢ — 1)?/2 —2(q — 1) = (@ — 1)(g — 5)/2 times as a value a nontrivial square.
As q > 5, there is at least one class whose values are nontrivia@regusay a class
of F*(f, 1). Then the values of two classes, thatFsf(f, 1) and that ofF*(f, —1)
are nontrivial squares. The claim follows.
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We now assume thaj is even. Equations (2.1)—(2.3) lead tig = b, and

(3.1) (by + ug)? + tuz(by +uy) = n(c) +n(d),
(3.2) cd = v(b+0).

Thenc = vd__l(bl +u;) and thereforen(d) must be a solution of the equation
X2 + ((by + u1)? + tup(by +ug))X + (by + uz)?n(v) = 0.

Chooseb; = u; +tuy andd such thatn(d) = tu,4/n(v). Then the equation holds and
Step 2 is done and, ¢, d # O if we takeu, # 0 in Step 1. O

CONCLUSION. For any prime powelg > 4 there exist decomposable semifield
planesPs which admit irreducible planar Baer collineations of ordpt 1 and with
MIinRk(Z) = 4.

REMARKS. We keep the notations of this section.
(a) To verify the existence of the examples of Example 4.3 we a particular con-
struction in Lemma 4.4; there may be more ways to obtain su@mples. How-
ever by a rough estimate we see that this special methoddglrpeoduces at least
q(q — 1)(@? — 1) examples of ordeq®.
(b) Our investigation raises more questions than they ansWee following problems
deserve further attention:
e Find decomposable examples of orda¥", p a prime, with MinRkE) = 4n.
So far only for p*, p > 5, and MinRkE) = 4 the series of Example 4.3 provide
such examples.
e Find more indecomposable examples, in particular exampleharacteristic
2 and/or examples with a large order of

ACKNOWLEDGMENT. We take the opportunity to thank Norman Johnson who
pointed out to us [7] that the examples of Example 4.1 admidircible planar Baer
collineations.
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