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1. Introduction

In carrying out analysis on infinite dimensional spaces over p-adics, it is useful
to give integral representations of functions. Satoh considered a normed vector space
H over a local field K with orthonormal Schauder basis ([14]). He showed that any
admissible probability measure on K is extended to a measure on the completion of
H with respect to a measurable norm, applying Prokhorov’s measure extension the-
orem to the projective limit of the images of orthogonal projections on H. This can
be applied to a space of polynomials with coefficients in p-adics. On the other hand
the present paper aims at extending probability measures to spaces including extension
fields over p-adics of infinite degree, in which there exist no orthonormal basis in the
sense of [14], except the case of unramified extensions. The spaces to which we ex-
tend measures are completions of infinite extension fields over p-adics with respect to
specific seminorms induced by projections naturally related with traces on subexten-
sions. We notice that our projections are not necessarily orthogonal in the sense of
[14]. The subjects of our theorem include for instance the algebraic closure and the
maximal unramified extension of the p-adic field. Kochubei proved independently that
Gaussian measures on a local field can be extended to completion of an infinite exten-
sion and constructed a fractional differentiation operator relative to the measure ([9]).

Let p be a fixed prime integer. The p-adic field Q, consists of formal power se-
ries

0
Zaipiy meZ’ a’e{o’l’,p_l}

i=m

With ordinary addition and multiplication as power series, Q, becomes a field. The
p-adic norm || - || is defined by

o0
E a;p'
i=m

We denote by Z, the valuation ring {x € Q, | ||lx| < 1}.

=p™ ifa, #0, and [0] =0.
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If K is an extension field over Q, of finite degree, the p-adic norm has a unique
extension to K, which we denote by || - || again. The norm || - || is non-archimedean,
i.e. satisfies the ultra-metric inequality:

[l + yll <max{[lx|, Iyll}, x,y€K.

Let us denote by Rg the valuation ring {x € K | ||x|| <1}, then Px :={x € K | ||x]| <
1} is a unique maximal ideal of Rgx. The ramification index ex of K is the positive
integer such that

{Ixll | x € K —{0}} = {p"/*¢ | n € Z}.

If Ng is the extension degree of K over Q, and fx the degree of residue field
Rk /Px over F,, then it follows that Ny = e fx. Put rg := pl/e" and gx := p'¥.
If 7¢ is a prime element i.e. a generator of the ideal Px of Rk, and if Ak is a com-
plete system of representatives of the residue field, then K is interpreted as the set of
formal power series

00
Zamﬂ(, meZ, o € Ak,

i=m

and the norm | - || is given by

oo
_;_ Ty
i=m

The field K is a complete separable metric space with respect to the metric induced
by the norm || - ||. The Haar measure mg on K is always assumed to be normalized
so that mg(Rg) = 1. Then it can be verified that mg(||x|| < r¢) = gg. We will often
write dx for mg(dx) and omit subscripts K (e.g., R, mw, m,...) if there is no fear of
confusion.

For a topological space X, B(X) stands for the Borel field of X.

=rg" if o #0.

2. Extension of measures

Let L O K be a field extension and the extension degree [L : K] be finite. For
x € L, K(x) denotes the subfield of L obtained by adjoining x to K. The trace map
Try g is a K-linear map on L to K defined by

k
Tro k() =[L: K@Y x, xelL,

i=1

where k = [K(x) : K], and x = x1, x3, ..., x; are all distinct conjugates of x over K.
Any K-linear map f on L to K is of the form f(-) = Try x(v-) for a unique element
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vof L.If L O F D K then it can be verified that Trg g o Try p = Trp k. For an
unramified extension L D K, Try ¢ maps Rj surjectively onto Rg (see [16]).
Now we introduce a map 7§ : L — K for a finite extension L D K.

DeriNtTION 2.1, For a finite extension L O K, we define a K-linear map T, ,’g on
L to K by

k
Té(x) =T x(IL: K1™'x)=[L: K1™' Trp x (x) = %Zx,-, xel.

i=1

Lemma 2.2. (i) The map T of L to K is continuous and surjective.
() IFLDFDK then TE=TF o TE.

Proof. (i) Since Trz ¢ is continuous, so is Tf. For surjectivity, take any x €
K then TE(x) = x.

() TFoTkx)=1[F :KI7'[L: FI ' TrrgoTrp p(x) = [L : K17'Try g (x)
= TE(x). O

DEerINITION 2.3, Let Q}‘,'g stand for the algebraic closure of Q,. For each exten-
sion K O Q, of finite degree, define a map Tx on Q;lg to K by

Tx(x)=TF(x) ifxeL, LDOK.
The map Tk is well-defined. Indeed, suppose that x € L, L O K. Then
TE(x) = Tg™ o T, (x) = T P(x),

thus T£(x) is independent of the choice of L.
Put K; =Q),, and fix an increasing sequence S = {K,};2, of extension fields over
Q, of finite degrees. Put B = Bs := U2 K, C Qb

EXAMPLES. [E 2.1] K, = the smallest field containing all extensions of degrees
less than n. B = Q2.
[E 2.2] K, = the unramified extension of degree n!. B is the maximal unramified
extension of Q,.

We will often abbreviate subscripts and superscripts K, to n, e.g. R, = Rg,,
" = T,ﬁ ", and we put B, := B(K,). For each n, we denote by 7, the restriction
of Tk, to B. We put on B the topology induced by 7,, n > 1, i.e. the weakest topol-
ogy relative to which 7;, are continuous for all n. Let B be the completion of B, and
we denote by T, again the continuation of 7, to B. Our aim is to extend measures to

B.
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Suppose that we are given a sequence {X,}52, of topological spaces and measur-
able maps f" of X,, onto X, for m > n. We say that {X,}2, is projective with re-
spect to fm, if f" = flo f" holds for m > [ > n. We denote by p,, the canonical
map on projlim X, to X,;

Pm((Xn );.,21 ) =X,

and put on projlim X,, the topology induced by p,, m > 1. If each X, is a separable
metric space and if the maps f)" are continuous, then the Borel field B(projlim X,)
is generated by the sets p,;l(A,,,) (m=>1,A, € B(X,)). Assume furthermore that the
spaces X, are complete. If we are given a probability measure p, on (X,, B(X,)) for
each n such that

mAn) = s (£ (A0)

for any A, € B(X,), then there exists a unique Borel probability measure po, on
projlim X, such that

too (Py ' (An)) = w(An)

for every n and A, € B(X,). For these results refer to [12].

Let us come back to the sequence S = {K,}>2, of finite extensions of Q,. Lemma

2.2 implies that S is projective with respect to T,".

DerINITION 2.4, We say {u.}qo; is a consistent sequence of probability measures
(associated with S = {K,}°2)), if u, is a probability measure on K, such that

inAn) = e (1) (A)

for all » and A, € B,.

If we are given a consistent sequence {u,} of probability measures, then it can
be uniquely extended to a Borel probability measure [i,, on projlim K,. Whereas we
have:

Proposition 2.5. Topological Qp-vector spaces B and projlimK, are isomor-
phic.

Proof. Let us show that
«(w) = (T,(w)) : B — projlim K,

gives an isomorphism of B onto projlimK,. If w € B and m > n, then Lemma 2.2
(ii) implies 7" o T,,(w) = T,(w). By taking limit we can see that this is valid for
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all w € B, and hence «(w) € projlim K,. For injectivity, suppose w, w’ € B satisfy
u(w) = y(w’). Take a sequence {x;} in B such that lim;_, x; = w. Then for every n,

T,(w') = T(w) = Jim 7,000,

which implies, by the definition of topology of B, w' = limy o X = w in B. Let us
prove that ¢+ is surjective. If we take any element w = (x,)52, of projlim K,, then for
any m > n we have

pn(l'(-xm)) =T,(xp) =x, = pn(w)‘

Therefore for every n, lim,,_, o pu(t(xn)) = pp(w) in K,, which shows lim,,_, o t(x,) =
w in projlim K,,. Since B is complete, we have w € «(B). Taking it into account that
pnot=T,, we can see that ¢ is homeomorphic. The Qp-linearity of ¢ follows immedi-
ately from the linearity of T,, and thus ¢ gives an isomorphism of B onto projlim B.

Thus putting peo := ficoot, we derive the following measure extension to the space
B.

Theorem 2.6. Assume that we are given a consistent sequence {y,}°2, of Borel
probability measures. Then there exists a unique Borel probability measure |, on B
such that

too (T,7 ' (An)) = ptn(An)

for any n and A, € B,.

ReMark. Consider the case that B = Q‘,’,lg. If we write C, for the completion of
B = (@i,lg with respect to the p-adic norm, then neither C, nor B contains the other.
Indeed, for each fixed n, let Li") (k=1, 2, ...) be the unramified extension of K, of
degree p*. We can take a\” € R 1 such that Try o Kﬂ(a,ﬁ")) =1. Put b = p*a, then
we have T,,(b,((")) =1 for all k, whereas ||b,((")|| — 0 as k — oo. This implies that T, is
not continuous with respect to the p-adic norm. Conversely, if we put ¢, =1 — pka,(ck),
then we have ||cx|| = 1, and limg_, o T,(cx) = O for every n. Thus the p-adic norm is
not continuous with respect to the topology induced by 7,, n > 1.

In the next section we shall give some examples of symmetric probability mea-
sures on K, which can be extended to B. On the other hand, the following lemma
shows that there exists no non-trivial symmetric probability measure on C,,.

Proposition 2.7. Let u be a probability measure on C, and suppose that p(u-) =
u(-) for all u € C, with norm 1. Then p({0}) = 1.

Proof. For each pair (ayp, a;) of rational numbers such that ay > a,, let R(ap, a1)
be the collection of all sets of the form B(z, p*) = {y € C, | |lly — z|| < p*} for



972 K. Yasupa

z € Cp, |lzll = p*. Let S = {K,} be such that B = ;’,lg. Take N such that p“,
pY ef{llx]l | x € Ky —{0}} = {r,’i, | k € Z}, and for each n > N, let R,(aop, a;) be the
collection of all sets of the form B(x, p?') for x € K, ||x]| = p®. Then we have

(2.1 R(ag, ai) = Up>nRa(ao, a1).

Indeed, take any element B(z, p*) in R(ay, a;). Since Q;lg = Up>n K, is dense in C,,
we can take n > N and x € K, such that ||z — x| < p?*. Then the ultra-metric
inequality implies that (x| = p® and B(z, p*') = B(x, p*).

Fix n > N and let ko = ena0, ki = e,a;. For x = Y2, a;m, and x' =2
in K,, the set B(x, p*') coincides with B(x’, p*') if and only if o; = o for i = —ky,
..., —k; — 1. Hence Rn(ag, a1) consists of (g, — 1)gko=ki—1 = (1 — g71)pN+@=—aD ele-
ments, which shows by (2.1) that R(ay, a;) is a countable set. Notice that for any two
elements B(z, p*) and B(Z', p*) of R(ay, a;), we have B(z', p*) = z7'z'B(z, p*) and
lz='Z’|| = 1, and therefore u(B(z, p*)) = w(B(z’, p*)) by the assumption. Since the
set A(ao) == {z € C, | ||zl = p®} is disjoint union of countable sets in R(ag, a), its

measure u(A(ag)) must be 0. Thus we obtain

/=
Q; Ty,

wCp —{0) = Y p(Alag)) =0. O
aer

3. Characteristic functions and Consistent measures

Let K D Q, be an extension of finite degree. A character of K is a continuous
homomorphism on additive group K to multiplicative group of complex numbers of
absolute value 1. We denote by K* the group consisting of all characters of K.

Let o be the element of Q7 defined by

-1
. .
: exp | 2w/ —1 E a;p'), ifm<-—-1,
©o (Zmﬂ) = p( p p)

1, otherwise,

then @o(Z,) = {1} and wo(p“lZ,,) # {1}. For each extension K over Q, of finite de-
gree, Yk = g o Té‘; belongs to K*. Put | =[x := ord (¢ ), i.e. [ is the integer such
that 1% (xR) = {1} if and only if [x|| < r!. If D is the different of K over Q,, then
D = {||lx|| < ||N|r7'}. If K is tamely ramified (i.e. (p,e) = 1), then r! = |[N|r¢™! =
| flire~L. In particular, for unramified K (i.e. e = 1) we have r' = p! = |N|| = || f]|. If
K is strongly ramified (i.e. (p, e) # 1), then ||N||r¢ < r' < || f|lr¢~!. For these results
concerning with ord(yk), we can refer to [11], [15], and [16].
We can identify K* with K by means of the correspondence

x € K < YL(-) =vk(x-) € K*,
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(Theorem 3 and following Corollary in II of [16]).

Lemma 3.1.

(g—Dg™', if x| <,
/ xMdy =1 —¢", if x| = r'=mt,
Ityll=r 0’ lf‘ ”x” > rl—m+2‘

Proof. If ||x|| < r'™™, then Yx(y) =1 on {|lyll <r™}. Hence
(3.1 f xkMdy =m(llyll <r™)=q".
Iyll<rm

If ||lx|| > r'=™*!, then there exists yo such that |yo|l < r™ and ¥%(yo) # 1. The ultra-
metric inequality implies that ||y + yo|| < r™ if and only if |y|| < r™, and therefore

[H " Y ()dy = f x (v + yo)dy =Yg (o) Y (y)dy.
yli=rm

[yl <rm Iyll<rm

Since % (yo0) # 1, we have
(3.2) / x(dy =0,
Iyll<rm

and our assertion follows immediately from (3.1) and (3.2). O

For a probability measure ux on K, we interpret the characteristic function g as
the function on K by

() = /K Ve (dy).

A function g on K is the characteristic function of a probability measure on K, if
and only if it is positive definite, continuous, and g(0) = 1, and the correspondence
between such functions and probability measures is one-to-one (see Theorems 3.1 and
3.2 in IV of [12]).

We have seen in the previous section that a consistent sequence of probability
measures can be extended to a probability measure on B. In order to find consistent
sequences of measures we shall give a correspondence between probability measures
on B and functions on B. Let G be the set of positive definite functions g on B such
that g(0) = 1 and the restriction to K, is continuous for every n. We shall particularly
observe the case that the measure p, is symmetric, i.e. u,(u,-) = p,(-) for all u, € K,
of norm 1. We say a function g € G is symmetric if g(u-) = g(-) for any u € B of
norm 1.
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Proposition 3.2. (i) Probability measures on B correspond in one-to-one way
to consistent sequences {[i,}2;.
(ii)  Consistent sequences {jn}o, correspond in one-to-one way to functions belong-
ing to G. Every measure u, (n =1,2,...) is symmetric if and only if the correspond-
ing function in G is symmetric.

Proof. (i) Assume that we are given a probability measure x on B. Then it
can be easily verified that the sequence {1,}°2, given by

(3.3) tn(An) = 1 (T, (AD),  An € B,

is consistent. Let uo be the unique extension of {u,}2,, then pe (Tn‘l(A,,)) =
pn(An) = p(T,7'(An) for every n and A, € B,. If we take notice of the identifica-
tion between B and projlim K, established in Proposition 2.5, then we can see that
B(B) is generated by the sets Tn"(A,,) (n > 1, A, € B,). Hence iy coincides with
u, and thus (3.3) gives a one-to-one correspondence of probability measures on B to
consistent sequences.

(ii)) For a consistent sequence {u,},2,, define a function g on B by
g(x) = fip(x), if x € K,.

The function g(x) is defined independently of the choice of n. Indeed, if x € K, C K,
then

Fim(x) = /K @0 o T{"(xy)pim(dy)

- f 00 © T T ()i (dy)

m

= (m o (TN (1)
= fin(%).

Since g|k, = [, is positive definite and continuous for each n, we see immediately that
g belongs to G. Conversely if g is any element of G, then g|g, is the characteristic
function of a probability measure on K,, say ,uf: .If x € K, C K,, then

; Un(y) (uiO(Tnm)‘l)(dy)=L wi‘,,(y)uf,,(dy)=g(x)=/K Uy (V) (dy),

thus {#5}321 is consistent. Obviously these correspondences {u,}oo; to g and g to
{us)22, give the inverse of each other.

Let {u,};2, be consistent and g € G the corresponding function. For x, u € B,
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llu]l = 1, take n such that x, u € K,, then
o) = [ 4oy
glux) = /1; Ur (VU™ dy).
Hence g is symmetric if and only if u, is symmetric for every n. O

By the above proposition, every function g in G corresponds to a probability mea-
sure {1, on B. The correspondence is given by

(3.4) g(x) = f_ @0 0 TP (x T (w))ptoo(dw),  if x € K.
B

Here let us give some examples of symmetric functions g in G and the corresponding
consistent sequence of symmetric probability measures.

EXAMPLES. [E 3.1] For A > 0, put

Loif el < A,
gV = {

0, otherwise.

The corresponding sequence {u{}%%, = {uP(\)}%2, is given by
dﬂ n )

dx

(1)( - q—l,,+[_log/\/logrnj if x| < rl,, Llog/\/logrnj
0, otherwise,

where [a] stands for the integer part of a. The measure p(V is a Gaussian measure on
K,.
[E 3.2] For a, 8 >0, put

gP) = exp (—alx[?).
The corresponding sequence {2}, = {(uP(«a, )}, is given by
duﬁf) -, S Blly—i+1) | =B
= (x) = |Ix |~ "Zq,, {exp (—ar@|ix|| %) — exp (—arf Vx| 7F)}.

i=0

The measure p?) is a stable law on K, ([19]).
[E 3.3] For p, o0 >0and 0 <k < p~ 9, put

—klxlI”+1, if |Ix]| < p,

OE

0, otherwise.
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The corresponding sequence {u}%2, = {uP(p, o, K)}2, is given by

-0

_pyolioee/loen \ .
(1 . (Gn )rn K % l,,+[logp/logr,,J’ if Ixl < r,l," Llogp/logr,,J’

—r
x) qdn n

ap?

dx an(rg — Drolg
n—Tn®

flx]|=o =N, otherwise.

Now consider the case that for every n, K, D Q, is an abelian extension with
Galois group G,. Then B D Q, is an abelian extension and its Galois group G con-
sists of sequences o = (01, 02,...) of 0, € G, satisfying 0,+1|x, = 0n, Whose action
being defined by ox = 0,x provided x € K,. Every element 0 € G defines a conti-
nuous map x € B — ox € B. Indeed for every n and x € B, take N > n such that
x € Ky. Then for any o = (01, 07,...) in G we have

T,(ox) = [Ky : Ko]™! Z TONX

r€Gal(Ky /Ky)

oy | [Kn : K,,]_1 Z X
reGal(Ky /K,)

0n Th(x).

Hence if {x;}x=12... is a sequence in B converging to x € B, then for every n and

cea@q,

T.(oxi) = 0n Th(xk) > 0, Tu(x) = T, (0x),

as k — oo. Thus oxx converges to ox. Hence the map x +— ox can be uniquely
extended to a continuous map on B to itself.
We shall show results concerning with G-invariance of probability measures on B.

Proposition 3.3. A probability measure jio, on B is G-invariant if and only if
the corresponding function g € G satisfies g oo = g for any o € G.

Proof. Let w € B, x € K, and o € G. Since o~! is continuous and T(w) —
w as k — oo, we apply Gy-invariance of Tf: T} (x(oy'y)) = Tf (oxx)y), x,y €
Ky, or € Gy, to obtain

(3.5) T} (xTo(o™'w)) = lim T (x(o™ Ti(w)))

Jim T} (0x) Ti(w))

T ((0x)Tu(w)).
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Let uZ, be the probability measure on B defined by uZ(-) = pieo(0-), and g° € G be
the corresponding function. If x € K,, then by (3.5),

¢7(x) = f_ 00 T (T, (0™ ') pooldw)
B

= f_ %o o T1' ((0x) T (w)) oo (dw) = g(0x).
B
Therefore puZ, = us if and only if g =g oo. O

Corollary 3.4. () If {un)32, is a consistent sequence of symmetric probability
measures, then the extension o, is G-invariant.
(ii) If v is a probability measure on Q,, then the function g, := ¥ o Ti belongs to
G, and the corresponding measure on B is G-invariant.

Proof. (i) By Proposition 3.2 (ii), the function g € G corresponding to e is
symmetric. For o = (07,02,...) € G and x € B — {0}, taking n such that x € K,
we have |ox|| = ||lo,x]|| = |lx||, since G, acts on K, isometrically. Therefore we obtain
glox) = g((ox/x)x) = g(x).

(ii) Since ¥ is positive definite and continuous on Q,, and since T; is Q,-linear
and continuous on each K,, it is immediately checked that g, belongs to G. For x € B
take n such that x € K,,. Then G,-invariance of 7" implies

gu(0x) = Do T'(ox) = D o TI(x) = g, (x). O

4. Subspaces of measure 1

For each example in [E 3.1] to [E 3.3] we shall find a non-archimedean norm of
the form sup, €,|7,(-)|| (¢, > 0), on a subspace of B in which the extended measure
lteo 1S concentrated. Let us prove firstly that the support of the extended measure in
[E 3.1] is included in a bounded set with respect to a certain norm.

DEFINITION 4.1.  Put ||w]|, := sup, ;|| T,(w)| for w € B, and B, := {w € B |
lwll« < oo}

We see that || - ||, defines a non-archimedean norm on B,. Indeed it is easily seen
that || - || is a norm. This is non-archimedean since

[w+vle = supr, " T, (w) + T,()||

IA

sup ;= max (|| T, (w)ll, 1 T,(v)|1}
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= max {sup r N Ty(w)), supry ! ||Tn<u)u} .
n n

Proposition 4.2. For A\ > 0, let ' = pP(\) be as in [E 3.1] and uSY the ex-
tended measure on B. Then

u {lwlle <A} =1
Proof. Note that
e ({w e BTl < Xt} = id (fx € Ku Lkl < A =1,

for every n. Then

u® (lwll, < X71) = p (ﬂ {weB | IT,w) < A—‘r,‘:*'}) =1 -

In order to investigate the cases [E 3.2] and [E 3.3], we shall give a lemma.

Lemma 43. (i) Foru>1 and v >0, exp(—v) —exp(—uv) < (u — Dv.
(i) For 0 <s <so, put Cs sy :=SUP; 4 (@ — 1/ —a*/%"Y). Then 0 < Cs.50 < 00.

Proof. (i) Put f,(v) =exp(—v)—exp(—uv) and g,(v) = (u—1)v. Then we have
d
70 (fu — 8) (W) < —(u — 1)(1 — exp(—v)) <0,

and f,(0) — g,(0) = 0. This implies that f,(v) < g,(v) for v > 0.
(i) The assertion is clear if we notice that

-1 d -1 —1
lim 4z (—as/“’_1 ) = (1 — i) < o0. O
a=1 S0

a>11 — gs/s0~1 da
DEerINITION 4.4.  For a sequence € = {g,}02, of positive numbers, put [|wle :=
sup, &, || T,(w)|| for w € B, and B, := {w € B | |w|. < oo}.

We can verify that ||| defines a non-archimedean norm on B, similarly as || ||..

Proposition 4.5. (i) For o, 3 > 0, let u® = pP(a, B) be as in [E 3.2] and
uS) the extended measures on B. If there exists 0 < s < (3 such that >, En <00 and
" Ef,rnﬁl” < 00, then ,ug,)(BE) =1



EXTENSION OF MEASURES ON p-aDIC FIELD 979
(i) Forp 0>0and 0<r<p=©, let u® =1 (p,0,k) be as in [E 3.3] and p$)
the extended measure on B. If there exists 0 < s < o such that y_, (en ,’1”) < o0,
then ,u(3)(BE) =1

Proof. (i)  For each n,

f 1T (w) I p2 (dw)

f llx ]I P (dx)

<1+ Z f Ix11° P (dx)

o Jlxli=ry

(&) (e ]
=1+ (1=g7) Yo S g (exp (—arfmD) — exp (—arfh-m=ith))
m=0 i=0
_ B Bllmmei) _ . b_ 4
Apply Lemma 4.3 to u =7y, v = ar, , and so = (3, noticing that 1 < r;, < pP,

then

A
—_
..|.
—~~~
—
|
<)
S
N
[]e
~
=3
2
Q
S
—~
=~§Q

f I T (w)I* uR(dw) < — 1) arl—m=D

1+ (1=g7") (rf = 1) arfe (1= rP) " (1= g7 %)
1+ ( 1) (1- rs_ﬁ)~1 arPh
1+ Cs,gar,’?l".

Al

A

Therefore we have

f (Z (nllT, (w)n)S) p@dw) <Y el +Copa Y esrf < oo,

which implies that [|w]le < (3, (EllT,(w)I)*)/* < oo, pP-as..
(ii)) For each n,

/ I T (w)* &) (@w)
= / flx[1° P (dx)
K,

I,—|log p/logr,)
_ 1)y llogp/logral
- (1 _ (qn )n — qn—ln+l_logp/10gr,,J Z ms (qm q,'," 1)

qn — Tn n n

m=—00
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l )

qn(r: - l)r:nn m(s—o—N,) (,m m—1

+ O Z T'n (qn —d4n )
qn = In m=ly—log p/ log ra | +1

— s—
_ 4 lrs(tn—tlogp/logrm(H =1 rotlogp/logrnJﬁ)
—s'n s—o n *

qn —Tn — Iy

Apply Lemma 4.3 (ii) to sp = o noticing that r; <r7, then we obtain

/_ (Z en(nmw)n)s) uS@w) < p7* (14 Coopr) ) (eary™)” < 0.
B n

n

Hence ), en(ll T,,(w)ll)s is finite ,ufo)-a.s., and so is ||w].. O

5. Extension of semigroups

We shall apply our extension theorem to extend Markov processes. In what fol-
lows we always assume that a semigroup {u'};>¢ of probability measures on a field K
is such that u' converges to the J—measure at the origin as ¢ — 0.

Proposition 5.1. Assume that for every n, {yi}:>0 is a semigroup of probability
measures on K,, and that for every t > 0, {u}}°2, is a consistent sequence. If we let

ph, be the extension of {u},}22, for each t, then {ul }i>o is a semigroup on B.

Proof. Since ply, (T, '(An) = p'(A,) for n > 1 and A, € B,, we have for s,
t >0,

1o (T, (An) — w) pl(dw)

B

e % il (T (A) = /
= /Eﬂio (Tn—l(An - Tn(w))) pe (dw)

=[ P (A — Xty (dx)
Kn

= 11,7 (An)
= s (T, 1(AD) -
Since the sets T, !(A,) (n > 1, A, € B,) generate B(B), we obtain p, * ul, = ps.
O

Thus it can be seen that if we are given a temporally and spatially homogeneous
Markov process X, on each K, whose transition function p(-) = P(X,(t) € - | Xo =0)
is consistent, then we can construct a Markov process on B.

In order to find semigroups which can be extended, let us characterize them by
means of characteristic functions. Let K be an extension of Q, of finite degree. If F
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is a o-finite measure on K satisfying
5.1 F(N) < o0
for any neighborhood N of the origin, and
(5.2) / (1 =Reyk(») F(dy) < 00
K

for every x € K, then the function

f(x) =exp [fK (YxOn —1) F(dy)]

gives characteristic function of a probability measure on K.
Let {u'};>0 be a semigroup on K. Then p’(x) has a unique representation

(5.3 1 (x) = exp [f ([K Yy (y) — 1) F(dy)] ,

where F = F({¢t'};>0) is a o-finite measure on K uniquely determined by {u'}:>0,
which satisfies (5.1) and (5.2). For these results concerning the representation of char-
acteristic functions, refer to [12].

Lemma 5.2. Let {u'};>0 be a semigroup on K and assume that p' is symmetric
for every t. Then the measure F in the representation (5.3) is symmetric.

Proof. Let u be any element of K of norm 1. Then

exp [t / Wx» - 1) F(udy)] = W x) = g (x) = exp [r / Wr» - 1) F(dy)].
K K
By the uniqueness of the representation, we obtain F(dy) = F(udy). O

Lemma 5.3. If (5.3) is the representation of a semigroup {u'};>0 of symmetric
probability measures on K, then for x #0,

p(x) =exp [—t(qg — )7 (gF (Iyll = r ™) — F (Iyll = r )],

where || x| = r*.

Proof. Let |[x|| = r* and m > —k +1+ 1. For a = (_met>.--»@_j_1) €
ATl o i #0, define a set D(a) by
< r’}.

—I-1

y — Z aﬁri

i=—m—k

D(a) := [yeKl
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Since F is symmetric by Lemma 5.2, and since for any « and o' there exists u €
K of norm 1 such that x™'D(¢) = ux~'D(a), F (x™'D()) take the same value for
all o. Notice that the set {y € K | |yl = r™} is disjoint union of x~!D(a)’s for
(g — Dg™* =1 distinct s, then we have for each «,

F (x7'D(@)) =(q = D7'q ™" F (Iyll = ™).

If y € x"!D(a) then ¥%(y) = @b}((z-l_l . o;m'). Therefore we have

/ (V) — 1) F(dy)
lIyli=r™

> / XOFdy)— F (lyl =r™)
= Jx7'D(a)

—1-1
F(Iyll=r") [(q —)7lgTm Y "k ( > a,-vr") - 1}.

i=—m—k

Here by Lemma 3.1,

;¢k< _f aﬂf") = ;(m (x~'D@))” / X ()dy

i=——m—k x~!D(e)
k- f x(y)dy
lIyll=rm

q
{—1, ifm=—k+1+1,

0, ifm>—k+1+2.
Hence

f (¥x(») — 1) F(dy)
[Iyll=rm

—(@—D7'gF(Iyll=r="Y, if m=—k+1+1,
| =Fdiyl = rm), i m > —k+1+2.

Since fIIy":r,,,(z/)}‘((y) — 1)F(dy)=0 for m < —k +1, we obtain

[wo-vran= > [ @Go-)ra

m=—k+l41 ¥ IS
o0
=—(@-D7'gF (Iyl=r") = 3" F(lyl=r")
m=—k+l+2

~(q ~ D7 (@F (Iyl = r 1) — F (Iyll = r4142)) . O
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Now we can give a characterization of consistent sequences of semigroups of
symmetric probability measures;

Proposition 5.4. A sequence {{u}}i>0} -, of semigroups of symmetric probability
measures such that {u},}>°, is consistent for each t, corresponds in one-to-one way to
a non-negative function h on ||B| := {||x|| | x € B} satisfying the followings.

(5.4) h( > (gn — I)Zq"h Y, for every integer k and n > 1,
(5.5) lim A (rn) =0, for every n > 1.
k——00

The correspondence is given by the formula
4,(x) = exp [=th(lx D]

Proof. Assume that {u!};>0 is a semigroup of symmetric probability measures on
K, and that {z!}2°, is consistent for every ¢. Let g be the element of G correspond-
ing to the consistent sequence {,u,ll};‘l‘;l. Since ) is symmetric, g is real and symmet-
ric, and hence g is of the form g(x) = exp[—A(||x|)], where k is a function on || B
to [0, +00]. Notice that 4 is uniquely determined by the sequence {{uz},zo}:‘il. By
Lemma 5.3, for each n there exists a unique o-finite measure F, on K, such that
F, (||y|| > r;") < oo for every integer m, and

h(rf) =(gn = D7 (guF (I¥ll = ) = F, (Ilyl = 7,7 **2)), ke Z.

Then we can easily derive that
o0

(5.6) F, (||y|| > r;") =(qn — I)an—th (rn“m+l,1—z+2) ., melZ.
i=1

Since F, (llyll = ") < oo for m € Z, h(rf) must be finite for any integer k. The
formula (5.6) also implies

o0
h(rf) <an Y gy h (™) = gulgn — D7 Fa (Iyll = 1,71 > 0
i=1
as k — —oo, thus (5.5) holds. We obtain (5.4) by applying (5.6) to the inequality
Fu (Iyll = r, ") — F, (Iyll = r,**"*2) > 0.

Conversely for a given non-negative function 4 on || B| satisfying (5.4) and (5.5),
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define a symmetric measure F, on K, by the formula (5.6) and

F.({yeKallly—xll <rf})
= (gn — D7g, "V (F, (vl = ) = F (Iyll = r™h),  if llxll =7 > rk

Here (5.4) and (5.5) imply

F, (llyll = 7)< h (r;™*?) < oo,
lim_F, (Iyl = ") =0,
m—o0

and
Fu(Iyll = ) = Fu (Ilyll = r*h)
_qnl(qn_l)( ( —m+l, +1) (q _1)Zq—zh —mA+l,+1— l)) > 0.

Therefore F, is a o-finite measure with finite mass on complement of any neighbor-
hood of the origin. For 0 # x € K, let ||x|| = r. Since ¥X(y) = 1 if ||y|| < r %,
we have

/ (1 = Re () Faldy) < 2F, (Ilyll > ry%*) < oo,

Kn

Thus for every ¢t > 0,

f2(x) =exp [r f () —1) Fn(dy)]
gives the characteristic function of a probability measure on K, say u), and it can be
seen that {u!};>0 is a semigroup. Furthermore if 0 # x € K, then by Lemma 5.3 and
the formula (5.6),

(x) = exp[~1(gn — D7 (guFn (¥l = 1750y — F, (IIyll = 775 *%2))]
kn

= exp[~th(llxID], where [x| =r,",
which is independent of the choice of n such that x € K,,. Hence {u;,}72, is consistent
for every t. O

ExampLE. We can see that for o, B > 0, A(|lyl) = ally||® satisfies (5.4) and
(5.5). If u@ = uP(a, B) is the probability measure on K, defined in [E 3.2], then
there exists a consistent sequence of semigroups {u'},>0, such that pl = u{?. For each
n the semigroup {u!},>0 is associated with a stable process on K, ([18]). Thus stable
processes can be extended to B.
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