EXTENSION OF MEASURES TO INFINITE DIMENSIONAL SPACES OVER P-ADIC FIELD

Kumi YASUDA

(Received January 13, 1999)

1. Introduction

In carrying out analysis on infinite dimensional spaces over p-adics, it is useful to give integral representations of functions. Satoh considered a normed vector space H over a local field K with orthonormal Schauder basis ([14]). He showed that any admissible probability measure on K is extended to a measure on the completion of H with respect to a measurable norm, applying Prokhorov's measure extension theorem to the projective limit of the images of orthogonal projections on H. This can be applied to a space of polynomials with coefficients in p-adics. On the other hand the present paper aims at extending probability measures to spaces including extension fields over p-adics of infinite degree, in which there exist no orthonormal basis in the sense of [14], except the case of unramified extensions. The spaces to which we extend measures are completions of infinite extension fields over p-adics with respect to specific seminorms induced by projections naturally related with traces on subextensions. We notice that our projections are not necessarily orthogonal in the sense of [14]. The subjects of our theorem include for instance the algebraic closure and the maximal unramified extension of the p-adic field. Kochubei proved independently that Gaussian measures on a local field can be extended to completion of an infinite extension and constructed a fractional differentiation operator relative to the measure ([9]).

Let p be a fixed prime integer. The p-adic field \mathbb{Q}_{p} consists of formal power series

$$
\sum_{i=m}^{\infty} \alpha_{i} p^{i}, \quad m \in \mathbb{Z}, \quad \alpha_{i} \in\{0,1, \ldots, p-1\}
$$

With ordinary addition and multiplication as power series, \mathbb{Q}_{p} becomes a field. The p-adic norm $\|\cdot\|$ is defined by

$$
\left\|\sum_{i=m}^{\infty} \alpha_{i} p^{i}\right\|=p^{-m} \quad \text { if } \alpha_{m} \neq 0, \quad \text { and } \quad\|0\|=0
$$

We denote by \mathbb{Z}_{p} the valuation ring $\left\{x \in \mathbb{Q}_{p} \mid\|x\| \leq 1\right\}$.

If K is an extension field over \mathbb{Q}_{p} of finite degree, the p-adic norm has a unique extension to K, which we denote by $\|\cdot\|$ again. The norm $\|\cdot\|$ is non-archimedean, i.e. satisfies the ultra-metric inequality:

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}, \quad x, y \in K
$$

Let us denote by R_{K} the valuation ring $\{x \in K \mid\|x\| \leq 1\}$, then $P_{K}:=\{x \in K \mid\|x\|<$ 1) is a unique maximal ideal of R_{K}. The ramification index e_{K} of K is the positive integer such that

$$
\{\|x\| \mid x \in K-\{0\}\}=\left\{p^{n / e_{K}} \mid n \in \mathbb{Z}\right\} .
$$

If N_{K} is the extension degree of K over \mathbb{Q}_{p} and f_{K} the degree of residue field R_{K} / P_{K} over \mathbb{F}_{p}, then it follows that $N_{K}=e_{K} f_{K}$. Put $r_{K}:=p^{1 / e_{K}}$ and $q_{K}:=p^{f_{K}}$. If π_{K} is a prime element i.e. a generator of the ideal P_{K} of R_{K}, and if A_{K} is a complete system of representatives of the residue field, then K is interpreted as the set of formal power series

$$
\sum_{i=m}^{\infty} \alpha_{i} \pi_{K}^{i}, \quad m \in \mathbb{Z}, \quad \alpha_{i} \in A_{K}
$$

and the norm $\|\cdot\|$ is given by

$$
\left\|\sum_{i=m}^{\infty} \alpha_{i} \pi_{K}^{i}\right\|=r_{K}^{-m} \quad \text { if } \alpha_{m} \neq 0
$$

The field K is a complete separable metric space with respect to the metric induced by the norm $\|\cdot\|$. The Haar measure \mathfrak{m}_{K} on K is always assumed to be normalized so that $\mathfrak{m}_{K}\left(R_{K}\right)=1$. Then it can be verified that $\mathfrak{m}_{K}\left(\|x\| \leq r_{K}^{m}\right)=q_{K}^{m}$. We will often write $d x$ for $\mathfrak{m}_{K}(d x)$ and omit subscripts K (e.g., $R, \pi, \mathfrak{m}, \ldots$) if there is no fear of confusion.

For a topological space $X, \mathcal{B}(X)$ stands for the Borel field of X.

2. Extension of measures

Let $L \supset K$ be a field extension and the extension degree [$L: K$] be finite. For $x \in L, K(x)$ denotes the subfield of L obtained by adjoining x to K. The trace map $\mathrm{Tr}_{L, K}$ is a K-linear map on L to K defined by

$$
\operatorname{Tr}_{L, K}(x)=[L: K(x)] \sum_{i=1}^{k} x_{i}, \quad x \in L,
$$

where $k=[K(x): K]$, and $x=x_{1}, x_{2}, \ldots, x_{k}$ are all distinct conjugates of x over K. Any K-linear map f on L to K is of the form $f(\cdot)=\operatorname{Tr}_{L, K}(v \cdot)$ for a unique element
v of L. If $L \supset F \supset K$ then it can be verified that $\operatorname{Tr}_{F, K} \circ \operatorname{Tr}_{L, F}=\operatorname{Tr}_{L, K}$. For an unramified extension $L \supset K, \operatorname{Tr}_{L, K}$ maps R_{L} surjectively onto R_{K} (see [16]).

Now we introduce a map $T_{K}^{L}: L \rightarrow K$ for a finite extension $L \supset K$.
Definition 2.1. For a finite extension $L \supset K$, we define a K-linear map T_{K}^{L} on L to K by

$$
T_{K}^{L}(x):=\operatorname{Tr}_{L, K}\left([L: K]^{-1} x\right)=[L: K]^{-1} \operatorname{Tr}_{L, K}(x)=\frac{1}{k} \sum_{i=1}^{k} x_{i}, \quad x \in L .
$$

Lemma 2.2. (i) The map T_{K}^{L} of L to K is continuous and surjective.
(ii) If $L \supset F \supset K$ then $T_{K}^{L}=T_{K}^{F} \circ T_{F}^{L}$.

Proof. (i) Since $\operatorname{Tr}_{L, K}$ is continuous, so is T_{K}^{L}. For surjectivity, take any $x \in$ K then $T_{K}^{L}(x)=x$.
(ii) $T_{K}^{F} \circ T_{F}^{L}(x)=[F: K]^{-1}[L: F]^{-1} \operatorname{Tr}_{F, K} \circ \operatorname{Tr}_{L, F}(x)=[L: K]^{-1} \operatorname{Tr}_{L, K}(x)$ $=T_{K}^{L}(x)$.

Definition 2.3. Let $\mathbb{Q}_{p}^{\text {alg }}$ stand for the algebraic closure of \mathbb{Q}_{p}. For each extension $K \supset \mathbb{Q}_{p}$ of finite degree, define a map T_{K} on $\mathbb{Q}_{p}^{\text {alg }}$ to K by

$$
T_{K}(x)=T_{K}^{L}(x) \quad \text { if } x \in L, L \supset K
$$

The map T_{K} is well-defined. Indeed, suppose that $x \in L, L \supset K$. Then

$$
T_{K}^{L}(x)=T_{K}^{K(x)} \circ T_{K(x)}^{L}(x)=T_{K}^{K(x)}(x),
$$

thus $T_{K}^{L}(x)$ is independent of the choice of L.
Put $K_{1}=\mathbb{Q}_{p}$, and fix an increasing sequence $\mathcal{S}=\left\{K_{n}\right\}_{n=1}^{\infty}$ of extension fields over \mathbb{Q}_{p} of finite degrees. Put $B=B_{\mathcal{S}}:=\cup_{n=1}^{\infty} K_{n} \subset \mathbb{Q}_{p}^{\text {alg }}$.

Examples. [E 2.1] $K_{n}=$ the smallest field containing all extensions of degrees less than $n . B=\mathbb{Q}_{p}^{\text {alg }}$.
[E 2.2] $K_{n}=$ the unramified extension of degree $n!. B$ is the maximal unramified extension of \mathbb{Q}_{p}.

We will often abbreviate subscripts and superscripts K_{n} to n, e.g. $R_{n}:=R_{K_{n}}$, $T_{n}^{m}:=T_{K_{n}}^{K_{m}}$, and we put $\mathcal{B}_{n}:=\mathcal{B}\left(K_{n}\right)$. For each n, we denote by T_{n} the restriction of $T_{K_{n}}$ to B. We put on B the topology induced by $T_{n}, n \geq 1$, i.e. the weakest topology relative to which T_{n} are continuous for all n. Let \bar{B} be the completion of B, and we denote by T_{n} again the continuation of T_{n} to \bar{B}. Our aim is to extend measures to \bar{B}.

Suppose that we are given a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of topological spaces and measurable maps f_{n}^{m} of X_{m} onto X_{n} for $m \geq n$. We say that $\left\{X_{n}\right\}_{n=1}^{\infty}$ is projective with respect to f_{n}^{m}, if $f_{n}^{m}=f_{n}^{l} \circ f_{l}^{m}$ holds for $m \geq l \geq n$. We denote by p_{m} the canonical map on proj $\lim X_{n}$ to X_{m};

$$
p_{m}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)=x_{m},
$$

and put on proj $\lim X_{n}$ the topology induced by $p_{m}, m \geq 1$. If each X_{n} is a separable metric space and if the maps f_{n}^{m} are continuous, then the Borel field $\mathcal{B}\left(\operatorname{proj} \lim X_{n}\right)$ is generated by the sets $p_{m}^{-1}\left(A_{m}\right)\left(m \geq 1, A_{m} \in \mathcal{B}\left(X_{m}\right)\right)$. Assume furthermore that the spaces X_{n} are complete. If we are given a probability measure μ_{n} on $\left(X_{n}, \mathcal{B}\left(X_{n}\right)\right)$ for each n such that

$$
\mu_{n}\left(A_{n}\right)=\mu_{n+1}\left(\left(f_{n}^{n+1}\right)^{-1}\left(A_{n}\right)\right)
$$

for any $A_{n} \in \mathcal{B}\left(X_{n}\right)$, then there exists a unique Borel probability measure μ_{∞} on proj $\lim X_{n}$ such that

$$
\mu_{\infty}\left(p_{n}^{-1}\left(A_{n}\right)\right)=\mu\left(A_{n}\right)
$$

for every n and $A_{n} \in \mathcal{B}\left(X_{n}\right)$. For these results refer to [12].
Let us come back to the sequence $\mathcal{S}=\left\{K_{n}\right\}_{n=1}^{\infty}$ of finite extensions of \mathbb{Q}_{p}. Lemma 2.2 implies that \mathcal{S} is projective with respect to T_{n}^{m}.

Definition 2.4. We say $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a consistent sequence of probability measures (associated with $\mathcal{S}=\left\{K_{n}\right\}_{n=1}^{\infty}$), if μ_{n} is a probability measure on K_{n} such that

$$
\mu_{n}\left(A_{n}\right)=\mu_{n+1}\left(\left(T_{n}^{n+1}\right)^{-1}\left(A_{n}\right)\right)
$$

for all n and $A_{n} \in \mathcal{B}_{n}$.
If we are given a consistent sequence $\left\{\mu_{n}\right\}$ of probability measures, then it can be uniquely extended to a Borel probability measure $\tilde{\mu}_{\infty}$ on $\operatorname{proj} \lim K_{n}$. Whereas we have:

Proposition 2.5. Topological \mathbb{Q}_{p}-vector spaces \bar{B} and $\operatorname{proj} \lim K_{n}$ are isomorphic.

Proof. Let us show that

$$
\iota(w)=\left(T_{n}(w)\right): \bar{B} \rightarrow \operatorname{proj} \lim K_{n}
$$

gives an isomorphism of \bar{B} onto proj $\lim K_{n}$. If $w \in B$ and $m \geq n$, then Lemma 2.2 (ii) implies $T_{n}^{m} \circ T_{m}(w)=T_{n}(w)$. By taking limit we can see that this is valid for
all $w \in \bar{B}$, and hence $\iota(w) \in \operatorname{proj} \lim K_{n}$. For injectivity, suppose $w, w^{\prime} \in \bar{B}$ satisfy $\iota(w)=\iota\left(w^{\prime}\right)$. Take a sequence $\left\{x_{k}\right\}$ in B such that $\lim _{k \rightarrow \infty} x_{k}=w$. Then for every n,

$$
T_{n}\left(w^{\prime}\right)=T_{n}(w)=\lim _{k \rightarrow \infty} T_{n}\left(x_{k}\right),
$$

which implies, by the definition of topology of $\bar{B}, w^{\prime}=\lim _{k \rightarrow \infty} x_{k}=w$ in \bar{B}. Let us prove that ι is surjective. If we take any element $\omega=\left(x_{n}\right)_{n=1}^{\infty}$ of proj $\lim K_{n}$, then for any $m \geq n$ we have

$$
p_{n}\left(\iota\left(x_{m}\right)\right)=T_{n}\left(x_{m}\right)=x_{n}=p_{n}(\omega) .
$$

Therefore for every $n, \lim _{m \rightarrow \infty} p_{n}\left(\iota\left(x_{m}\right)\right)=p_{n}(\omega)$ in K_{n}, which shows $\lim _{m \rightarrow \infty} \iota\left(x_{m}\right)=$ ω in proj $\lim K_{n}$. Since \bar{B} is complete, we have $\omega \in \iota(\bar{B})$. Taking it into account that $p_{n} \circ \iota=T_{n}$, we can see that ι is homeomorphic. The \mathbb{Q}_{p}-linearity of ι follows immediately from the linearity of T_{n}, and thus ι gives an isomorphism of \bar{B} onto proj $\lim B$.

Thus putting $\mu_{\infty}:=\tilde{\mu}_{\infty} \circ \iota$, we derive the following measure extension to the space \bar{B}.

Theorem 2.6. Assume that we are given a consistent sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ of Borel probability measures. Then there exists a unique Borel probability measure μ_{∞} on \bar{B} such that

$$
\mu_{\infty}\left(T_{n}^{-1}\left(A_{n}\right)\right)=\mu_{n}\left(A_{n}\right)
$$

for any n and $A_{n} \in \mathcal{B}_{n}$.
Remark. Consider the case that $B=\mathbb{Q}_{p}^{\text {alg }}$. If we write \mathbb{C}_{p} for the completion of $B=\mathbb{Q}_{p}^{\text {alg }}$ with respect to the p-adic norm, then neither \mathbb{C}_{p} nor \bar{B} contains the other. Indeed, for each fixed n, let $L_{k}^{(n)}(k=1,2, \ldots)$ be the unramified extension of K_{n} of degree p^{k}. We can take $a_{k}^{(n)} \in R_{L_{k}^{(n)}}$ such that $\operatorname{Tr}_{L_{k}^{(n)}, K_{n}}\left(a_{k}^{(n)}\right)=1$. Put $b_{k}^{(n)}=p^{k} a_{k}^{(n)}$, then we have $T_{n}\left(b_{k}^{(n)}\right)=1$ for all k, whereas $\left\|b_{k}^{(n)}\right\| \rightarrow 0$ as $k \rightarrow \infty$. This implies that T_{n} is not continuous with respect to the p-adic norm. Conversely, if we put $c_{k}=1-p^{k} a_{k}^{(k)}$, then we have $\left\|c_{k}\right\|=1$, and $\lim _{k \rightarrow \infty} T_{n}\left(c_{k}\right)=0$ for every n. Thus the p-adic norm is not continuous with respect to the topology induced by $T_{n}, n \geq 1$.

In the next section we shall give some examples of symmetric probability measures on K_{n} which can be extended to \bar{B}. On the other hand, the following lemma shows that there exists no non-trivial symmetric probability measure on \mathbb{C}_{p}.

Proposition 2.7. Let μ be a probability measure on \mathbb{C}_{p} and suppose that $\mu(u \cdot)=$ $\mu(\cdot)$ for all $u \in \mathbb{C}_{p}$ with norm 1 . Then $\mu(\{0\})=1$.

Proof. For each pair $\left(a_{0}, a_{1}\right)$ of rational numbers such that $a_{0}>a_{1}$, let $\mathcal{R}\left(a_{0}, a_{1}\right)$ be the collection of all sets of the form $B\left(z, p^{a_{1}}\right):=\left\{y \in \mathbb{C}_{p} \mid\|y-z\| \leq p^{a_{1}}\right\}$ for
$z \in \mathbb{C}_{p},\|z\|=p^{a_{0}}$. Let $\mathcal{S}=\left\{K_{n}\right\}$ be such that $B=\mathbb{Q}_{p}^{\text {alg }}$. Take N such that $p^{a_{0}}$, $p^{a_{1}} \in\left\{\|x\| \mid x \in K_{N}-\{0\}\right\}=\left\{r_{N}^{k} \mid k \in \mathbb{Z}\right\}$, and for each $n \geq N$, let $\mathcal{R}_{n}\left(a_{0}, a_{1}\right)$ be the collection of all sets of the form $B\left(x, p^{a_{1}}\right)$ for $x \in K_{n},\|x\|=p^{a_{0}}$. Then we have

$$
\begin{equation*}
\mathcal{R}\left(a_{0}, a_{1}\right)=\cup_{n \geq N} \mathcal{R}_{n}\left(a_{0}, a_{1}\right) \tag{2.1}
\end{equation*}
$$

Indeed, take any element $B\left(z, p^{a_{1}}\right)$ in $\mathcal{R}\left(a_{0}, a_{1}\right)$. Since $\mathbb{Q}_{p}^{\text {alg }}=\cup_{n \geq N} K_{n}$ is dense in \mathbb{C}_{p}, we can take $n \geq N$ and $x \in K_{n}$ such that $\|z-x\|<p^{a_{1}}$. Then the ultra-metric inequality implies that $\|x\|=p^{a_{0}}$ and $B\left(z, p^{a_{1}}\right)=B\left(x, p^{a_{1}}\right)$.

Fix $n \geq N$ and let $k_{0}=e_{n} a_{0}, k_{1}=e_{n} a_{1}$. For $x=\sum_{i=-k_{0}}^{\infty} \alpha_{i} \pi_{n}^{i}$ and $x^{\prime}=\sum_{i=-k_{0}}^{\infty} \alpha_{i}^{\prime} \pi_{n}^{i}$ in K_{n}, the set $B\left(x, p^{a_{1}}\right)$ coincides with $B\left(x^{\prime}, p^{a_{1}}\right)$ if and only if $\alpha_{i}=\alpha_{i}^{\prime}$ for $i=-k_{0}$, $\ldots,-k_{1}-1$. Hence $\mathcal{R}_{n}\left(a_{0}, a_{1}\right)$ consists of $\left(q_{n}-1\right) q_{n}^{k_{0}-k_{1}-1}=\left(1-q_{n}^{-1}\right) p^{N_{n}\left(a_{0}-a_{1}\right)}$ elements, which shows by (2.1) that $\mathcal{R}\left(a_{0}, a_{1}\right)$ is a countable set. Notice that for any two elements $B\left(z, p^{a_{1}}\right)$ and $B\left(z^{\prime}, p^{a_{1}}\right)$ of $\mathcal{R}\left(a_{0}, a_{1}\right)$, we have $B\left(z^{\prime}, p^{a_{1}}\right)=z^{-1} z^{\prime} B\left(z, p^{a_{1}}\right)$ and $\left\|z^{-1} z^{\prime}\right\|=1$, and therefore $\mu\left(B\left(z, p^{a_{1}}\right)\right)=\mu\left(B\left(z^{\prime}, p^{a_{1}}\right)\right)$ by the assumption. Since the set $A\left(a_{0}\right):=\left\{z \in \mathbb{C}_{p} \mid\|z\|=p^{a_{0}}\right\}$ is disjoint union of countable sets in $\mathcal{R}\left(a_{0}, a_{1}\right)$, its measure $\mu\left(A\left(a_{0}\right)\right)$ must be 0 . Thus we obtain

$$
\mu\left(\mathbb{C}_{p}-\{0\}\right)=\sum_{a_{0} \in \mathbb{Q}} \mu\left(A\left(a_{0}\right)\right)=0 .
$$

3. Characteristic functions and Consistent measures

Let $K \supset \mathbb{Q}_{p}$ be an extension of finite degree. A character of K is a continuous homomorphism on additive group K to multiplicative group of complex numbers of absolute value 1 . We denote by K^{*} the group consisting of all characters of K.

Let φ_{0} be the element of \mathbb{Q}_{p}^{*} defined by

$$
\varphi_{0}\left(\sum_{i=m}^{\infty} \alpha_{i} p^{i}\right)= \begin{cases}\exp \left(2 \pi \sqrt{-1} \sum_{i=m}^{-1} \alpha_{i} p^{i}\right), & \text { if } m \leq-1 \\ 1, & \text { otherwise }\end{cases}
$$

then $\varphi_{0}\left(\mathbb{Z}_{p}\right)=\{1\}$ and $\varphi_{0}\left(p^{-1} \mathbb{Z}_{p}\right) \neq\{1\}$. For each extension K over \mathbb{Q}_{p} of finite degree, $\psi_{K}^{1}:=\varphi_{0} \circ T_{\mathbb{Q}_{p}}^{K}$ belongs to K^{*}. Put $l=l_{K}:=\operatorname{ord}\left(\psi_{K}^{1}\right)$, i.e. l is the integer such that $\psi_{K}^{1}(x R)=\{1\}$ if and only if $\|x\| \leq r^{l}$. If \mathcal{D} is the different of K over \mathbb{Q}_{p}, then $\mathcal{D}=\left\{\|x\| \leq\|N\| r^{-l}\right\}$. If K is tamely ramified (i.e. $(p, e)=1$), then $r^{l}=\|N\| r^{e-1}=$ $\|f\| r^{e-1}$. In particular, for unramified K (i.e. $e=1$) we have $r^{l}=p^{l}=\|N\|=\|f\|$. If K is strongly ramified (i.e. $(p, e) \neq 1)$, then $\|N\| r^{e} \leq r^{l} \leq\|f\| r^{e-1}$. For these results concerning with $\operatorname{ord}\left(\psi_{K}^{1}\right)$, we can refer to [11], [15], and [16].

We can identify K^{*} with K by means of the correspondence

$$
x \in K \leftrightarrow \psi_{K}^{x}(\cdot):=\psi_{K}^{1}(x \cdot) \in K^{*},
$$

(Theorem 3 and following Corollary in II of [16]).

Lemma 3.1.

$$
\int_{\|y\|=r^{m}} \psi_{K}^{x}(y) d y= \begin{cases}(q-1) q^{m-1}, & \text { if }\|x\| \leq r^{l-m} \\ -q^{m-1}, & \text { if }\|x\|=r^{l-m+1} \\ 0, & \text { if }\|x\| \geq r^{l-m+2}\end{cases}
$$

Proof. If $\|x\| \leq r^{l-m}$, then $\psi_{K}^{x}(y) \equiv 1$ on $\left\{\|y\| \leq r^{m}\right\}$. Hence

$$
\begin{equation*}
\int_{\|y\| \leq r^{m}} \psi_{K}^{x}(y) d y=\mathfrak{m}\left(\|y\| \leq r^{m}\right)=q^{m} . \tag{3.1}
\end{equation*}
$$

If $\|x\| \geq r^{l-m+1}$, then there exists y_{0} such that $\left\|y_{0}\right\| \leq r^{m}$ and $\psi_{K}^{x}\left(y_{0}\right) \neq 1$. The ultrametric inequality implies that $\left\|y+y_{0}\right\| \leq r^{m}$ if and only if $\|y\| \leq r^{m}$, and therefore

$$
\int_{\|y\| \leq r^{m}} \psi_{K}^{x}(y) d y=\int_{\|y\| \leq r^{m}} \psi_{K}^{x}\left(y+y_{0}\right) d y=\psi_{K}^{x}\left(y_{0}\right) \int_{\|y\| \leq r^{m}} \psi_{K}^{x}(y) d y
$$

Since $\psi_{K}^{x}\left(y_{0}\right) \neq 1$, we have

$$
\begin{equation*}
\int_{\|y\| \leq r^{m}} \psi_{K}^{x}(y) d y=0 \tag{3.2}
\end{equation*}
$$

and our assertion follows immediately from (3.1) and (3.2).
For a probability measure μ_{K} on K, we interpret the characteristic function $\widehat{\mu_{K}}$ as the function on K by

$$
\widehat{\mu_{K}}(x)=\int_{K} \psi_{K}^{x}(y) \mu_{K}(d y)
$$

A function g on K is the characteristic function of a probability measure on K, if and only if it is positive definite, continuous, and $g(0)=1$, and the correspondence between such functions and probability measures is one-to-one (see Theorems 3.1 and 3.2 in IV of [12]).

We have seen in the previous section that a consistent sequence of probability measures can be extended to a probability measure on \bar{B}. In order to find consistent sequences of measures we shall give a correspondence between probability measures on \bar{B} and functions on B. Let \mathcal{G} be the set of positive definite functions g on B such that $g(0)=1$ and the restriction to K_{n} is continuous for every n. We shall particularly observe the case that the measure μ_{n} is symmetric, i.e. $\mu_{n}\left(u_{n} \cdot\right)=\mu_{n}(\cdot)$ for all $u_{n} \in K_{n}$ of norm 1. We say a function $g \in \mathcal{G}$ is symmetric if $g(u \cdot)=g(\cdot)$ for any $u \in B$ of norm 1 .

Proposition 3.2. (i) Probability measures on \bar{B} correspond in one-to-one way to consistent sequences $\left\{\mu_{n}\right\}_{n=1}^{\infty}$.
(ii) Consistent sequences $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ correspond in one-to-one way to functions belonging to \mathcal{G}. Every measure $\mu_{n}(n=1,2, \ldots)$ is symmetric if and only if the corresponding function in \mathcal{G} is symmetric.

Proof. (i) Assume that we are given a probability measure μ on \bar{B}. Then it can be easily verified that the sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ given by

$$
\begin{equation*}
\mu_{n}\left(A_{n}\right)=\mu\left(T_{n}^{-1}\left(A_{n}\right)\right), \quad A_{n} \in \mathcal{B}_{n} \tag{3.3}
\end{equation*}
$$

is consistent. Let μ_{∞} be the unique extension of $\left\{\mu_{n}\right\}_{n=1}^{\infty}$, then $\mu_{\infty}\left(T_{n}^{-1}\left(A_{n}\right)\right)=$ $\mu_{n}\left(A_{n}\right)=\mu\left(T_{\underline{n}}^{-1}\left(A_{n}\right)\right)$ for every n and $A_{n} \in \mathcal{B}_{n}$. If we take notice of the identification between \bar{B} and proj lim K_{n} established in Proposition 2.5, then we can see that $\mathcal{B}(\bar{B})$ is generated by the sets $T_{n}^{-1}\left(A_{n}\right)\left(n \geq 1, A_{n} \in \mathcal{B}_{n}\right)$. Hence μ_{∞} coincides with μ, and thus (3.3) gives a one-to-one correspondence of probability measures on \bar{B} to consistent sequences.
(ii) For a consistent sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$, define a function g on B by

$$
g(x)=\widehat{\mu_{n}}(x), \text { if } x \in K_{n} .
$$

The function $g(x)$ is defined independently of the choice of n. Indeed, if $x \in K_{n} \subset K_{m}$ then

$$
\begin{aligned}
\widehat{\mu_{m}}(x) & =\int_{K_{m}} \varphi_{0} \circ T_{1}^{m}(x y) \mu_{m}(d y) \\
& =\int_{K_{m}} \varphi_{0} \circ T_{1}^{n}\left(x T_{n}^{m}(y)\right) \mu_{m}(d y) \\
& =\left(\mu_{m} \circ\left(T_{n}^{m}\right)^{-1}\right)^{\wedge}(x) \\
& =\widehat{\mu_{n}}(x) .
\end{aligned}
$$

Since $\left.g\right|_{K_{n}}=\widehat{\mu_{n}}$ is positive definite and continuous for each n, we see immediately that g belongs to \mathcal{G}. Conversely if g is any element of \mathcal{G}, then $\left.g\right|_{K_{n}}$ is the characteristic function of a probability measure on K_{n}, say μ_{n}^{g}. If $x \in K_{n} \subset K_{m}$ then

$$
\int_{K_{n}} \psi_{n}^{x}(y)\left(\mu_{m}^{g} \circ\left(T_{n}^{m}\right)^{-1}\right)(d y)=\int_{K_{m}} \psi_{m}^{x}(y) \mu_{m}^{g}(d y)=g(x)=\int_{K_{n}} \psi_{n}^{x}(y) \mu_{n}^{g}(d y),
$$

thus $\left\{\mu_{n}^{g}\right\}_{n=1}^{\infty}$ is consistent. Obviously these correspondences $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ to g and g to $\left\{\mu_{n}^{g}\right\}_{n=1}^{\infty}$ give the inverse of each other.

Let $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be consistent and $g \in \mathcal{G}$ the corresponding function. For $x, u \in B$,
$\|u\|=1$, take n such that $x, u \in K_{n}$, then

$$
\begin{aligned}
g(x) & =\int_{K_{n}} \psi_{n}^{x}(y) \mu_{n}(d y), \\
g(u x) & =\int_{K_{n}} \psi_{n}^{x}(y) \mu_{n}\left(u^{-1} d y\right)
\end{aligned}
$$

Hence g is symmetric if and only if μ_{n} is symmetric for every n.
By the above proposition, every function g in \mathcal{G} corresponds to a probability measure μ_{∞} on \bar{B}. The correspondence is given by

$$
\begin{equation*}
g(x)=\int_{\bar{B}} \varphi_{0} \circ T_{1}^{n}\left(x T_{n}(w)\right) \mu_{\infty}(d w), \quad \text { if } x \in K_{n} . \tag{3.4}
\end{equation*}
$$

Here let us give some examples of symmetric functions g in \mathcal{G} and the corresponding consistent sequence of symmetric probability measures.

Examples. [E 3.1] For $\lambda>0$, put

$$
g^{(1)}(x)= \begin{cases}1, & \text { if }\|x\| \leq \lambda \\ 0, & \text { otherwise }\end{cases}
$$

The corresponding sequence $\left\{\mu_{n}^{(1)}\right\}_{n=1}^{\infty}=\left\{\mu_{n}^{(1)}(\lambda)\right\}_{n=1}^{\infty}$ is given by

$$
\frac{d \mu_{n}^{(1)}}{d x}(x)= \begin{cases}q_{n}^{-l_{n}+\left\lfloor\log \lambda / \log r_{n}\right\rfloor}, & \text { if }\|x\| \leq r_{n}^{l_{n}-\left\lfloor\log \lambda / \log r_{n}\right\rfloor}, \\ 0, & \text { otherwise },\end{cases}
$$

where $\lfloor a\rfloor$ stands for the integer part of a. The measure $\mu_{n}^{(1)}$ is a Gaussian measure on K_{n}.
[E 3.2] For $\alpha, \beta>0$, put

$$
g^{(2)}(x)=\exp \left(-\alpha\|x\|^{\beta}\right) .
$$

The corresponding sequence $\left\{\mu_{n}^{(2)}\right\}_{n=1}^{\infty}=\left\{\mu_{n}^{(2)}(\alpha, \beta)\right\}_{n=1}^{\infty}$ is given by

$$
\frac{d \mu_{n}^{(2)}}{d x}(x)=\|x\|^{-N_{n}} \sum_{i=0}^{\infty} q_{n}^{-i}\left\{\exp \left(-\alpha r_{n}^{\beta\left(l_{n}-i\right)}\|x\|^{-\beta}\right)-\exp \left(-\alpha r_{n}^{\beta\left(l_{n}-i+1\right)}\|x\|^{-\beta}\right)\right\} .
$$

The measure $\mu_{n}^{(2)}$ is a stable law on K_{n} ([19]).
[E 3.3] For $\rho, \sigma>0$ and $0<\kappa<\rho^{-\sigma}$, put

$$
g^{(3)}(x)= \begin{cases}-\kappa\|x\|^{\sigma}+1, & \text { if }\|x\| \leq \rho \\ 0, & \text { otherwise } .\end{cases}
$$

The corresponding sequence $\left\{\mu_{n}^{(3)}\right\}_{n=1}^{\infty}=\left\{\mu_{n}^{(3)}(\rho, \sigma, \kappa)\right\}_{n=1}^{\infty}$ is given by
$\frac{d \mu_{n}^{(3)}}{d x}(x)= \begin{cases}\left(1-\frac{\left(q_{n}-1\right) r_{n}^{\sigma}{ }^{\left[\log \rho / \log r_{n}\right\rfloor} \kappa}{q_{n}-r_{n}^{-\sigma}}\right) q_{n}^{-l_{n}+\left\lfloor\log \rho / \log r_{n}\right\rfloor}, & \text { if }\|x\| \leq r_{n}^{l_{n}-\left\lfloor\log \rho / \log r_{n}\right\rfloor}, \\ \frac{q_{n}\left(r_{n}^{\sigma}-1\right) r_{n}^{\sigma l_{n}} \kappa}{q_{n}-r_{n}^{-\sigma}}\|x\|^{-\sigma-N_{n}}, & \text { otherwise. }\end{cases}$
Now consider the case that for every $n, K_{n} \supset \mathbb{Q}_{p}$ is an abelian extension with Galois group G_{n}. Then $B \supset \mathbb{Q}_{p}$ is an abelian extension and its Galois group G consists of sequences $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ of $\sigma_{n} \in G_{n}$ satisfying $\left.\sigma_{n+1}\right|_{K_{n}}=\sigma_{n}$, whose action being defined by $\sigma x=\sigma_{n} x$ provided $x \in K_{n}$. Every element $\sigma \in G$ defines a continuous map $x \in B \mapsto \sigma x \in B$. Indeed for every n and $x \in B$, take $N \geq n$ such that $x \in K_{N}$. Then for any $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ in G we have

$$
\begin{aligned}
T_{n}(\sigma x) & =\left[K_{N}: K_{n}\right]^{-1} \sum_{\tau \in \operatorname{Gal}\left(K_{N} / K_{n}\right)} \tau \sigma_{N} x \\
& =\sigma_{N}\left(\left[K_{N}: K_{n}\right]^{-1} \sum_{\tau \in \operatorname{Gal}\left(K_{N} / K_{n}\right)} \tau x\right) \\
& =\sigma_{n} T_{n}(x) .
\end{aligned}
$$

Hence if $\left\{x_{k}\right\}_{k=1,2, \ldots}$ is a sequence in B converging to $x \in B$, then for every n and $\sigma \in G$,

$$
T_{n}\left(\sigma x_{k}\right)=\sigma_{n} T_{n}\left(x_{k}\right) \rightarrow \sigma_{n} T_{n}(x)=T_{n}(\sigma x)
$$

as $k \rightarrow \infty$. Thus σx_{k} converges to σx. Hence the map $x \mapsto \sigma x$ can be uniquely extended to a continuous map on \bar{B} to itself.

We shall show results concerning with G-invariance of probability measures on \bar{B}.
Proposition 3.3. A probability measure μ_{∞} on \bar{B} is G-invariant if and only if the corresponding function $g \in \mathcal{G}$ satisfies $g \circ \sigma=g$ for any $\sigma \in G$.

Proof. Let $w \in \bar{B}, x \in K_{n}$, and $\sigma \in G$. Since σ^{-1} is continuous and $T_{k}(w) \rightarrow$ w as $k \rightarrow \infty$, we apply G_{k}-invariance of $T_{1}^{k}: T_{1}^{k}\left(x\left(\sigma_{k}^{-1} y\right)\right)=T_{1}^{k}\left(\left(\sigma_{k} x\right) y\right), x, y \in$ $K_{k}, \sigma_{k} \in G_{k}$, to obtain

$$
\begin{align*}
T_{1}^{n}\left(x T_{n}\left(\sigma^{-1} w\right)\right) & =\lim _{k \rightarrow \infty} T_{1}^{k}\left(x\left(\sigma^{-1} T_{k}(w)\right)\right) \tag{3.5}\\
& =\lim _{k \rightarrow \infty} T_{1}^{k}\left((\sigma x) T_{k}(w)\right) \\
& =T_{1}^{n}\left((\sigma x) T_{n}(w)\right) .
\end{align*}
$$

Let μ_{∞}^{σ} be the probability measure on \bar{B} defined by $\mu_{\infty}^{\sigma}(\cdot)=\mu_{\infty}(\sigma \cdot)$, and $g^{\sigma} \in \mathcal{G}$ be the corresponding function. If $x \in K_{n}$ then by (3.5),

$$
\begin{aligned}
g^{\sigma}(x) & =\int_{\bar{B}} \varphi_{0} \circ T_{1}^{n}\left(x T_{n}\left(\sigma^{-1} w\right)\right) \mu_{\infty}(d w) \\
& =\int_{\bar{B}} \varphi_{0} \circ T_{1}^{n}\left((\sigma x) T_{n}(w)\right) \mu_{\infty}(d w)=g(\sigma x)
\end{aligned}
$$

Therefore $\mu_{\infty}^{\sigma}=\mu_{\infty}$ if and only if $g=g \circ \sigma$.
Corollary 3.4. (i) If $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a consistent sequence of symmetric probability measures, then the extension μ_{∞} is G-invariant.
(ii) If ν is a probability measure on \mathbb{Q}_{p}, then the function $g_{\nu}:=\hat{\nu} \circ T_{1}$ belongs to \mathcal{G}, and the corresponding measure on \bar{B} is G-invariant.

Proof. (i) By Proposition 3.2 (ii), the function $g \in \mathcal{G}$ corresponding to μ_{∞} is symmetric. For $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right) \in G$ and $x \in B-\{0\}$, taking n such that $x \in K_{n}$ we have $\|\sigma x\|=\left\|\sigma_{n} x\right\|=\|x\|$, since G_{n} acts on K_{n} isometrically. Therefore we obtain $g(\sigma x)=g((\sigma x / x) x)=g(x)$.
(ii) Since $\hat{\nu}$ is positive definite and continuous on \mathbb{Q}_{p}, and since T_{1} is \mathbb{Q}_{p}-linear and continuous on each K_{n}, it is immediately checked that g_{ν} belongs to \mathcal{G}. For $x \in B$ take n such that $x \in K_{n}$. Then G_{n}-invariance of T_{1}^{n} implies

$$
g_{\nu}(\sigma x)=\hat{\nu} \circ T_{1}^{n}(\sigma x)=\hat{\nu} \circ T_{1}^{n}(x)=g_{\nu}(x)
$$

4. Subspaces of measure 1

For each example in [E 3.1] to [E 3.3] we shall find a non-archimedean norm of the form $\sup _{n} \varepsilon_{n}\left\|T_{n}(\cdot)\right\|\left(\varepsilon_{n}>0\right)$, on a subspace of \bar{B} in which the extended measure μ_{∞} is concentrated. Let us prove firstly that the support of the extended measure in [E 3.1] is included in a bounded set with respect to a certain norm.

Definition 4.1. Put $\|w\|_{*}:=\sup _{n} r_{n}^{-l_{n}-1}\left\|T_{n}(w)\right\|$ for $w \in \bar{B}$, and $B_{*}:=\{w \in \bar{B} \mid$ $\left.\|w\|_{*}<\infty\right\}$.

We see that $\|\cdot\|_{*}$ defines a non-archimedean norm on B_{*}. Indeed it is easily seen that $\|\cdot\|_{*}$ is a norm. This is non-archimedean since

$$
\begin{aligned}
\|w+v\|_{*} & =\sup _{n} r_{n}^{-l_{n}-1}\left\|T_{n}(w)+T_{n}(v)\right\| \\
& \leq \sup _{n} r_{n}^{-l_{n}-1} \max \left\{\left\|T_{n}(w)\right\|,\left\|T_{n}(v)\right\|\right\}
\end{aligned}
$$

$$
=\max \left\{\sup _{n} r_{n}^{-l_{n}-1}\left\|T_{n}(w)\right\|, \sup _{n} r_{n}^{-l_{n}-1}\left\|T_{n}(v)\right\|\right\}
$$

Proposition 4.2. For $\lambda>0$, let $\mu_{n}^{(1)}=\mu_{n}^{(1)}(\lambda)$ be as in $[\mathrm{E} 3.1]$ and $\mu_{\infty}^{(1)}$ the extended measure on \bar{B}. Then

$$
\mu_{\infty}^{(1)}\left\{\|w\|_{*} \leq \lambda^{-1}\right\}=1 .
$$

Proof. Note that

$$
\mu_{\infty}^{(1)}\left(\left\{w \in \bar{B} \mid\left\|T_{n}(w)\right\| \leq \lambda^{-1} r_{n}^{l_{n}+1}\right\}\right)=\mu_{n}^{(1)}\left(\left\{x \in K_{n} \mid\|x\| \leq \lambda^{-1} r_{n}^{l_{n}+1}\right\}\right)=1,
$$

for every n. Then

$$
\mu_{\infty}^{(1)}\left(\|w\|_{*} \leq \lambda^{-1}\right)=\mu_{\infty}^{(1)}\left(\bigcap_{n}\left\{w \in \bar{B} \mid\left\|T_{n}(w)\right\| \leq \lambda^{-1} r_{n}^{l_{n}+1}\right\}\right)=1 .
$$

In order to investigate the cases [E 3.2] and [E 3.3], we shall give a lemma.
Lemma 4.3. (i) For $u \geq 1$ and $v \geq 0, \exp (-v)-\exp (-u v) \leq(u-1) v$.
(ii) For $0<s<s_{0}$, put $C_{s, s_{0}}:=\sup _{1<a \leq p^{s_{0}}}(a-1) /\left(1-a^{s / s_{0}-1}\right)$. Then $0<C_{s, s_{0}}<\infty$.

Proof. (i) Put $f_{u}(v)=\exp (-v)-\exp (-u v)$ and $g_{u}(v)=(u-1) v$. Then we have

$$
\frac{d}{d v}\left(f_{u}-g_{u}\right)(v) \leq-(u-1)(1-\exp (-v)) \leq 0,
$$

and $f_{u}(0)-g_{u}(0)=0$. This implies that $f_{u}(v) \leq g_{u}(v)$ for $v \geq 0$.
(ii) The assertion is clear if we notice that

$$
\lim _{a \rightarrow 1} \frac{a-1}{1-a^{s / s_{0}-1}}=-\left(\left.\frac{d}{d a} a^{s / s_{0}-1}\right|_{a=1}\right)^{-1}=\left(1-\frac{s}{s_{0}}\right)^{-1}<\infty .
$$

Definition 4.4. For a sequence $\varepsilon=\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ of positive numbers, put $\|w\|_{\varepsilon}:=$ $\sup _{n} \varepsilon_{n}\left\|T_{n}(w)\right\|$ for $w \in \bar{B}$, and $B_{\varepsilon}:=\left\{w \in \bar{B} \mid\|w\|_{\varepsilon}<\infty\right\}$.

We can verify that $\|\cdot\|_{\varepsilon}$ defines a non-archimedean norm on B_{ε} similarly as $\|\cdot\|_{*}$.
Proposition 4.5. (i) For $\alpha, \beta>0$, let $\mu_{n}^{(2)}=\mu_{n}^{(2)}(\alpha, \beta)$ be as in [E 3.2] and $\mu_{\infty}^{(2)}$ the extended measures on \bar{B}. If there exists $0<s<\beta$ such that $\sum_{n} \varepsilon_{n}^{s}<\infty$ and $\sum_{n} \varepsilon_{n}^{s} r_{n}^{\beta l_{n}}<\infty$, then $\mu_{\infty}^{(2)}\left(B_{\varepsilon}\right)=1$.
(ii) For $\rho, \sigma>0$ and $0<\kappa<\rho^{-\sigma}$, let $\mu_{n}^{(3)}=\mu_{n}^{(3)}(\rho, \sigma, \kappa)$ be as in [E 3.3] and $\mu_{\infty}^{(3)}$ the extended measure on \bar{B}. If there exists $0<s<\sigma$ such that $\sum_{n}\left(\varepsilon_{n} r_{n}^{l_{n}+1}\right)^{s}<\infty$, then $\mu_{\infty}^{(3)}\left(B_{\varepsilon}\right)=1$.

Proof. (i) For each n,

$$
\begin{aligned}
& \int_{\bar{B}}\left\|T_{n}(w)\right\|^{s} \mu_{\infty}^{(2)}(d w) \\
= & \int_{K_{n}}\|x\|^{s} \mu_{n}^{(2)}(d x) \\
\leq & 1+\sum_{m=0}^{\infty} \int_{\|x\|=r_{n}^{m}}\|x\|^{s} \mu_{n}^{(2)}(d x) \\
= & 1+\left(1-q_{n}^{-1}\right) \sum_{m=0}^{\infty} r_{n}^{m s} \sum_{i=0}^{\infty} q_{n}^{-i}\left(\exp \left(-\alpha r_{n}^{\beta\left(l_{n}-m-i\right)}\right)-\exp \left(-\alpha r_{n}^{\beta\left(l_{n}-m-i+1\right)}\right)\right) .
\end{aligned}
$$

Apply Lemma 4.3 to $u=r_{n}^{\beta}, v=\alpha r_{n}^{\beta\left(l_{n}-m-i\right)}$, and $s_{0}=\beta$, noticing that $1<r_{n}^{\beta} \leq p^{\beta}$, then

$$
\begin{aligned}
\int_{\bar{B}}\left\|T_{n}(w)\right\|^{s} \mu_{\infty}^{(2)}(d w) & \leq 1+\left(1-q_{n}^{-1}\right) \sum_{m=0}^{\infty} r_{n}^{m s} \sum_{i=0}^{\infty} q_{n}^{-i}\left(r_{n}^{\beta}-1\right) \alpha r_{n}^{\beta\left(l_{n}-m-i\right)} \\
& =1+\left(1-q_{n}^{-1}\right)\left(r_{n}^{\beta}-1\right) \alpha r_{n}^{\beta l_{n}}\left(1-r_{n}^{s-\beta}\right)^{-1}\left(1-q_{n}^{-1} r_{n}^{-\beta}\right)^{-1} \\
& \leq 1+\left(r_{n}^{\beta}-1\right)\left(1-r_{n}^{s-\beta}\right)^{-1} \alpha r_{n}^{\beta l_{n}} \\
& \leq 1+C_{s, \beta} \alpha r_{n}^{\beta l n} .
\end{aligned}
$$

Therefore we have

$$
\int_{\bar{B}}\left(\sum_{n}\left(\varepsilon_{n}\left\|T_{n}(w)\right\|\right)^{s}\right) \mu_{\infty}^{(2)}(d w) \leq \sum_{n} \varepsilon_{n}^{s}+C_{s, \beta} \alpha \sum_{n} \varepsilon_{n}^{s} r_{n}^{\beta l_{n}}<\infty
$$

which implies that $\|w\|_{\varepsilon} \leq\left(\sum_{n}\left(\varepsilon_{n}\left\|T_{n}(w)\right\|\right)^{s}\right)^{1 / s}<\infty, \mu_{\infty}^{(2)}$-a.s..
(ii) For each n,

$$
\begin{aligned}
& \int_{\bar{B}}\left\|T_{n}(w)\right\|^{s} \mu_{\infty}^{(3)}(d w) \\
= & \int_{K_{n}}\|x\|^{s} \mu_{n}^{(3)}(d x) \\
= & \left(1-\frac{\left(q_{n}-1\right) r_{n}^{\sigma\left\lfloor\log \rho / \log r_{n}\right\rfloor} \kappa}{q_{n}-r_{n}^{-\sigma}}\right) q_{n}^{-l_{n}+\left\lfloor\log \rho / \log r_{n}\right\rfloor} \sum_{m=-\infty}^{l_{n}-\left\lfloor\log \rho / \log r_{n}\right\rfloor} r_{n}^{m s}\left(q_{n}^{m}-q_{n}^{m-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{q_{n}\left(r_{n}^{\sigma}-1\right) r_{n}^{\sigma l_{n}} \kappa}{q_{n}-r_{n}^{-\sigma}} \sum_{m=l_{n}-\left\lfloor\log \rho / \log r_{n}\right\rfloor+1}^{\infty} r_{n}^{m\left(s-\sigma-N_{n}\right)}\left(q_{n}^{m}-q_{n}^{m-1}\right) \\
= & \frac{q_{n}-1}{q_{n}-r_{n}^{-s}} r_{n}^{s\left(l_{n}-\left\lfloor\log \rho / \log r_{n}\right\rfloor\right)}\left(1+\frac{r_{n}^{s}-1}{1-r_{n}^{s-\sigma}} r_{n}^{\sigma\left\lfloor\log \rho / \log r_{n}\right\rfloor} \kappa\right) .
\end{aligned}
$$

Apply Lemma 4.3 (ii) to $s_{0}=\sigma$ noticing that $r_{n}^{s} \leq r_{n}^{\sigma}$, then we obtain

$$
\int_{\bar{B}}\left(\sum_{n} \varepsilon_{n}\left(\left\|T_{n}(w)\right\|\right)^{s}\right) \mu_{\infty}^{(3)}(d w) \leq \rho^{-s}\left(1+C_{s, \sigma} \rho^{\sigma} \kappa\right) \sum_{n}\left(\varepsilon_{n} r_{n}^{l_{n}+1}\right)^{s}<\infty .
$$

Hence $\sum_{n} \varepsilon_{n}\left(\left\|T_{n}(w)\right\|\right)^{s}$ is finite $\mu_{\infty}^{(3)}$-a.s., and so is $\|w\|_{\varepsilon}$.

5. Extension of semigroups

We shall apply our extension theorem to extend Markov processes. In what follows we always assume that a semigroup $\left\{\mu^{t}\right\}_{t \geq 0}$ of probability measures on a field K is such that μ^{t} converges to the δ-measure at the origin as $t \rightarrow 0$.

Proposition 5.1. Assume that for every $n,\left\{\mu_{n}^{t}\right\}_{t \geq 0}$ is a semigroup of probability measures on K_{n}, and that for every $t \geq 0,\left\{\mu_{n}^{t}\right\}_{n=1}^{\infty}$ is a consistent sequence. If we let μ_{∞}^{t} be the extension of $\left\{\mu_{n}^{t}\right\}_{n=1}^{\infty}$ for each t, then $\left\{\mu_{\infty}^{t}\right\}_{t \geq 0}$ is a semigroup on $\overline{\boldsymbol{B}}$.

Proof. Since $\mu_{\infty}^{t}\left(T_{n}^{-1}\left(A_{n}\right)\right)=\mu_{n}^{t}\left(A_{n}\right)$ for $n \geq 1$ and $A_{n} \in \mathcal{B}_{n}$, we have for s, $t \geq 0$,

$$
\begin{aligned}
\mu_{\infty}^{s} * \mu_{\infty}^{t}\left(T_{n}^{-1}\left(A_{n}\right)\right) & =\int_{\bar{B}} \mu_{\infty}^{s}\left(T_{n}^{-1}\left(A_{n}\right)-w\right) \mu_{\infty}^{t}(d w) \\
& =\int_{\bar{B}} \mu_{\infty}^{s}\left(T_{n}^{-1}\left(A_{n}-T_{n}(w)\right)\right) \mu_{\infty}^{t}(d w) \\
& =\int_{K_{n}} \mu_{n}^{s}\left(A_{n}-x\right) \mu_{n}^{t}(d x) \\
& =\mu_{n}^{s+t}\left(A_{n}\right) \\
& =\mu_{\infty}^{s t+}\left(T_{n}^{-1}\left(A_{n}\right)\right) .
\end{aligned}
$$

Since the sets $T_{n}^{-1}\left(A_{n}\right)\left(n \geq 1, A_{n} \in \mathcal{B}_{n}\right)$ generate $\mathcal{B}(\bar{B})$, we obtain $\mu_{\infty}^{s} * \mu_{\infty}^{t}=\mu_{\infty}^{s+t}$.

Thus it can be seen that if we are given a temporally and spatially homogeneous Markov process X_{n} on each K_{n} whose transition function $\mu_{n}^{t}(\cdot)=P\left(X_{n}(t) \in \cdot \mid X_{0}=0\right)$ is consistent, then we can construct a Markov process on \bar{B}.

In order to find semigroups which can be extended, let us characterize them by means of characteristic functions. Let K be an extension of \mathbb{Q}_{p} of finite degree. If F
is a σ-finite measure on K satisfying

$$
\begin{equation*}
F\left(N^{c}\right)<\infty \tag{5.1}
\end{equation*}
$$

for any neighborhood N of the origin, and

$$
\begin{equation*}
\int_{K}\left(1-\operatorname{Re} \psi_{K}^{x}(y)\right) F(d y)<\infty \tag{5.2}
\end{equation*}
$$

for every $x \in K$, then the function

$$
f(x)=\exp \left[\int_{K}\left(\psi_{K}^{x}(y)-1\right) F(d y)\right]
$$

gives characteristic function of a probability measure on K.
Let $\left\{\mu^{t}\right\}_{t \geq 0}$ be a semigroup on K. Then $\widehat{\mu^{t}}(x)$ has a unique representation

$$
\begin{equation*}
\widehat{\mu}^{t}(x)=\exp \left[t\left(\int_{K} \psi_{K}^{x}(y)-1\right) F(d y)\right], \tag{5.3}
\end{equation*}
$$

where $F=F\left(\left\{\mu^{t}\right\}_{t \geq 0}\right)$ is a σ-finite measure on K uniquely determined by $\left\{\mu^{t}\right\}_{t \geq 0}$, which satisfies (5.1) and (5.2). For these results concerning the representation of characteristic functions, refer to [12].

Lemma 5.2. Let $\left\{\mu^{t}\right\}_{t \geq 0}$ be a semigroup on K and assume that μ^{t} is symmetric for every t. Then the measure F in the representation (5.3) is symmetric.

Proof. Let u be any element of K of norm 1. Then

$$
\exp \left[t \int_{K}\left(\psi_{K}^{x}(y)-1\right) F(u d y)\right]=\widehat{\mu^{t}}\left(u^{-1} x\right)=\widehat{\mu^{t}}(x)=\exp \left[t \int_{K}\left(\psi_{K}^{x}(y)-1\right) F(d y)\right]
$$

By the uniqueness of the representation, we obtain $F(d y)=F(u d y)$.
Lemma 5.3. If (5.3) is the representation of a semigroup $\left\{\mu^{t}\right\}_{t \geq 0}$ of symmetric probability measures on K, then for $x \neq 0$,

$$
\widehat{\mu^{t}}(x)=\exp \left[-t(q-1)^{-1}\left(q F\left(\|y\| \geq r^{-k+l+1}\right)-F\left(\|y\| \geq r^{-k+l+2}\right)\right)\right],
$$

where $\|x\|=r^{k}$.
Proof. Let $\|x\|=r^{k}$ and $m \geq-k+l+1$. For $\alpha=\left(\alpha_{-m-k}, \ldots, \alpha_{-l-1}\right) \in$ $A_{K}^{m+k-l}, \alpha_{-m-k} \neq 0$, define a set $D(\alpha)$ by

$$
D(\alpha):=\left\{y \in K \mid\left\|y-\sum_{i=-m-k}^{-l-1} \alpha_{i} \pi^{i}\right\| \leq r^{l}\right\} .
$$

Since F is symmetric by Lemma 5.2, and since for any α and α^{\prime} there exists $u \in$ K of norm 1 such that $x^{-1} D\left(\alpha^{\prime}\right)=u x^{-1} D(\alpha), F\left(x^{-1} D(\alpha)\right)$ take the same value for all α. Notice that the set $\left\{y \in K \mid\|y\|=r^{m}\right\}$ is disjoint union of $x^{-1} D(\alpha)$'s for $(q-1) q^{m+k-l-1}$ distinct α 's, then we have for each α,

$$
F\left(x^{-1} D(\alpha)\right)=(q-1)^{-1} q^{-m-k+l+1} F\left(\|y\|=r^{m}\right) .
$$

If $y \in x^{-1} D(\alpha)$ then $\psi_{K}^{x}(y)=\psi_{K}^{1}\left(\sum_{i=-m-k}^{-l-1} \alpha_{i} \pi^{i}\right)$. Therefore we have

$$
\begin{aligned}
& \int_{\|y\|=r^{m}}\left(\psi_{K}^{x}(y)-1\right) F(d y) \\
= & \sum_{\alpha} \int_{x^{-1} D(\alpha)} \psi_{K}^{x}(y) F(d y)-F\left(\|y\|=r^{m}\right) \\
= & F\left(\|y\|=r^{m}\right)\left\{(q-1)^{-1} q^{-m-k+l+1} \sum_{\alpha} \psi_{K}^{1}\left(\sum_{i=-m-k}^{-l-1} \alpha_{i} \pi^{i}\right)-1\right\} .
\end{aligned}
$$

Here by Lemma 3.1,

$$
\begin{aligned}
\sum_{\alpha} \psi_{K}^{1}\left(\sum_{i=-m-k}^{-l-1} \alpha_{i} \pi^{i}\right) & =\sum_{\alpha}\left(\mathfrak{m}\left(x^{-1} D(\alpha)\right)\right)^{-1} \int_{x^{-1} D(\alpha)} \psi_{K}^{x}(y) d y \\
& =q^{k-l} \int_{\|y\|=r^{m}} \psi_{K}^{x}(y) d y \\
& = \begin{cases}-1, & \text { if } m=-k+l+1, \\
0, & \text { if } m \geq-k+l+2 .\end{cases}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{\|y\|=r^{m}}\left(\psi_{K}^{x}(y)-1\right) F(d y) \\
= & \begin{cases}-(q-1)^{-1} q F\left(\|y\|=r^{-k+l+1}\right), & \text { if } m=-k+l+1, \\
-F\left(\|y\|=r^{m}\right), & \text { if } m \geq-k+l+2 .\end{cases}
\end{aligned}
$$

Since $\int_{\|y\|=r^{m}}\left(\psi_{K}^{x}(y)-1\right) F(d y)=0$ for $m \leq-k+l$, we obtain

$$
\begin{aligned}
\int_{K}\left(\psi_{K}^{x}(y)-1\right) F(d y) & =\sum_{m=-k+l+1}^{\infty} \int_{\|y\|=r^{m}}\left(\psi_{K}^{x}(y)-1\right) F(d y) \\
& =-(q-1)^{-1} q F\left(\|y\|=r^{-k+l+1}\right)-\sum_{m=-k+l+2}^{\infty} F\left(\|y\|=r^{m}\right) \\
& =-(q-1)^{-1}\left(q F\left(\|y\| \geq r^{-k+l+1}\right)-F\left(\|y\| \geq r^{-k+l+2}\right)\right)
\end{aligned}
$$

Now we can give a characterization of consistent sequences of semigroups of symmetric probability measures;

Proposition 5.4. A sequence $\left\{\left\{\mu_{n}^{t}\right\}_{t \geq 0}\right\}_{n=1}^{\infty}$ of semigroups of symmetric probability measures such that $\left\{\mu_{n}^{t}\right\}_{n=1}^{\infty}$ is consistent for each t, corresponds in one-to-one way to a non-negative function h on $\|B\|:=\{\|x\| \mid x \in B\}$ satisfying the followings.

$$
\begin{align*}
& h\left(r_{n}^{k}\right) \geq\left(q_{n}-1\right) \sum_{i=1}^{\infty} q_{n}^{-i} h\left(r_{n}^{k-i}\right), \quad \text { for every integer } k \text { and } n \geq 1, \tag{5.4}\\
& \lim _{k \rightarrow-\infty} h\left(r_{n}^{k}\right)=0, \quad \text { for every } n \geq 1 . \tag{5.5}
\end{align*}
$$

The correspondence is given by the formula

$$
\widehat{\mu_{n}^{t}}(x)=\exp [-t h(\|x\|)] .
$$

Proof. Assume that $\left\{\mu_{n}^{t}\right\}_{t \geq 0}$ is a semigroup of symmetric probability measures on K_{n} and that $\left\{\mu_{n}^{t}\right\}_{n=1}^{\infty}$ is consistent for every t. Let g be the element of \mathcal{G} corresponding to the consistent sequence $\left\{\mu_{n}^{1}\right\}_{n=1}^{\infty}$. Since μ_{n}^{1} is symmetric, g is real and symmetric, and hence g is of the form $g(x)=\exp [-h(\|x\|)]$, where h is a function on $\|B\|$ to $[0,+\infty]$. Notice that h is uniquely determined by the sequence $\left\{\left\{\mu_{n}^{t}\right\}_{t \geq 0}\right\}_{n=1}^{\infty}$. By Lemma 5.3, for each n there exists a unique σ-finite measure F_{n} on K_{n} such that $F_{n}\left(\|y\| \geq r_{n}^{m}\right)<\infty$ for every integer m, and

$$
h\left(r_{n}^{k}\right)=\left(q_{n}-1\right)^{-1}\left(q_{n} F_{n}\left(\|y\| \geq r_{n}^{-k+l_{n}+1}\right)-F_{n}\left(\|y\| \geq r_{n}^{-k+l_{n}+2}\right)\right), \quad k \in \mathbb{Z} .
$$

Then we can easily derive that

$$
\begin{equation*}
F_{n}\left(\|y\| \geq r_{n}^{m}\right)=\left(q_{n}-1\right) \sum_{i=1}^{\infty} q_{n}^{-i} h\left(r_{n}^{-m+l_{n}-i+2}\right), \quad m \in \mathbb{Z} \tag{5.6}
\end{equation*}
$$

Since $F_{n}\left(\|y\| \geq r_{n}^{m}\right)<\infty$ for $m \in \mathbb{Z}, h\left(r_{n}^{k}\right)$ must be finite for any integer k. The formula (5.6) also implies

$$
h\left(r_{n}^{k}\right) \leq q_{n} \sum_{i=1}^{\infty} q_{n}^{-i} h\left(r_{n}^{k-i+1}\right)=q_{n}\left(q_{n}-1\right)^{-1} F_{n}\left(\|y\| \geq r_{n}^{-k+l_{n}+1}\right) \rightarrow 0
$$

as $k \rightarrow-\infty$, thus (5.5) holds. We obtain (5.4) by applying (5.6) to the inequality

$$
F_{n}\left(\|y\| \geq r_{n}^{-k+l_{n}+1}\right)-F_{n}\left(\|y\| \geq r_{n}^{-k+l_{n}+2}\right) \geq 0
$$

Conversely for a given non-negative function h on $\|B\|$ satisfying (5.4) and (5.5),
define a symmetric measure F_{n} on K_{n} by the formula (5.6) and

$$
\begin{aligned}
& F_{n}\left(\left\{y \in K_{n} \mid\|y-x\| \leq r_{n}^{k}\right\}\right) \\
= & \left(q_{n}-1\right)^{-1} q_{n}^{-(m-k+1)}\left(F_{n}\left(\|y\| \geq r_{n}^{m}\right)-F_{n}\left(\|y\| \geq r_{n}^{m+1}\right)\right), \quad \text { if }\|x\|=r_{n}^{m}>r_{n}^{k} .
\end{aligned}
$$

Here (5.4) and (5.5) imply

$$
\begin{aligned}
& F_{n}\left(\|y\| \geq r_{n}^{m}\right) \leq h\left(r_{n}^{-m+l_{n}+2}\right)<\infty \\
& \lim _{m \rightarrow \infty} F_{n}\left(\|y\| \geq r_{n}^{m}\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{n}\left(\|y\| \geq r_{n}^{m}\right)-F_{n}\left(\|y\| \geq r_{n}^{m+1}\right) \\
= & q_{n}^{-1}\left(q_{n}-1\right)\left(h\left(r_{n}^{-m+l_{n}+1}\right)-\left(q_{n}-1\right) \sum_{i=1}^{\infty} q_{n}^{-i} h\left(r_{n}^{-m+l_{n}+1-i}\right)\right) \geq 0 .
\end{aligned}
$$

Therefore F_{n} is a σ-finite measure with finite mass on complement of any neighborhood of the origin. For $0 \neq x \in K_{n}$, let $\|x\|=r_{n}^{k_{n}}$. Since $\psi_{n}^{x}(y)=1$ if $\|y\| \leq r_{n}^{-k_{n}+l_{n}}$, we have

$$
\int_{K_{n}}\left(1-\operatorname{Re} \psi_{n}^{x}(y)\right) F_{n}(d y) \leq 2 F_{n}\left(\|y\|>r_{n}^{-k_{n}+l_{n}}\right)<\infty
$$

Thus for every $t \geq 0$,

$$
f_{n}^{t}(x):=\exp \left[t \int_{K_{n}}\left(\psi_{n}^{x}(y)-1\right) F_{n}(d y)\right]
$$

gives the characteristic function of a probability measure on K_{n}, say μ_{n}^{t}, and it can be seen that $\left\{\mu_{n}^{t}\right\}_{t \geq 0}$ is a semigroup. Furthermore if $0 \neq x \in K_{n}$ then by Lemma 5.3 and the formula (5.6),

$$
\begin{aligned}
\widehat{\mu_{n}^{t}}(x) & =\exp \left[-t\left(q_{n}-1\right)^{-1}\left(q_{n} F_{n}\left(\|y\| \geq r_{n}^{-k_{n}+l_{n}+1}\right)-F_{n}\left(\|y\| \geq r_{n}^{-k_{n}+l_{n}+2}\right)\right)\right] \\
& =\exp [-t h(\|x\|)], \quad \text { where }\|x\|=r_{n}^{k_{n}}
\end{aligned}
$$

which is independent of the choice of n such that $x \in K_{n}$. Hence $\left\{\mu_{n}^{t}\right\}_{n=1}^{\infty}$ is consistent for every t.

Example. We can see that for $\alpha, \beta>0, h(\|y\|)=\alpha\|y\|^{\beta}$ satisfies (5.4) and (5.5). If $\mu_{n}^{(2)}=\mu_{n}^{(2)}(\alpha, \beta)$ is the probability measure on K_{n} defined in [E 3.2], then there exists a consistent sequence of semigroups $\left\{\mu_{n}^{t}\right\}_{t \geq 0}$, such that $\mu_{n}^{1}=\mu_{n}^{(2)}$. For each n the semigroup $\left\{\mu_{n}^{t}\right\}_{t \geq 0}$ is associated with a stable process on K_{n} ([18]). Thus stable processes can be extended to \bar{B}.

References

[1] S. Albeverio and W. Karwowski: Diffusion on p-adic numbers, Gaussian random fields (Nagoya, 1990), Ser. Probab. Statist., World Sci. Publishing, 1 (1991), 86-99.
[2] S. Albeverio and W. Karwowski: A random walk on p-adics-the generator and its spectrum, Stochastic Process. Appl. 53 (1994), 1-22.
[3] S. Bosch, U. Guntzer and R. Remmert: Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 261, Springer-Verlag, 1984.
[4] S.N. Evans: Local field Gaussian measures, Seminar on Stochastic Processes,1988 (Gainesville, FL, 1998), Progr. Probab. 17 (1989), 121-160.
[5] W. Karwowski and R.V. Mendes: Hierarchical structures and asymmetric stochastic processes on p-adics and adeles, J. Math. Phys. 35 (1994), 4637-4650.
[6] A. Khrennikov: Albeverio and Hoegh-Krohn approach to a p-adic functional integration, J. Phys. 28 (1995), 2627-2635.
[7] A. Khrennikov: The Bernoulli theorem for probabilities that take p-adic values, Dokl. Akad. Nauk, 354 (1997), 461-464.
[8] N. Koblitz: p-adic numbers, p-adic analysis, and zeta-functions (Second edition), Graduate Texts in Mathematics, 58, Springer-Verlag, 1984.
[9] A.N. Kochubei: Analysis and probability over infinite extensions of a local field, preprint.
[10] H.H. Kuo: Gaussian measures in Banach spaces, Lecture Notes in Mathematics, 463, SpringerVerlag, 1975.
[11] S. Lang: Algebraic number theory, Addison-Wesley Publishing Co., Inc. 1970.
[12] K.R. Parthasarathy: Probability measures on metric spaces, Probability and Mathematical Statistics, no. 3 Academic Press, Inc. 1967.
[13] S.C. Port and C.J. Stone: Infinitely divisible processes and their potential theory, Ann. Inst. Fourier (Grenoble), 21 (1971), 157-275.
[14] T. Satoh: Wiener measures on certain Banach spaces over non-Archimedean local fields, Compositio Math. 93 (1994), 81-108.
[15] J.-P. Serre: Local fields, Graduate Texts in Mathematics 67, Springer-Verlag, 1979.
[16] A. Weil: Basic number theory. Third edition, Die Grundlehren der Mathematischen Wissenschaften, 144, Springer-Verlag, 1974.
[17] Y. Yamasaki: Measures on infinite-dimensional spaces, Series in Pure Mathematics, 5, World Scientific Publishing Co. 1985.
[18] K. Yasuda: Additive processes on local fields, J. Math. Sci. Univ. Tokyo, 3 (1996), 629-654.
[19] K. Yasuda: On infinitely divisible distributions on locally compact abelian groups, J. Theoret. Probab. 13 (2000), 635-657.

Graduate School of Mathematics
Kyushu University
6-10-1 Hakozaki
Higashi-ku, Fukuoka
812-8581 Japan

