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1. Introduction

In carrying out analysis on infinite dimensional spaces over /7-adics, it is useful

to give integral representations of functions. Satoh considered a normed vector space

H over a local field K with orthonormal Schauder basis ([14]). He showed that any

admissible probability measure on K is extended to a measure on the completion of

H with respect to a measurable norm, applying Prokhorov's measure extension the-

orem to the projective limit of the images of orthogonal projections on H. This can

be applied to a space of polynomials with coefficients in /7-adics. On the other hand

the present paper aims at extending probability measures to spaces including extension

fields over /7-adics of infinite degree, in which there exist no orthonormal basis in the

sense of [14], except the case of unramified extensions. The spaces to which we ex-

tend measures are completions of infinite extension fields over /7-adics with respect to

specific seminorms induced by projections naturally related with traces on subexten-

sions. We notice that our projections are not necessarily orthogonal in the sense of

[14]. The subjects of our theorem include for instance the algebraic closure and the

maximal unramified extension of the /7-adic field. Kochubei proved independently that

Gaussian measures on a local field can be extended to completion of an infinite exten-

sion and constructed a fractional differentiation operator relative to the measure ([9]).

Let p be a fixed prime integer. The /7-adic field Qp consists of formal power se-

ries

oo

Y^aip\ meZ, α f e {0, 1 , . . . , p - 1}.

ί=m

With ordinary addition and multiplication as power series, Qp becomes a field. The

/7-adic norm || || is defined by

= p~m if am 7̂  0, and ||0|| = 0.

We denote by Zp the valuation ring {x e Qp \ \\x\\ < 1}.
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If K is an extension field over Q p of finite degree, the /?-adic norm has a unique

extension to K, which we denote by || || again. The norm || || is non-archimedean,

i.e. satisfies the ultra-metric inequality:

\\x + y\\ < m a x { | | x | | , \\y\\}, x , y e K .

Let us denote by Rκ the valuation ring [x e K \ \\x\\ < 1}, then Pκ := {x e K \ \\x\\ <

1} is a unique maximal ideal of RR. The ramification index βK of K is the positive

integer such that

{\\x\\\xeK-{0}} = {pn^ \ n e Z } .

If Nκ is the extension degree of K over Qp and fκ the degree of residue field

Rκ/Pκ over Fp, then it follows that Nκ = eκfκ- Put rκ :- pχlβκ and qκ := pfκ.

If πκ is a prime element i.e. a generator of the ideal Pκ of Rκ, and if Aκ is a com-

plete system of representatives of the residue field, then K is interpreted as the set of

formal power series

and the norm || || is given by

r~m if am φ 0.

The field K is a complete separable metric space with respect to the metric induced

by the norm || ||. The Haar measure xxiκ on K is always assumed to be normalized

so that mκ(Rκ) = 1. Then it can be verified that m^(||jc|| < r£) = q*£. We will often

write dx for mκ{dx) and omit subscripts K (e.g., R, π, m,. . .) if there is no fear of

confusion.

For a topological space X, B(X) stands for the Borel field of X.

2. Extension of measures

Let L D K be a field extension and the extension degree [L : K] be finite. For

x e L, A (̂JC) denotes the subfield of L obtained by adjoining x to K. The trace map

TΓ^Λ: is a ^ -linear map on L to ^ defined by

Ϊ = 1

where /: = [^(JC) : K], and JC = x\, X2, . . ., ^ are all distinct conjugates of c over K.

Any A^-linear map / on L to ^ is of the form /(•) = TrL?jS:(υ ) for a unique element
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v of L. If L D F D K then it can be verified that TτF^κ oTrL i j F = TrL?A:. For an

unramified extension L D K, ΊrL,κ maps /?L surjectively onto Rκ (see [16]).

Now we introduce a map 7^ : L -> K for a finite extension L D K.

DEFINITION 2.1. For a finite extension L D K, we define a ^-linear map τ£ on

L to A' by

*1
T£(*) := ΎτLtK([L : tfΓ1*) = [L : K]~ι TrL,^(x) = - ] T * f , * e L.

Lemma 2.2. (i) 77ze map T% of L to K is continuous and surjective.

(ii) If LD F D K then T^ = T£ o τ£.

Proof, (i) Since TrL j K is continuous, so is T£. For surjectivity, take any x e

K then T£(x) = x.

(ii) T[ o ΓF

L(JC) = [F : KΓι[L : F ] " 1 TrF,^ OTΓ L I F (Λ) = [L : A Γ I ^ T Γ L ^ W

= T£(x). D

DEFINITION 2.3. Let Q&pg stand for the algebraic closure of Qp. For each exten-

sion K D Qp of finite degree, define a map Tg on Q^g to K by

2V0c) = Γ^(JC) if x <ΞL, LD K.

The map ΓA: is well-defined. Indeed, suppose that x e L, L D K. Then

T£(x) = T*ix) o Tk{x)(x) = T«(x\xl

thus Γ^(JC) is independent of the choice of L.

Put K\ = Qp, and fix an increasing sequence S = {Kn}%Lι °f extension fields over

Q p of finite degrees. Put B = Bs := U ^ ^ C Qplg.

EXAMPLES. [E 2.1] Kn = the smallest field containing all extensions of degrees

less than n. B = Qp

lg.

[E 2.2] Kn = the unramified extension of degree n\. B is the maximal unramified

extension of Qp.

We will often abbreviate subscripts and superscripts Kn to n, e.g. Rn := Rκn,

T™ := Γ^w, and we put Bn := B{Kn). For each n, we denote by Tn the restriction

of Γ n̂ to B. We put on B the topology induced by Tn, n > 1, i.e. the weakest topol-

ogy relative to which Tn are continuous for all n. Let 5 be the completion of B, and

we denote by Tn again the continuation of Tn to B. Our aim is to extend measures to
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Suppose that we are given a sequence {Xn}^ of topological spaces and measur-

able maps /n

m of Xm onto Xn for m > n. We say that {Xn}^ίι is projective with re-

spect to /n

m, if /n

m = fι

n o f™ holds for m > I > n. We denote by pm the canonical

map on proj lim Xn to Xm

Pm\\xn)n=ι) = ^»ί)

and put on proj lim Xn the topology induced by pm, m > 1. If each Xn is a separable

metric space and if the maps /n

m are continuous, then the Borel field 23(projlimXM)

is generated by the sets /?~1(Am) (m > 1, Am e B{Xm)). Assume furthermore that the

spaces Xn are complete. If we are given a probability measure μn on (Xn, B(Xn)) for

each n such that

μn(An) = μn+γ

for any An e B(Xn), then there exists a unique Borel probability measure μoo on

proj lim Xn such that

Moo (Pnl

for every n and An e B(Xn). For these results refer to [12].

Let us come back to the sequence S = {Kn}™=ι of finite extensions of Qp. Lemma

2.2 implies that S is projective with respect to Γπ

m.

DEFINITION 2.4. We say {μn}^ is a consistent sequence of probability measures

(associated with S = {Kn}™=ι), if μn is a probability measure on Kn such that

μn(An) = μn+ϊ

for all n and An e Bn.

If we are given a consistent sequence {μn} of probability measures, then it can

be uniquely extended to a Borel probability measure μoo on proj lim Kn. Whereas we

have:

Proposition 2.5. Topological Qp-vector spaces B and proj lim Kn are isomor-

phic.

Proof. Let us show that

L(W) = (Tn(w)) : B -> proj lim Kn

gives an isomorphism of B onto proj lim Kn. If w e B and m > n, then Lemma 2.2

(ii) implies Γn

m o Tm(w) = Tn(w). By taking limit we can see that this is valid for
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all w G B, and hence L(W) e projlimΛ^. For injectivity, suppose w, w' e B satisfy

L(W) = ι(wf). Take a sequence {xk} in B such that lim^ooJtfc = w. Then for every n,

Tn(w') = Tn(w) = lim Tn(xk),

which implies, by the definition of topology of B, w' = lim^ocX^ = w in B. Let us

prove that i is surjective. If we take any element ω - (xn)%Lι of projlimΛ^, then for

any m > n we have

PnMXm)) = T n ( x m ) = X n = Pn(ω)

Therefore for every n, lim^^oo pn(ί(xm)) = pn(ω) in Kn, which shows limm^oo t(xm) =

ω in projlim^n. Since B is complete, we have ω e L(B). Taking it into account that

pn oL = Tn, we can see that i is homeomoφhic. The Q^-linearity of i follows immedi-

ately from the linearity of Tn, and thus i gives an isomorphism of B onto projlimB.

Thus putting μoo := /2oo°^ we derive the following measure extension to the space

Theorem 2.6. Assume that we are given a consistent sequence {μn}^L\ of Borel

probability measures. Then there exists a unique Borel probability measure μ^ on B

such that

μoo(Tn-
l(An))=μn(An)

for any n and An e Bn.

REMARK. Consider the case that B = Qp

lg. If we write C^ for the completion of

B = Q*lg with respect to the /?-adic norm, then neither Cp nor B contains the other.

Indeed, for each fixed n, let L^ (k = 1, 2, ...) be the unramified extension of Kn of

degree pk. We can take a^ e RLw such that TrL(»> ^(a^) = 1. Put b{^ = pka£\ then

we have Tn(b(^) = 1 for all k, whereas | | ^ n ) | | —• 0 as k ->• σo. This implies that Tn is

not continuous with respect to the /?-adic norm. Conversely, if we put c* = 1 — pkaf\

then we have | | Q | | = 1, and lim^oo Tn(ck) = 0 for every n. Thus the /7-adic norm is

not continuous with respect to the topology induced by Tn, n > 1.

In the next section we shall give some examples of symmetric probability mea-

sures on Kn which can be extended to B. On the other hand, the following lemma

shows that there exists no non-trivial symmetric probability measure on Cp.

Proposition 2.7. Let μ be a probability measure on Cp and suppose that μ(u ) =

μ( ) for all u e Cp with norm 1. Then μ({0}) = 1.

Proof. For each pair (α0, #i) of rational numbers such that α0 > «i, let ΊZ(ao, a\)

be the collection of all sets of the form B(z, paι) := {y e Cp | \\y - z\\ < paχ} for



972 K. YASUDA

z s Cp, \\z\\ = pao. Let S = {Kn} be such that B = Q*lg. Take N such that pa\
Pa{ € {||JC|| I x e KN - {0}} = {rk

N \ k e Z}, and for each n > N, let ΊZn(a0;aι) be the

collection of all sets of the form B(x, paχ) for x e Kn, \\x\\ = pa°. Then we have

(2.1) ΊZ(a0, ax) = Vn>NKn(a0, ax).

Indeed, take any element B(z, paχ) in ΊZ(ao,a\). Since Qp

lg = Un>NKn is dense in Cp,

we can take n > N and Λ: e /£„ such that \\z — x\\ < paχ. Then the ultra-metric

inequality implies that ||JC|| = pa° and B(z, paχ) = B(x, paχ).

Fixn>N and let kQ = ena^ kγ = enax. For x = YX_ko a^ and x' = Σ ^ _ ^ o α <

in AΓn, the set B(x, pai) coincides with B(xf, paχ) if and only if α, = αj for i = —kOi

..., -jfci - 1. Hence ΊZn(a0, ax) consists of (qn - l ) ^ " * 1 " 1 = (1 - q-ι)pN"(a°-a^ ele-

ments, which shows by (2.1) that ΊZ(ao, a\) is a countable set. Notice that for any two

elements B(z, pa]) and B(z\ pa]) of ΊZ(a0, ax), we have B(zf, paχ) = z'ιzfB(z, paχ) and

| |z~V|| = 1. a n d therefore μ(B(z, pa])) = μ(B(z',paχ)) by the assumption. Since the

set A(ao) := {z e Cp | | |z|| = /?α°} is disjoint union of countable sets in 1Z(ao,a\), its

measure μ(A(α0)) must be 0. Thus we obtain

μ(!Cp - {0}) = Σ μ(A(a0)) = 0. D

3. Characteristic functions and Consistent measures

Let K D Qp be an extension of finite degree. A character of K is a continuous

homomorphism on additive group K to multiplicative group of complex numbers of

absolute value 1. We denote by K* the group consisting of all characters of K.

Let φo be the element of Q* defined by

exp I 2πV—T y^ ft/p1 I , if m < — 1,
\ i-m I

1, otherwise,

then φo(Zp) = {1} and φo(p~ιZp) φ {1}. For each extension Λ' over Q p of finite de-

gree, ψλ

κ := </?o ° TQ belongs to K*. Put / = lκ := o r d ( ^ ) , i.e. / is the integer such

that ^ ( J C / ? ) = {1} if and only if ||JC|| < rι. If V is the different of K over Qp, then

^ = {||JC|| < ||iV||r-z}. If K is tamely ramified (i.e. (p,e) = 1), then rι = \\N\\re~ι =

\\f\\re~l. In particular, for unramified K (i.e. e = 1) we have rι = pι = \\N\\ = \\f\\. If

^ is strongly ramified (i.e. (p,e) φ 1), then ||A^||re < rι < \\f\\re~ι. For these results

concerning with o r d ( ^ ) , we can refer to [11], [15], and [16].

We can identify K* with K by means of the correspondence
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(Theorem 3 and following Corollary in II of [16]).

Lemma 3.1.

ί ψx

κ
J\\y\\=rm

{y)dy =

(q - ϊ)qm-\ if \\x\\ < r'-m,

-qm~\ if \\x\\ = rl~m+x,

0, I/| |JC|| >rι~m+2.

Proof. If ||JC|| < rι~m, then ψ*κ(y) = 1 on {||y|| < rm). Hence

ί Φx

κ
J\\y\\<rm

(3.1)
J\\y\\<

If ||JC|| > r

ι~m+ι, then there exists y0 such that | |yo | | < rm and ψx

κ(yo) φ 1. The ultra-

metric inequality implies that \y + 3̂ 0II < rm if and only if \\y\\ < rm, and therefore

f Φx

κ{y)dy = f ψx

κ(y + yώdy = Φx

κ(yo) ί Ψx

κ{y)dy.
J\\y\\<rm J\\y\\<rm J\\y\\<rm

Since ^ ( ^ o ) 7̂  1? we have

(3.2) f φx

κ(y)dy = 0,
J\\y\\<rm

and our assertion follows immediately from (3.1) and (3.2). D

For a probability measure μκ on K, we interpret the characteristic function Jΐ^ as

the function on K by

μκ(x)= / Ψx

κ(y)μκ(dy).
JK

A function g on K is the characteristic function of a probability measure on K, if

and only if it is positive definite, continuous, and g(0) = 1, and the correspondence

between such functions and probability measures is one-to-one (see Theorems 3.1 and

3.2 in IV of [12]).

We have seen in the previous section that a consistent sequence of probability

measures can be extended to a probability measure on B. In order to find consistent

sequences of measures we shall give a correspondence between probability measures

on B and functions on B. Let Q be the set of positive definite functions g on B such

that g(0) = 1 and the restriction to Kn is continuous for every n. We shall particularly

observe the case that the measure μn is symmetric, i.e. μn(un ) = μn( ) for all un e Kn

of norm 1. We say a function g e Q is symmetric if g{u-) = g( ) for any u e B of

norm 1.
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Proposition 3.2. (i) Probability measures on B correspond in one-to-one way

to consistent sequences {μn}%tι-

(ii) Consistent sequences {μn}^L\ correspond in one-to-one way to functions belong-

ing to Q. Every measure μn (n = 1, 2, ...) is symmetric if and only if the correspond-

ing function in Q is symmetric.

Proof, (i) Assume that we are given a probability measure μ on B. Then it

can be easily verified that the sequence {μn}^L\ given by

(3.3) μn{An) = μ ( Γ " 1 ^ ) ) , An e Bn

is consistent. Let μoo be the unique extension of {μn}^Lι, then μ^ (T~ι(An)) =

μn(An) = μ(T~ι(An)) for every n and An e Bn. If we take notice of the identifica-

tion between B and projlimΛ^ established in Proposition 2.5, then we can see that

B(B) is generated by the sets T~ι(An) (n > l,An e Bn). Hence μoo coincides with

μ, and thus (3.3) gives a one-to-one correspondence of probability measures on B to

consistent sequences.

(ii) For a consistent sequence {μn}^L\, define a function g on B by

g(x) = fin(x), if X G Kn.

The function g(x) is defined independently of the choice of n. Indeed, if x G Kn c Km

then

=
Jκ

T™(xy)μm(dy)
'Km

= f φ0oTΐ(xT™(y))μm(dy)
Jκm

= (μm o C C Γ ' f (x)

Since g\κn = βn is positive definite and continuous for each «, we see immediately that

g belongs to Q. Conversely if g is any element of Q, then g\Kn is the characteristic

function of a probability measure on Kn, say μg

n. If x e Kn c Km then

x(y)μs

n(dy),= f Ψx

n(y)μg

m(dy) = g(x)= ί φx

n
Jκm Jκn

thus {μ8n}™=ϊ is consistent. Obviously these correspondences {μn}^Lχ to g and g to

{/4}J£i give the inverse of each other.

Let {μn}^L\ be consistent and g e Q the corresponding function. For x, u e B,
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\\u\\ = 1, take n such that x, u e Kn, then

8(x) = ί Φx

n(y)μn(dyl
Jκn

g(ux) = f ψx

n(y)μn(u-ιdy).
Jκn

Hence g is symmetric if and only if μn is symmetric for every n. D

By the above proposition, every function g in Q corresponds to a probability mea-

sure μ^ on B. The correspondence is given by

(3.4) g(x) = f_φ0 o T?(xTn(w))μoo(dw), if x e Kn.
JB

Here let us give some examples of symmetric functions g in Q and the corresponding

consistent sequence of symmetric probability measures.

EXAMPLES. [E 3.1] For λ > 0, put

Λo-I' i f w " λ

[ 0, otherwise.

The corresponding sequence {μ^}%L\ = {/^WlίSi *s g i γ e n by

/n-Llogλ/logrnJ
^ rn ,

a χ [ 0, otherwise,

where |_tf J stands for the integer part of a. The measure μ^ is a Gaussian measure on

Kn.

[E 3.2] For α, β > 0, put

The corresponding sequence {μψ}^Lλ = {μ^\a, β)}^Lχ is given by

j (2)

^ {«p(-αrf •->||*|Γ'3) - exp (-αrf
i=0

The measure μ^ is a stable law on Kn ([19]).

[E 3.3] For p, σ > 0 and 0 < K < p " σ , put

0, otherwise.
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The corresponding sequence {μ^}^ = {μ^\p, σ, K)}^ is given by

n (rσ

qn

' n
-rnσ

' I n ,

- r

II r
| |λ

\\-σ-Nn
II '

otherwise.

Now consider the case that for every n, ^ n D Q p is an abelian extension with

Galois group Gn. Then B D Qp is an abelian extension and its Galois group G con-

sists of sequences σ = (σi, σ 2,. . .) of σn e Gn satisfying σn+ι\κn = σn, whose action

being defined by σx - σnx provided x e Kn. Every element σ e G defines a conti-

nuous map JC G B H> σx G B. Indeed for every n and x e B, take N > n such that

JC G K^. Then for any σ = (σ\, σ 2 , . . .) in G we have

Tn(σx) = [KN : ̂ Γ 1 J2
τeGa\(KN/Kn)

= σN I [KN : Kn]~ι Σ τx

\ τeGai(KN/Kn)

= σnTn{x).

Hence if {xk\k=\χ... is a sequence in B converging to JC G B, then for every n and

σ e G,

Tn(σxk) = σnTn{xk) -> σnTn(x) = Tn(σx),

as k -> oo. Thus σx^ converges to σx. Hence the map JC H^ σjc can be uniquely

extended to a continuous map on B to itself.

We shall show results concerning with G-invariance of probability measures on B.

Proposition 3.3. A probability measure μoo on B is G-invariant if and only if

the corresponding function g e Q satisfies g o σ = g for any σ e G.

Proof. Let w e B, x e Kn, and σ e G. Since σ" 1 is continuous and Tk(w) ->

w as k -• oo, we apply G^-invariance of Γ*: Γ* (jc(σ^V)) = T^ ((σkx)y), x, y G

Kk,σk G G^, to obtain

(3.5) T"(xTn(σ~ιw)) = lim Γ1

/:(jc(σ~1Γjt(u))))

= lim Γί((σx)ΓΛ(u;))
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Let μj^ be the probability measure on B defined by μ£,( ) = μoo(cr ), and gσ e Q be

the corresponding function. If x e Kn then by (3.5),

gσ(x)=
JB

= _φo° T"((σx)Tn(w))μoQ(dw) = g(σx).
JB

Therefore μ^ = μoo if and only if g = g o σ. D

Corollary 3.4. (i) If {μn}^L\ is a consistent sequence of symmetric probability

measures, then the extension μ^ is G-invariant.

(ii) If v is a probability measure on Qp, then the function gv := v o T\ belongs to

Q, and the corresponding measure on B is G-invariant.

Proof, (i) By Proposition 3.2 (ii), the function g e Q corresponding to μoo is

symmetric. For σ = (σi, σ2,...) e G and x e B — {0}, taking n such that x e Kn

we have ||σjc|| = ||σnjc|| = ||JC||, since Gn acts on Kn isometrically. Therefore we obtain

g(σx) = g((σx/x)x) = g(x).
(ii) Since v is positive definite and continuous on Qp, and since T\ is Q^-linear

and continuous on each Kn, it is immediately checked that gv belongs to Q. For x e B

take n such that x e Kn. Then Gπ-invariance of Γ" implies

gv(σx) = v o T?(σx) = v o Ύ^x) = gv(χ). D

4. Subspaces of measure 1

For each example in [E 3.1] to [E 3.3] we shall find a non-archimedean norm of

the form supw εΛ | |Γn( )|| (εn > 0), on a subspace of B in which the extended measure

μoo is concentrated. Let us prove firstly that the support of the extended measure in

[E 3.1] is included in a bounded set with respect to a certain norm.

DEFINITION 4.1. Put ||w||* := supn r~ln~l\\Tn(w)\\ for w e β, and B* := {w e ~B \

IMU <oo}.

We see that || ||* defines a non-archimedean norm on B*. Indeed it is easily seen

that || |U is a norm. This is non-archimedean since

-'"-1 max{||Γn(u;)
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/n ι\\T(w)\\s\xiρrln 1= max |supr n

/ n ι\\Tn(w)\\,s\xiρrn

Proposition 4.2. For λ > 0, let μ(

n

l) = /41}(λ) be as in [E 3.1] and μ{£ the ex-

tended measure on B. Then

A*S? {H«ΊU < λ - 1 } = l.

Proof. Note that

μ™ {{weB\ \\Tn(w)\\ < λ " 1 ^ 1 } ) = μ™ ({* e Kn I ||x|| < λ " 1 ^ 1 } ) = 1,

for every n. Then

μ$ (IMI* < λ"1) = μ« ί f ) {w € B I ||ΓB(«>)|| < λ " 1 ^ 1 } j = 1. D

In order to investigate the cases [E 3.2] and [E 3.3], we shall give a lemma.

Lemma 4.3. (i) For u > 1 and v > 0, exp(—1>) — exp(—uυ) < (u — l)v.

(ii) Fί?r 0 < s < s0, put CS,SQ := sup1<a<pSQ(a - \)/(\ -asIs»~x). Then 0 < C5,5o < oo.

Proof, (i) Put /M(υ) = exp(—u) — exp(—uυ) and gM(f) = (M — 1)V. Then we have

^ - (fu - gu)(v) < -(u - 1)(1 - exp(-υ)) < 0,
dv

and /M(0) - gu(0) = 0. This implies that fu(v) < gu(v) for υ > 0.

(ii) The assertion is clear if we notice that

V1 = f 1 - I V < oo. DV1 = f 1

DEFINITION 4.4. For a sequence ε = {ε/i}^ of positive numbers, put ||w;||ε :=

prt εn | |ΓΛ(u;)|| for w e ~B, and Bε := {w e ~B \ \\w\\ε < σo}.

We can verify that || | | e defines a non-archimedean norm on Bε similarly as || ||*.

Proposition 4.5. (i) For a, β > 0, let μf> = μ^2)(α, β) be as in [E 3.2] and

& the extended measures on B. If there exists 0 < s < β such that Σn εs

n < oo and

Σn es

nrnln < oo, then μ%(Bε) = 1.
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(ii) For p, σ > 0 and 0 < κ< p~σ, let μ^3) = μ<3)(/o, σ, K) be as in [E 3.3] and μ£ }

the extended measure on B. If there exists 0 < s < σ such that ]Γ)n (ε«^π+1) < oo,

then μ£>(Bε) = 1.

Proof, (i) For each n,

f \\Tn(w)\\sμ<£(dw)
JB

\\x\\sμ^\dx)

< 1 + Σ / \Msμ?{dx)

OO 00

= l + ίi-ί-^Σ^Σ*-"1'
m=0 i=0

Apply Lemma 4.3 to u = r£, υ = αrjf(Zn~m~l), and 50 = /5, noticing that 1 < rf < p^,

then

OO 00

m=0 i=0

< 1 + (rf - 1) (1 - ,J-T' ̂ - Λ

Therefore we have

which implies that | |u;||e < {Σn{εn\\Tn{w)\\)sγls < oo, μ^-a.s..

(ii) For each n,

f_\\Tn(w)\\sμ^(dw)
JB

= f \\x\\srf\dx)

( in _ 1 V σ L1°g p l l θ g TΛ Λ h

1 _ ^ n l ) Γ n \ ^-/n+Llogp/logrnj V ^ ms ( m _ m-\\
_ -σ iVn /_^, 'n Vin ^n )
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rn ~rs(ln-ll0Rp/l0Rrn\) (Λ , rn ~ 1 σllogp/loggr,.! Λ
« 1

/

Apply Lemma 4.3 (ii) to so = σ noticing that rs

n <r%, then we obtain

L
I n

Hence Σnεn(\\Tn(w)\\)s is finite μ^-a.s., and so is | |u;| |e. D

5. Extension of semigroups

We shall apply our extension theorem to extend Markov processes. In what fol-

lows we always assume that a semigroup {//}r>o of probability measures on a field K

is such that μ* converges to the #—measure at the origin as t —> 0.

Proposition 5.1. Assume that for every n, {l^n}t>o is a semigroup of probability

measures on Kn, and that for every t > 0, {μ^}^ is a consistent sequence. If we let

μ^ be the extension of {μ^}^ for each t, then {μ^J^o is a semigroup on B.

Proof. Since μ^ (T~ι(An)) = μ^(An) for n > 1 and An e Bn, we have for s,

^ (T-\An)) = ί μ^ ( Γ " 1 ^ ) - w) μ
JB

{T-\An - Tn{w))) μ
B

μs

n(An ~ x)μ'n(dx)

= μs

n

+t(An)

JB

= ί
JB

= f
Jκn

= μs+t(

Since the sets T~ι(An) (n > 1, An e Bn) generate B(B), we obtain μ^ * μ^ = μs*.

D

Thus it can be seen that if we are given a temporally and spatially homogeneous

Markov process Xn on each Kn whose transition function μjj( ) = P(Xn(t) e | Xo = 0)

is consistent, then we can construct a Markov process on B.

In order to find semigroups which can be extended, let us characterize them by

means of characteristic functions. Let K be an extension of Q p of finite degree. If F
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is a σ-finite measure on K satisfying

(5.1) F(NC) < oo

for any neighborhood TV of the origin, and

(5.2) / (l-Rzψx

κ(y))F(dy)<oo
JK

for every x e K, then the function

f(x) = cxpU(φx

κ(y)-l)F(dy)\

gives characteristic function of a probability measure on K.

Let {μ'}f>o be a semigroup on K. Then μ*{x) has a unique representation

(5.3) /?(*) = exp Γί (j φx

κ(y) - Λ F(dy)\,

where F = F({//},>()) is a σ-finite measure on K uniquely determined by {tf}t>o,

which satisfies (5.1) and (5.2). For these results concerning the representation of char-

acteristic functions, refer to [12].

Lemma 5.2. Let {μ'}ί>o be a semigroup on K and assume that μ* is symmetric

for every t. Then the measure F in the representation (5.3) is symmetric.

Proof. Let u be any element of K of norm 1. Then

exp Γί j (rκ(y) - 1) F(udy)] = μ\u~xx) = /?(*) = exp Γί j (ψx

κ{y) - l) F(dy)\.

By the uniqueness of the representation, we obtain F(dy) = F(udy). D

Lemma 5.3. If (5.3) is the representation of a semigroup {μ'h^o of symmetric

probability measures on K, then for x φ 0,

μ'(x) = &φ[-t(.q - I ) " 1 (qF (\\y\\ > r~k+M) - F (\\y\\ > r" λ + / + 2 ))] ,

where \\x\\ = rk.

Proof. Let \\x\\ = rk and m > — k + I + 1. For a = (α_m_fc,..., α_/_i) G

Λ ^ ~ / , α_m_^ ^ 0, define a set D(α) by

D(a) :={yeK y - Σ <
i=—m—k

< r{
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Since F is symmetric by Lemma 5.2, and since for any a and oί there exists u e

K of norm 1 such that x~xD{ar) = ux~ιD(a), F (x~ιD(a)) take the same value for

all a. Notice that the set {y e K \ \\y\\ = rm) is disjoint union of x~lD(a)'s for

(q — l)qm+k~ι~ι distinct α's, then we have for each α,

F (χ-ιD(a)) = (q- \y^q-m-k^MF ^ = rm^ ^

If y e x~ιD(a) then ψx

κ(y) = ̂ (Σϊ^-m-ik^7 1"1 ')- Therefore we have

I (Ψ^κ(y) — l ) F(dy)

J\\y\\=rm

= Σί Ψκ(y)F(dy)-F(\\y\\=rm)
a Jχ-]D(a)

= F(\\y\\=rm) \{q - 1 )~V m ~ W + 1 1>* ( Σ <****) ' \

Here by Lemma 3.1,

ί K

* / / Ψκ(y)dy
J\\y\\=rm

- 1 , i f m = -ik + / + l,

0, if m >-k + l + 2.

Hence

ί (^(y) - 1) F(dy)
J\\y\\=rm
>\\y\\=rm

-(q - l)-ιqF(\\y\\ = r~
k+ι+ιl if m = -ik + / + 1,

= r m ) , if m > -ik + / + 2.

Since fMssrm(Ψκ(y) ~ l)F(dy) = 0 for m < -k + /, we obtain

/ (^(v) - 1) F(dy) = Σ / (Ψκ(y)-l)F(dy)

r1qF(\\y\\=r-k+ι+ι)= -(q-ir1qF(\\y\\=r-k+ι+ι)- £ F
m=-k+l+2

= -(q - I ) " 1 (qF (\\y\\ > r-* + ' + 1 ) - F (\\y\\ > r~k+ι+2)). D
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Now we can give a characterization of consistent sequences of semigroups of

symmetric probability measures;

Proposition 5.4. A sequence {{μjj^o}^ of semigroups of symmetric probability

measures such that {μ^}^ is consistent for each t, corresponds in one-to-one way to

a non-negative function h on \\B\\ := {||JC|| | x e B) satisfying the fallowings.

oo

(5.4) h (r*) > (qn - l ) ^ ^ ~ f Ά (r*~f) , for every integer k and n > 1,

(5.5) lim h (r*) = 0, for every n>\.

The correspondence is given by the formula

ί?n(x) = exp[-th(\\x\\)].

Proof. Assume that {μ }̂r>o is a semigroup of symmetric probability measures on

Kn and that {μj,}^ is consistent for every t. Let g be the element of Q correspond-

ing to the consistent sequence {μ*}^. Since μ\ is symmetric, g is real and symmet-

ric, and hence g is of the form g(x) - exp[—/*(||jt||)], where h is a function on | | 5 | |

to [0, +oo]. Notice that h is uniquely determined by the sequence {{μ^}ί>o}^Γ By

Lemma 5.3, for each n there exists a unique σ-finite measure Fn on Kn such that

Fn (\\y\\ > r™) < °o for every integer m, and

λ (rk

n) = (qn - I ) " 1 (qnFn (\\y\\ > r ^ + ' » + 1 ) - Fn (\\y\\ > r - t + < + 2 ) ) , k G Z.

Then we can easily derive that

oo

(5.6) Fn (\\y\\ > rπ

m) = (qn - 1) £ ^ - A (rn-m + '»-'+ 2), m e Z.
1=1

Since Fn (\\y\\ > r^) < oo for m e Z, h (r*) must be finite for any integer fc. The

formula (5.6) also implies

-'A (r*- i + 1) = qn(qn - l ) " 1 ^ (||y|| > ^ + / » + 1 ) -• 0

as k -> —oo, thus (5.5) holds. We obtain (5.4) by applying (5.6) to the inequality

Fn {\\y\\ > rn-
i+z»+1) - Fn (\\y\\ > r^+ '»+ 2) > 0.

Conversely for a given non-negative function h on ||2?|| satisfying (5.4) and (5.5),
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define a symmetric measure Fn on Kn by the formula (5.6) and

Fn({yeKn\\\y-x\\<rk

n})

= (qn - irlqn(m~M) {Fn {\\y\\ > r") - Fn {\\y\\ > C+ 1)) , if 11*11 = C > Λ-

Here (5.4) and (5.5) imply

Fn {\\y\\ > C ) < A (rnm+'n+2) < oo.

limoFn(\\y\\>C)=0,

and

= ,- '( , , , - 1) Â (rn—'»+1) - (qn - l ) f ; 9 - 'Λ (rn-
+'"+1-')^ > 0.

Therefore Frt is a σ-finite measure with finite mass on complement of any neighbor-

hood of the origin. For 0 ^ x e Kn, let ||JC|| = r*». Since ^ ( j ) = 1 if \\y\\ < r"*»+/»,

we have

(1 - R e ^ ( y ) ) Fn(dy) < 2Fn (\\y\\ > r^+ιή < oo.

Thus for every t > 0,

/„'(*) := exp [ί £ (ψ*n(y) - l) Fn(

gives the characteristic function of a probability measure on Kn, say μ ,̂ and it can be

seen that {/ijjf>o is a semigroup. Furthermore if 0 φ x e Kn then by Lemma 5.3 and

the formula (5.6),

ί?n(x) = exp[-t(qn - I ) " 1 (qnFn (\\y\\ > r~k^+ι) - Fn (\\y\\ > r " ^ + 2 ) ) ]

= exp[-fft(||jc||)], where | | x | |=r*-,

which is independent of the choice of n such that x e Kn. Hence {μ^}^ is consistent

for every t. D

EXAMPLE. We can see that for α, β > 0, /*(||y||) = α| |y| |^ satisfies (5.4) and

(5.5). If μ^2) = μ^2)(o:5 β) is the probability measure on Kn defined in [E 3.2], then

there exists a consistent sequence of semigroups {tfn}t>o, such that μ\ = μψ. For each

n the semigroup {μ^h^o is associated with a stable process on Kn ([18]). Thus stable

processes can be extended to B.
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