UNIQUENESS IN THE CAUCHY PROBLEM FOR QUASI-HOMOGENEOUS OPERATORS WITH PARTIALLY HOLOMORPHIC COEFFICIENTS

Laurent T'JOËN

(Received January 27, 1999)

1. Introduction and main reults

The purpose of this work is to extend to the case of quasi-homogeneous symbols the recent results of Tataru [10], Hörmander [3] and Robbiano-Zuily [7] concerning the uniqueness of the Cauchy problem for operators with partially holomorphic coefficients. Even in the merely C^{∞} coefficients case our results will be more general that those given in Isakov [4], Dehman [1] and Lascar-Zuily [6]. The method used here will be basically the same as in the proof given by [7], that is the use of the Sjöstrand theory of FBI transform to microlocalize the symbols and then symbolic calculus for anisotropic pseudo-differential operators and the Fefferman-Phong inequality.

Let us be more precise. Let n, d be two non negative integers with $n+d \geq 1$. We shall set $\mathbb{R}^{d+n}=\mathbb{R}^{d} \times \mathbb{R}^{n}$ and, for X or ζ in $\mathbb{R}^{d+n}, X=(x, y), \zeta=(\xi, \tau)$. Here y will be the " C^{∞} variables" and x the "analytic ones".

Let $m=\left(m_{1}, \ldots, m_{n}\right), \tilde{m}=\left(\tilde{m}_{1}, \ldots, \tilde{m}_{d}\right)$ be multi-indices, such that

$$
\left\{\begin{array}{l}
0<m_{1} \leq \cdots \leq m_{q-1}<m_{q}=\cdots=m_{n}=M \tag{1.1}\\
0<\tilde{m}_{1} \leq \cdots \leq \tilde{m}_{p-1}<\tilde{m}_{p}=\cdots=\tilde{m}_{d}=\tilde{M}=M .
\end{array}\right.
$$

We set $h_{j}=M / m_{j}, \tilde{h}_{j}=M / \tilde{m}_{j} .\{\cdot, \cdot\}_{0}$ will denote the quasi-homogeneous Poisson bracket that is

$$
\begin{equation*}
\{f, g\}_{0}=\sum_{j=q}^{n}\left(\frac{\partial f}{\partial \tau_{j}} \frac{\partial g}{\partial y_{j}}-\frac{\partial f}{\partial y_{j}} \frac{\partial g}{\partial \tau_{j}}\right)+\sum_{j=p}^{d}\left(\frac{\partial f}{\partial \xi_{j}} \frac{\partial g}{\partial x_{j}}-\frac{\partial f}{\partial x_{j}} \frac{\partial g}{\partial \xi_{j}}\right) . \tag{1.2}
\end{equation*}
$$

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}, \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$, we set

$$
\begin{equation*}
|\alpha: \tilde{m}|=\sum_{j=1}^{d} \frac{\alpha_{j}}{\tilde{m}_{j}}, \quad|\beta: m|=\sum_{j=1}^{n} \frac{\beta_{j}}{m_{j}} . \tag{1.3}
\end{equation*}
$$

Let $P=P\left(x, y, D_{x}, D_{y}\right)$ be the quasi-homogeneous differential operator

$$
\begin{equation*}
P=\sum_{|\alpha: \tilde{m}|+|\beta: m| \leq 1} a_{\alpha \beta}(x, y) D_{x}^{\alpha} D_{y}^{\beta} \tag{1.4}
\end{equation*}
$$

with symbol

$$
\begin{equation*}
p(x, y, \xi, \tau)=\sum_{|\alpha: \tilde{m}|+|\beta: m| \leq 1} a_{\alpha \beta}(x, y) \xi^{\alpha} \tau^{\beta} \tag{1.5}
\end{equation*}
$$

and quasi-homogeneous principal symbol

$$
\begin{equation*}
p_{M}(x, y, \xi, \tau)=\sum_{|\alpha: \tilde{m}|+|\beta: m|=1} a_{\alpha \beta}(x, y) \xi^{\alpha} \tau^{\beta} . \tag{1.6}
\end{equation*}
$$

We shall assume that

$$
\left\{\begin{array}{l}
\text { the coefficients }\left(a_{\alpha \beta}\right) \text { of } P \text { are } C^{\infty} \text { in }(x, y) \text { and analytic in } x \tag{1.7}\\
\text { in a neighborhood of a point }\left(x_{0}, y_{0}\right) \in \mathbb{R}^{d+n} .
\end{array}\right.
$$

Let S be a C^{2} hypersurface through (x_{0}, y_{0}) locally given by

$$
\begin{equation*}
S=\left\{(x, y): \varphi(x, y)=\varphi\left(x_{0}, y_{0}\right)\right\}, \quad \nabla_{p, q} \varphi\left(x_{0}, y_{0}\right) \neq 0 \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{p, q} \varphi=\left(0, \ldots, 0, \frac{\partial \varphi}{\partial x_{p}}, \ldots, \frac{\partial \varphi}{\partial x_{d}} ; 0, \ldots, 0, \frac{\partial \varphi}{\partial y_{q}}, \ldots, \frac{\partial \varphi}{\partial y_{n}}\right) . \tag{1.9}
\end{equation*}
$$

Our results are as follows.
Theorem A. Let us assume
(H.1) transversal ellipticity: $p_{M}\left(x_{0}, y_{0} ; 0, \tau\right) \neq 0$, for all τ in $\mathbb{R}^{n} \backslash\{0\}$.

$$
\left\{\begin{array}{l}
\text { quasi-homogeneous pseudo-convexity: } \tag{H.2}\\
\text { let } \Xi=\left(x_{0}, y_{0} ;(0, \tau)+i \lambda \nabla_{p, q} \varphi\left(x_{0}, y_{0}\right)\right), \quad \tau \in \mathbb{R}^{n}, \\
\text { then } p_{M}(\Xi)=\left\{p_{M}, \varphi\right\}_{0}(\Xi)=0 \text { implies } \\
\left.\frac{1}{i}\left\{\bar{p}_{M}\left(X ; \zeta-i \lambda \nabla_{p, q} \varphi(X)\right) ; p_{M}\left(X ; \zeta+i \lambda \nabla_{p, q} \varphi(X)\right)\right\}_{0}\right|_{\substack{x=\left(x_{0}, y_{0}\right) \\
\xi=0}}>0 .
\end{array}\right.
$$

Let V be a neighborhood of $\left(x_{0}, y_{0}\right)$ and $u \in C^{\infty}(V)$ be such that

$$
\left\{\begin{array}{l}
P u=0 \text { in } V \\
\operatorname{supp} u \subset\left\{X \in V: \varphi(X) \leq \varphi\left(X_{0}\right)\right\} .
\end{array}\right.
$$

Then there exists a neighborhood W of $\left(x_{0}, y_{0}\right)$ in which $u \equiv 0$.

Theorem B. Let us assume

$$
\left\{\begin{array}{l}
\text { principal normality: }\left|\left\{\bar{p}_{M} ; p_{M}\right\}(x, y ; 0, \tau)\right| \leq C|\tau|_{m}^{M-1}\left|p_{M}(x, y ; 0, \tau)\right|, \tag{H.1}\\
\text { for all }(x, y) \text { in a neighborhood of }\left(x_{0}, y_{0}\right) \text { and all } \tau \text { in } \mathbb{R}^{n}, \\
\text { where }|\tau|_{m}^{2 M}=\sum_{j=1}^{n}\left|\tau_{j}\right|^{2 m_{j}} .
\end{array}\right.
$$

quasi-homogeneous pseudo-convexity:
(i) $n=0$ or $n \geq 1$ and, with $Z=\left(x_{0}, y_{0} ; 0, \tau\right), \tau \in \mathbb{R}^{n} \backslash\{0\}$, then $p_{M}(Z)=\left\{p_{M}, \varphi\right\}_{0}(Z)=0$ implies $\operatorname{Re}\left\{\bar{p}_{M} ;\left\{p_{M}, \varphi\right\}_{0}\right\}_{0}(Z)>0$.
(ii) Let $W=\left(x_{0}, y_{0} ;(0, \tau)+i \lambda \nabla_{p, q} \varphi\left(x_{0}, y_{0}\right)\right), \tau \in \mathbb{R}^{n}$, then $p_{M}(W)=\left\{p_{M}, \varphi\right\}_{0}(W)=0$ implies
$\left.\frac{1}{i}\left\{\bar{p}_{M}\left(X ; \zeta-i \lambda \nabla_{p, q} \varphi(X)\right) ; p_{M}\left(X ; \zeta+i \lambda \nabla_{p, q} \varphi(X)\right)\right\}_{0}\right|_{\substack{X=\left(x_{0}, j_{0}\right) \\ \xi=0}}>0$. On $\xi=0, p_{M}$ does not depend on x.

Then the same conclusion, as in Theorem A, holds.

Let us make some comments on these results. The Theorems A and B contain the results of Tataru, Hörmander and Robbiano-Zuily for which we take $m=(M, \ldots, M)$, $\tilde{m}=(M, \ldots, M)$. In the C^{∞} case $(d=0)$, the Theorems A and B extend the results of Lascar-Zuily ([6], thm 1.3) (take $m=(1,2, \ldots, 2)$), the Theorem 2.1 in Dehman [1] and contain the results of Isakov ([4], thm 1.1 and 1.2) who consider only elliptic or real symbols. Furthermore with slight modifications of notations (1.2), (1.9), Theorems A and B remain valid with $\tilde{M}<M$ or $\tilde{M}>M$ (see (1.1)).

1. Here is an application of Theorem A. Let us consider, in a neighborhood V of $(0,0)$ in $\mathbb{R}_{x} \times \mathbb{R}_{y}^{n}$ a second order parabolic symbol of the form

$$
p(x, y ; \xi, \tau)=\sum_{j, k=2}^{n} a_{j k}(x, y) \tau_{j} \tau_{k}+i \tau_{1}+a(x, y) \xi^{2},
$$

where the coefficients $\left(a_{j k}\right)$ are real-valued, belong to $C^{\infty}\left(\mathbb{R}_{x} \times \mathbb{R}_{y}^{n}\right)$ and are analytic in x with $a(0,0) \neq 0$. We assume that the following parabolicity condition is satisfied

$$
\sum_{j, k=2}^{n} a_{j k}(x, y) \tau_{j} \tau_{k} \geq C\left(\tau_{2}^{2}+\ldots+\tau_{n}^{2}\right) \text { for all }(x, y) \in V,\left(\tau_{2}, \ldots, \tau_{n}\right) \in \mathbb{R}^{n-1}
$$

Then the conclusion of Theorem A holds with $S=\left\{(x, y): y_{n}=0\right\}$ (we take $\varphi(x, y)=$ $\exp \left(-\lambda y_{n}\right)-1$, for λ large).
2. Application of Theorem B. Let us consider the case where $(x, y) \in \mathbb{R} \times \mathbb{R}^{n}$, $S=\left\{\varphi(x, y)=y_{1}=0\right\}$ and

$$
P=D_{y_{1}}^{2}+\sum_{j, k=2}^{n-1} a_{j k}(y) D_{y_{j}} D_{y_{k}}+c(y) D_{y_{n}}+d(x, y) D_{x}^{2}
$$

Assume moreover that

- $\left(a_{j k}\right), c$ are real-valued, C^{∞} in y and $c(0) \neq 0$.
- d is C^{∞} in (x, y), analytic in x and $d(0) \neq 0$ real.

Then, it follow that (H.1)' is empty, (H.3) ${ }^{\prime}$ is trivially satisfied and $\nabla_{p, q} \varphi(0) \neq 0$. We show that (H.2)' (i) is equivalent to

$$
\forall\left(\tau_{2}, \ldots, \tau_{n-1}\right) \in \mathbb{R}^{n-2}, \quad \sum_{j, k=2}^{n-1} \frac{\partial a_{j k}}{\partial y_{1}}(0) \tau_{j} \tau_{k}-\frac{\partial c / \partial y_{1}(0)}{c(0)} \sum_{j, k=2}^{n-1} a_{j k}(0) \tau_{j} \tau_{k}<0
$$

For example, we can take, $P=D_{y_{1}}^{2}-\sum_{j=2}^{n-1} D_{y_{j}}^{2}+\left(1-y_{n}\right) D_{y_{n}}+(1+i x) D_{x}^{2}$.
The proofs follow from Carleman estimates with an exponential weight $e^{-\lambda \psi}$ and these estimates follow from Gårding type inequalities on the operator $P_{\lambda}=e^{\lambda \psi} P e^{-\lambda \psi}$. The problem is that all our conditions are made on the set $\{\xi=0\}$. So we have to microlocalize our symbol on this set; this is achieved by the use of Sjöstrand's theory of the FBI transform [8], [9]. We then use the C^{∞}-machinery (the Hörmander-Weyl calculus, the Fefferman-Phong inequality, see [2]) to prove a Carleman estimate using some techniques of Lerner [5].

Finally I would like to thank Professor C. Zuily for useful discussions during the preparation of this paper.

2. The partial FBI transformation

In this section we collect some material essentially taken from [9], [7]. We introduce the partial Fourier-Bros-Iagolnitzer (FBI) transformation. It is defined for u in $\mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
T u(z, y, \lambda)=C(\lambda) \int_{\mathbb{R}^{d}} e^{-(\lambda / 2)(x-z)^{2}} u(x, y) d x \tag{2.1}
\end{equation*}
$$

where $z \in \mathbb{C}^{d}, y \in \mathbb{R}^{n}, \lambda \geq 1, C(\lambda)=2^{-d / 2}(\lambda / \pi)^{3 d / 4}$ and $z^{2}=\sum_{j=1}^{d}\left(z^{j}\right)^{2}, z=\left(z^{j}\right) \in$ \mathbb{C}^{d}.

The function $T u$ is C^{∞} on $\mathbb{R}^{2 d} \times \mathbb{R}^{n} \times\left[1, \infty\left[\right.\right.$ and entire-holomorphic in $z \in \mathbb{C}^{d}$ for all (y, λ) in $\mathbb{R}^{n} \times[1, \infty[$. Let us set

$$
\begin{align*}
\Phi(z) & =\frac{1}{2}(\operatorname{Im} z)^{2}, \quad z \text { in } \mathbb{C}^{d}, \tag{2.2}\\
\Lambda_{\Phi} & =\left\{(z, \xi) \in \mathbb{C}^{2 d}: \xi=\frac{2}{i} \frac{\partial \Phi}{\partial x}(z)\right\}=\left\{(z, \xi) \in \mathbb{C}^{2 d}: \xi=-\operatorname{Im} z\right\}, \tag{2.3}\\
K_{T}(x, \xi) & =(x-i \xi, \xi), \quad(x, \xi) \in T^{*} \mathbb{R}^{d} . \tag{2.4}
\end{align*}
$$

Then $K_{T}: T^{*} \mathbb{R}^{d} \rightarrow \Lambda_{\Phi}$ is a diffeomorphism.
In the sequel we shall also work with the partial FBI transformation T_{η} associated
with the phase $(i / 2)(1+\eta)(x-z)^{2}$ where η is a small non negative real number,

$$
\begin{equation*}
T_{\eta} u(z, y, \lambda)=C(\lambda) \int_{\mathbb{R}^{d}} e^{-(\lambda / 2)(1+\eta)(x-z)^{2}} u(x, y) d x \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
K_{T_{\eta}}(x, \xi)=\left(x-\frac{i \xi}{1+\eta} ; \xi\right) . \tag{2.6}
\end{equation*}
$$

Let us introduce some notations. For $k \in \mathbb{N}$ we set

$$
\begin{equation*}
L_{(1+\eta) \Phi}^{2}\left(\mathbb{C}^{d}, H^{k}\left(\mathbb{R}^{n}\right)\right)=L^{2}\left(\left(\mathbb{C}^{d}, e^{-2 \lambda(1+\eta) \Phi(x)} L(d x)\right) ; H^{k}\left(\mathbb{R}^{n}\right)\right) \tag{2.7}
\end{equation*}
$$

where $L(d x)$ denotes the Lebesgue measure in \mathbb{C}^{d} and $H^{k}\left(\mathbb{R}^{n}\right)$ the usual Sobolev space.

If $k=0$ we shall set for short

$$
\begin{align*}
& L_{(1+\eta) \Phi}^{2}\left(\mathbb{C}^{d}, H^{0}\left(\mathbb{R}^{n}\right)\right)=L_{(1+\eta) \Phi}^{2}, \tag{2.8}\\
& \left\|\|u\|_{k}^{2}=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{n}}\left(\lambda+|\tau|_{m}\right)^{2 k}|\hat{u}(\zeta)|^{2} d \zeta .\right. \tag{2.9}
\end{align*}
$$

Then we have

Proposition 2.1 (see [9]). i) T_{η} is an isometry from $L^{2}\left(\mathbb{R}^{d}, H^{k}\left(\mathbb{R}^{n}\right)\right)$ to $L_{(1+\eta) \Phi}^{2}\left(\mathbb{C}^{d}, H^{k}\left(\mathbb{R}^{n}\right)\right)$.
ii) $\quad T_{\eta}^{*} T_{\eta}$ is the identity on $L^{2}\left(\mathbb{R}^{n}\right)$, where T_{η}^{*} is the adjoint of T_{η}.
iii) $T_{\eta} T_{\eta}^{*}$ is the projection from $L_{(1+\eta) \Phi}^{2}$ to $L_{(1+\eta) \Phi}^{2} \cap \mathcal{H}\left(\mathbb{C}^{d}\right)$ where \mathcal{H} denotes the space of holomorphic functions. In particular $T_{\eta} T_{\eta}^{*} v=v$ if $v=T w$ where w is in $\mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{n}\right)$.

3. Transfer to the complex domain and the localization procedure

Let $p=\sum_{|\alpha: \tilde{m}|+|\beta: m| \leq 1} a_{\alpha \beta}(x, y) \xi^{\alpha} \tau^{\beta},(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{n}$, be a polynomial with coefficients in $C_{0}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{n}\right)$.

Assume moreover that

$$
\left\{\begin{array}{l}
\text { there exists } C_{0}>0 \text { such that if we set } \omega_{1}=\left\{z \in \mathbb{C}^{d}:|z|<C_{0}\right\} \tag{3.1}\\
\text { and } \omega_{2}=\left\{y \in \mathbb{R}^{n}:|y|<C_{0}\right\}, \text { then for all }(\alpha, \beta) \in \mathbb{N}^{d} \times \mathbb{N}^{n}, \\
|\alpha: \tilde{m}|+|\beta: m| \leq 1, \text { we have } a_{\alpha \beta} \in C^{\infty}\left(\omega_{2}, \mathcal{H}\left(\omega_{1}\right)\right) .
\end{array}\right.
$$

Let $P=O p_{\lambda}^{\omega}(p)$ be the semi-classical Weyl quantized operator with symbol p, for $u \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{n}\right)$,

$$
\begin{equation*}
P u(x, y)=\left(\frac{\lambda}{2 \pi}\right)^{d+n} \iint e^{i \lambda(X-\tilde{X}) \zeta} p\left(\frac{X+\tilde{X}}{2} ; \lambda \zeta\right) u(\tilde{X}) d \tilde{X} d \zeta . \tag{3.2}
\end{equation*}
$$

Let ψ be a real quadratic polynomial on $\mathbb{R}^{d} \times \mathbb{R}^{n}$. For any $\lambda \geq 1$, we shall denote P_{λ} the differential operator defined by

$$
\begin{equation*}
P_{\lambda}=e^{\lambda \psi} P e^{-\lambda \psi} \tag{3.3}
\end{equation*}
$$

It follows that
(3.4) $P_{\lambda} u(X)=\left(\frac{\lambda}{2 \pi}\right)^{d+n} \iint e^{i \lambda(X-\tilde{X}) \zeta} P\left(\frac{X+\tilde{X}}{2} ; \lambda \zeta+i \lambda \psi^{\prime}\left(\frac{X+\tilde{X}}{2}\right)\right) u(\tilde{X}) d \tilde{X} d \zeta$.

Proposition 3.1 (see [7]). For v in $C_{0}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{n}\right)$, we have $T P_{\lambda} v=\tilde{P}_{\lambda} T v$ where

$$
\begin{equation*}
\tilde{P}_{\lambda} T v(X, \lambda)=\left(\frac{\lambda}{2 \pi}\right)^{d+n} \iint e^{i \lambda(y-\tilde{y}) \tau}\left(\iint_{\xi=-\operatorname{Im}((x+\tilde{x}) / 2)} \omega\right) d \tilde{y} d \tau \tag{3.5}
\end{equation*}
$$

where

$$
\begin{gather*}
\omega=e^{i \lambda(x-\tilde{x}) \xi} p\left(\frac{x+\tilde{x}}{2}+i \xi, \frac{y+\tilde{y}}{2} ; \lambda \zeta+i \lambda \psi^{\prime}\left(\frac{x+\tilde{x}}{2}+i \xi ; \frac{y+\tilde{y}}{2}\right)\right) \tag{3.6}\\
T v(\tilde{x}, \tilde{y}, \lambda) d \tilde{x} \wedge d \xi
\end{gather*}
$$

Let δ is a positive real number such that $2 \delta<C_{0}$ where C_{0} is defined in (3.1) and v is a C^{∞} function such that $\operatorname{supp} v \subset\left\{X \in \mathbb{R}^{d} \times \mathbb{R}^{n}:|X| \leq \delta\right\}$. Let \tilde{P}_{λ} be defined in Proposition 3.1.

Case of Theorem A.

Theorem 3.2 (see [7]). There exists $\chi \in C_{0}^{\infty}\left(\mathbb{C}^{2 d}\right), \chi(x, \xi)=1$ if $|x|+|\xi| \leq \delta$, $\chi(x, \xi)=0$ if $|x|+|\xi| \geq 2 \delta$ such that if we set, for $\eta \in] 0,1]$,

$$
\begin{equation*}
\tilde{Q}_{\lambda} T v(X, \lambda)=\left(\frac{\lambda}{2 \pi}\right)^{d+n} \iint e^{i \lambda(y-\tilde{y}) \tau}\left(\iint_{\xi=(1+\eta) \operatorname{Im}((x+\tilde{x}) / 2)} \chi\left(\frac{x+\tilde{x}}{2} ; \xi\right) \omega\right) d \tilde{y} d \tau \tag{3.7}
\end{equation*}
$$

where ω is defined in (3.6), then

$$
\begin{equation*}
\tilde{P}_{\lambda} T v=\tilde{Q}_{\lambda} T v+\tilde{R}_{\lambda} T v+\tilde{g}_{\lambda} \tag{3.8}
\end{equation*}
$$

where with, for any N in \mathbb{N},

$$
\begin{align*}
\left\|\tilde{R}_{\lambda} T v\right\|_{L_{(1+\eta) \Phi}^{2}} & \leq \frac{C_{N}}{\lambda^{N}}\|T v\|_{L_{(1+\eta) \Phi}^{2}\left(\mathbb{C}^{d}, H_{\lambda}^{M}\left(\mathbb{R}^{n}\right)\right)} \tag{3.9}\\
\left\|\tilde{g}_{\lambda}\right\|_{L_{(1+\eta) \Phi}^{2}} & \leq C e^{-(\lambda / 3) \eta \delta^{2}}\|v\|_{L^{2}\left(\mathbb{R}^{d}, H_{\lambda}^{M}\left(\mathbb{R}^{n}\right)\right)} \tag{3.10}
\end{align*}
$$

where

$$
\begin{equation*}
\|w\|_{H_{\lambda}^{M}\left(\mathbb{R}^{n}\right)}=\sum_{\sum_{j=1}^{n} h_{j} \beta_{j} \leq M} \lambda^{M-\sum_{j=1}^{n} h_{j} \beta_{j}}\left\|D^{\beta} w\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} . \tag{3.11}
\end{equation*}
$$

Case of Theorem B.

Recall that we have assumed

$$
\begin{equation*}
\text { on } \xi=0, p_{M} \text { does not depend on } x . \tag{3.12}
\end{equation*}
$$

In the case we have

$$
\begin{equation*}
p_{M}\left(X ; \lambda \zeta+i \lambda \psi^{\prime}(X)\right)=p_{M}^{\prime}(y, \tau)+p_{M-1}^{\prime}(X, \zeta) \tag{3.13}
\end{equation*}
$$

where p_{M}^{\prime} is a polynomial of order M in τ and p_{M-1}^{\prime} is a polynomial of order M in ζ, but of order $M-1$ in τ.

Writing $p(X, \zeta)=p_{M}(X, \zeta)+p_{M}^{\prime \prime}(X, \zeta)$ where

$$
\begin{equation*}
p_{M}^{\prime \prime}(X, \zeta)=\sum_{|\alpha: \tilde{m}|+|\beta: m| \leq 1-1 / M} a_{\alpha \beta}(X) \xi^{\alpha} \tau^{\beta} \tag{3.14}
\end{equation*}
$$

We have

Theorem 3.3 (see [7]). There exists $\chi \in C_{0}^{\infty}\left(\mathbb{C}^{2 d}\right), \chi(x, \xi)=1$ if $|x|+|\xi| \leq \delta$, $\chi(x, \xi)=0$, if $|x|+|\xi| \geq 2 \delta$, such that, if we set, for $\eta \in] 0,1]$

$$
\begin{equation*}
\tilde{Q}_{\lambda} T v(X, \lambda)=\left(\frac{\lambda}{2 \pi}\right)^{d+n} \iint e^{i \lambda(y-\tilde{y}) \tau}\left(\iint_{\xi=-(1+\eta) \operatorname{Im}((x+\tilde{x}) / 2)} \tilde{\omega}\right) d \tilde{y} d \tau \tag{3.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{\omega}=e^{i \lambda(x-\tilde{x}) \xi}\left[p_{M}^{\prime}(y, \tau)+\chi\left(\frac{x+\tilde{x}}{2} ; \xi\right)\left[p_{M-1}^{\prime}\left(\frac{x+\tilde{x}}{2}+i \xi, \frac{y+\tilde{y}}{2} ; \zeta\right)\right.\right. \tag{3.16}\\
+ & \left.\left.p_{M}^{\prime \prime}\left(\frac{x+\tilde{x}}{2}+i \xi, \frac{y+\tilde{y}}{2} ; \lambda \zeta+i \lambda \psi^{\prime}\left(\frac{x+\tilde{x}}{2}+i \xi ; \frac{y+\tilde{y}}{2}\right)\right)\right]\right] T v(\tilde{x}, \tilde{y}, \lambda) d \tilde{x} \wedge d \xi
\end{align*}
$$

Then we have, with \tilde{P}_{λ} introduced in Proposition 3.1,

$$
\begin{equation*}
\tilde{P}_{\lambda} T v=\tilde{Q}_{\lambda} T v+\tilde{R}_{\lambda} T v+\tilde{g}_{\lambda} \tag{3.17}
\end{equation*}
$$

with

$$
\begin{align*}
\left\|\tilde{R}_{\lambda} T v\right\|_{L_{(l+\eta) \Phi}^{2}} & \leq \frac{C_{N}}{\lambda^{N}}\|T v\|_{L_{(l+\eta) \Phi}^{2}\left(\mathbb{C}^{d}, H_{\lambda}^{M-1}\left(\mathbb{R}^{n}\right)\right)} \tag{3.18}\\
\left\|\tilde{g}_{\lambda}\right\|_{L_{(1+\eta) \Phi}^{2}} & \leq C e^{-(\lambda / 3) \eta \delta^{2}}\|v\|_{L^{2}\left(\mathbb{R}^{d}, H_{\lambda}^{M-1}\left(\mathbb{R}^{n}\right)\right)} . \tag{3.19}
\end{align*}
$$

4. Back to the real domain

Let v be in $\mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{n}\right)$ and $w=T_{\eta}^{*} T v$, then it follows that

$$
\begin{equation*}
w=T_{\eta}^{*} T v \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{n}\right), \quad T_{\eta} w=T v . \tag{4.1}
\end{equation*}
$$

We deduce from Proposition 3.1

$$
\begin{equation*}
\tilde{Q}_{\lambda} T v=\tilde{Q}_{\lambda} T_{\eta} w=T_{\eta} Q_{\lambda} \omega \tag{4.2}
\end{equation*}
$$

where Q_{λ} is an operator on $\mathbb{R}^{d} \times \mathbb{R}^{n}$, pseudo-differential in x, differential in y.
Moreover denoting by σ^{ω} the Weyl symbol

$$
\begin{equation*}
\sigma^{\omega}\left(Q_{\lambda}\right)(x, \xi ; y, \tau)=\sigma^{\omega}\left(\tilde{Q}_{\lambda}\right)\left(K_{T_{\eta}}(x, \xi) ; y, \tau\right) \tag{4.3}
\end{equation*}
$$

where
(4.4)

$$
\left\{\begin{aligned}
\sigma^{\omega}\left(Q_{\lambda}\right)(X, \zeta)-\chi\left(x-\frac{i}{1+\eta} \xi ; \xi\right) p(x & +\frac{i \eta}{1+\eta} \xi, y ; \lambda \zeta \\
& \left.+i \lambda \psi^{\prime}\left(x+\frac{i \eta}{1+\eta} \xi, y\right)\right)(\text { thm A) } \\
\sigma^{\omega}\left(Q_{\lambda}\right)(X, \zeta)= & p_{M}^{\prime}(y, \tau)+\chi\left(x-\frac{i}{1+\eta} \xi ; \xi\right)\left[p_{M-1}^{\prime}\left(x+\frac{i \eta}{1+\eta} \xi, y ; \zeta\right)\right. \\
+ & \left.p_{M}^{\prime \prime}\left(x+\frac{i \eta}{1+\eta} \xi, y ; \lambda \zeta+i \lambda \psi^{\prime}\left(x+\frac{i \eta}{1+\eta} \xi, y\right)\right)\right](\text { thm B) }
\end{aligned}\right.
$$

and

$$
Q_{\lambda} u(X, \lambda)=\left(\frac{\lambda}{2 \pi}\right)^{n+d} \iint e^{i \lambda(X-\tilde{X}) \zeta} \sigma^{\omega}\left(Q_{\lambda}\right)\left(\frac{X+\tilde{X}}{2} ; \lambda \zeta\right) u(\tilde{X}) d \tilde{X} d \zeta .
$$

Moreover, we have

$$
\begin{equation*}
\sigma^{\omega}\left(Q_{\lambda}\right)(X, \zeta)=q_{M}(X, \zeta)+q_{M-1}(X, \zeta), \tag{4.5}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\begin{array}{r}
q_{M}(X, \zeta)=\chi\left(x-\frac{i}{1+\eta} \xi ; \xi\right) p_{M}\left(x+\frac{i \eta}{1+\eta} \xi, y ; \lambda \zeta\right.
\end{array} \tag{4.6}\\
\left.\quad+i \lambda \psi^{\prime}\left(x+\frac{i \eta}{1+\eta} \xi, y\right)\right)(\text { thm A) } \\
q_{M}(X, \zeta)=p_{M}^{\prime}(y, \tau)+\chi\left(x-\frac{i}{1+\eta} \xi, \xi\right) p_{M-1}^{\prime}\left(x+\frac{i \eta}{1+\eta} \xi, y ; \zeta\right)(\text { thm B) }
\end{array}\right.
$$

and

$$
\begin{align*}
q_{M-1}(X, \zeta)= & \chi\left(x-\frac{i}{1+\eta} \xi, \xi\right) \tag{4.7}\\
& \times p_{M}^{\prime \prime}\left(x+\frac{i \eta}{1+\eta} \xi, y ; \lambda \zeta+i \lambda \psi^{\prime}\left(x+\frac{i \eta}{1+\eta} \xi, y\right)\right)
\end{align*}
$$

5. The estimates in case of Theorem \mathbf{A}

We are now prepared to prove Carleman estimates for Q_{λ}. Without loss of generality we may assume that $\left(x_{0}, y_{0}\right)=0$ and $\varphi(0)=0$. Let, for $Z=$ $\left(x_{1}, \ldots, x_{d} ; y_{1}, \ldots, y_{n}\right)$,

$$
\begin{equation*}
|Z|_{(m, \tilde{m})}^{2 M}=\left|x_{1}\right|^{2 \tilde{m}_{1}}+\cdots+\left|x_{d}\right|^{2 \tilde{m}_{d}}+\left|y_{1}\right|^{2 m_{1}}+\cdots+\left|y_{n}\right|^{2 m_{n}} . \tag{5.1}
\end{equation*}
$$

Lemma 5.1. There exist positive constants C, η_{0} such that for all η in $] 0, \eta_{0}$] and if we set

$$
\psi(X)=\varphi^{\prime}(0) X+\frac{1}{2} \varphi^{\prime \prime}(0) X \cdot X-\frac{1}{2 C^{2}}|X|^{2}+\frac{C}{2}\left(\varphi^{\prime}(0) X\right)^{2},
$$

then

$$
\begin{equation*}
C\left|q_{M}(X, \zeta)\right|^{2}+\frac{1}{i}\left\{\bar{q}_{M}, q_{M}\right\}(X, \zeta) \geq \frac{1}{C}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}, \tag{5.2}
\end{equation*}
$$

for $|X|+|\xi| \leq 1 / C^{2}$ and λ so large.
By homogeneity, (5.2) is still true with the same ψ if we replace ψ by $\rho \psi$ where ρ is a positive constant.

Proof. We first take C so large that $\chi=1$ if $|X|+|\xi| \leq 1 / C^{2}$. It follows then from (4.6) that

$$
\begin{aligned}
q_{M}(X, \zeta) & =p_{M}\left(x+\frac{i \eta}{1+\eta} \xi, y ; \lambda \zeta+i \lambda \psi^{\prime}\left(x+\frac{i \eta}{1+\eta} \xi, y\right)\right), \\
& =p_{M}\left(X ; \lambda \zeta+i \lambda \psi^{\prime}(X)\right)+\frac{\eta}{C^{2}} \mathcal{O}\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M}\right),
\end{aligned}
$$

and

$$
\left\{\begin{align*}
\left.\left\{\bar{q}_{M}, q_{M}\right\}\right|_{\xi=0}=\left\{\bar{p}_{M}\left(X ; \lambda \zeta-i \lambda \psi^{\prime}(X)\right) ;\right. & \left.p_{M}\left(X ; \lambda \zeta+i \lambda \psi^{\prime}(X)\right)\right\}\left.\right|_{\xi=0} \tag{5.3}\\
& +\eta \mathcal{O}\left(\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right)
\end{align*}\right.
$$

We shall also write

$$
\begin{equation*}
\left\{\bar{q}_{M}, q_{M}\right\}(X, \zeta)=\left.\left\{\bar{q}_{M}, q_{M}\right\}\right|_{\xi=0}(X, \zeta)+\frac{1}{C^{2}} \mathcal{O}\left(\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right), \tag{5.4}
\end{equation*}
$$

and

$$
\begin{align*}
p_{M}\left(X ; \lambda \zeta+i \lambda \psi^{\prime}(X)\right)= & \left.p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0} \tag{5.5}\\
& +\left(\frac{1}{C^{2}}+\lambda^{-1 /(M-1)}\right) \mathcal{O}\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M}\right)
\end{align*}
$$

Then

$$
\begin{align*}
q_{M}(X, \zeta)= & \left.p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0} \tag{5.6}\\
& +\left(\frac{1}{C^{2}}+\lambda^{-1 /(M-1)}\right) \mathcal{O}\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M}\right)
\end{align*}
$$

and
(5.7) $\left\{\bar{q}_{M}, q_{M}\right\}(X, \zeta)=\left.\left\{\bar{p}_{M}\left(X ; \lambda \zeta-i \lambda \nabla_{p, q} \psi(X)\right), p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right\}\right|_{\xi=0}$

$$
+\left(\eta+\frac{1}{C^{2}}+\lambda^{-1 /(M-1)}\right) \mathcal{O}\left(\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right)
$$

Furthermore, we have

$$
\begin{align*}
& \left.\frac{C}{4}\left|p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0}\right|^{2} \tag{5.8}\\
& +\left.\frac{1}{2 i}\left\{\bar{p}_{M}\left(X ; \lambda \zeta-i \lambda \nabla_{p, q} \psi(X)\right) ; p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right\}\right|_{\xi=0} \\
\geq & \frac{1}{C}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}, \text { for }|X| \leq \frac{1}{C^{2}} \text { and } \tau \text { in } \mathbb{R}^{n}
\end{align*}
$$

Indeed, (5.8) is equivalent to

$$
\begin{aligned}
& \left.\frac{C}{4}\left|p_{M}\left(X ; \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0}\right|^{2} \\
& +\left.\frac{\lambda}{2 i}\left\{\bar{p}_{M}\left(X ; \zeta-i \lambda \nabla_{p, q} \psi(X)\right) ; p_{M}\left(X ; \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right\}\right|_{\xi=0} \\
\geq & \frac{1}{C}\left(\lambda+|\tau|_{m}\right)^{2 M}, \text { for }|X| \leq \frac{1}{C^{2}}
\end{aligned}
$$

We see, setting $\Gamma=\lambda /\left(\lambda+|\tau|_{m}\right), W=\left(X, Z+i \Gamma \nabla_{p, q} \psi(X)\right)$ and

$$
Z=\left(0, \ldots, 0 ; \tau_{1} /\left(\lambda+|\tau|_{m}\right)^{h_{1}}, \ldots, \tau_{n} /\left(\lambda+|\tau|_{m}\right)^{h_{n}}\right)
$$

that (5.8) is equivalent to
(5.9) $\frac{C}{4}\left|p_{M}(W)\right|^{2}+\Gamma \operatorname{Im}\left(\sum_{j=1}^{n}\left(\lambda+|\tau|_{m}\right)^{1-h_{j}} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial y_{j}}(W)\right.$

$$
\left.+\sum_{k=1}^{d}\left(\lambda+|\tau|_{m}\right)^{1-\tilde{h}_{k}} \frac{\partial \bar{p}_{M}}{\partial \xi_{k}}(W) \frac{\partial p_{M}}{\partial x_{k}}(W)\right)
$$

$$
+\Gamma^{2} \operatorname{Re}\left(\sum_{j=1}^{n} \sum_{s=q}^{n} \frac{\partial^{2} \psi}{\partial y_{s} \partial y_{j}}(X) \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial \tau_{s}}(W)\left(\lambda+|\tau|_{m}\right)^{1-h_{j}}\right.
$$

$$
+\sum_{j=1}^{n} \sum_{k=p}^{d} \frac{\partial^{2} \psi}{\partial x_{k} \partial y_{j}}(X)\left(\lambda+|\tau|_{m}\right)^{1-h_{j}} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial \xi_{k}}(W)
$$

$$
+\sum_{j=1}^{d} \sum_{k=q}^{n} \frac{\partial^{2} \psi}{\partial y_{k} \partial x_{j}}(X)\left(\lambda+|\tau|_{m}\right)^{1-\tilde{h}_{j}} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial \tau_{k}}(W)
$$

$$
\left.+\sum_{j=1}^{d} \sum_{k=p}^{d} \frac{\partial^{2} \psi}{\partial x_{k} \partial x_{j}}(X)\left(\lambda+|\tau|_{m}\right)^{1-\tilde{h}_{j}} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}(W) \frac{\partial p_{M}}{\partial \xi_{k}}(W)\right) \geq \frac{1}{C}, \quad \text { for }|X| \leq \frac{1}{C^{2}}
$$

We prove (5.9) by contradiction. If it is false one can find sequences $X_{k}, \lambda_{k}, \tau_{k}$, Γ_{k} with $\left|X_{k}\right| \leq 1 / k^{2}, \lambda_{k} \geq e^{k}$ and τ_{k} in \mathbb{R}^{n}, such that, by definition ψ,
where
(5.11) $\quad\left|A_{k}\right| \leq C_{0} k \lambda_{k}^{-1 /(M-1)} \leq C_{0} k e^{-k /(M-1)}, \quad C_{0}$ is independent of k.

$$
\begin{aligned}
& \text { (5.10) } \frac{k}{4}\left|p_{M}\left(W_{k}\right)\right|^{2}+\Gamma_{k} \operatorname{Im}\left(\sum_{j=q}^{n} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial y_{j}}\left(W_{k}\right)+\sum_{j=p}^{d} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial x_{j}}\left(W_{k}\right)\right) \\
& +\Gamma_{k}^{2} \operatorname{Re}\left(\sum_{s, j=q}^{n} \frac{\partial^{2} \varphi}{\partial y_{s} \partial y_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W_{k}\right)+\sum_{j, s=p}^{d} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \xi_{s}}\left(W_{k}\right)\right. \\
& \left.+2 \sum_{s=q}^{n} \sum_{j=p}^{d} \frac{\partial^{2} \varphi}{\partial y_{s} \partial x_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W_{k}\right)\right) \\
& +k \Gamma_{k}^{2}\left(\left|\sum_{j=p}^{d} \frac{\partial \varphi}{\partial x_{j}}(0) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right|^{2}+\left|\sum_{j=q}^{n} \frac{\partial \varphi}{\partial y_{j}}(0) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right|^{2}\right) \\
& -\frac{\Gamma_{k}^{2}}{k^{2}}\left(\sum_{j=q}^{n} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)+\sum_{j=p}^{d} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right) \\
& +2 k \Gamma_{k}^{2} \operatorname{Re}\left[\left(\sum_{j=q}^{n} \frac{\partial \varphi}{\partial y_{j}}(0) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right)\left(\sum_{s=p}^{d} \frac{\partial \varphi}{\partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{s}}\left(\bar{W}_{k}\right)\right)\right]+A_{k} \leq \frac{1}{k}
\end{aligned}
$$

Since $\Gamma_{k}+\left|Z_{k}\right|_{(m, \tilde{m})}=1$, taking subsequences, we may assume that

$$
\begin{equation*}
\Gamma_{k} \rightarrow \Gamma^{0} \text { and } Z_{k} \rightarrow Z^{0} \text { with } \Gamma^{0}+\left|Z^{0}\right|_{(m, \tilde{m})}=1 \tag{5.12}
\end{equation*}
$$

Case 1. $\Gamma^{0} \neq 0$.
If we divide both members of (5.10) by k, we get with $W^{0}=\left(0 ; Z^{0}+i \Gamma \nabla_{p, q} \varphi(0)\right)$

$$
p_{M}\left(W^{0}\right)=\left\{p_{M}, \varphi\right\}_{0}\left(W^{0}\right)=0 .
$$

Removing all positive terms in (5.10) and letting k go to $+\infty$, we get

$$
\begin{aligned}
& \Gamma^{0} \operatorname{Im}\left(\sum_{j=q}^{n} \frac{\partial \bar{p}_{m}}{\partial \tau_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial y_{j}}\left(W^{0}\right)+\sum_{j=p}^{d} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial x_{j}}\left(W^{0}\right)\right) \\
+ & \left(\Gamma^{0}\right)^{2} \operatorname{Re}\left(\sum_{s, j=q}^{n} \frac{\partial^{2} \varphi}{\partial y_{s} \partial y_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W^{0}\right)\right. \\
+ & \sum_{j, s=p}^{d} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \xi_{s}}\left(W^{0}\right) \\
+ & \left.2 \sum_{s=q}^{n} \sum_{j=p}^{d} \frac{\partial^{2} \varphi}{\partial y_{s} \partial x_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W^{0}\right)\right) \leq 0
\end{aligned}
$$

which contradicts the hypothesis (H.2) in theorem A.
Case 2. $\quad \Gamma^{0}=0$.
Since $\Gamma^{0}+\left|Z^{0}\right|_{(m, \tilde{m})}=1$, we have $Z^{0} \neq 0$ and $W^{0}=\left(0, Z^{0}\right)$. If we divide both members of (5.10) by k, we get $p_{M}\left(W^{0}\right)=0$ which is contradiction with (H.1) in Theorem A.

Now (5.6), (5.7) and (5.8) imply (5.2) if η is small enough and C, λ so large. This ends the proof of Lemma 5.1.

From now on C is fixed according to Lemma 5.1.
Let $\tilde{\theta}_{0} \in C^{\infty}\left(\mathbb{C}^{2 d}\right)$ be such that $0 \leq \tilde{\theta}_{0} \leq 1$ and

$$
\left\{\begin{array}{l}
\tilde{\theta}_{0}(x, \xi)=1 \quad \text { if }|x|+|\xi| \leq \frac{\eta}{1+\eta} \cdot \frac{1}{4 C^{2}} \tag{5.13}\\
\tilde{\theta}_{0}(x, \xi)=0 \quad \text { if }|x|+|\xi| \geq \frac{\eta}{1+\eta} \cdot \frac{1}{2 C^{2}} \\
\tilde{\theta}_{0} \text { is almost analytic on } \Lambda_{(1+\eta) \Phi}
\end{array}\right.
$$

Let us set, with $K_{T_{\eta}}$ defined in (2.6),

$$
\begin{equation*}
\theta_{0}=\left.\tilde{\theta}_{0}\right|_{\Lambda_{(1+\eta) \Phi}} \circ K_{T_{\eta}} \tag{5.14}
\end{equation*}
$$

It is easy to see that $\theta_{0} \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$ and there exists $\left.\varepsilon_{0} \in\right] 0,1 /\left(2 C^{2}\right)[$ such that

$$
\theta_{0}(x, \xi)= \begin{cases}1 & \text { if }|x|+|\xi| \leq \varepsilon_{0} \tag{5.15}\\ 0 & \text { if }|x|+|\xi| \geq \frac{1}{2 C^{2}}\end{cases}
$$

Let $h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $0 \leq h \leq 1$ and

$$
h= \begin{cases}1 & \text { if }|y| \leq \frac{1}{4 C^{2}} \tag{5.16}\\ 0 & \text { if }|y| \geq \frac{1}{2 C^{2}}\end{cases}
$$

Finally let us set

$$
\begin{equation*}
\theta(X, \xi)=h(y) \theta_{0}(x, \xi) . \tag{5.17}
\end{equation*}
$$

Then

$$
\theta(X, \xi)= \begin{cases}1 & \text { if }|X|+|\xi| \leq \varepsilon_{0} \tag{5.18}\\ 0 & \text { if }|X|+|\xi| \geq \frac{1}{C^{2}}\end{cases}
$$

Lemma 5.2. Let $Q=O p_{\lambda}^{w}\left(q_{M}\right)$. There exist positive constants $C_{0}, C_{1}, \lambda_{0}$ such that for every u in $\mathcal{S}\left(\mathbb{R}^{d+n}\right)$ and $\lambda \geq \lambda_{0}$, we have

$$
\begin{equation*}
\frac{C_{1}}{\lambda}\left(O p_{\lambda}^{w}\left((1-\theta)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right) u, u\right)_{L^{2}}+\|Q u\|_{L^{2}}^{2} \geq \frac{C_{0}}{\lambda}\|u\| \|_{M}^{2} \tag{5.19}
\end{equation*}
$$

Proof. We write $Q=Q_{R}+i Q_{I}$ where $Q_{R}=O p_{\lambda}^{w}\left(\operatorname{Re} q_{M}\right), Q_{I}=O p_{\lambda}^{w}\left(\operatorname{Im} q_{M}\right)$. Then writing $\|\cdot\|$ for the $L^{2}\left(\mathbb{R}^{d+n}\right)$-norm

$$
\begin{equation*}
\|Q u\|^{2}=\left\|Q_{R} u\right\|^{2}+\left\|Q_{I} u\right\|^{2}+\frac{1}{2}\left(\left[Q^{*}, Q\right] u, u\right) . \tag{5.20}
\end{equation*}
$$

Now the semiclassical principal symbols of $\left[Q^{*}, Q\right]$ and $Q_{K}^{*} Q_{K}$ are $(1 / i)\left\{\bar{q}_{M}, q_{M}\right\}$ and q_{K}^{2} where $q_{R}=\operatorname{Re} q_{M}, q_{I}=\operatorname{Im} q_{M}$. We claim that one can find a positive constant B such that

$$
\begin{align*}
& B(1-\theta)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}+C\left|q_{M}(X, \zeta)\right|^{2}+\frac{1}{i}\left\{\bar{q}_{M}, q_{M}\right\}(X, \zeta) \tag{5.21}\\
\geq & \frac{1}{C}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}, \quad \text { for all }(X, \zeta) \in \mathbb{R}^{2(d+n)} .
\end{align*}
$$

Indeed Lemma 5.1 implies (5.21) if $|X|+|\xi| \leq 1 / C^{2}$, since $0 \leq \theta \leq 1$, and if $|X|+|\xi| \geq$ $1 / C^{2}$ then, by (5.18), $\theta=0$ and $\left|q_{M}\right|^{2}+\left|\left\{\bar{q}_{M}, q_{M}\right\}\right| \leq C_{1}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}$, thus (5.21) is true if B is large enough.

Then we can apply the Gårding inequality in the following context. Let

$$
g=d x^{2}+d y^{2}+d \xi^{2}+\sum_{j=1}^{n} \frac{\lambda^{2} d \tau_{j}^{2}}{\left(\lambda+|\lambda \tau|_{m}\right)^{2 h_{j}}} .
$$

This is a metric which is temperate and slowly varying in the sense of Hörmander [2]. Let $a \in S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{k}, g\right), k \in \mathbb{N}$, be a symbol such that $\operatorname{Re} a \geq \delta\left(\lambda+|\lambda \tau|_{m}\right)^{2 k}$, and $A=O p_{\lambda}^{w}(a)$. Then there exists $\lambda_{0}>0$ such that for every u in $\mathcal{S}\left(\mathbb{R}^{d+n}\right)$ and every $\lambda \geq \lambda_{0}$

$$
\begin{equation*}
\operatorname{Re}(A u, u)_{L^{2}} \geq \frac{\delta}{2}\| \| u \|_{k}^{2} . \tag{5.22}
\end{equation*}
$$

Thus we may apply (5.22) with, for a, the left hand side of (5.21). It follows that for $\lambda \geq \lambda_{0}$

$$
\begin{aligned}
& B\left(O p_{\lambda}^{w}\left((1-\theta)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right) u, u\right)+C\left\|Q_{R} u\right\|^{2}+C\left\|Q_{I} u\right\|^{2} \\
& +\lambda\left(\left[Q^{*}, Q\right] u, u\right) \geq \frac{1}{2 C}\| \| u \|_{M}^{2} .
\end{aligned}
$$

Now, we deduce from (5.20) that

$$
2 \lambda\|Q u\|_{L^{2}}^{2} \geq C\left(\left\|Q_{R} u\right\|^{2}+\left\|Q_{I} u\right\|^{2}+\lambda\left(\left[Q^{*}, Q\right] u, u\right) \quad \text { if } 2 \lambda \geq C,\right.
$$

and Lemma 5.2 follows.

Proposition 5.3. Let Q_{λ} be defined in (4.4). Then one can find positive constants $C_{0}, C_{1}, \lambda_{0}$ such that for u in $\mathcal{S}\left(\mathbb{R}^{d+n}\right)$ and $\lambda \geq \lambda_{0}$

$$
\begin{equation*}
\frac{C_{1}}{\lambda}\left(O p_{\lambda}^{w}\left((1-\theta)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right) u, u\right)_{L^{2}}+\left\|Q_{\lambda} u\right\|_{L^{2}}^{2} \geq \frac{C_{0}}{\lambda}\|u\|_{M}^{2} \tag{5.23}
\end{equation*}
$$

Proof. Writing $Q_{\lambda}=Q+Q_{M-1}$ where $Q_{M-1}=O p_{\lambda}^{w}\left(q_{M-1}\right)$ defined in (4.7), then

$$
\|Q u\|_{L^{2}}^{2} \leq 2\left\|Q_{\lambda} u\right\|_{L^{2}}^{2}+2\left\|Q_{M-1} u\right\|_{L^{2}}^{2},
$$

and

$$
Q_{M-1} \in O p_{\lambda}^{w}\left(S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g\right)\right),
$$

we deduce that

$$
\begin{equation*}
\|Q u\|_{L^{2}}^{2} \leq 2\left\|Q_{\lambda} u\right\|_{L^{2}}^{2}+\frac{C}{\lambda^{2}}\|u\| \|_{M}^{2} . \tag{5.24}
\end{equation*}
$$

It follows from Lemma 5.2 and (5.24)

$$
\frac{C_{1}}{\lambda}\left(O p_{\lambda}^{w}\left((1-\theta)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right) u, u\right)_{L^{2}}+2\left\|Q_{\lambda} u\right\|_{L^{2}}^{2}+\frac{C}{\lambda^{2}}\|u\|\left\|_{M}^{2} \geq \frac{C_{0}}{\lambda}\right\| u\| \|_{M}^{2}
$$

and Proposition 5.3 follows.
We are now ready to prove the following estimate.
Proposition 5.4 (see [7]). Let \tilde{Q}_{λ} be defined in Theorem 3.2. Then there exist positive constants $C_{1}, C_{2}, \lambda_{0}$, such that for $v \in C_{0}^{\infty}\left(\mathbb{R}^{d+n}\right)$, $\operatorname{supp} v \subset\{X:|X| \leq$ $\left.1 /\left(4 C^{2}\right)\right\}$ and $\lambda \geq \lambda_{0}$

$$
\begin{equation*}
\|T v\|_{L_{(1+\eta) \Phi}^{2}\left(\mathbb{C}^{d}, H_{\lambda}^{M}\left(\mathbb{R}^{n}\right)\right)}^{2} \leq C_{1} \lambda\left\|\tilde{Q}_{\lambda} T v\right\|_{L_{(l+\eta) \Phi}^{2}}^{2}+C_{2} e^{-\lambda \sigma}\| \| v\| \|_{M}^{2}, \tag{5.25}
\end{equation*}
$$

where $\sigma>0$ depends only on η and C.
Proof. We apply Proposition 5.3 to $u=T_{\eta}^{*} T v$ which is in $\mathcal{S}\left(\mathbb{R}^{d+n}\right)$. It follows from Proposition 2.1

$$
\begin{align*}
& \|u\|_{M}=\left\|T_{\eta} u\right\|_{L_{(1+\eta) \Phi}^{2}\left(H_{\lambda}^{M}\right)}=\|T v\|_{L_{(1+\eta) \Phi}^{2}\left(H_{\lambda}^{M}\right)}, \tag{5.26}\\
& \left\|Q_{\lambda} u\right\|_{L^{2}}=\left\|T_{\eta} Q_{\lambda} T_{\eta}^{*} T v\right\|_{L_{(1+\eta) \Phi}^{2}}=\left\|\tilde{Q}_{\lambda} T v\right\|_{L_{(1+\eta) \Phi}^{2}} . \tag{5.27}
\end{align*}
$$

Let us set $R=O p_{\lambda}^{w}\left((1-\theta)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}\right)$. Then Proposition 4.6 in [7] show that for any integer N one can find a positive constant C_{N} such that

$$
\begin{equation*}
\left|(R u, u)_{L^{2}}\right| \leq \frac{C_{N}}{\lambda^{N}}\|T v\|_{L_{(1+\eta) \Phi}^{2}\left(H_{\lambda}^{M}\right)}^{2}+\mathcal{O}\left(e^{-\lambda \sigma}\| \| v\| \|_{M}^{2}\right), \quad \sigma>0 . \tag{5.28}
\end{equation*}
$$

It follows from (5.23), (5.26), (5.27) and (5.28) that Proposition 5.4 is proved.
Theorem 5.5. Let \tilde{P}_{λ} be the operator occuring in Proposition 3.1. One can find positive constants $C_{1}, C_{2}, \lambda_{0}, \sigma$ such that for $v \in C_{0}^{\infty}\left(\mathbb{R}^{d+n}\right)$, supp $v \subset\{X:|X| \leq$ $\left.1 /\left(4 C^{2}\right)\right\}$ and $\lambda \geq \lambda_{0}$ we have

$$
\begin{equation*}
\|T v\|_{L_{(1+\eta) \Phi}^{2}\left(\mathbb{C}^{d}, H_{\lambda}^{M}\left(\mathbb{R}^{n}\right)\right)}^{2} \leq C_{1} \lambda\left\|\tilde{P}_{\lambda} T v\right\|_{L_{(1+\eta) \Phi}^{2}}^{2}+C_{2} e^{-\lambda \sigma}\|v v\|_{M}^{2} . \tag{5.29}
\end{equation*}
$$

Proof. This follows from Proposition 5.4 and Theorem 3.2.

6. The estimates in case of Theorem B

Let $Q_{M}=O p_{\lambda}^{w}\left(q_{M}\right)$ where q_{M} is defined in (4.5). We have

$$
\begin{equation*}
\left\|Q_{M} u\right\|_{L^{2}}^{2}=\left\|Q_{R} u\right\|_{L^{2}}^{2}+\left\|Q_{I} u\right\|_{L^{2}}^{2}+\frac{1}{2}\left(\left[Q_{M}^{*}, Q_{M}\right] u, u\right), \tag{6.1}
\end{equation*}
$$

where $Q_{M}=Q_{R}+i Q_{I}, Q_{R}^{*}=Q_{R}$ and $Q_{I}^{*}=Q_{I}$.
Let us introduce the following Hörmander's metrics

$$
\left\{\begin{array}{l}
g_{1}=d x^{2}+d y^{2}+\sum_{j=1}^{d} \frac{\lambda^{2} d \xi_{j}^{2}}{\left(\lambda+|\lambda \tau|_{m}\right)^{2 h_{j}}}+\sum_{j=1}^{n} \frac{\lambda^{2} d \tau_{j}^{2}}{\left(\lambda+|\lambda \tau|_{m}\right)^{2 h_{j}}}, \tag{6.2}\\
g_{2}=d x^{2}+d y^{2}+d \xi^{2}+\sum_{j=1}^{n} \frac{\lambda^{2} d \tau_{j}^{2}}{\left(\lambda+|\lambda \tau|_{m}\right)^{2 h_{j}}} .
\end{array}\right.
$$

Then it is easy to see from (4.5) that

$$
\begin{equation*}
q_{M}(X, \zeta)=p_{M}^{\prime}(y, \tau)+\tilde{\chi}(x, \xi)\left(r_{M-1}(X, \zeta)+\eta s_{M-1}(X, \zeta)\right), \tag{6.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\tilde{\chi}(x, \xi)=\chi\left(x-\frac{i}{1+\eta} \xi, \xi\right) ; r_{M-1}(X, \zeta)=p_{M-1}^{\prime}(X, \zeta) \tag{6.4}\\
r_{M-1} \in S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g_{2}\right), s_{M-1} \in S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g_{2}\right) \\
p_{M}^{\prime} \in S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M}, g_{1}\right)
\end{array}\right.
$$

We shall write $Q_{M}=P_{M}^{\prime}+R_{M-1}+\eta S_{M-1}$ where $\sigma^{\omega}\left(P_{M}^{\prime}\right)=p_{M}^{\prime}(y, \tau), \sigma^{\omega}\left(R_{M-1}\right)=$ $\tilde{\chi} r_{M-1}$, and $\sigma^{\omega}\left(S_{M-1}\right)=\tilde{\chi} s_{M-1}$. Let us set

$$
\begin{equation*}
L=P_{M}^{\prime}+R_{M-1} . \tag{6.5}
\end{equation*}
$$

Since R_{M-1} and S_{M-1} belong to $O p_{\lambda}^{w}\left(S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g_{2}\right)\right)$ and p_{M}^{\prime} depends only on (y, τ), it is easy to see that

$$
\begin{equation*}
\left[Q_{M}^{*}, Q_{M}\right]-\left[L^{*}, L\right] \in \frac{\eta}{\lambda} O p_{\lambda}^{w}\left(S\left(\lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}, g_{2}\right)\right) \tag{6.6}
\end{equation*}
$$

We shall set $\sigma^{\omega}(L)=\ell_{1}+\ell_{2}=\ell$ where

$$
\left\{\begin{array}{l}
\ell_{1}=p_{M}^{\prime}(y, \tau)+\left.\left(\tilde{\chi} r_{M-1}\right)\right|_{\xi=0}, \tag{6.7}\\
\ell_{2}=\tilde{\chi} r_{M-1}-\left.\left(\tilde{\chi} r_{M-1}\right)\right|_{\xi=0} .
\end{array}\right.
$$

Then

$$
\begin{equation*}
\ell_{1} \in S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M}, g_{1}\right), \quad \ell_{2} \in S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g_{2}\right) \tag{6.8}
\end{equation*}
$$

We shall also write

$$
\begin{equation*}
\sigma^{\omega}\left(\left[L^{*}, L\right]\right)=\frac{1}{\lambda}\left(d_{1}+d_{2}\right) \text { where } d_{1}=\left.\frac{1}{i}\{\bar{\ell}, \ell\}\right|_{\xi=0} . \tag{6.9}
\end{equation*}
$$

Then since p_{M}^{\prime} depends only on (y, τ), we have

$$
\begin{equation*}
d_{1} \in S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-1}, g_{1}\right), \quad d_{2} \in S\left(\lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}, g_{2}\right) \tag{6.10}
\end{equation*}
$$

Lemma 6.1. There exists a positive constant C such that if we set

$$
\psi(X)=\varphi^{\prime}(0) X+\frac{1}{2} \varphi^{\prime \prime}(0) X \cdot X-\frac{1}{2 C^{2}}|X|^{2}+\frac{C}{2}\left(\varphi^{\prime}(0) X\right)^{2}
$$

then

$$
\begin{equation*}
C^{3}\left|\ell_{1}(X, \tau)\right|^{2}+d_{1}(X, \tau) \geq \frac{1}{C} \lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2} \tag{6.11}
\end{equation*}
$$

for $|X| \leq 1 / C^{2}$ and τ in \mathbb{R}^{n}. Moreover, by homogeneity, (6.11), with possibly other constants, is still true with the same ψ if we replace ψ by $\rho \psi$ where ρ is a positive constant.

Proof. We first take C so large that $\tilde{\chi}=1$ if $|x|+|\xi| \leq 1 / C^{2}$. Then from (6.7) and (6.9), we have

$$
\left\{\begin{array}{l}
\ell_{1}(X, \tau)=\left.p_{M}\left(X ; \lambda \zeta+i \lambda \psi^{\prime}(X)\right)\right|_{\xi=0}, \\
d_{1}(X, \tau)=\left.\frac{1}{i}\left\{\bar{p}_{M}\left(X, \lambda \zeta-i \lambda \psi^{\prime}(X)\right) ; p_{M}\left(X, \lambda \zeta+i \lambda \psi^{\prime}(X)\right)\right\}\right|_{\xi=0} .
\end{array}\right.
$$

Now, we write

$$
\left\{\begin{align*}
& \ell_{1}(X, \tau)=\left.p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0}+s_{\lambda}(\xi, \tau), \tag{6.12}\\
& d_{1}(X, \tau)=\left.\frac{1}{i}\left\{\bar{p}_{M}\left(X ; \lambda \zeta-i \lambda \nabla_{p, q} \psi(X)\right) ; p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right\}\right|_{\xi=0} \\
&+r_{\lambda}(X, \tau)
\end{align*}\right.
$$

where

$$
\begin{cases}\text { and } \quad & s_{\lambda} \in S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{M-1-1 /(M-1)}, g_{1}\right) \tag{6.13}\\ & r_{\lambda} \in S\left(\lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2-1 /(M-1)}, g_{1}\right)\end{cases}
$$

First, we shall

$$
\begin{align*}
& \left.\frac{C^{3}}{4}\left|p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0}\right|^{2} \tag{6.14}\\
& +\left.\frac{1}{2 i}\left\{\bar{p}_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right) ; p_{M}\left(X, \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right\}\right|_{\xi=0} \\
& \geq \frac{1}{C} \lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2} \text { for }|X| \leq \frac{1}{C^{2}} \text { and } \tau \text { in } \mathbb{R}^{n} .
\end{align*}
$$

(6.14) is equivalent to

$$
\begin{aligned}
& \left.\frac{C^{3}}{4 \lambda^{2}} \right\rvert\, p_{M}\left(X ; \zeta+\left.\left.i \lambda \nabla_{p, q} \psi(X)\right|_{\xi=0}\right|^{2}\right. \\
& +\left.\frac{1}{2 i \lambda}\left\{\bar{p}_{M}\left(X ; \zeta-i \lambda \nabla_{p, q} \psi(X)\right) ; p_{M}\left(X, \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right\}\right|_{\xi=0} \\
& \geq \frac{1}{C}\left(\lambda+|\tau|_{m}\right)^{2 M-2} \text { for }|X| \leq \frac{1}{C^{2}}
\end{aligned}
$$

We see (6.14), setting $\Gamma=\lambda /\left(\lambda+|\tau|_{m}\right), W=\left(X, Z+i \Gamma \nabla_{p, q} \psi(X)\right)$,

$$
Z=\left(0, \ldots, 0 ; \frac{\tau_{1}}{\left(\lambda+|\tau|_{m}\right)^{h_{1}}}, \ldots, \frac{\tau_{n}}{\left(\lambda+|\tau|_{m}\right)^{h_{m}}}\right)
$$

that (6.14) is equivalent to
(6.15) $\frac{C^{3}}{4 \Gamma^{2}}\left|p_{M}(W)\right|^{2}+\frac{1}{\Gamma} \operatorname{Im}\left(\sum_{j=1}^{d}\left(\lambda+|\tau|_{m}\right)^{1-\tilde{h}_{j}} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial x_{j}}(W)\right.$

$$
\begin{aligned}
& \left.+\sum_{j=1}^{n}\left(\lambda+|\tau|_{m}\right)^{1-h_{j}} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial y_{j}}(W)\right) \\
& +\operatorname{Re}\left(\sum_{j=1}^{d} \sum_{k=p}^{d} \frac{\partial^{2} \psi}{\partial x_{k} \partial x_{j}}(X)\left(\lambda+|\tau|_{m}\right)^{1-\tilde{h}_{j}} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial x_{j}}(W)\right.
\end{aligned}
$$

$$
+\sum_{j=1}^{d} \sum_{k=q}^{n} \frac{\partial^{2} \psi}{\partial y_{k} \partial x_{j}}(X)\left(\lambda+|\tau|_{m}\right)^{1-\tilde{h}_{j}} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial \tau_{k}}(W)
$$

$$
+\sum_{j=1}^{n} \sum_{k=p}^{d} \frac{\partial^{2} \psi}{\partial x_{k} \partial y_{j}}(X)\left(\lambda+|\tau|_{m}\right)^{1-h_{j}} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial \xi_{k}}(W)
$$

$$
\left.+\sum_{j=1}^{n} \sum_{k=q}^{n} \frac{\partial^{2} \psi}{\partial y_{k} \partial y_{j}}(X)\left(\lambda+|\tau|_{m}\right)^{1-h_{j}} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}(\bar{W}) \frac{\partial p_{M}}{\partial \tau_{k}}(W)\right) \geq \frac{1}{C}, \text { for }|X| \leq \frac{1}{C^{2}} .
$$

We prove (6.15) by contradiction. If it is false one can find sequences $X_{k}, \lambda_{k}, \tau_{j}$, Γ_{k} with $\left|X_{k}\right| \leq 1 / k^{2}, \lambda_{k} \geq e^{k}$ and τ_{k} in \mathbb{R}^{n}, such that

$$
\begin{align*}
& \frac{k^{3}}{4 \Gamma_{k}^{2}}\left|p_{M}\left(W_{k}\right)\right|^{2}+\frac{1}{\Gamma_{k}} \operatorname{Im}\left(\sum_{j=q}^{n} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial y_{j}}\left(W_{k}\right)\right. \tag{6.16}\\
& \left.+\sum_{j=p}^{d} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial x_{j}}\left(W_{k}\right)\right)+\operatorname{Re}\left(\sum_{j, s=p}^{d} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \xi_{s}}\left(W_{k}\right)\right. \\
& \left.+\sum_{s, j=q}^{n} \frac{\partial^{2} \varphi}{\partial y_{s} \partial y_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W_{k}\right)+2 \sum_{s=q}^{M} \sum_{j=p}^{d} \frac{\partial^{2} \varphi}{\partial y_{s} \partial x_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W_{k}\right)\right)
\end{align*}
$$

$$
\begin{aligned}
& +k\left(\left|\sum_{j=p}^{d} \frac{\partial \varphi}{\partial x_{j}}(0) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right|^{2}+\left|\sum_{j=q}^{n} \frac{\partial \varphi}{\partial y_{j}}(0) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right|^{2}\right. \\
& \left.+2 \operatorname{Re}\left[\left(\sum_{j=q}^{n} \frac{\partial \varphi}{\partial \partial y_{j}}(0) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right)\left(\sum_{s=p}^{d} \frac{\partial \varphi}{\partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{s}}\left(\bar{W}_{k}\right)\right)\right]\right) \\
& -\frac{1}{k^{2}}\left(\sum_{j=q}^{n} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)+\sum_{j=p}^{d} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right)+B_{k} \leq \frac{1}{k}
\end{aligned}
$$

where

$$
\begin{equation*}
\left|B_{k}\right| \leq \frac{C_{1} k}{\Gamma_{k}} \lambda_{k}^{-1 /(M-1)}, C_{1} \quad \text { independent of } k \tag{6.17}
\end{equation*}
$$

Since $\Gamma_{k}+\left|Z_{k}\right|_{(m, \tilde{m})}=1$, taking subsequences, we may assume that

$$
\begin{equation*}
\Gamma_{k} \rightarrow \Gamma^{0} \text { and } Z_{k} \rightarrow Z^{0} \text { with } \Gamma^{0}+\left|Z^{0}\right|_{(m, \tilde{m})}=1 \tag{6.18}
\end{equation*}
$$

CASE 1. $\quad \Gamma^{0} \neq 0$.
If we divide both members of (6.16) by k^{3}, we get

$$
\begin{equation*}
p_{M}\left(W^{0}\right)=\left\{p_{M}, \varphi\right\}_{0}\left(W^{0}\right)=0 \tag{6.19}
\end{equation*}
$$

with $W^{0}=\left(0 ; Z^{0}+i \Gamma^{0} \nabla_{p, q} \varphi(0)\right)$.
Removing all positive terms in (6.16) and letting k go to $+\infty$, we get

$$
\begin{aligned}
& \frac{1}{\Gamma^{0}} \operatorname{Im}\left(\sum_{j=q}^{n} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial y_{j}}\left(W^{0}\right)+\sum_{j=p}^{d} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial x_{j}}\left(W^{0}\right)\right) \\
+ & \operatorname{Re}\left(\sum_{j, s=p}^{d} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \xi_{s}}\left(W^{0}\right)+\sum_{s, j=q}^{n} \frac{\partial^{2} \varphi}{\partial y_{s} \partial y_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W^{0}\right)\right. \\
+ & \left.2 \sum_{s=q}^{n} \sum_{j=p}^{d} \frac{\partial^{2} \varphi}{\partial y_{s} \partial x_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W^{0}\right)\right) \leq 0
\end{aligned}
$$

which contradicts the hypothesis (H.2)' ii) in Theorem B.
CASE 2. $\quad \Gamma^{0}=0$.
Since $\Gamma^{0}+\left|Z^{0}\right|_{(m, \tilde{m})}=1$, we have $Z^{0} \neq 0$. In this case, we write

$$
\begin{align*}
B_{k}=\frac{1}{\Gamma_{k}} \operatorname{Im}\left(\sum_{j=1}^{d}\right. & \left(\lambda_{k}+\left|\tau_{k}\right|_{m}\right)^{1+\tilde{h}_{j}} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial x_{j}}\left(W_{k}\right) \tag{6.20}\\
& \left.\left.+\sum_{j=1}^{n}\left(\lambda+|\tau|_{m}\right)^{1-h_{j}} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial y_{j}} W_{k}\right)\right)+D_{k}
\end{align*}
$$

where

$$
\left|D_{k}\right| \leq C_{2} k \lambda_{k}^{-1 /(M-1)}, C_{2} \quad \text { independent of } k
$$

Therefore
(6.21) $\quad B_{k}=\frac{1}{2 i \Gamma_{k}}\left(\lambda_{k}+\left|\tau_{k}\right|_{m}\right)^{1-2 M}\left\{\bar{p}_{M}, p_{M}\right\}\left(X_{k} ; 0, \tau_{k}\right)$
$+\operatorname{Re}\left(\sum_{s, j=q}^{n} \frac{\partial \psi}{\partial y_{s}}\left(X_{k}\right)\left(\frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} p_{M}}{\partial \tau_{j} \partial y_{j}}\left(X_{k}, Z_{k}\right)\right.\right.$
$\left.-\frac{\partial p_{M}}{\partial y_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \tau_{s} \partial \tau_{j}}\left(X_{k}, Z_{k}\right)\right)+\sum_{s, j=p}^{d} \frac{\partial \psi}{\partial x_{s}}\left(X_{k}\right)$
$\left.\left(\frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \xi_{s} \partial x_{j}}\left(X_{k}, Z_{k}\right)-\frac{\partial p_{M}}{\partial x_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \xi_{s} \partial \xi_{j}}\left(X_{k}, Z_{k}\right)\right)\right)+D_{k}^{\prime}$
where

$$
\left|D_{k}^{\prime}\right| \leq C_{3}\left(k \lambda_{k}^{-1 /(M-1)}+\Gamma_{k}\right), C_{3} \text { independent of } k
$$

We use then the assumptions (H.1)' in Theorem B. We get

$$
\begin{aligned}
& \left|\left(\lambda_{k}+\left|\tau_{k}\right|_{m}\right)^{1-2 M}\left\{\bar{p}_{M}, p_{M}\right\}\left(X_{k}, 0, \tau_{k}\right)\right| \leq C^{\prime}\left|p_{m}\left(X_{k}, 0, \tau_{k}\right)\right|\left(\lambda_{k}+\left|\tau_{k}\right|_{m}\right)^{-M} \\
\leq & C^{\prime}\left|p_{M}\left(X_{k}, Z_{k}\right)\right| \leq C^{\prime}\left|p_{M}\left(W_{k}\right)\right|+C^{\prime} \Gamma_{k}\left(\left|\sum_{j=q}^{n} \frac{\partial \psi}{\partial y_{j}}\left(X_{k}\right) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right|\right. \\
& \left.+\left|\sum_{j=p}^{d} \frac{\partial \psi}{\partial x_{j}}\left(X_{k}\right) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right|\right)+\mathcal{O}\left(\Gamma_{k}^{2}\right) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \left|\frac{1}{2 i}\left(\lambda_{k}+\left|\tau_{k}\right|_{m}\right)^{1-2 M}\left\{\bar{p}_{M}, p_{M}\right\}\left(X_{k} ; 0, \tau_{k}\right)\right| \leq \frac{k^{3 / 2}}{4 \Gamma_{k}}\left|p_{M}\left(W_{k}\right)\right|^{2}+\frac{4\left(C^{\prime}\right)^{2} \Gamma_{k}}{k^{3 / 2}} \tag{6.22}\\
& +C^{\prime} \Gamma_{k}\left(\left|\sum_{j=q}^{n} \frac{\partial \psi}{\partial y_{j}}\left(X_{k}\right) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right|+\left|\sum_{j=p}^{d} \frac{\partial \psi}{\partial x_{j}}\left(X_{k}\right) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right|\right)+\mathcal{O}\left(\Gamma_{k}^{2}\right)
\end{align*}
$$

It follows from (6.21), (6.22) that (6.16) is equivalent to
(6.23) $\frac{1}{4}\left(\frac{k^{3}}{\Gamma_{k}^{2}}-\frac{k^{3 / 2}}{\Gamma_{k}^{2}}\right)\left|p_{M}\left(W_{k}\right)\right|^{2}$

$$
+\operatorname{Re}\left(\sum_{s, j=q}^{m} \frac{\partial \psi}{\partial y_{s}}\left(X_{k}\right)\left(\frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} p_{M}}{\partial \tau_{j} \partial y_{j}}\left(X_{k}, Z_{k}\right)-\frac{\partial p_{M}}{\partial y_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \tau_{s} \partial \tau_{j}}\left(X_{k}, Z_{k}\right)\right)\right.
$$

$$
\begin{aligned}
& \left.+\sum_{s, j=p}^{d} \frac{\partial \psi}{\partial x_{s}}\left(X_{k}\right)\left(\frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \xi_{s} \partial x_{j}}\left(X_{k}, Z_{k}\right)-\frac{\partial p_{M}}{\partial x_{j}}\left(X_{k}, Z_{k}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \xi_{s} \partial \xi_{j}}\left(X_{k}, Z_{k}\right)\right)\right) \\
& +k\left(\left|\sum_{j=q}^{n} \frac{\partial \varphi}{\partial y_{j}}(0) \frac{\partial p_{M}}{\partial \partial \tau_{j}}\left(W_{k}\right)\right|^{2}+\left|\sum_{j=p}^{d} \frac{\partial \varphi}{\partial x_{j}}(0) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right|^{2}\right. \\
& \left.+2 \operatorname{Re}\left[\left(\sum_{j=q}^{n} \frac{\partial \varphi}{\partial y_{j}}(0) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right)\left(\sum_{s=p}^{d} \frac{\partial \varphi}{\partial x_{s}}(0) \frac{\partial p_{M}}{\partial \xi_{s}}\left(W_{k}\right)\right)\right]\right) \\
& -C^{\prime}\left(\left|\sum_{j=q}^{n} \frac{\partial \psi}{\partial y_{j}}\left(X_{k}\right) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)\right|+\left|\sum_{j=p}^{d} \frac{\partial \psi}{\partial x_{j}}\left(X_{k}\right) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right|\right) \\
& -\frac{1}{k^{2}}\left(\sum_{j=q}^{n} \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{j}}\left(W_{k}\right)+\sum_{j=p}^{d} \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \xi_{j}}\left(W_{k}\right)\right) \\
& +\operatorname{Re}\left(\sum_{j, s=p}^{d} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \xi_{s}}\left(W_{k}\right)+\sum_{s, j=q}^{n} \frac{\partial^{2} \varphi}{\partial y_{s} \partial y_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \partial \tau_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W_{k}\right)\right. \\
& \left.+2 \sum_{s=q}^{n} \sum_{j=p}^{d} \frac{\partial^{2} \varphi}{\partial y_{s} \partial x_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}_{k}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W_{k}\right)\right)+\mathcal{O}\left(k \lambda_{k}^{-1 /(M-1)}+\Gamma_{k}+\frac{1}{k^{3 / 2}}\right) \leq \frac{1}{k} .
\end{aligned}
$$

Dividing both members by k^{3} / Γ_{k}^{2}, we get, since $\Gamma_{k} \rightarrow 0, k \rightarrow+\infty$,

$$
\begin{equation*}
p_{M}\left(W^{0}\right)=0 \text { with } W^{0}=\left(0, Z^{0}\right), \quad Z^{0} \neq 0 . \tag{6.24}
\end{equation*}
$$

Now since, $\left(k^{3} / \Gamma_{k}^{2}-k^{3 / 2} / \Gamma_{k}^{2}\right)\left|p_{M}\left(W_{k}\right)\right|^{2} \geq 0$, dividing (6.23) by k, we get

$$
\begin{equation*}
\left\{p_{M}, \varphi\right\}_{0}\left(W^{0}\right)=0 . \tag{6.25}
\end{equation*}
$$

Removing all positive terms in (6.23) and letting k go to $+\infty$, we get

$$
\begin{aligned}
& \operatorname{Re}\left[\sum_{s, j=q}^{n} \frac{\partial \varphi}{\partial y_{s}}(0)\left(\frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}^{0}\right) \frac{\partial^{2} p_{M}}{\partial \tau_{s} \partial y_{j}}\left(W^{0}\right)-\frac{\partial p_{M}}{\partial y_{j}}\left(W^{0}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \tau_{s} \partial \tau_{j}}\left(\bar{W}^{0}\right)\right)\right. \\
+ & \sum_{s, j=p}^{d} \frac{\partial \varphi}{\partial \partial x_{s}}(0)\left(\frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial^{2} p_{M}}{\partial \xi_{s} \partial x_{j}}\left(W^{0}\right)-\frac{\partial p_{M}}{\partial x_{j}}\left(W^{0}\right) \frac{\partial^{2} \bar{p}_{M}}{\partial \xi_{j} \partial \xi_{s}}\left(\bar{W}^{0}\right)\right) \\
+ & \sum_{j, s=p}^{d} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{s}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \xi_{s}}\left(W^{0}\right)+\sum_{s, j=q}^{n} \frac{\partial^{2} \varphi}{\partial y_{s} \partial y_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \tau_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W^{0}\right) \\
+ & \left.2 \sum_{s=q}^{n} \sum_{s=p}^{d} \frac{\partial^{2} \varphi}{\partial y_{s} \partial x_{j}}(0) \frac{\partial \bar{p}_{M}}{\partial \xi_{j}}\left(\bar{W}^{0}\right) \frac{\partial p_{M}}{\partial \tau_{s}}\left(W^{0}\right)\right] \leq 0
\end{aligned}
$$

which is contradiction with (H.2)' i) in Theorem B.

It follows from (6.12), (6.13) and (6.14) that

$$
\left.\frac{C^{3}}{4}\left|p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0}\right|^{2}+\frac{1}{2} d_{1}(X, \tau) \geq \frac{1}{C} \lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}+\frac{1}{2 i} r_{\lambda}(X, \tau) .
$$

But we have

$$
\left\{\begin{array}{l}
\left.\left|p_{M}\left(X ; \lambda \zeta+i \lambda \nabla_{p, q} \psi(X)\right)\right|_{\xi=0}\right|^{2} \leq 2\left|\ell_{1}(X, \tau)\right|^{2}+C^{\prime} \lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2-2 /(M-1)} \\
\left|\frac{1}{2 i} r_{\lambda}(X, \tau)\right| \leq C^{\prime \prime} \lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2-1 /(M-1)}
\end{array}\right.
$$

Il follows that

$$
\frac{C^{3}}{2}\left|\ell_{1}(X, \tau)\right|^{2}+\frac{1}{2} d_{1}(X, \tau) \geq \frac{1}{2 C} \lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}
$$

for large λ and Lemma 6.1 follows.
Lemma 6.2. We have

$$
\begin{align*}
& \left(\frac{C^{3}+1}{\lambda^{2}}\right)\left(\left\|O p_{\lambda}^{w}\left(\operatorname{Re} \ell_{1}\right) u\right\|_{L^{2}}^{2}+\left\|O p_{\lambda}^{w}\left(\operatorname{Im} \ell_{1}\right) u\right\|_{L^{2}}^{2}\right) \tag{6.26}\\
& +\frac{1}{\lambda^{2}}\left(O p_{\lambda}^{w}\left(d_{1}\right) u, u\right) \geq \frac{1}{2 C}\|u\| \|_{M-1}^{2},
\end{align*}
$$

where $\|\|\cdot\|\|_{M-1}$ is defined (2.9), and for large λ.
Proof. Let us $a=\left(C^{3} / \lambda^{2}\right)\left|\ell_{1}\right|^{2}+d_{1} / \lambda^{2}$ and $a_{0}=\left.a\right|_{x=0}$. Let $h_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ be such that $h_{0}=1$ if $|x| \leq 1 /\left(4 C^{2}\right), h_{0}=0$ if $|x| \geq 1 /\left(2 C^{2}\right)$ and $0 \leq h_{0} \leq 1$. Then we have

$$
\begin{equation*}
a+\left(1-h_{0}\right)\left(a_{0}-a\right) \geq \frac{1}{C}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}, \text { if }|y| \leq \frac{1}{2 C^{2}} . \tag{6.27}
\end{equation*}
$$

Indeed, if $|x| \leq 1 /\left(2 C^{2}\right)$, then by Lemma 6.1, a and a_{0} satisfy (6.11) thus (6.27) is true. If $|x| \geq 1 /\left(2 C^{2}\right)$ then $h_{0}=0$ and a_{0} satisfies (6.11) and (6.27) is also true.

Now denoting by t_{k} a symbol in the class $S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{k}, g_{2}\right)$, by (6.8) and (6.9), we have

$$
a=\frac{C^{3}}{\lambda^{2}}\left|p_{M}^{\prime}(y, \tau)\right|^{2}+\frac{2}{\lambda^{2}} \operatorname{Im}\left(\frac{\partial}{\partial \tau}\left(p_{M}^{\prime}(y, \tau)\right) \frac{\partial}{\partial y}\left(p_{M}^{\prime}(y, \tau)\right)\right)+\frac{1}{\lambda} \operatorname{Re}\left(\ell_{1} \cdot t_{M-1}\right)+t_{2 M-2} .
$$

Thus $a-a_{0}=(1 / \lambda) \operatorname{Re}\left(\ell_{1} \cdot t_{M-1}\right)+t_{2 M-2}$ so

$$
\begin{equation*}
\left|a-a_{0}\right| \leq \frac{\left|\ell_{1}\right|^{2}}{\lambda^{2}}+C^{\prime}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2} . \tag{6.28}
\end{equation*}
$$

It follows from (6.11), (6.27) and (6.28) that if $|y| \leq 1 /\left(2 C^{2}\right)$

$$
\begin{equation*}
\frac{\left(C^{3}+1\right)}{\lambda^{2}}\left|\ell_{1}\right|^{2}+\frac{1}{\lambda^{2}} d_{1}+C^{\prime}\left(1-h_{0}\right)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2} \geq \frac{1}{C}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2} \tag{6.29}
\end{equation*}
$$

Let $h_{1} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $0 \leq h_{1} \leq 1, h_{1}=0$ if $|y| \geq 1 /\left(2 C^{2}\right)$ and $h_{1}=1$ if $|y| \leq 1 /\left(4 C^{2}\right)$. Thus we have, from (6.29)

$$
\left(\frac{\left(C^{3}+1\right)}{\lambda^{2}}\left|\ell_{1}\right|^{2}+\frac{1}{\lambda^{2}} d_{1}+C^{\prime}\left(1-h_{0}\right)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}-\frac{1}{C}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}\right) \lambda^{2} h_{1}^{2}(y) \geq 0
$$

for any (X, τ) in $\mathbb{R}^{d+n} \times \mathbb{R}^{n}$, and this symbol belongs to $S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{2 M}, g_{1}\right)$. Therefore we can apply the Fefferman-Phong inequality and get

$$
\begin{align*}
& \left(O p_{\lambda}^{w}\left(\frac{\left(C^{3}+1\right)}{\lambda^{2}}\left|\ell_{1}\right|^{2} h_{1}^{2}\right) u, u\right)+\left(O p_{\lambda}^{w}\left(\frac{d_{1}}{\lambda^{2}} h_{1}^{2}\right) u, u\right) \tag{6.30}\\
\geq & \frac{1}{C}\left(O p_{\lambda}^{w}\left(h_{1}^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}\right) u, u\right) \\
& \quad-C^{\prime}\left(O p_{\lambda}^{w}\left(h_{1}^{2}\left(1-h_{0}\right)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}\right) u, u\right)-\frac{C^{\prime \prime}}{\lambda^{2}}\| \| u \|_{M-1}^{2} .
\end{align*}
$$

We can use the symbolic calculus in $S\left(\cdot, g_{1}\right)$. We get

$$
\begin{array}{r}
J=\left(O p_{\lambda}^{w}\left(\frac{\left(C^{3}+1\right)}{\lambda^{2}}\left|\ell_{1}\right|^{2} h_{1}^{2}\right) u, u\right)=\frac{\left(C^{3}+1\right)}{\lambda^{2}}\left(\left(O p_{\lambda}^{w}\left(\ell_{1}^{R} h_{1}\right)^{*} O p_{\lambda}^{w}\left(\ell_{1}^{R} h_{1}\right)\right.\right. \\
\left.\left.+O p_{\lambda}^{w}\left(\ell_{1}^{I} h_{1}\right)^{*} O p_{\lambda}^{w}\left(\ell_{1}^{I} h_{1}\right)\right) u, u\right)+\frac{1}{\lambda^{2}} \mathcal{O}\left(\mid\|u\| \|_{M-1}^{2}\right)
\end{array}
$$

where $\ell_{1}^{R}=\operatorname{Re} \ell_{1}$ and $\ell_{1}^{I}=\operatorname{Im} \ell_{1}$. Thus

$$
\begin{equation*}
J=\frac{\left(C^{3}+1\right)}{\lambda^{2}}\left(\left\|O p_{\lambda}^{w}\left(\ell_{1}^{R}\right) u\right\|_{L^{2}}^{2}+\left\|O p_{\lambda}^{w}\left(\ell_{1}^{I}\right) u\right\|_{L^{2}}^{2}\right)+\frac{1}{\lambda^{2}} \mathcal{O}\left(\| \| u \|_{M-1}^{2}\right) \tag{6.31}
\end{equation*}
$$

because

$$
O p_{\lambda}^{w}\left(\ell_{1}^{K}\right) h_{1}=O p_{\lambda}^{w}\left(\ell_{1}^{K} h_{1}\right)+O p_{\lambda}^{w}\left(S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g_{1}\right)\right)
$$

for $K=R$ or I and $h_{1} u=u$ since $\operatorname{supp} u \subset\left\{|y| \leq 1 /\left(4 C^{2}\right)\right\}$. By the same way

$$
O p_{\lambda}^{w}\left(d_{1} h_{1}^{2}\right)=O p_{\lambda}^{w}\left(d_{1}\right) h_{1}^{2}+O p_{\lambda}^{w}\left(S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}, g_{1}\right)\right)
$$

thus

$$
\begin{equation*}
\left(O p_{\lambda}^{w}\left(d_{1} h_{1}^{2}\right) u, u\right)=\left(O p_{\lambda}^{w}\left(d_{1}\right) u, u\right)+\lambda \mathcal{O}\left(\|u\|_{M-1}^{2}\right) \tag{6.32}
\end{equation*}
$$

We have also

$$
\begin{align*}
& \left(O p_{\lambda}^{w}\left(h_{1}^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}\right) u, u\right)=\|\mid u\| \|_{M-1}^{2}+\frac{1}{\lambda} \mathcal{O}\left(\| \| u \|_{M-1}^{2}\right) \tag{6.33}\\
& \left(O p_{\lambda}^{w}\left(h_{1}^{2}\left(1-h_{0}\right)\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}\right) u, u\right) \tag{6.34}\\
& =\left\|\mid\left(1-h_{0}\right) u\right\| \|_{M-1}^{2}+\frac{1}{\lambda} \mathcal{O}\left(\mid\|u\|_{M-1}^{2}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\left\|\left(1-h_{0}\right) u\right\|_{M-1}^{2} \leq \frac{C_{N}}{\lambda^{N}}\right\| u \|_{M-1}^{2}, \text { for any } N \text { in } \mathbb{N} \tag{6.35}
\end{equation*}
$$

Thus (6.26) follows from (6.30) to (6.35).

Lemma 6.3. Let ℓ_{2} and d_{2} be defined in (6.7) and (6.9). Then there exists $\sigma>0$ such that for any $\varepsilon>0$ one can find a positive constant C_{ε} such that

$$
\begin{equation*}
\left\|O p_{\lambda}^{w}\left(\ell_{2}\right) u\right\|_{L^{2}\left(\mathbb{R}^{d+n}\right)} \leq \lambda \varepsilon\| \| u\| \|_{M-1}+\sqrt{\lambda} C_{\varepsilon}\| \| u \|_{M-1}+\mathcal{O}\left(e^{-\lambda \sigma}\| \| v \|_{M-1}\right) \tag{6.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(O p_{\lambda}^{w}\left(d_{2}\right) u, u\right)\right| \leq \lambda^{2}\left(\varepsilon\| \| u\| \|_{M-1}^{2}+\frac{C_{\varepsilon}}{\sqrt{\lambda}}\| \| u \|_{M-1}^{2}\right)+\mathcal{O}\left(e^{-\lambda \sigma}\| \| v\| \|_{M-1}^{2}\right) \tag{6.37}
\end{equation*}
$$

for any $u=T_{\eta}^{*} T v, v \in C_{0}^{\infty}\left(\mathbb{R}^{n+d}\right)$.
Proof. Given $\varepsilon>0$, let $\chi(X, \xi)$ in C^{∞} with $0 \leq \chi \leq 1$ and supp $\chi \subset\{|X|+|\xi| \leq$ $\varepsilon\}$. We claim that one can find $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\frac{1}{\lambda}\left\|O p_{\lambda}^{w}\left(\ell_{2} \chi\right) u\right\|_{L^{2}} \leq \varepsilon\| \| u\left\|_{M-1}+\frac{C_{\varepsilon}}{\sqrt{\lambda}}\right\|\|u\|_{M-1} \tag{6.38}
\end{equation*}
$$

This follows from the sharp Gårding inequality in the class $S\left(1, g_{2}\right)$. Indeed, we have $\varepsilon^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}-\xi^{2} \chi^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2} \geq 0$. Thus

$$
\begin{align*}
& \varepsilon^{2}\left(O p_{\lambda}^{w}\left(\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}\right) u, u\right)-\left(O p_{\lambda}^{w}\left(\xi^{2} \chi^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}\right) u, u\right) \tag{6.39}\\
\geq & -\frac{C_{\varepsilon}}{\lambda}\| \| u \|_{M-1}^{2}
\end{align*}
$$

Since $\ell_{2} \in S\left(\lambda\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g_{2}\right)$ and $\left.\ell_{2}\right|_{\xi=0}$, we have

$$
\begin{equation*}
\left\|O p_{\lambda}^{w}\left(\ell_{2} \chi\right) u\right\|_{L^{2}} \leq C \lambda\left\|O p_{\lambda}^{w}\left(\xi \chi\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}\right) u\right\|_{L^{2}} \tag{6.40}
\end{equation*}
$$

We deduce (6.38) from (6.39) and (6.40).

Therefore taking $\chi=\theta(x, \xi) g(y)$, such that $\chi=1$ if $|X|+|\xi| \leq \varepsilon / 2$, we write

$$
\left\|O p_{\lambda}^{w}\left(\ell_{2}\right) u\right\|_{L^{2}} \leq\left\|O p_{\lambda}^{w}\left(\ell_{2} \chi\right) u\right\|_{L^{2}}+\left\|O p_{\lambda}^{w}\left((1-\chi) \ell_{2}\right) u\right\|_{L^{2}}
$$

It follows from Proposition 4.6 in [7] that

$$
\begin{equation*}
\left\|O p_{\lambda}^{w}\left((1-\chi) \ell_{2}\right) u\right\|_{L^{2}} \leq \frac{C_{N}}{\lambda^{N}}\| \| u \|_{M-1}+\mathcal{O}\left(e^{-\lambda \sigma} \mid\|v\| \|_{M-1}\right) \tag{6.41}
\end{equation*}
$$

Then we deduce (6.36) from (6.40) and (6.41). This gives the first part of the lemma. For the second part, we observe that $d_{2} \in S\left(\lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}, g_{2}\right)$. Therefore from (6.39) and Proposition 4.6 in [7], we deduce (6.37).

We are now ready to prove the Carleman estimate for Q_{M}.
Proposition 6.4. Let $Q_{M}=O p_{\lambda}^{w}\left(q_{M}\right)$ be defined in (4.6). Then one can find positive constants $C_{0}, C_{1}, \lambda_{0}, \sigma$ such that, for any $u=T_{\eta}^{*} T v, v \in C_{0}^{\infty}$, $\operatorname{supp} v \subset\{|X| \leq$ $\left.1 /\left(4 C^{2}\right)\right\}$ and $\lambda \geq \lambda_{0}$, we have

$$
\begin{equation*}
C_{0}\| \| u\left\|_{M-1}^{2} \leq \frac{C_{1}}{\lambda}\right\| Q_{M} u \|_{L^{2}}^{2}+\mathcal{O}\left(e^{-\lambda \sigma}\| \| v \|_{M-1}^{2}\right) . \tag{6.42}
\end{equation*}
$$

Proof. It follows from (6.3), (6.5) and (6.7) that

$$
\left\|O p_{\lambda}^{w}\left(\ell_{1}^{R}\right) u\right\|_{L^{2}} \leq\left\|Q_{R} u\right\|_{L^{2}}+\left\|O p_{\lambda}^{w}\left(\ell_{2}^{R}\right) u\right\|_{L^{2}}+\eta\left\|O p_{\lambda}^{w}\left(\tilde{\chi} s_{M-1}^{R}\right) u\right\|_{L^{2}} .
$$

Therefore, applying Lemma 6.3, we deduce

$$
\begin{align*}
& \left\|O p_{\lambda}^{w}\left(\ell_{1}^{K}\right) u\right\|_{L^{2}} \leq\left\|Q_{K} u\right\|_{L^{2}}+C_{1} \lambda\left(\varepsilon+\frac{C_{\varepsilon}}{\sqrt{\lambda}}+C_{2} \eta\right)\|u\| \|_{M-1} \tag{6.43}\\
& +\mathcal{O}\left(e^{-\lambda \sigma}\| \| v \|_{M-1}\right), \quad \text { for } K=R, I
\end{align*}
$$

Using (6.6), (6.9) and Lemma 6.3, we get

$$
\begin{align*}
& \left|\left(\left(O p_{\lambda}^{w}\left(d_{1}\right)-\lambda\left[Q_{M}^{*}, Q_{M}\right]\right) u, u\right)\right| \tag{6.44}\\
= & \mid\left(\left(O p_{\lambda}^{w}\left(d_{2}\right)-\eta O p_{\lambda}^{w}\left(S\left(\lambda^{2}\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}, g_{2}\right)\right) u, u\right) \mid,\right. \\
\leq & \left|\left(O p_{\lambda}^{w}\left(d_{2}\right) u, u\right)\right|+\eta \lambda^{2}\left|\left(O p_{\lambda}^{w}\left(S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{2 M-2}, g_{2}\right)\right) u, u\right)\right|, \\
\leq & C_{1} \lambda^{2}\left(\varepsilon+\frac{C_{\varepsilon}}{\sqrt{\lambda}}+C_{2} \eta\right)\|u\| \|_{M-1}^{2}+\mathcal{O}\left(e^{-\lambda \sigma} \mid\|v\| \|_{M-1}^{2}\right) .
\end{align*}
$$

It follows from (6.43), (6.44) and Lemma 6.2 that

$$
\begin{aligned}
& \left.\frac{1}{2 C} \right\rvert\,\|u\| \|_{M-1}^{2} \leq \frac{2}{\lambda^{2}}\left(C^{3}+1\right)\left(\left\|Q_{I} u\right\|_{L^{2}}^{2}+\left\|Q_{I} u\right\|_{L^{2}}^{2}+\frac{\lambda}{2}\left(\left[Q_{M}^{*}, Q_{M}\right] u, u\right)\right) \\
& +\tilde{C}_{1}\left(\varepsilon+\frac{C_{\varepsilon}}{\sqrt{\lambda}}+\tilde{C}_{2} \eta\right)\|u\| \|_{M-1}^{2}+\mathcal{O}\left(e^{-\lambda \sigma}\|v v\|_{M-1}^{2}\right)
\end{aligned}
$$

Taking ε and η small, then λ large, we get, by (6.1), proposition 6.4.
Theorem 6.5. Let \tilde{P}_{λ} the operator occuring in Proposition 3.1. One can find positive constants $C_{1}, C_{2}, \lambda_{0}, \varepsilon_{2}, \sigma$ such that for $v \in C_{0}^{\infty}\left(\mathbb{R}^{d+n}\right)$, supp $v \subset\left\{|X| \leq \varepsilon_{2}\right\}$ and $\lambda \geq \lambda_{0}$ we have

$$
\begin{equation*}
\lambda\|T v\|_{\left.L_{(1+\eta) \Phi}^{2}\right)}^{2}\left(\mathbb{C}^{d}, H_{\lambda}^{M-1}\left(\mathbb{R}^{n}\right)\right)=C_{1}\left\|\tilde{P}_{\lambda} T v\right\|_{L_{(1+\eta) \Phi}^{2}}^{2}+C_{2} e^{-\lambda \sigma}\|\mid v\|_{M-1}^{2} . \tag{6.45}
\end{equation*}
$$

Proof. By Theorem 3.2, (6.45) will follow from the same estimate for \tilde{Q}_{λ}. Now

$$
\left\|\tilde{Q}_{\lambda} T v\right\|_{L_{(1+\eta) \Phi}^{2}}=\left\|Q_{\lambda} u\right\|_{L^{2}}
$$

and by (4.5) we have $\sigma^{w}\left(Q_{\lambda}\right)=\sigma^{w}\left(Q_{M}\right)+\sigma^{w}\left(Q_{M-1}^{\prime}\right)$ where

$$
Q_{M-1}^{\prime} \in O p_{\lambda}^{w}\left(S\left(\left(\lambda+|\lambda \tau|_{m}\right)^{M-1}, g_{2}\right)\right)
$$

Thus (6.45) follows from Proposition 6.4 if λ is large enough.

7. End of the proof of the Theorems A and B

The Theorems 5.5 and 6.5 ensure that one can find $\sigma>0$ such that

$$
\begin{equation*}
\lambda^{2 M-1}\|T v\|_{L_{(1+\eta) \Phi}^{2}}^{2} \leq C_{1}\left\|\tilde{P}_{\lambda} T v\right\|_{L_{(1+\eta) \Phi}^{2}}^{2}+C_{2} e^{-\lambda \sigma}\| \| v\| \|_{M}^{2} . \tag{7.1}
\end{equation*}
$$

The end of the proof, i.e. the passage from Carleman's inequality (7.1) to uniqueness of the Cauchy problem for the operator P, is the same as the one in Robbiano-Zuily [7].

The proof of Theorems A and B is complete.

References

[1] B. Dehman: Unicité du problème de Cauchy pour une classe d'opérateurs quasi-homogène, J. Math. Kyoto Univ., (3)24 (1984), 453-471.
[2] L. Hörmander: The analysis of linear partial differential III, IV, Springer Verlag.
[3] L. Hörmander: On the uniqueness of the Cauchy problem under partial analyticity assumptions, Geometrical Optics and Related Topics, Birkhäuser, 179-219, 1997.
[4] V. Isakov: Carleman type estimates in an anisotropic case and applications, J. Diff. Equations, 105 (1993), 217-238.
[5] N. Lerner: Unicité de Cauchy pour des opérateurs faiblement principalement normaux, J. Math. Pures Appl. 64 (1985), 1-11.
[6] R. Lascar and C. Zuily: Unicité et non unicité du problème de Cauchy pour une classe d'opérateurs à caractéristiques doubles, Duke Math. J. 49 (1982).
[7] L. Robbiano and C. Zuily: Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math. 131 (1998), 493-539.
[8] J. Sjöstrand: Singularités analytiques microlocales, Astérisque, 95 (1982).
[9] J. Sjöstrand: Fonction spaces associated to global I-Lagrangian manifolds, 1111, Ecole Polytechnique, (1995), preprint.
[10] D. Tataru: Unique continuation for solutions to PDE's: between Hörmander's theorem and Holmgren's theorem, Comm. on PDE, 20 (1995), 855-884.
[11] D. Tataru: Unique continuation for operators with partially analytic coefficients, J. Math. Pures et Appliquées, 78 (1999), 505-522.

Université de Paris-Sud
Département de Mathématiques Bât. 425
91405 Orsay Cedex, France

