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1. Introduction and main reults

The purpose of this work is to extend to the case of quasi-homogeneous symbols
the recent results of Tataru [10], Hormander [3] and Robbiano-Zuily [7] concerning
the uniqueness of the Cauchy problem for operators with partially holomorphic coeffi-
cients. Even in the merely C* coefficients case our results will be more general that
those given in Isakov [4], Dehman [1] and Lascar-Zuily [6]. The method used here
will be basically the same as in the proof given by [7], that is the use of the Sjostrand
theory of FBI transform to microlocalize the symbols and then symbolic calculus for
anisotropic pseudo-differential operators and the Fefferman-Phong inequality.

Let us be more precise. Let n, d be two non negative integers with n+d > 1. We
shall set R¥*" = R? x R” and, for X or ¢ in R™*", X = (x,y), ( = (&, 7). Here y will
be the “C* variables” and x the “analytic ones”.

Let m =(mq,...,m,), m =(n,, ..., my) be multi-indices, such that
RE) O<m <---Smy_ 1 <myg=---=my,=M,
’ 0<iy < <fpy <hp=---=ig=M=M.

We set hj = M/mj, h j = M/mj. {-,-}o will denote the quasi-homogeneous Poisson
bracket that is

of O of o
(_f_g__f_g)_

(0f 98 Of Ogy ¥
2 = - = L 2
(1 ) {f’g}o 2(87‘]‘ 8_))]' c’)yj aTj)+j=p 661 8xj 6)61'651'

J=q

If a=(ap,...,oq) e N, B=(B1,...,05,) € N*, we set

d n
(1.3) ja:m|=3 2L, |ﬂ:m|=2%.
j=1

J j=1 J
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Let P = P(x,y, Dy, D)) be the quasi-homogeneous differential operator

(1.4) P= D aaplx,y)D}DY,

||+ B:m| <1

with symbol

(1.5) pix,y, &)= Y aaplx, )ET,

||+ B:m|<1

and quasi-homogeneous principal symbol

(1.6) .y, &1)= Y aapx, y)ETP.

||+ B:m|=1
We shall assume that

the coefficients (a,g) of P are C* in (x, y) and analytic in x
in a neighborhood of a point (xg, yo) € R**".

(1.7)

Let S be a C? hypersurface through (xo, yo) locally given by

(1'8) S = {(-x$ Y) . So(x» Y) = (‘p(x07 }’0)}, V[),qgo(x()’ J’O) #07
where

Op Oy dy 8(,0)
1.9 \Y ={0,...,0,—,...,—;0,...,0, —, ..., .
(19) pa? ( ox,” " Bxg 3y, Byn

Our results are as follows.

Theorem A. Let us assume

(H.1) transversal ellipticity: puy(xo, ¥0;0,7) #0, for all 7 in R" \ {0}.

quasi-homogeneous pseudo-convexity:
let & = (x0, y0; (0, T) +iAV,, 4 0(x0, y0)), T € R",
(H.2) then py(E) = {pu, pho(E) = 0 implies

1,_ . .
lT{pM(XZC — iAV, 0 0(X)); pu(X: ¢ +iAV, 4 0(X))], | xtgp > 0.
Let V be a neighborhood of (xg, yo) and u € C*(V) be such that

[ Pu=0 inV
suppu C {X € V : p(X) < p(Xo)}.

Then there exists a neighborhood W of (xo, yo) in which u = 0.
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Theorem B. Let us assume

principal normality: |{Pys; pu}(x, y;0,7)| < CI7I¥ 7! py(x, y; 0, 7)l,
(H.1Y for all (x,y) in a neighborhood of (xq, yo) and all T in R",
where |T[2M =37 |7
quasi-homogeneous pseudo-convexity:
(i) n=0orn=>1 and, with Z = (xg, y0;0,7), 7 € R"\ {0}, then

) pm(Z) = {pum, p}o(Z) = 0 implies Re{py; {pm, ploto(Z) > 0.
(H.2) 1 (i) Let W = (xq, y0; (0, 7) + i AV, 4 0(x0, Y0)), T € R", then

pu(W) = {pu, plo(W) =0 implies
1, _ _
7P (X ¢ = iAV,40(XD); P (X3 C+ AV g0 | x> 0.

(H.3) On £ =0, py does not depend on x.

Then the same conclusion, as in Theorem A, holds.

Let us make some comments on these results. The Theorems A and B contain the
results of Tataru, Hormander and Robbiano-Zuily for which we take m = (M, ..., M),
m=(M,...,M). In the C*® case (d = 0), the Theorems A and B extend the results of
Lascar-Zuily ([6], thm 1.3) (take m = (1,2, ...,2)), the Theorem 2.1 in Dehman [1]
and contain the results of Isakov ([4], thm 1.1 and 1.2) who consider only elliptic or
real symbols. Furthermore with slight modifications of notations (1.2), (1.9), Theorems
A and B remain valid with M < M or M > M (see (1.1)).

1. Here is an application of Theorem A. Let us consider, in a neighborhood V
of (0,0) in R, x R} a second order parabolic symbol of the form

n
P, y:6 1) = Y aplx, y)mm + i +alx, y)E,
k=2

where the coefficients (a;x) are real-valued, belong to C*(R, x RY) and are analytic
in x with a(0, 0) # 0. We assume that the following parabolicity condition is satisfied

Z aje(x, V)T > C(rd + ...+ 72) for all (x,y) €V, (72, ..., 7)€ R"L.
J.k=2

Then the conclusion of Theorem A holds with S = {(x, y) : y, = 0} (we take @(x,y)=
exp(—Ay,) — 1, for A large).

2. Application of Theorem B. Let us consider the case where (x,y) € R x R",
S ={p(x,y)=y1 =0} and

n—1

P =D} + Y aj(y)Dy Dy, +c(y)D,, +d(x, y)D?.
k=2
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Assume moreover that

o (aji), c are real-valued, C* in y and c(0) #O0.

e dis C® in (x,y), analytic in x and d(0) # 0 real.
Then, it follow that (H.1)" is empty, (H.3)' is trivially satisfied and V,,¢(0) # 0. We
show that (H.2)' (i) is equivalent to

n—1 n—1
- }: Oaji 9c/0y1(0)
VT,-“an—)eRn 2, —jo)T'T—————— a'(O)T‘T < 0.
" 1 fi O AT 1%22 T

For example, we can take, P = D? — Z;’;zl ij +(1 = yo)Dy, + (1 +ix)D2.

The proofs follow from Carleman estimates with an exponential weight e™*¥ and
these estimates follow from Gérding type inequalities on the operator Py = e*¥ Pe™*?.
The problem is that all our conditions are made on the set {£ = 0}. So we have to
microlocalize our symbol on this set; this is achieved by the use of Sjostrand’s theory
of the FBI transform [8], [9]. We then use the C*°-machinery (the Hormander-Weyl
calculus, the Fefferman-Phong inequality, see [2]) to prove a Carleman estimate using
some techniques of Lerner [5].

Finally I would like to thank Professor C. Zuily for useful discussions during the
preparation of this paper.

2. The partial FBI transformation

In this section we collect some material essentially taken from [9], [7]. We in-
troduce the partial Fourier-Bros-Iagolnitzer (FBI) transformation. It is defined for u in
S(R? x R") by

2.1) Tu(z,y, \) = C(\) f e~ Oy y)dx
Rd

where 7€ C4, ye R, A>1, C(\) = 2“d/2()\/7r)3d/4 and 7% = Z?zl(zj)z, z=(2) €
e,

The function Tu is C® on R? x R" x [1, oo[ and entire-holomorphic in z € C¢
for all (y, A) in R” x [1, oo[. Let us set

(2.2) ®(z)

1
E(Imz)z, z in C¢,

(2.3) Ao

2 00
[eoect ¢= - a—x(z)} ={z & eC¥:g=—Imz},
24)  Kr(x,§=@x—i§ 8, (x,8eT*R%.

Then K7 : T*RY — Ag is a diffeomorphism.
In the sequel we shall also work with the partial FBI transformation 7, associated
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with the phase (i /2)(1 +n)(x — z)*> where 7 is a small non negative real number,

(2.5) Tu(z, y, \) = C(\) f e~ NDUE=22 Y Yy,
]Rd
Let
i€
2.6) Kr, (6,9 = (x = 7,-36)

Let us introduce some notations. For k € N we set
@7 Ll HY®RY) = L2((C, e 2P0 dx)); HAR")

where L(dx) denotes the Lebesgue measure in C¢ and H*(R") the usual Sobolev
space.
If k =0 we shall set for short

(2.8) L§,+,,)¢(Cd JH'RM) = LY, o

(2.9) ulllf = [ / O+ 7O 1PdC.
Rd ]Rn
Then we have

Proposition 2.1 (see [9]). i) T, is an isometry from L*(R¢, H*(R")) to
L?,o(CY, HER™).
i) T;T, is the identity on L*(R"), where T is the adjoint of T,.
ii) T,T; is the projection from L}, o 10 LY, o N H(C?) where H denotes the
space of holomorphic functions. In particular T,Tyv = v if v = Tw where w is in
S(RY x R,

3. Transfer to the complex domain and the localization procedure

Let p = Y pmeigmi<i Gap(x, Y)EOTP, (x,y) € RY x R", be a polynomial with
coefficients in C(RY x R").
Assume moreover that
there exists Co > 0 such that if we set w; = {z € C? : |z| < Cp}
3.1 and wy = {y € R" : |y| < Co}, then for all (o, f) € N¢ x N",
la:m|+|6:m| <1, we have asg € C®(wy, H(w))).

Let P = Op%(p) be the semi-classical Weyl quantized operator with symbol p, for
u € CPRY x R,

(32) Pu(x, y) = (%)d ] f e MX=XX p(%; A )uRydXd¢.
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Let 1 be a real quadratic polynomial on R x R”. For any A > 1, we shall denote Py
the differential operator defined by

(3.3) Py =e M Pe MY,

It follows that
A IR X+X o X+X .
(B4P\u(X) = (ﬂ) //e P A +in (-2—) u(X)dXdc.

» Proposition 3.1 (see [7]). For v in C§°(Rd x R"), we have T Pyv = PyxTv where

- d+n . -
(3.5) BATu(X, \) = (%) " ]/e'*@-”f(ff y )/2)w)dj'ld7'
=— Im((x+X

where

36 ws= e’“““”’sp(xzj +ig, %:AC +idy (= ;x vig? er y))

Tu(x, §, Nd¥ A dE.

Let § is a positive real number such that 20 < Cy where Cy is defined in (3.1)
and v is a C*® function such that suppv C {X € R? x R" : |X| < §}. Let Py be
defined in Proposition 3.1.

Case of Theorem A.

Theorem 3.2 (see [7]). There exists x € C(C*), x(x,&) =1 if |x| +[£] <6,
x(x, &) =0 if |x| +|&| = 20 such that if we set, for n €]0, 1],

~ A\ d+n N x+Xx
3.7 T = (= IXo=9r / / ; )d”d
B7) OaTv(X, A) (271') .// ¢ ( &=(1+n) Im((x+%)/2) X( 2 f)w yar

where w is defined in (3.6), then

(3.8) P\Tv=0,Tv+R\Tv+ 3\

where with, for any N in N,

(3.9 IRAT vl 2

(1+mP

(3.10) 18xllz

(14m)P

N
= S IVl @ m @y

IA

—-(A 62
Ce™ I |l paga, oy
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where

(3.11) lwlgyen= D A2 DPw] 2.
2 hiBisM

Case of Theorem B.
Recall that we have assumed

(3.12) on £ =0, py does not depend on x.
In the case we have
(3.13) pu(X; A+ (X)) = piy(y, T) + Py (X, )

where pj, is a polynomial of order M in 7 and pj,_, is a polynomial of order M in
¢, but of order M — 1 in 7.
Writing p(X, ¢) = pu(X, ¢) + py(X, ¢) where

(3.14) (X, 0) = > anp(X)ETP.

||+ B:m|<1-1/M

We have

Theorem 3.3 (see [7]). There exists x € C8°(<C2d), x(x, &) =11if x|+ €] <,
x(x,8) =0, if |x|+|€| = 26, such that, if we set, for n €]0, 1]

- d+n . -
(3.15)  O\Tu(X,\) = (i) ’ /e‘*@—yﬁ o \dydr
2w = (147) Im((x+%)/2)

where
; . +X + X +y

(3.16) @ =€ [p}w(y, )+ x(x—z—x;é) [p’M_l(x—z—x +i€, y—zx; C)
+X +y + X + ¥

+ ol (22 e, -y—y;Agnw(x T e y—l) To(E, 7, \dF A dE.

2 2 2 2

Then we have, with Py introduced in Proposition 3.1,

(3.17) PyTv=0xTv+RyTv+3x

with

- Cy
(3.18) IRAT Vg, = SFITVNL,, ot - @y
(3.19) 18lz2, , < Ce P ol g st gy
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4. Back to the real domain

Let v be in S(R? x R") and w = T;} T, then it follows that
@.1) w=T;Tve SR xR"), T,w=Tv.
We deduce from Proposition 3.1
4.2) 0 Tv=0\T,w=T,0)w,

where Q) is an operator on R¢ x R”, pseudo-differential in x, differential in y.
Moreover denoting by ¢* the Weyl symbol

4.3) c“(Qx)(x, &y, 7) = 0“(OA(KT, (x, £); ¥, T),

where
(O, €)= x(x - ﬁ;&&)p(x Fr 6N

+ i/\1/;’<x + %5, y)) (thm A)
(4.4) n

PN 0= P D)+ x(x = 1 656) [pzw_l (x+ 736 59)

" n . . 3 in
+pM<x + T +n§, VX + i (x + 7 +n§, y))] (thm B)
and

A\ n+d 4 . X+X - .
0 u(X, N) = (ﬁ) f/ e”\(X”X)Ca‘*’(Q,\)(%;)\C)u(X)dXdC.

Moreover, we have
4.5) (@)X, Q) = gu(X, Q) +qu-1(X, {),

where
( s in . ..
aw(X.O) = x(x - Hns,f)pM(H 6

N in
(4.6) +i\Y (x + mg, y)) (thm A)

an(X, 0 = P D+ X(¥ = 1 6€)Phua (v + 76 73¢) (@m B)

and
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i
@n a0 =x(x- 166

" in . g in
><pM(x+—1+n§,y,)\§+t)\d)(x+—1+n§,y)>.

5. The estimates in case of Theorem A

We are now prepared to prove Carleman estimates for Q. Without loss of
generality we may assume that (xp,yp) = O and ¢(0) = 0. Let, for Z =
KLy ooy Xd3 V15 o+ s Yn)s

M 2% 2% 2 2m,
(5.1) |Z Gy = X1 [T e [xa |77+ [y [T 4 [y

Lemma 5.1. There exist positive constants C, 1y such that for all n in 10, no]
and if we set

- ooy . x — Loixes S
Y(X) = P OX + 20" OX - X =~ |X [+ —(H(0)X)?,
then
1 1
(5.2) Clgu(X, Q1 + @, am}(X, O = SO+ AT )M,

for |X|+ €| < 1/C? and X so large.

By homogeneity, (5.2) is still true with the same v if we replace ¥ by py) where
p is a positive constant.

Proof. We first take C so large that x = 1 if |X| + || < 1/C?. 1t follows then
from (4.6) that

QM(X,C) - PM(x+ 1+n§,y,>\c+1)"¢ (x+ l+nf»)’>),
n

= pu(X; A +iMY' (X)) + EO(O‘ + [ AT])M),
and

53) @ amdle=o = {Par (X3 AC — iA'(X)); pu(X5 A + i) (XD} g
' +1O(OA + [MT1m)*M).

We shall also write

1
(54) @wr am)(X, O = Gu: qmdle=0(X, O + O + IMT ) M),
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and
(5.5 puX5 A +IMY (X)) = pu(X; A +iAV), 490(X))|e=0
+(é + A—1/<M-‘>)O((,\ + AT LOM).
Then
(5.6) gm(X, Q) = pu(X; A +iAV, 4 9(X))]e=0
+ (% + ,\—1/<M—1>)O((A + IATLOM),
and

57) @ au)(X. ) = {Pu (X5 X = IAV (X)), pur (X3 A+ AV (XD |y
1
#(n+ 25 + XY OO+ AT,
Furthermore, we have

C 2
(5:8) 7| PN+ iXT, 9 (x|

1
4= { P (X AC = A, Y O0): P (X5 AC+ AV O g

1 1
= F0+ IMT 1 )*M, for |X| < 75 and 7 in R".

Indeed, (5.8) is equivalent to

C . 2
P CH AT, Xl

A
42 Bu(X: ¢ = 1AV, O0): (X ¢ + AV, 90|

1

z O ITlm)*™, for |X| < o

We see, setting I' = \/(A + [T]n), W = (X, Z +il'V, 49(X)) and
Z=(0,...,0; 7 /O + |7l o T/ O+ [T 1))

that (5.8) is equivalent to
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(5.9) —lpM(W)I +FIm(Z()\+|T|m1 hj PM(W)%(W)

j=1 i

+Z<A sl 2 (W)a’ﬂ(W))

0&

k=1

2 o 3PM 8PM 1—h;
+I'?Re 223 ( )5 WO +17Im)

Jj=1 s=q
n d
0

ZZ (X)(A+[ i 2P (W)—aZTM(W)

j=1 k=p
+iz 00T )= W%—W

) n 8&( )M (w)

J= =q

Sy Y X)(\ 1=k, 2P ) > Lo g !
+ZZa SO Irl) a@( rog W)z for X< &

1l
—_

Jj=1 k=p

We prove (5.9) by contradiction. If it is false one can find sequences Xy, A, Tx,
Iy with | X <1 /kz, A > €* and 7, in R, such that, by definition ),

k 0 0 0
(5.10) Z|pM<Wk)|2+rkIm(Zﬂ(Wk)—”—M<Wk)+Z — )
i=q
. 9% op - e op Opm
2 M M
+FkRe(ZaySa 0 (Wk> (W;<)+M8 e O W2
op 0
*2223 p“<wk> pM(Wk))
$=q J=p
2(|5n 22 00 0Pm [ apM )
+krk( 2 ox; (V) 3 W)

F2 op 0 0
( ﬂ(Wk)ﬂwm Z W(W 0 6’2‘7 <Wk))
J J

+2kT? Re [(Z T(0)6"'%(W ))( a<p aa’;’”(wk))] F A<
J = s

| -

where

(5.11)  |Axl < CokA /M ™Y < Coke™/M=D 4 is independent of k.
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Since T'y + | Zk|om,m) = 1, taking subsequences, we may assume that
(5.12) Iy — I and Z; — Z° with T% 4+ |Z°%(,.0 = 1.

Case 1. T0 #0.
If we divide both members of (5.10) by k, we get with W = (0; ZO+iFVp‘qga(O))

pu(WO) = {pu, plo(W®) = 0.

Removing all positive terms in (5.10) and letting k go to +oo, we get

r°Im( 8ﬁ(W )%WO) Z%W )%(WO))
J

0Dy ~0.Opum
+T'%)’Re ( O)=HEW)—(W°
s% aysay, 0T; ot

4 82 op 8
+ 3 S O AW W)

& 0x jOx; " O&; &,
8PM 8PM 0 )
+2 w w
E_q jzp 6 ( ) ( )

which contradicts the hypothesis (H.2) in theorem A.

Case 2. TI'’=0.

Since T + |Z°|(m.m) = 1, we have Z° # 0 and W° = (0, Z°). If we divide both
members of (5.10) by k, we get py(W° = 0 which is contradiction with (H.1) in
Theorem A.

Now (5.6), (5.7) and (5.8) imply (5.2) if n is small enough and C, A so large.
This ends the proof of Lemma 5.1. O

From now on C is fixed according to Lemma 5.1.
Let Gy € C*®(C?) be such that 0 < fy < 1 and

~ o 1
9 =1 b

o(x, &) if [x[+[¢] < T+ aC2

(5.13) i -0 if n_ 1
o(x, &) if |x|+[€] > —— T+ 2C

fy is almost analytic on A(4n)e-
Let us set, with KT,] defined in (2.6),

(5.14) 00 = 00l Agempe © KT,

n
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It is easy to see that fy € C®°(R?) and there exists € €]0, 1/(2C?)[ such that

1 if |x] + €] < eo,
(5.15) bo(x, &) =

0 if > —.
if Jxl+16] = 5

Let h € C°(R") be such that 0 < h <1 and

1
1 if [yl < —5.
(5.16) h= 4?
if —.
0 if Iyl = o=
Finally let us set
(5.17) 0(X, &) = h(y)o(x, £).
Then
1 if [X]+ €] < eo,
(5.18) 0(X, &) = .
0 if |X|+|& = roh

Lemma 5.2. Let Q = OpY(gm). There exist positive constants Co, C1, Ao such
that for every u in S(R¥") and \ > \g, we have

C C
(5.19) 7‘(0p§’«1 = O+ ATl u, ), + 11 Qully, = 7°||lu|||§,.

Proof. We write Q = Qg +iQ; where Qg = OpY(Reqy), Q; = OpY(Imgy).
Then writing || - || for the L2(R%*")-norm

1
(5.20) 1 Qul* = | Qrull® + 1 Qsull* + Z(1Q", Qlu, w).
Now the semiclassical principal symbols of [Q*, Q] and Q% Qk are (1/i){qy, qm}

and q}( where ggr = Regqy, g1 = Imgy. We claim that one can find a positive con-
stant B such that

1 _
(5.21) B(1 = 0)(A+ |AT]m)*M + Clgu(X, Q) + ~@u, am)(X, O
1
> E(’\ + AT)*M,  for all (X, () € R¥4,
Indeed Lemma 5.1 implies (5.21) if |X|+|£] < 1/C?, since 0 < § < 1, and if |X|+|£| >

1/C? then, by (5.18), 6 = 0 and |gu|? + |{@ s, am}| < C1(O\ + |AT|m)*M, thus (5.21) is
true if B is large enough.
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Then we can apply the Gérding inequality in the following context. Let

" \2dr?
=dx’ +dy* +d€?+y ————L .
g det e dyt el )

This is a metric which is temperate and slowly varying in the sense of Hérmander [2].
Let a € S(O\ + |M 7|k, g), k € N, be a symbol such that Rea > (A + |A7|,)%*, and

A = OpY(a). Then there exists Ao > O such that for every u in S(R4*") and every
A> )

6
(5.22) Re(Au, u);2 > §I|lullli.

Thus we may apply (5.22) with, for a, the left hand side of (5.21). It follows that
for A >\

B(OpX((1 = O)A+ [ATln )™, ) + Cll Qgul)* + C 1 Q ul®

1
+M[Q*, Qlu, u) > %mumﬁl.
Now, we deduce from (5.20) that
2M1Qull?, > C(I1Qrull® + 1 Qrull® + N[Q*, Qlu, u) if 2A > C,
and Lemma 5.2 follows. O

Proposition 5.3. Let Q) be defined in (4.4). Then one can find positive con-
stants Cy, Cy, Ao such that for u in S(R*™") and \ > X\g

(5.23) —i—‘(w;«u — O+ ML) M, ), + 1@l = %Illulll?u-
Proof. Writing Q) = Q+Qun—1 where Quy_1 = OpY(gu—1) defined in (4.7), then
1Qullz: < 211@xullz: + 211 Qu—1ul72,
and
Qu-1 € OpY(S(A+A7l)" ™, 9)),

we deduce that

C
(5.24) Qul?, < 2[1Qxull?, + pnmmﬁl.
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It follows from Lemma 5.2 and (5.24)

Co

2
P

C C
7‘(0pf«1 = OYA+ AT, w) 12 + 20 Qa7 + 5 1lull 3 =

and Proposition 5.3 follows. O
We are now ready to prove the following estimate.

Proposition 5.4 (see [7]). Let Q » be defined in Theorem 3.2. Then there exist
positive constants Cy, Cy, Ao, such that for v € C8°(Rd+"), suppv C {X DX <
1/4C*H} and X = X

(525 ITvlz, < CAIOATYIG,  +Cae ™ lIIvII,

1eme (€4 HY @)
where 0 > 0 depends only on n and C.

Proof. We apply Proposition 5.3 to u = T;Tv which is in SR¥™). 1t follows
from Proposition 2.1

(5.26) el = 0Tl s, oty = WT 0l ey
(5.27) 1Qxullzz = Ty QAT ol . = 1OxT vl

(1+m® (+m)d

Let us set R = Op¥((1 — 6)(A + |A7|,)*M). Then Proposition 4.6 in [7] show that for
any integer N one can find a positive constant Cy such that

(5.28) I(Ru, u);2| < Cw

= v Tz

-2 2
(,+n)¢(H§")+O(e UHIUIHM)’ g >O

It follows from (5.23), (5.26), (5.27) and (5.28) that Proposition 5.4 is proved. (|

Theorem 5.5. Let Py be the operator occuring in Proposition 3.1. One can find
positive constants Cy, Cy, \o, o such that for v € C(‘)"’(Rd*”), suppv C {X : |X]| <
1/(4C?)} and X > \g we have

2
(5.29) ITolLe o mtreey <

CIBAT ]} +Coe[Ju]lf},-
(1+m)®
Proof. This follows from Proposition 5.4 and Theorem 3.2. |

6. The estimates in case of Theorem B

Let Oy = OpY(gm) where gy is defined in (4.5). We have

1
(6.1) I Qumull2, = | Qruli?, + 11 Qull?, + 5 Qs> Qulu, w),
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where Qp = Qr+iQ1, Qr = Qr and Q7 = Q.
Let us introduce the following Hormander’s metrics

d 2 2 n 2 2

A2d¢2 A2
=dx?+dy* + E I 4 J .
s P e B e

6.2 i= J=l
( ) d 2 d 2 d 2 . /\sz]z

= + + + _
g =dx*+dy? +d¢ ,Z;f‘ O I

Then it is easy to see from (4.5) that
(6.3) am(X, §) = piy(y, T+ X(x, E)(rm-1(X, Q) + nsp-1(X, (),
where

R0, = x(x = 76 €)M (0 = Py (X, 0,
©D N ry € SO+ IMI)M 1, 22), st € SO+ A1), g5),
Pi € S(A+ [A7lm)™, 81).

We shall writt Qu = Py, + Ry—1 + nSy—1 where 0“(Py,) = py(y,7), 0“(Ry_1) =
Xrm—1, and o“(Sy—1) = Xsm—1. Let us set

(6.5) L =Pl +Ry_i.

Since Ry—1 and Sy_; belong to OpY(SOMA + |AT|m)~!, g5)) and p), depends
only on (y, 7), it is easy to see that

(6.6) [Q%. Om]—[L*, L] € §0p;"(s<A2<A + AT 2, g)).
We shall set 0“(L) = ¢, + £, = ¢ where

gl = P;w()’v T)+ ()er—l)|£=0,

6.7) ~ .
b = Kru-1 — (Xrm—1)le=o-
Then
(6.8) 6 e S(A+ MM, 81), €2 € SO+ IMTL)M T, 82).

We shall also write

1 1 -
(6.9) o“([L*, L]) = X(dl +d,) where d; = ?{E, £}|e=0-
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Then since p), depends only on (y, 7), we have
(6.10)  di € SAA+ MM g1), da € SO+ AT, g2).

Lemma 6.1. There exists a positive constant C such that if we set

1 1 C
— ’ 4 . o X2 -~ 2 2
¥(X) = ¢ OX + 50" OX - X — 51X + (' 0)X)
then
1
(6.11) Cle(X, P +di(X,T) > EA%A + [(AT]) M2,

for |X| < 1/C? and T in R". Moreover, by homogeneity, (6.11), with possibly other
constants, is still true with the same 1 if we replace ) by py) where p is a positive
constant.

Proof. We first take C so large that ¥ = 1 if |x| + |£| < 1/C2. Then from (6.7)
and (6.9), we have

01X, 7) = paa (X AC+ (X))l
01X, 7) = {Pa (X AC = 0N, (X, A + MO0} e
Now, we write
01X, 7) = pur (X A + AV, (X))o + 56, 7,
(612) 1 di(X, )= = [PulX3 X — AV, 0N P (X3 A + AV (D eco
+ry(X, 1),

where

(6.13) { ; 53 € SO+ [AT|p)M 171/ M=D g
an
rx € SN+ [A7|p) M2/ M=D gy,

First, we shall
c3 . 2
(6.14) 7 [P (X; A +iAVp (X))o

1
+27 (PG AL+ AV g (X); Pu(X, A+ iV (XD} g

1
> E)\Z()\+ IAT])* M2 for |X| < 512' and 7 in R".
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(6.14) is equivalent to
C3
i lPuxiC +iAY,, (X em0|*

1

+5 3 775 (Pu (X (= iV g (X)); pu(X, C+iAV, g (X))} le=0

1
> —(A+ I71,)*M 2 for |X| < o

We see (6.14), setting I' = A/(A +|7|n), W =(X, Z +iT'V, ;9(X)),

71 Tn
Z=10,...,0; ,
( A+[Tl) 7 A+ ITIm)"'">

that (6.14) is equivalent to

(6.15) 4CF21pM<W)|2+lIm(;(A+| 7)™ 851 (W)aﬂ(m
+Z()‘+ |7_| )l —h; pM 8PM )
j=1
d d 2 a
+Re(ZZ 007l by TP 7, P
Jj=1 k=p 8{,

Opm
W) —2
f,() (W)

d
>
Jj=1

n

1-h;
(X)(>\+I )™ =

Z

4 B}
Z (X)<A+| ) (W)—(%(W)
Z

k=g

0
PM( W) IPm pPm

1—h;
(X)O\+| Im) ar, B,

>
g

We prove (6.15) by contradiction. If it is false one can find sequences Xy, Ak, Tj,
Iy with | X;] < 1/k%, A\ > €* and 7 in R”, such that

1 1
W)] > —, for |X
( ))_C or |X] < =

k3 , 1 BpM BpM
(6.16) HIPM(Wk)l +1_,—k1m< e
+§ MW, )—(W)>+Re(§ M 7o 2PM
8{1 et E))cjaxT 85, &

n 82(‘0 8 pM 8pM
* 2 5305, O or, Ty, W0 133 5 T @ e T )

s=q j=p
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(|2 S0t +| £ o

+2Re[( 'n %(O)GPM(WU)< 8“’ ap“(m))])

67']' 8&
aPM 6PM Opm 1
- Wi W)+ By < -
2(_ LW (W) + B <
where
Cik
6.17) |B,| < rl A;/™MY ¢y independent of .
k

Since Ty + |Zg|m.m) = 1, taking subsequences, we may assume that
(6.18) Iy — I and Z; — Z° with T%+|Z%(m = 1.

Case 1. T0=0.
If we divide both members of (6.16) by k3, we get

(6.19) pu(W® = {py, p}o(W°) =0,

with WO =(0; Z° +iT°V,, ,(0)).
Removing all positive terms in (6.16) and letting k go to +0o, we get

1 0Py 770 ?ﬂ 0 0Py 70 3pM )
Folm(; (W) (W)+Z %,

0? op 0 ") op 1o}
+Re(za O EWOZEWO) + 37 = ()W) W)

o 0% Ox; 00§ o0&, ys0y; = OT;

$,J=q

B B e )8”M<W°>)<o
8)136)61' 661 0

which contradicts the hypothesis (H.2)' ii) in Theorem B.
Case 2. T%=0.
Since T'% +|Z°% (. = 1, we have Z° #0. In this case, we write

d
0Py 0
(620) B = —Im(Z(/\kHTklm)“h e o PV (Wi
j=1 é-l 'xJ

+Z<A+|T| )t ”M(Wo

Wk)) + Dk
Jj=1

Yj

943
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where

|Di| < Czk)\,:l/(M—l), C, independent of k.
Therefore

1 _
(6.21) By = —2i—(Ak + 17 l) M By, PM (X150, T1)

dp
+Re(§:8 (Xk)( ”“(Xk,zk)a B 70
$,J=q
6PM
5y zo o L Z0) + f{;a
6pM P 6 2_ ’
(a—gj(xk,zk)a& (Xi Z) — 5 (Xk,zk>8w§j(xk,zk)))+Dk

where

—-1/(M-1)

ID,| < Cs (k,\ + rk), C; independent of k.

We use then the assumptions (H.1)' in Theorem B. We get

i(/\k + 17 lm) M (Bags PMI (X, O, Tk)| < C'lpm(X, 0, Tk + 7k lm) ™
0
< Clpu(Xes ZW)| < C'lpu(Wi)l +C rk(l Z —(Xk)ﬂm)

+ Z —(xk>aﬂ<wk>|) +O(r}).

Therefore

1 _ k2 4(C'Y’T
(622) | 3O+ el (B, Pa}(Xei0, rk)| < g IPM (Wl + (k332 :

+C rk(i Z —(Xk)?—”—‘ﬂwk)( | Z - (Xk)a’%(wk)l) +Or}).

It follows from (6.21), (6.22) that (6.16) is equivalent to

1ok3 K2 )
629 3 (57 =) Ipw (W)
&p Opm Pu
R — X — X, Z , Zy) — X, Z
+ e(Z xo( 222 (X 20) Jayj(xk 0= Gy e 2055

5.j=q

(X4, Z1)
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2— 2_

9Pu Opum
3 (Xk,zk)a& (e 2 = 5 (Xk,zk)agsaéj(xk,zk)))

+ Z
8, J= P
l Z—(O)a”M<wk>j2

+k<‘ Z BpM B¢
+2Re[<z—«»5"M<vvk>><za D))

_C/( :

___( 3PM 6PM

o0 (Xk)a” 5 (W + | Z —(Xk)%" M(Wnl)
3

Opu
(Wk) a¢, (Wk))

d n
0 o 0 )
+Re<z 2021 W) pM(Wk>+ 2052 W) 22 (W

joomp O%i0% 351 ;s 5z 07,0y, 88
n d
2y ) Py () (W) (W) +(9(k)\‘1/(M bsr +_L) <!
~ 9y, 0x 5 k k ko) S
s=q j=p

Dividing both members by k*/T'2, we get, since 'y — 0, k — +00,

(6.24) (W =0 with w° = (0, 2%, Zz°=o.

Now since, (k/T? — k3/2/T2)| pa(Wi)I> > 0, dividing (6.23) by k, we get
(6.25) {Pm, PYo(W®) =0.

Removing all positive terms in (6.23) and letting k£ go to +oo, we get

“ Py =0, O°PM o 0. Py —0 )
Rel:“._qa (0)( (W )asaj(W) 6 (W )8 v (W)
. 6pM o2 Pm 0 apM 0 8%p Py _0)
+Z ! )( 350, B, W ag 6 ")
d . 3
8 3PM —0.0pM o % 0Py ~0 apM 0
JSZ.D 6x13xs 35‘ o O&s W )+”.Z=q 0y;0y; © oT; (W ) (W )
+2i2 a")M(W )apM(WO)] <0
s=q s=p 0ys 9

which is contradiction with (H.2)' i) in Theorem B.
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It follows from (6.12), (6.13) and (6.14) that
c3 ) 2 1 1, o 1
T’PM(X§)\C + lAVp,q@b(X))lg:o} + Edl(X. T) > E/\ A+ A7) + Zr,\(X, 7).
But we have
| P (X3 A +iAV, g h(X))le=o|” < 2061(X, TP + C' XX + [ AT |, )2M =22/ M=D
1
| 577X T)| < C7XR O+ [ar P21/,
l
11 follows that
C—3|£,(X I? + ldl(x ) > L,\2()\+ IAT )M 2
2 ’ 2 Yol " ’
for large A\ and Lemma 6.1 follows. O

Lemma 6.2. We have

C*+1
(6.26) (T)(" OpsRe £y)ull2: + | Opy (im £y)ul )
1
(0P8, = 5y,
where ||| - |||p—1 is defined (2.9), and for large \.

Proof. Let us a = (C3/\)|6|> +d;/)\? and ag = al,=. Let hg € C(R?) be such
that hg = 1 if |x| < 1/(4C?), ho =0 if |x| > 1/(2C?) and O < hy < 1. Then we have
1

(6.27) a+(1—ho)ao —a) > —(A + T2 1Y) < S

Indeed, if |x| < 1/(2C?), then by Lemma 6.1, a and ay satisfy (6.11) thus (6.27) is
true. If |x| > 1/(2C?) then hg = 0 and aq satisfies (6.11) and (6.27) is also true.

Now denoting by # a symbol in the class S((A + |AT|,)¥, g2), by (6.8) and (6.9),
we have

1
|pM<y, PP+ o 1 (- (Pl 7)o S (P 0T)) S ReCEr - ta-1) + a2
Thus a —ap = (1/A\)Re(?; - tyy—1) + tayy—2 SO

(6.28) la — ag| < 'A;' +C' A+ [ AT 2,
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It follows from (6.11), (6.27) and (6.28) that if |y| < 1/(2C2)

341
629) 3 Peps d1+C(1—ho)()\+|)\7’|m)2M 2 —(A+|Arlm>2M -2

Let h;, € C(R") be such that 0 < hy < 1, by = 0 if [y| > 1/(2C2) and hy = 1 if
ly| <1/(4C?). Thus we have, from (6.29)

3
((C e d1+C(1—ho)(>\+|)\TIm)2M 2 <A+1Ar|m)2M‘2)A2h%<y)20

for any (X, 7) in R¥*" xR", and this symbol belongs to S((A+|A7|)*", g1). Therefore
we can apply the Fefferman-Phong inequality and get

(6.30) (OP,\ ((C s 1)|€1|2h )u u) + (Opf(%h%)u, u)
> E(op RO+ T2, u)

! w — C
~C'(OPY B = h)r+ N1 D, ) = Szl lull -

We can use the symbolic calculus in S(-, g;). We get

i+l i+l
J=<0p>\(( * )|el|2h) )=( + )((opy(e{*hl)*op;"(e{*hl)

2
1
+0pf(€fh1)*0pf(€{h1)>u, u) + Xgo(lllullﬁw_l)
where ¢R =Re/; and ¢! =Im#,. Thus

c3+1 1
630 7= 32 (1008 @ulz: + 1008 EDwI) + 5001

because
Op3 (€1 )h1 = OpX (€] hy) + OpX(S(A + 1ATIm)" ™, g1)

for K =R or I and hyu = u since suppu C {|y| < 1/(4C?)}. By the same way
OpS(dih}) = Op}(d)hi + OpY (SN + IAT|m)* 72, g1)

thus

(6.32) (Op¥(dih}yu, u) = (Op¥(du, u) + AO(||ulll3,_).
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We have also
1
(6.33) (0P BT+ (A1) M 2y, u) = [[|ul|3,_; + Xounum_.),
(6.34) (OpY(HI(1 — ho) A + |AT1m)*™ ), u)

1
= [11(1 = houlll3y_; + XO(IHMIII?W_I),

and
2 Cn 2 .
(6.35) (1 = ho)ulllp—y < )\—NIHuIIIM_l, for any N in N.
Thus (6.26) follows from (6.30) to (6.35). O

Lemma 6.3. Let ¢, and d, be defined in (6.7) and (6.9). Then there exists o > 0
such that for any € > 0 one can find a positive constant C. such that

(6.36) 1|0pY (Lo)ull@eny < Aelllulllm—r + VACc | ulll—1 + O™ [[v]llm-1),

and
Ce

(6.37) |(0p§’(dz)u,u)|5/\2(alllu!llfu_1+ﬁ

lall 1) + OE™ 11wl ),

for any u=T}Tv, v € CP(R™9),

Proof. Given € > 0, let x(X, &) in C* with 0 < x <1 and suppx C {|X|+]¢| <
€}. We claim that one can find C. > 0 such that

L c
(6.38) L Op;(Lxullr: < elllulllm—1 + 7—§-IIIuII|M—1~

This follows from the sharp Garding inequality in the class S(1, g2). Indeed, we
have €2\ + A7) M2 — E2x*O\ + A T|w)*™~2 > 0. Thus

(6.39) e2(0OpY (O + AT M, u) — (OpYERP A+ IMT 1) M D), u)
C
> —Tﬂnunlil_l.
Since £, € SO+ |AT|)M 7, g2) and £y]¢=o, we have
(6.40) 0Py (Lax)ullz < CAIOPY(EXA + IATIm)™ Dull 2.

We deduce (6.38) from (6.39) and (6.40).
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Therefore taking x = 6(x, £)g(y), such that x =1 if |X| + |£| < €/2, we write
0Py (&)ullr: < 10pX(L2x)ullrz + 10pX((1 — x)e)ull 2.
It follows from Proposition 4.6 in [7] that

C
(6.41) 10PN ((1 = x)e2)ull 2 < 'X%H'MHM—I + 0| [1v]llm-1)-

Then we deduce (6.36) from (6.40) and (6.41). This gives the first part of the lemma.
For the second part, we observe that dy € S(A\2(\ + |AT|)*M~2, g5). Therefore from
(6.39) and Proposition 4.6 in [7], we deduce (6.37). O
We are now ready to prove the Carleman estimate for Q.
Proposition 6.4. Let Qy = OpY(qy) be defined in (4.6). Then one can find pos-

itive constants Co, Ci, Ao, 0 such that, for any u =T Tv, v € C5°, suppv C {|X]| <
1/(4C%)} and X > )Xo, we have

c
(6.42) Colllulll3_, < T’II OQuully: + O™ [v]l3_ -
Proof. It follows from (6.3), (6.5) and (6.7) that

IOPX @Dl < | Qrullz + 10OpR (€3 ull 2 + 1l OpY (Xsyy—ull 2

Therefore, applying Lemma 6.3, we deduce

c.
(6.43) 10p3 @l < 1 Qkullis + CLA(< + = + Can) -1

+O(e™|[|v[llp-1), for K =R, 1.

Using (6.6), (6.9) and Lemma 6.3, we get
(6.44) |((Op3@) = X Q3. Qubu, )|

= |((OP3@) — nOPLSOM A+ A1 ™2, gou, u),
< 1(0p¥(d2)u, w)| + X2 |[(OpY(S( + AT M2, g2)u, u)|,

C. Ao
< (e + =+ Can)lullfy- + O vl -)-

It follows from (6.43), (6.44) and Lemma 6.2 that
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1 2 A
sl < 55+ D(1Qul: +1Qul}: + 5 ((Q4. Ol u))

~ C ~ -
+C) (e+ — +C277)|||““|§4-1 + O NI1vl1f3-1)-

VX

Taking € and n small, then X large, we get, by (6.1), proposition 6.4. O

Theorem 6.5. Let P, the operator occuring in Proposition 3.1. One can find
positive constants Cy, Cy, Ao, €2, 0 such that for v € Cg"(]Rd*”), suppv C {|X]| < €2}
and \ > Ay we have

(6.45)  A|Tvll3,

D 2 —Ao 2
< 1 .
2 o(C4 HY TR = Cil Py v“L(2|+n)¢ + Cae Hullla—1

Proof. By Theorem 3.2, (6.45) will follow from the same estimate for Q. Now

10T vllzz, , = I1@xullz:

{temo
and by (4.5) we have 0¥ (Q,) = c"(Qum) + 0" (Q),_;) Where
Q1 € OpR(S(A+ A7), g2)).
Thus (6.45) follows from Proposition 6.4 if X is large enough. O
7. End of the proof of the Theorems A and B
The Theorems 5.5 and 6.5 ensure that one can find o > 0 such that

- 2 D 2 - 2
(7.1) NMNTo|2, < CIBATIZ,  + Coe |l
(1+m)® (1+n)®

The end of the proof, i.e. the passage from Carleman’s inequality (7.1) to uniqueness
of the Cauchy problem for the operator P, is the same as the one in Robbiano-Zuily
[7].

The proof of Theorems A and B is complete.
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