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1. Introduction and main reults

The purpose of this work is to extend to the case of quasi-homogeneous symbols

the recent results of Tataru [10], Hormander [3] and Robbiano-Zuily [7] concerning

the uniqueness of the Cauchy problem for operators with partially holomorphic coeffi-

cients. Even in the merely C°° coefficients case our results will be more general that

those given in Isakov [4], Dehman [1] and Lascar-Zuily [6]. The method used here

will be basically the same as in the proof given by [7], that is the use of the Sjδstrand

theory of FBI transform to microlocalize the symbols and then symbolic calculus for

anisotropic pseudo-differential operators and the Fefferman-Phong inequality.

Let us be more precise. Let n, d be two non negative integers with n+d > 1. We

shall set Rd+n =Rd xW1 and, for X or ζ in Rd+n, X = (JC, y), ζ = (ξ, r ) . Here y will

be the "C°° variables" and x the "analytic ones".

Let m = (mi, . . . , mn)9 fh = (fh\, . . . , mj) be multi-indices, such that

ί 0 < mi < < m^_i <mq = = mn = M,

\ 0 < fh\ < < mp-ι < fhp = = rhd = M = M.

We set hj = M/rrij, hj = M/rhj. {•, }o will denote the quasi-homogeneous Poisson

bracket that is

*r? \dτj dyj dyj OTJ / ^ ^dξj dxj dxj dξj /

If a = ( α i , . . . , ad) e Nd, β = (βι, . . . ,/?„) e N n , we set

(1.3) \a\fh\
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Let P = P(x, y, Dx, Dy) be the quasi-homogeneous differential operator

(1.4) P= Σ aaβ(x,y)D«Dβ

y,
\a:m\+\β:m\<\

with symbol

(1.5) P(χ,y,ξ,τ)= Σ a«β(*,y)ξaτβ,
\a:m\+\β:m\<l

and quasi-homogeneous principal symbol

(1.6) J2 β

\a:fh\+\β:m\=l

We shall assume that

the coefficients (aaβ) of P are C°° in (JC, y) and analytic in x

in a neighborhood of a point (x0, yQ) e Rd+n.

Let S be a C 2 hypersurface through (JCO, yo) locally given by

(1.8) S = {(x, y) : φ(x9 y) = φ(x0, y0)}, Vp,qφ(xo, yo) =

where

(1.9)

Our results are as follows.

Theorem A. Let us assume

(H.I) transversal ellipticity: pM(xo, yo',0, r) f 0, for all r in Rn \ {0}.

(H.2)

quasi-homogeneous pseudo-convexity:

let Ξ = (x0, yo\ (0, r) + i\Vp,qφ(x0, yo)), r e

then P M ( Ξ ) = {pM, ^)o(Ξ) = 0 implies
1 _
-{pM(X;ζ — i
i

V be a neighborhood of (JCO, Jo) α w ^ w ^ Coo(V r) ̂>

ί Pw = 0 iVi V

1 suppw C {X € V : p(X) < φ(X0)}

Then there exists a neighborhood W of (XQ, yo) in which u = 0.
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Theorem B. Let us assume

I principal normality: \{pM; pM}(x, y;0,τ)\ < C\τ\%~ι\pM(x, y O, τ) | ,

for all (x, y) in a neighborhood of (JCO, yo) and all r in W1,

where \τ\2

m

M = Σ%i\τj\2mj-

quasi-homogeneous pseudo-convexity:

(i) n = 0 or n > 1 and, with Z = (JC0, yo\O, r), r eRn\ {0}, then

pM(Z) = {pM, φh(Z) = 0 implies Re{^M; {pM, φ}o}o(Z) > 0.

(H 2)' i (ii) Lei W = (jc0, yo; (0, r) + iλVM<p(jc0, y0)), r € Rn, ί/ẑ n

T { ^ M ( X ; C " /λV/,,^(Z)); jpM(X;C + /λV/?,^(X))}o|x=(,o,yo) > 0.
I ζ=o

(H.3)7 O« ζ = 0, /?M does not depend on x.

Then the same conclusion, as in Theorem A, holds.

Let us make some comments on these results. The Theorems A and B contain the

results of Tataru, Hόrmander and Robbiano-Zuily for which we take m = ( M , . . . , M),

m = (M, . . . , M). In the C°° case (d = 0), the Theorems A and B extend the results of

Lascar-Zuily ([6], thm 1.3) (take m = (1,2, . . . , 2)), the Theorem 2.1 in Dehman [1]

and contain the results of Isakov ([4], thm 1.1 and 1.2) who consider only elliptic or

real symbols. Furthermore with slight modifications of notations (1.2), (1.9), Theorems

A and B remain valid with M < M or M > M (see (1.1)).

1. Here is an application of Theorem A. Let us consider, in a neighborhood V

of (0, 0) in Ijt x EJ a second order parabolic symbol of the form

n

p(x, y; ζ,τ)=Σ ajk(x> y)rjTk + in + a(x, y)ξ2,

where the coefficients (ajk) are real-valued, belong to C 0 0 ^ x R") and are analytic

in x with a(0, 0) ^ 0 . We assume that the following parabolicity condition is satisfied

<*jk(x, y)τjτk > C{τ\ + . . . + T2

n) for all (JC, y) e V, ( r 2 , . . . , τn) e Rn~ι.

Then the conclusion of Theorem A holds with S = {(x, y) : yn = 0} (we take φ(x, y)

exp(—λyn) — 1, for λ large).

2. Application of Theorem B. Let us consider the case where ( J C J ) G I X E

S = {φ(x, y) = yι= 0} and

n-\

2

n + d(x, y)D2

x
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Assume moreover that

• (fljk), c are real-valued, C°° in y and c(0) ^ 0 .

• d is C°° in (JC, j ) , analytic in x and d(0) ̂ 0 real.

Then, it follow that (H.I)' is empty, (H.3)' is trivially satisfied and Vp,qφ(0) i 0. We

show that (H.2)' (i) is equivalent to

V(r2,..., ,,_,) e R-\ £ ^(0)rjTk - ^ ^ £ ^ , ( 0 ) ^ < 0.
j,k=2 ^ l C^ ' j,k=2

For example, we can take, P = D2

χ - Σ"!^ D2. + (1 - yn)Dyn + (1 + ix)D2

x.

The proofs follow from Carleman estimates with an exponential weight e~χΨ and

these estimates follow from Garding type inequalities on the operator P\ = ex^Pe~x^.

The problem is that all our conditions are made on the set {ξ = 0}. So we have to

microlocalize our symbol on this set; this is achieved by the use of Sjostrand's theory

of the FBI transform [8], [9]. We then use the C°°-machinery (the Hormander-Weyl

calculus, the Fefferman-Phong inequality, see [2]) to prove a Carleman estimate using

some techniques of Lerner [5].

Finally I would like to thank Professor C. Zuily for useful discussions during the

preparation of this paper.

2. The partial FBI transformation

In this section we collect some material essentially taken from [9], [7]. We in-

troduce the partial Fourier-Bros-Iagolnitzer (FBI) transformation. It is defined for u in

^ x Rn) by

(2,1) Tu(z, y, λ) = C(λ) / e-(λ/2)(χ-z)2u(x, y)dx
JRo

where zeCd, y eR\ λ> 1, C(λ) = 2- J/ 2(λ/π) 3 ί // 4 and z2 = Σ,%i(zj)2> z = (^) e

C*.

The function Tu is C°° on M2rf x l β x [1, oo[ and entire-holomoφhic in z e Cd

for all (y, λ) in Rn x [1, oo[. Let us set

(2.2) Φ(z) = -(Imz) 2, z in Cd,

(2.3) ΛΦ = j(z, 0 G C 2 J : ξ = j ^ ( z ) ) = {(z, 0 € C2J : ξ = - I m z } ,

(2.4) AΊ-(JC, 0 = (JC - iξ, 0 , (Λ, 0 e Γ*MJ.

Then Kj : Γ*R^ —>• Λφ is a diffeomorphism.

In the sequel we shall also work with the partial FBI transformation Tη associated
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with the phase (ι/2)(l +η)(x — z)2 where η is a small non negative real number,

(2.5) Tηu(z, y, λ) = C(λ) ί e-(χ/2)(l+η)(χ-z)2u(x, y)dx.

Let

(2.6)

Let us introduce some notations. For k N w e set

(Ί 1Λ T2 (Cd Ήk(MnW — T2((Cd Λ-2λ(l+r/)Φ(x)r / J \\.

where L(dx) denotes the Lebesgue measure in Cd and Hk(Wι) the usual Sobolev

space.

If k - 0 we shall set for short

(2.8) 2 °

(2.9) I I | K | | £ = ί [ (λ+\τ\m)2k\ύ(ζ)\2dζ.

Then we have

Proposition 2.1 (see [9]). i) Tη is an isometry from L 2 (E J , Hk(Rn)) to

(l+r/)φ(^ ' H ( M ))•

ii) T*Tη is the identity on L2(Mn), where T* is the adjoint of Tη.

iii) TηT* is the projection from L2

ι+η^φ to L2

l+rj^ Π Ί-ί(Cd) where 7ί denotes the

space of holomorphic functions. In particular TηT*v = v if v = Tw where w is in

S(Rd x Rn).

3. Transfer to the complex domain and the localization procedure

L e t P = Σ\a:m\+\β:m\<ιaoίβ(x^y)ξarβ, (x, y) € Rd x Rn, be a polynomial with
coefficients in C^(Rd xRn).

Assume moreover that

(3.1)

there exists Co > 0 such that if we set ωx = {z e Cd : |z | < Co}

and ω2 = {y e Rn : \y\ < Co}, then for all (α, β)eN

\a : m\ + \β : m\ < 1, we have αα / 5 G Coc(ω2, H(ωι)).

d

Let P = Opχ(p) be the semi-classical Weyl quantized operator with symbol p, for
M t C Q î M X K. J,

(3.2) !»«(,, y) = (±
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Let ψ be a real quadratic polynomial on R^ xR". For any λ > 1, we shall denote Px

the differential operator defined by

(3.3) Px = eχΨpe-χΨ.

It follows that

AC + i

Proposition 3.1 (see [7]). For υ in C^(Rd x Rn), we have TPxv = PxTv where

PχTυ(X, λ) = (^)d+n ίί eiλ(y-~y)τ( if uλdydτ
V 2π/ JJ \J Jξ=-lm((x+x)/2) )

(3.5) ^ ) ( f
V 2π/ JJ J Jξ=-lm((x+x)/2)

where

(3.6) ω = e>*-**P(ψ + iξ, ^ λC + iA^

,y, X)dx Λdξ.

Let (J is a positive real number such that 2δ < Co where Q is defined in (3.1)

and v is a C°° function such that suppυ c {X e Rd x W1 : |X| < δ}. Let Pλ be

defined in Proposition 3.1.

Case of Theorem A.

Theorem 3.2 (see [7]). There exists χ e C^(C2d), χ(jc, 0 = 1 if \x\ + |ξ| < δ,

χ(jc, 0 = 0 if \χ\ + |ξ| > 2δ such that if we set, for η e]0, 1],

(3.7) e A 7WA)=(A)*" ffe>«y->»( if

where ω is defined in (3.6), then

(3.8) ~

where with, for any N in N,

(3.9) \]RχTυ\\L2 φ <

(3-10) IISAIIL* <
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where

(3.11) \\w\\HMm = Σ ^M~ΈUhjβj\\Dβw\\L2{Rn).

Σnj^hjβj<M

Case of Theorem B.

Recall that we have assumed

(3.12) on ξ = 0, pM does not depend on x.

In the case we have

(3.13) pM(X; λζ + i\φ\X)) = pf

M(y, τ) + pf

M_γ{X, Q

where p'M is a polynomial of order M in r and p'M_γ is a polynomial of order M in

C, but of order M — 1 in r.

Writing />(X, 0 = PM(X, 0 + PΪr(X, 0 where

(3.14) PM(XX)= Σ aaβ(X)ξaτP.

\a:m\+\β'-m\<l-l/M

We have

Theorem 3.3 (see [7]). There exists χ e C™(C2d), χ(x,ξ) = 1 if \x\ + \ξ\ < δ,

χ(xy ξ) = 0, Ϊ/ |JC| + \ξ\ > 2(5, 5wc/z ίAαί, if we set, for η €]0, 1]

λdydr
ξ=-(l+η)lm((x+x)/2)

(3.15) QλTυ(X, λ) = ί^Y" [ί e^^ί ίί uλ
\Z7Γ/ JJ \J Jξ=-(l+η)lm((x+x)/2) /

where

(3.16) a = e ' ^ ^ μ ( , , r)

Then we have, with P\ introduced in Proposition 3.1

(3.17)

with

(3.18)

(3.19) | |g λ | | L ? <
(1+T7)Φ
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4. Back to the real domain

Let v be in S(Rd x Rn) and w = T*Tυ, then it follows that

(4.1) w = T*Tv e S(Rd x RM), Tηw = Tυ.

We deduce from Proposition 3.1

(4.2) QλTv = QλTηw = TηQλω,

where Q \ is an operator on R^ x f , pseudo-differential in JC, differential in y.

Moreover denoting by σω the Weyl symbol

(4.3) σω(Qλ)(x, ξ; y, r) = σω(Qχ)(KTη(x, ξ); y, r ) ,

where

(4.4)

, 0 - χ(χ - j^-ξ ήpίx + τ^-e, y λζ
\ 1+77 ' V 1 + 7 /

+ iXψ'ίx + -^-ξ, y)) ( t h m A )
V 1 +η //

, 0 = p'M(y, r) + χ(x - ^ ξ ; ξ) [^_, (x + ̂ ξ , y; ζ)

+ p'Jx + -^-ξ, y; λζ + iλφ'ix + -^-ξ, y))] (thm B)
\ 1 + 77 V I + 7 7 / / J

and

Qλu(X, λ) = ( ^

Moreover, we have

(4.5) σω(Qλ)(X, 0 = qM(X, ζ) + qu-ι(X, 0,

where

, 0 = x(x ~ τ^-ξ ήpMίx + τ^-ξ, y; \ζ
V I + 7 7 / \ I + 7 7

(4.6)

and

+ iiλψ>(x + JlLξ,y\\ (thm A)
v 1 + 77 / /

» 0 = Pif(y» T) + x(x ~ γ~~^ ξ)PM-i {x + γ^~^' y; 0 ( t h m B )



UNIQUENESS IN THE CAUCHY PROBLEM 933

(4.7) qM-ι(X, 0 = χ(x - -^-ξ, ξ)

5. The estimates in case of Theorem A

We are now prepared to prove Carleman estimates for Q\. Without loss of

generality we may assume that (jt0, yo) = 0 and φ(0) = 0. Let, for Z =

(5.1) I Z I ^ ^ l Λ i l ^ + . + lαc^^ + l y i l ^ + -. + lyJ2"-.

Lemma 5.1. There exist positive constants C, ηo such that for all η in ]0,770]

and if we set

1 \ C
Φ(X) = <f/(0)X + -ψ"(0)X • X - —\X\2 + -(φ'(0)Xf,

then

(5.2) C\qM(X, C)|2 + \{qM, qM}(X, ζ) > p ( λ + \λτ\m)2M,

for \X\ + \ξ\ < 1/C2 and λ so large.

By homogeneity, (5.2) is still true with the same ψ if we replace ψ by pφ where

p is a positive constant.

Proof. We first take C so large that χ = 1 if |X| + |ξ| < 1/C2. It follows then

from (4.6) that

, 0 = ^-ξ, y)\
+ 7 7 / /

+ T C , y;λζ + i\ψ(x +
i+77 V I

= pM(X; Xζ + ίλ^'(X)) + ̂ O ( ( λ + | λ r | m ) M ) ,

and

= {pM(X; AC - ίλV'W); PM(X; λζ + i λ ^

I +
We shall also write

(5.4) [qM, qM}(X, Q = {qM, qM}\ς=o(X, 0 + ^ϊ



934

and

(5.5)

Then

(5.6)

and

L. TJOEN

+ iλφ'(X)) =

qM(X,0 =

(5.7) {qM,qM}(X,0 = {pM(X;λζ - i\Vp^(X)), pM(X;\ζ

Furthermore, we have

(5.8)

> - ( λ + | λ τ L ) 2 M , for

Indeed, (5.8) is equivalent to

pM(X; λζ + i

< \ and r in R".

~ {p M (X;ζ - iλVp,qφ(X));pM(X;ζ

, for | X | < ^ .

We see, setting Γ = λ/(λ + | τ | m ) , W = (X, Z + iΓVPtqφ(X)) and

Z = (0, . . . , 0; n / ( λ + | r | m ) A l , . . . , rn/(λ + | r | w ) Λ -)

that (5.8) is equivalent to

ξ=0
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(5.9) ^\pM (W)\2 + Γlm( ]Γ(λ + \τ\mγγ~h>

Σ Σ
n d

Σ Σ
d d

> I , for |X| < *
C C2

We prove (5.9) by contradiction. If it is false one can find sequences Xk,

with \Xk\ < I/A:2, λ^ > ek and τk in Rn, such that, by definition ψ,
k, τ>,

(5.10)
4

Γk Im
s J

J=P

d

Σ

s=q j=p

j=.p j=q

s=p

where

(5.11) |A*| < Cokλ~l/(M~l) < Coke-k/(M~ι\ Co is independent of k.
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Since Γ^ + \Zk\(m,m) = 1> taking subsequences, we may assume that

(5.12) Γ* -> Γ° and Zk -> Z° with Γ° + |Z°|(m.*) = 1.

CASE 1. Γ° ^ 0 .

If we divide both members of (5.10) by k, we get with W° = (0;

Removing all positive terms in (5.10) and letting k go to +oo, we get

r° im ( y -E"L(w°)--E*L( w°)+y^ •
V ^—' <9τ,

^ ^ Σ

+ ( Γ T R e

Σ
n d

ί Σ WΎ-^Ψ-

s=q j=p

which contradicts the hypothesis (H.2) in theorem A.

CASE 2. Γ° = 0.

Since Γ° + |Z° | ( l M i ) = 1, we have Z° i 0 and W° = (0, Z°). If we divide both

members of (5.10) by k, we get PM(W°) = 0 which is contradiction with (H.I) in

Theorem A.

Now (5.6), (5.7) and (5.8) imply (5.2) if η is small enough and C, λ so large.

This ends the proof of Lemma 5.1. D

From now on C is fixed according to Lemma 5.1.

Let 0o £ C°°(C2d) be such that 0 < θ0 < 1 and

θo(x,ξ)=l if . .
1 + 7 /

(5.13)

§o is almost analytic on Λ(i+7?)φ.

Let us set, with Kjv defined in (2.6),

(5.14) θ0 = θo\A(l+r))Φ °Kτ.
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It is easy to see that θ0 e C0 0(R2 l i) and there exists ε0 e]0,1/(2C2)[ such that

I I if |* | + | ξ | < e o ,
1

0 i f | * M € l > ^ .

Let h e C£°(RΠ) be such that 0 < h < 1 and

(5.16) h=<

Finally let us set

(5.17) θ(X,ξ) = h(y)θo(x,0'

Then

ί l if |X| + | ξ | < ε 0 ,

(5.18) θ(X,ξ)={ i
| 0 i f |X | + l € l > ^ .

Lemma 5.2. Let Q = Op™(qM). There exist positive constants Co, C\, λo such

that for every u in «S(Rί/+n) and λ > λo, we have

(5.19) ^ L ( o ^ ( ( l - ^ χ λ + | λ r | m ) 2 M ) W , W ) L 2 + | | β W | | 2

2 > y | | | M | | | ^ .

Proof. We write Q = QR + ιQι where QR = O/?^(Re^M), Qi = Op%(ImqM).

Then writing || || for the L2(Rd+n)-novm

(5.20) WQuf = \\QRU\\2 + \\Qju\\2 + -([Q*, Q]u,u).

Now the semiclassical principal symbols of [Q*,Q] and Q\Qκ are (1/0{*?M'#M}

and q\ where qR = ReqM, qi = lvaqM- We claim that one can find a positive con-

stant B such that

(5.21) B(\ - 0)(λ + | λ r | m ) 2 M + C\qM(X, C)|2 + τ{qM> ^M}(X, 0

> - ( λ + | λ τ | m ) 2 M , for all (X, 0 e R2(d+n).

Indeed Lemma 5.1 implies (5.21) if |X|+|ξ| < 1/C2, since 0 < θ < 1, and if |X|+|ξ| >

1/C2 then, by (5.18), θ = 0 and \qM\2 + |{^M, ^ M } | < d ( λ + | λ r | m ) 2 M , thus (5.21) is

true if B is large enough.
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Then we can apply the Garding inequality in the following context. Let

0 " λ2dτ2

This is a metric which is temperate and slowly varying in the sense of Hόrmander [2].

Let a e 5((λ + |λτ|OT)*, g), k e N, be a symbol such that Reα > δ(λ + \λτ\m)2k, and

A = Op%(a). Then there exists λ0 > 0 such that for every u in S(Rd+n) and every

λ > λ0

(5.22) Re(Au,u)L2 > - | | | M | | | ^ .

Thus we may apply (5.22) with, for a, the left hand side of (5.21). It follows that

for λ > λo

B(Opw

x((l - Θ)(X + \λτ\m)2M)u, u) + C\\ QRuf

Now, we deduce from (5.20) that

2λ\\Qu\\2

L2 > C(\\QRu\\2 + \\Qju\\2 + λ([Q*, Q]u,u) if 2λ > C,

and Lemma 5.2 follows. D

Proposition 5.3. Let Qχ be defined in (4.4). Then one can find positive con-

stants Co, Ci, Λo such that for u in S(Rd+n) and λ > Λo

(5.23) ^ ί ( θ ^ ( ( l - ^ ) ( Λ + | Λ r | m ) 2 M ) W , W ) L 2 + | | ρ λ W | | ^ > ^ | | | W | | | ^ .
Λ Λ

Proof. Writing β λ = Q + QM-ι where QM_X = Op%(qM-ύ defined in (4.7), then

\\QufL2<2\\QχufLΐ+2\\QM-iu\\2

L2,

and

Qu-x e Op^(S((\+\XT\m)M-\g)),

we deduce that

(5.24) II β«Ilia <2 | | β λ « Ilia+ -§
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It follows from Lemma 5.2 and (5.24)

and Proposition 5.3 follows. D

We are now ready to prove the following estimate.

Proposition 5.4 (see [7]). Let Qχ be defined in Theorem 3.2. Then there exist

positive constants C\, C2, λ0, such that for v e C™(Rd+n), suppυ C {X : |X| <

1/(4C2)} and λ > λ0

(5.25) \\Tv\\ι

L2 (CdHM(Rn)) < d λ | | β λ Γ i ; | | 2

L 2 + C2e-λσ\\\v\\\ι

M,

where σ > 0 depends only on η and C.

Proof. We apply Proposition 5.3 to u = T*Tv which is in <S(RJ+n). It follows

from Proposition 2.1

(5.26) IIMHM = H V I I ^ ^ M ) = \\Tυ\\L2ι+η)φ(H>

(5.27) | | β λ « | | t 2 = \\TηQχτ;Tv\\LU)φ = l l β λ Γ υ l l ^ ^ .

Let us set R = Op^({\ - θ)(λ + \\τ\m)m). Then Proposition 4.6 in [7] show that for

any integer N one can find a positive constant CN such that

(5.28) \(Ru,u)L2\ < ^ 1 1 ^ ^ 1 1 ^ ^ ^ + σ ( 6 - λ σ | | | ϋ | | | ^ ) , σ > 0.

It follows from (5.23), (5.26), (5.27) and (5.28) that Proposition 5.4 is proved. D

Theorem 5.5. Let P\ be the operator occuring in Proposition 3.1. One can find

positive constants C\, C2, λ0, σ such that for v e Co°(Rd+n), suppυ C {X : |X| <

1/(4C2)} and λ > λ0 we have

(5 2 9 ) » ^ ι ι 2 w ^ ^ ^ ) ) - ^ ) Φ M

Proof. This follows from Proposition 5.4 and Theorem 3.2. D

6. The estimates in case of Theorem B

Let QM = Op™(qM) where qM is defined in (4.5). We have

(6.1) \\QMU\\2

L2 = \\QRu\\2

L2 + \\Q,u\\2

Ll + i ( [ β j , , QM]u, u),
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where QM = QR + iQ,, Q*R = QR and Q* = Q,.

Let us introduce the following Hδrmander's metrics

(6.2)

Then it is easy to see from (4.5) that

(6.3) qM(X, 0 = p'M(y, r) + χ(x, <

where

(6.4)
_, e

= P«-i(X.O.

s(λ(λ + \λτ\myu-ι,g2),

We shall write QM = P'M + RM-\ +ηSM-\ where σω(P'M) = p'M(y,τ), σω(RM-i) =

χτM-ι, and σω(SM-ύ = χsM-ι- Let us set

(6.5) = P'+RM-i.

Since /?M-i and SM-ι belong to Op%(S(\(λ+ \Xτ\m)M~ι,g2)) and p'M depends

only on (y, r), it is easy to see that

(6.6) [Q*M,QM]-[L*,L]e^t

We shall set σω(L) = £x+ί2 = ί where

(6.7) I [l = ̂ M(>>'

Then

(6.8) ί\ e

We shall also write

\ g2)).

\λτ\m)M-\g2).

(6.9) σω([L\ L]) = \{dχ
Λ

where dx = -{I £}\ξ=0
I
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Then since p'M depends only on (v, r), we have

(6.10) dx e S(λ(λ+\λτ\m)2M-\gl), d2 e S(λ2(λ + |λτ | m ) 2 M - 2 , g2).

Lemma 6.1. There exists a positive constant C such that if we set

φ(X) = φ'(0)X+ ^φ"(0)X • X - ^ Π ' ° ° '

then

(6.11) C3|^i(X,τ)

for \X\ < 1/C2 and τ in W. Moreover, by homogeneity, (6.11), with possibly other

constants, is still true with the same ψ if we replace ψ by pψ where p is a positive

constant.

Proof. We first take C so large that χ = 1 if |* | + \ξ\ < 1/C2. Then from (6.7)

and (6.9), we have

A(X,τ) = /7M(X;λC + / λ ^

\r) = j{pM(X,λζ-i)

Now, we write

(6.12)

where

(6.13) f
I an<

First, we shall

(6.14) £-

1
+ 2i

1

, r ) = pM(X;

•,r).I

, r),

; λζ + /

+ rλ(X,r),

S(λ(λ \ gι)

; AC + iλv,,,
ξ = 0

> - λ 2 ( λ + | λ r | m )2 Λ ί - 2 for |X| < - ^ and r in
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(6.14) is equivalent to

C3 2

We see (6.14), setting Γ = λ/(λ + | r | w ) , W = (X, Z + iΓVp,qψ(X)),

z = (o o r i Tn

V " ' " ' ( λ + | r | w ) Λ i " ' " ( λ + | τ | m ) Λ -

that (6.14) is equivalent to

(6.15) — \p ίW)\z + -lm[ > (λ + \r\my~^-J-^-(W)-^-(W)
4 Γ 2 ^ Γ V ^ dξj Ox,

j = \

d d

d n

Σ Σ

f r ^ ) ^ F
 for ιχι ̂  ά

ykdyj ΘTJ dτk ) C C2

We prove (6.15) by contradiction. If it is false one can find sequences Xk, λk,

Γk with \Xk\ < l/k2, λk > ek and rk in Rn, such that

(6.16) ^

f ^ p j dξs

(Wk) + 2

j=p
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d n

Σ όψ &PM ^ I Y—^ dψ dpM

J=p

J=q J J J=P

where

(6.17) \Bk\ < — λ ^ 1 / ( A f ~ υ , Ci independent of k.

Since Γ& + \Zk\(m,m) = 1. taking subsequences, we may assume that

(6.18) Γ* -> Γ° and Zk -• Z° with Γ° + \Z°\M = 1.

CASE 1. Γ ° ^ 0 .

If we divide both members of (6.16) by k3, we get

(6.19)

with W° = (0; Z° + iΓ°VPiqφ(0)).

Removing all positive terms in (6.16) and letting k go to +oo, we get

d r,—

j = q J yj j = p

Σ T&VΦ^^Γ^* ΣΣ

j=p

which contradicts the hypothesis (H.2)' ii) in Theorem B.

CASE 2. Γ° = 0.

Since Γ° + |Z°|(m ^) = 1, we have Z° =/0. In this case, we write

(6.20) Bk = -i- Im

rk

Dk
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where

Therefore

(6.21) Bk = -
1

2ιΓk

L. T'JOEN

\Dk\< C2kλ~l/(M~l\ C2 independent of k.

\n\m)l-2M{pM, pM}(Xk'Λ n)

(Xk, Zk)~-—-—(Xk, Zk)

M

dyj dτsdτj

JM A

, zk)\ + > — -

, Zk)-———(Xk, Zk) —(Xk,
'dξsdξ

f

r(Xk, Zk)j\ + D'k

where

\D'k\ < C3(kλk

ι/iM~l) + Γk\ C3 independent of k.

We use then the assumptions (H.I)' in Theorem B. We get

(A* ,o, c'\Pm(xk,o, τk)\(λk + \τk\m yM

< C'\pu(Xk, Zk)\ < C'\pM(Wk)\ + C''Γk(\ Σ γ-{

Therefore

(6.22)
2i

-Λ τk)

j=q " •> j=p

It follows from (6.21), (6.22) that (6.16) is equivalent to

d p M

(Xk,Zk)
dyj dτsdτj

(Xk,Zk)
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4- k, Zk) k, Zk) - k, Zk)
9 pM

dξsdξj
b Zk)f\

r
J=q

J=p

+2 Re

Σ 9Φ
dxj

k2

+ Re

J=P

d ,

j=q

d

^ dξj v ' dξj
J=P J J

(t
n d

Dividing both members by k3 /Γl, we get, since Γ* -• 0, A: -> +σo,

(6.24) PM(W°) = 0 with W° = (0, Z°), Z° 10.

Now since, {k3/Γ2

k - k3/2/rl)\pM(Wk)\2 > 0, dividing (6.23) by k, we get

(6.25) {pM, φ}o(W°) = 0.

Removing all positive terms in (6.23) and letting k go to +oo, we get

Re V -r^O
dτsdyj dτsdτj

(0)

s,J=P

d

•Σ; Σ
n d

drs

M <0
s=q s=p J J

which is contradiction with (H.2)r i) in Theorem B.
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It follows from (6.12), (6.13) and (6.14) that

+ idKX, r) > ^λ 2 (λ + \λτ\m)2M-2 + ^ , r).

But we have

\PM(X;

1

, τ)|2 + C'λ2(λ

II follows that

γ\ίι(X, τ)\2 + ̂ ,(X, r)

for large λ and Lemma 6.1 follows.

Lemma 6.2. We have

> ^ λ 2 ( λ + | λ r | m )2 Λ ί - 2

D

(6.26)

where |M-I is defined (2.9), and for large λ.

Proof. Let us α = (C3/X2)\£ι\2 + dx/\2 and α0 = a\x=0. Let Λo e C£°(R^) be such

that Ao = 1 if |JC| < 1/(4C2), h0 = 0 if |JC| > 1/(2C2) and 0 < Ao < 1. Then we have

(6.27) - Ao)(*o - fl) > ^ ( |Ar | m ) 2 M " 2 , if |v| < ^ .

Indeed, if |JC| < 1/(2C2), then by Lemma 6.1, a and α0 satisfy (6.11) thus (6.27) is

true. If |JC| > 1/(2C2) then h0 = 0 and a0 satisfies (6.11) and (6.27) is also true.

Now denoting by tk a symbol in the class S((X+ |λτ|m)*,g2)> by (6.8) and (6.9),

we have

* = -χ\

Thus a - β0 =

(6.28)

f-l) + '2M-2.

tM-ύ + hM-i so

\ί\ I2

| λ r | m ) 2 M - 2
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It follows from (6.11), (6.27) and (6.28) that if \y\ < 1/(2C2)

(6.29) ^ i ^ | 2

 + γ2dγ +C'(1 - A0)(λ+ | λ r | m ) 2 M - 2 > I ( λ + | λ τ | m ) 2 M - 2 .

Let hi e C^(Rn) be such that 0 < h{ < 1, hx = 0 if \y\ > 1/(2C2) and hλ = 1 if

M < V(4C2). Thus we have, from (6.29)

( ( C

Λ ^ 1 } l^iI2 + ̂ i + Cr(l - * 0)(λ + I λ r | m ) 2 M " 2 - ^ ( λ + |λr | w ) 2 M - 2 )λ 2 /z 2 (y) > 0

for any (X, τ) in Rd+n x l " , and this symbol belongs to 5 ( ( λ + | λ r | m ) 2 M , gi). Therefore

we can apply the Fefferman-Phong inequality and get

(6.30)

-C'(θpw

χ{h\{\ - ho)(λ+\λτ\m)2M-2)u, u) -

We can use the symbolic calculus in 5( , g\). We get

J =

+OpW1h1TOpw

x(£[hl))u, ^ + l

where if = Re£ι and i\ =\mίχ. Thus

(6.31) J = {£^.{\\θpH^)ufL2 + \\Opΐ(£[)u\\2

L2) + l o d l H

because

for K = R or / and h\u - u since suppw c {\y\ < 1/(4C2)}. By the same way

Opΐidih]) = Opw

x{dx)h2 + Opl(S{\(\ + \\τ\m)2M-2, gι))

thus

(6.32) (Opw

λ(dxh
2)u, u) = (Op%(di)u, u) + 2
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We have also

(6.33) (Opw

x{h\{\+ \Xτ\m)m-2)u, u) = UNlfi

(6.34) {Opw

x(h\{\ - A0)(λ + \\τ\m)2M-2)u, u)

+

and

(6.35) | | |(1 - AO)K| |&-I ^ T ^ H I ^ H M - I ' f o r anY N i n N

Thus (6.26) follows from (6.30) to (6.35). D

Lemma 6.3. Let t2 and d2 be defined in (6.7) and (6.9). Then there exists σ > 0

such that for any ε > 0 one can find a positive constant Cε such that

(6.36) H O ^ ί ^ ^ H ^ c R ^ ) < λer|||M|||A#-i + VλCelllMlH^-i +

and

(6.37)

for any u = T*Tv, υ e C™(Rn+d).

Proof. Given ε > 0, let χ(X, ξ) in C°° with 0 < χ < 1 and suppx C {\X\ + \ξ\ <

ε}. We claim that one can find Cε > 0 such that

This follows from the sharp Garding inequality in the class S(l,g2). Indeed, we

have ε2(λ + |Ar |m) 2 M~ 2 - ξ2χ2(X + \Xτ\m)2M-2 > 0. Thus

(6.39) ε2{0pl{{X + \Xr\m)2M~2)u, u) - (θp%(ξ2χ2(X + \Xτ\m)2M~2)u, u)

CF

> — - u

\M-\Since ί2 e S(X(λ+\λτ\m)M~\ g2) and £2\ξ=o, we have

(6.40) \\Opΐ(e2χ)u\\L2 < CX\\Op

We deduce (6.38) from (6.39) and (6.40).
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Therefore taking χ = θ(x, ξ)g(y), such that χ = 1 if |X| + |ξ| < ε/2, we write

It follows from Proposition 4.6 in [7] that

(6.41) \\Op%((l-χ)£2)u\\L2 <
λ"

Then we deduce (6.36) from (6.40) and (6.41). This gives the first part of the lemma.

For the second part, we observe that d2 e 5(λ2(λ + | λ τ | m ) 2 M " 2 , g2). Therefore from

(6.39) and Proposition 4.6 in [7], we deduce (6.37). D

We are now ready to prove the Carleman estimate for QM.

Proposition 6.4. Let QM = Op™(qM) be defined in (4.6). Then one can find pos-

itive constants Co, C\, λo, σ such that, for any u = T*Tv, v e CQ°, suppυ C

1/(4C2)} and λ > λ0, we have

(6.42) CollNII 2,. ! < ^\\QMu\\l2+O{e-λσ\\\v\\\2

M_x).

Proof. It follows from (6.3), (6.5) and (6.7) that

Therefore, applying Lemma 6.3, we deduce

(6.43) \

+e>(e- λ σ | |M| |M-i), for K = R,I.

Using (6.6), (6.9) and Lemma 6.3, we get

(6.44) | ((<W*i) - λ[βj,, QM])U, U)\

= \{{Opl(d2) - ηOpw

x(S(λ\\+\\τ\m)2M-2, g2))u, u)\,

< \{Opl{d2)u,u)\+η\2\{Opl{S{{\+\\τ\m)2M-2,g2))u,u)\,

It follows from (6.43), (6.44) and Lemma 6.2 that
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1

— I 2

L2 + \\QiufL2 + - ( [ β j , , QM]u, U))

Taking ε and 77 small, then λ large, we get, by (6.1), proposition 6.4. D

Theorem 6.5. Let Pχ the operator occurίng in Proposition 3.1. One can find
•00
0positive constants Ch C2, λ0, ε2, σ such that for v e C™(Rd+n), suppυ c {|X| < ε2}

and λ > λo we have

(6.45) X\\Tυ\\2

2 . c d H M - u R n , < L
L (1+T7)Φ^ ( L ' ^ λ ^ M ^ ^(1+T7)Φ

Proof. By Theorem 3.2, (6.45) will follow from the same estimate for Q\. Now

and by (4.5) we have σw(Qχ) = σw(QM) + σw(Q'M_x) where

Q'M-I e Opΐ(S((\+\\τ\m)M-\g2)).

Thus (6.45) follows from Proposition 6.4 if λ is large enough. D

7. End of the proof of the Theorems A and B

The Theorems 5.5 and 6.5 ensure that one can find σ > 0 such that

|2(7.1) λIM~Ί\Tv\\z

L2 < Cι\\PχTv\\z

L2 +C2e~'

The end of the proof, i.e. the passage from Carleman's inequality (7.1) to uniqueness

of the Cauchy problem for the operator P, is the same as the one in Robbiano-Zuily

[7].

The proof of Theorems A and B is complete.
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