MINIMAL IMMERSIONS OF SOME CIRCLE BUNDLES OVER HOLOMORPHIC CURVES IN COMPLEX QUADRIC TO SPHERE

To the memory of Yuko

Maкото KIMURA
(Received December 11, 1998)

0. Introduction

Minimal surfaces in a space of constant curvature has been studied by many mathematicians (cf. [3], [7], [8], [9]). In particular, for minimally immersed 2 -sphere in the standard sphere, Calabi [4] and Barbosa [1] showed that: There exists a canonical 1-1 correspondence between the set of generalized minimal immersions $\chi: S^{2} \rightarrow S^{2 m}(1)$ which are not contained in any lower dimensional subspace of $\mathbb{R}^{2 m+1}$, and the set of totally isotropic holomorphic curves $\Xi: S^{2} \rightarrow \mathbb{C P}^{2 m}$ which are not contained in any complex hyperplane of $\mathbb{C P}^{2 m}$. The correspondence is the one that associates with minimal immersion χ its directrix curve ($\S 2$). Note that this fact is valid for pseudo holomorphic map [4] from a compact Riemann surface Σ^{2} instead of S^{2}, and that the image of the directrix curve is contained in a complex quadric $Q^{2 m-1}$ of $\mathbb{C P}^{2 m}$.

On the other hand one of the most interesting 3-dimensional minimal submanifolds in a sphere is the minimal Cartan hypersurface (MCH) of S^{4}, i.e. the minimal hypersurface with 3 distinct constant principal curvatures in a 4 -sphere (cf. [5]). MCH is obtained from the directrix curve of the Veronese surface as follows: Let $\chi: S^{2}(1 / 3) \rightarrow S^{4}(1)$ be the Veronese immersion from the 2 -sphere with constant Gauss curvature $1 / 3$ to the unit 4 -sphere, and let $\Xi: S^{2}(1 / 3) \rightarrow \mathbb{C P}^{4}$ be the directrix curve of χ. Then χ is congruent to the fourth order Veronese embedding $\mathbb{C P} \mathbb{P}^{1} \rightarrow \mathbb{P}^{4}$ and the image $\Xi\left(S^{2}(1 / 3)\right)$ is contained in a complex quadric Q^{3} in $\mathbb{C P}^{4}$. Let $P=$ $S O(5) / S O(3)$ be the set of ordered two orthonormal vectors in \mathbb{R}^{5}, and let $P\left(Q^{3}, S^{1}\right)$ be the circle bundle over Q^{3}, which is given as the pullback bundle of the Hopf fibration $S^{9}\left(\mathbb{C P}^{4}, S^{1}\right)$ with respect to the natural inclusion $Q^{3} \subset \mathbb{C P}^{4}$. Then MCH is identified with the pullback bundle $\pi_{\Xi}: \Xi^{*} P \rightarrow S^{2}(1 / 3)$ such that each fiber $\pi_{\Xi}^{-1}(p)$ for $p \in S^{2}(1 / 3)$ is corresponding to the great circle which is determined by $\Xi(p) \in Q^{3}$

[^0]in $S^{4}(1)$. In other words, MCH is realized as a tube of radius $\pi / 2$ over the Veronese surface in S^{4}, so MCH is diffeomorphic to the unit normal bundle of the Veronese surface in the 4 -sphere.

In this paper we will study, as a generalization of minimal Cartan hypersurface, minimal immersion of some circle bundle over a Riemann surface Σ^{2} which is immersed in complex quadric $Q^{n-1}=S O(n+1) / S O(n-1) \times S O(2)$ to sphere S^{n}. More precisely let $P\left(Q^{n-1}, S^{1}\right)$ be the circle bundle over Q^{n-1}, where $P=S O(n+$ 1)/ $S O(n-1)$ is the set of ordered two orthonormal vectors in \mathbb{R}^{n+1}. Here P is the pullback bundle of the Hopf fibration $S^{2 n+1}\left(\mathbb{C P}^{n}, S^{1}\right)$ with respect to the natural inclusion $Q^{n-1} \subset \mathbb{C} \mathbb{P}^{n}$. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a conformal immersion from a Riemann surface Σ^{2} to the complex quadric, and let $\pi_{\varphi}: \varphi^{*} P \rightarrow \Sigma^{2}$ be the pullback bundle over Σ^{2} with respect to φ. Then each fiber $\pi_{\varphi}^{-1}(p)$ for $p \in \Sigma^{2}$ is naturally identified with the great circle of S^{n} determined by the 2-plane $\varphi(p) \in Q^{n-1}$. We can define the map $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$ by this identification.

In §1 we review complex quadric Q^{n-1} and construct the circle bundle P over Q^{n-1}, and in $\S 2$ we see some surfaces and holomorphic curves in Q^{n-1}. In $\S 3$ we show that if a three dimensional submanifold M in a sphere S^{n} is foliated by great circles of S^{n}, then there is an associated surface Σ^{2} in Q^{n-1}. Conversely we construct the map $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$ from the surface $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ explicitly and, on the set of regular points of Φ, we determine the condition with respect to φ for which the pullback bundle $\varphi^{*} P$ is minimal in $S^{n}(1)$ (Proposition 3.9 and Corollary 3.10). In $\S 4$ we show that if the immersion $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is holomorphic, then the corresponding map $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$ is regular at each point in $\pi_{\varphi}^{-1}(x)$ for $x \in \Sigma^{2}$ if and only if x is not a real point (Definition 2.7) of φ. Moreover we can see that Φ is minimal if and only if either Φ is totally geodesic or the corresponding holomorphic curve $\varphi\left(\Sigma^{2}\right)$ in Q^{n-1} is first order isotropic (Theorem 1). As a consequence, we can construct full and minimal immersion $\Phi: \Xi^{*} P \rightarrow S^{2 m}(1)$ from the directrix curve $\Xi: S^{2} \rightarrow Q^{2 m-1}$ of fully immersed minimal 2-sphere $\chi: S^{2} \rightarrow S^{2 m}(1)$ (Theorem 2). We also discover relations of the curvatures between holomorphic curve $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ and the immersion $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$.

The author would like to express his sincere gratitude to the referee for many suggestions and comments, and Professors Norio Ejiri, Kazumi Tsukada and Reiko Miyaoka for their encouragement. A part of this work was done while the author was visiting Kyungpook University. He would like to thank Professors U-Hang Ki, Young Jin Suh and Hoil Kim for their hospitality.

1. Preliminaries

First of all, we recall the Fubini-Study metric on the complex projective space $\mathbb{C} \mathbb{P}^{n}$. The Euclidean metric \langle,$\rangle on \mathbb{C}^{n+1}$ is given by

$$
\langle\mathbf{z}, \mathbf{w}\rangle=\mathbf{x} \cdot \mathbf{u}+\mathbf{y} \cdot \mathbf{v}
$$

where $\mathbf{z}=\mathbf{x}+i \mathbf{y}, \mathbf{w}=\mathbf{u}+i \mathbf{v} \in \mathbb{C}^{n+1}(i=\sqrt{-1}), \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n+1}$ and $\mathbf{x} \cdot \mathbf{y}$ denotes the standard inner product on \mathbb{R}^{n+1}. The sphere $S^{2 n+1}(1 / c)$ of radius $\sqrt{c}(c>0)$ in \mathbb{C}^{n+1} is the principal fiber bundle over $\mathbb{C P}^{n}$ with the structure group S^{1} and the projection map π (the Hopf fibration). The tangent space of $S^{2 n+1}$ at a point \mathbf{z} is

$$
T_{\mathbf{z}} S^{2 n+1}=\left\{\mathbf{w} \in \mathbb{C}^{n+1} ;\langle\mathbf{z}, \mathbf{w}\rangle=0\right\}
$$

Let

$$
T_{\mathbf{z}}^{\prime}=\left\{\mathbf{w} \in \mathbb{C}^{n+1} ;\langle\mathbf{z}, \mathbf{w}\rangle=\langle\mathbf{z}, i \mathbf{w}\rangle=0\right\}
$$

Then the distribution $T_{\mathbf{z}}^{\prime}$ defines a connection in the principal fiber bundle $S^{2 n+1}\left(\mathbb{C} \mathbb{P}^{n}\right.$, S^{1}), because $T_{\mathbf{z}}^{\prime}$ is complementary to the subspace $\{i \mathbf{z}\}$ tangent to the fiber through \mathbf{z}, and invariant under the S^{1}-action. The Fubini-Study metric \bar{g} of constant holomorphic sectional curvature $4 / c$ is then given by $\bar{g}(X, Y)=\left\langle X^{*}, Y^{*}\right\rangle$, where $X, Y \in T_{x} \mathbb{C} \mathbb{P}^{n}$ and X^{*}, Y^{*} are respectively their horizontal lifts at a point \mathbf{z} with $\pi(\mathbf{z})=x$. The complex structure on T_{z}^{\prime} defined by multiplication of $i=\sqrt{-1}$ induces a canonical complex structure J on $\mathbb{C P}^{n}$ through π_{*}.

Given a vector field X on $\mathbb{C P}^{n}$, there is a corresponding basic vector field X^{\prime} on $S^{2 n+1}$ such that at $z \in S^{2 n+1}, X_{z}^{\prime} \in T_{z}^{\prime}$ and $\left(\pi_{*}\right)_{z} X_{z}^{\prime}=X_{\pi(z)}$. If X, Y are vector fields on $\mathbb{C P}^{n}$, the Kählerian covariant derivative takes the form

$$
\bar{\nabla}_{X}^{\mathbb{C P}} Y=\left(\pi_{*}\right) \nabla_{X^{\prime}}^{\prime} Y^{\prime}
$$

where X^{\prime}, Y^{\prime} are the basic vector fields corresponding to X, Y and ∇^{\prime} is the LeviCivita connection on $S^{2 n+1}$.

Next we recall a description of a complex quadric Q^{n-1} in $\mathbb{C} \mathbb{P}^{n}$ (cf. [13]). Let P be the space of ordered two orthonormal vectors in \mathbb{R}^{n+1}, i.e.,

$$
\begin{equation*}
P=\left\{Z \in M(n+1,2, \mathbb{R}) ;{ }^{t} Z Z=E_{2}\right\} \tag{1.1}
\end{equation*}
$$

As a homogeneous space, P is isomorphic to $S O(n+1) / S O(n-1)$ (Stiefel manifold) with $\operatorname{dim}_{\mathbb{R}} P=2 n-1$. Denote $Z=(\mathbf{e}, \mathbf{f}) \in P$, where \mathbf{e} and \mathbf{f} are column vectors of Z. Then the tangent space of P at the point Z is

$$
\begin{aligned}
T_{Z} P & =\left\{X \in M(n+1,2, \mathbb{R}) ;{ }^{t} X Z+{ }^{t} Z X=0\right\} \\
& =\mathbb{R}(-\mathbf{f}, \mathbf{e}) \oplus\{(\mathbf{x}, \mathbf{y}) ; \mathbf{x}, \mathbf{y} \perp \operatorname{span}\{\mathbf{e}, \mathbf{f}\}\}
\end{aligned}
$$

and the Riemannian metric \tilde{g} on P is given by

$$
\tilde{g}(X, Y)=\operatorname{trace}\left({ }^{t} X Y\right), \quad X, Y \in T_{Z} P \subset M(n+1,2, \mathbb{R})
$$

Let Q^{n-1} be the space of oriented 2-planes in \mathbb{R}^{n+1}. Then P is the principal fiber bundle over Q^{n-1} with the structure group S^{1} and the projection map $\pi^{\prime}: P \rightarrow Q^{n-1}$
defined by

$$
\begin{equation*}
\pi^{\prime}((\mathbf{e}, \mathbf{f}))=\operatorname{span}\{\mathbf{e}, \mathbf{f}\} . \tag{1.2}
\end{equation*}
$$

Let

$$
T^{\prime}(\mathbf{e}, \mathbf{f})=\{(\mathbf{x}, \mathbf{y}) \in M(n+1,2, \mathbb{R}) ; \mathbf{x}, \mathbf{y} \perp \operatorname{span}\{\mathbf{e}, \mathbf{f}\}\} .
$$

Then the distribution $T_{(\mathbf{e}, \mathbf{f})}^{\prime}$ defines a connection in the principal fiber bundle $P\left(Q^{n-1}, S^{1}\right)$, because $T_{(\mathbf{e}, \mathbf{f})}^{\prime}$ is complementary to the subspace $\mathbb{R}(-\mathbf{f}, \mathbf{e})$ tangent to the fiber through (e,f), and invariant under the S^{1}-action.

The metric g is then given by $g(X, Y)=\widetilde{g}\left(X^{*}, Y^{*}\right)$, where $X, Y \in T_{z} Q^{n-1}$ and X^{*}, Y^{*} are respectively their horizontal lifts at a point $Z=(\mathbf{e}, \mathbf{f})$ with $\pi^{\prime}(Z)=z$. The complex structure on $T_{(e, f)}^{\prime}$ defined by

$$
\begin{equation*}
(\mathbf{x}, \mathbf{y}) \mapsto(-\mathbf{y}, \mathbf{x}) \tag{1.3}
\end{equation*}
$$

induces a canonical complex structure J^{\prime} on Q^{n-1} through π_{*}. Given a vector field X on Q^{n-1}, there is a corresponding basic vector field X^{\prime} on P such that at $Z=(\mathbf{e}, \mathbf{f}) \in$ $P, X_{Z}^{\prime} \in T_{Z}^{\prime}$ and $\left(\pi_{*}^{\prime}\right)_{Z} X_{Z}^{\prime}=X_{\pi^{\prime}(Z)}$. If X, Y are vector fields on Q^{n-1}, the Kählerian covariant derivative takes the form

$$
\begin{equation*}
\bar{\nabla}_{X}^{Q} Y=\left(\pi_{*}^{\prime}\right) \nabla_{X^{\prime}}^{P} Y^{\prime} \tag{1.4}
\end{equation*}
$$

where X^{\prime}, Y^{\prime} are the basic vector fields corresponding to X, Y and ∇^{P} is the LeviCivita connection on P.

We consider an injective map $\tilde{\imath}$ from P to a $2 n+1$-dimensional sphere $S^{2 n+1}$ of radius $\sqrt{2}$ in \mathbb{C}^{n+1}, defined by

$$
\widetilde{\imath}((\mathbf{e}, \mathbf{f}))=\mathbf{e}+i \mathbf{f} .
$$

For tangent vectors $(-\mathbf{f}, \mathbf{e})$ and $(\mathbf{x}, \mathbf{y})(\mathbf{x}, \mathbf{y} \perp \operatorname{span}\{\mathbf{e}, \mathbf{f}\})$ in $T_{(\mathbf{e}, \mathbf{f})} P$, the differential map of $\tilde{\imath}$ is

$$
\begin{aligned}
\left(\tilde{\imath}_{*}\right)_{(\mathbf{e}, \mathbf{f}}(-\mathbf{f}, \mathbf{e}) & =-\mathbf{f}+i \mathbf{e}, \\
\left(\widetilde{\imath}_{*}\right)_{(\mathbf{e}, \mathbf{f})}(\mathbf{x}, \mathbf{y}) & =\mathbf{x}+i \mathbf{y},
\end{aligned}
$$

so $\tilde{\imath}$ is an embedding. Now we can define a holomorphic embedding $\imath: Q^{n-1} \rightarrow \mathbb{C} \mathbb{P}^{n}$ as

$$
\imath(\operatorname{span}\{\mathbf{e}, \mathbf{f}\})=\pi(\mathbf{e}+i \mathbf{f})
$$

Hence we have the following commutative diagram:

Q^{n-1} is also defined by the quadratic equation $z_{0}^{2}+z_{1}^{2}+\cdots+z_{n}^{2}=0$, where $z_{0}, z_{1}, \ldots, z_{n}$ is a homogeneous coordinate of $\mathbb{C} \mathbb{P}^{n}$.

Remark 1.1. Note that $P\left(Q^{n-1}, S^{1}\right)$ is nothing but the pullback bundle of the Hopf fibration $S^{2 n+1}\left(\mathbb{C P}^{n}, S^{1}\right)$ with respect to \imath. Clearly we have the following identification:

```
\(\operatorname{span}\{\mathbf{e}, \mathbf{f}\} \mapsto\left\{\cos \theta \mathbf{e}+\sin \theta \mathbf{f} \mid \theta \in S^{1}\right\}\)
    \(\pi\) m
    \(Q^{n-1} \quad\) oriented great circles \(\left.S^{1} \subset S^{n}\right\}\).
```

Then for each oriented great circle $C \in Q^{n-1}$, the fiber of C with respect to π^{\prime} is identified with C itself as

$$
\begin{array}{cc}
(\cos \theta \mathbf{e}+\sin \theta \mathbf{f},-\sin \theta \mathbf{f}+\cos \theta \mathbf{e}) \mapsto & (\cos \theta \mathbf{e}+\sin \theta \mathbf{f}) . \\
\left(\pi^{\prime}\right)^{-1}(C) & \Pi \\
C
\end{array}
$$

With respect to the metric induced by $\tilde{\imath}$ and \imath, P and Q^{n} become Riemannian manifolds, respectively, and the projection $\pi^{\prime}: P \rightarrow Q^{n-1}$ becomes a Riemannian submersion. The normal space of P in $S^{2 n+1}$ (resp. Q^{n-1} in $\mathbb{C P}^{n}$) at the point (e,f) is spanned by the following orthonormal vectors:

$$
\begin{array}{rlr}
N_{1}^{\prime}=\frac{\mathbf{e}-i \mathbf{f}}{\sqrt{2}}, & N_{2}^{\prime}=\frac{\mathbf{f}+i \mathbf{e}}{\sqrt{2}} \\
\text { (resp. } N_{1} & =\left(\pi_{*}\right) N_{1}^{\prime}, & \left.N_{2}=\left(\pi_{*}\right) N_{2}^{\prime}\right) .
\end{array}
$$

The shape operators $A_{N_{1}}^{2}$ and $A_{N_{2}}^{2}$ of Q^{n-1} in $\mathbb{C P}^{n}$ with respect to unit normal vectors N_{1} and N_{2} at $\pi(\mathbf{e}, \mathbf{f})$ are given by

$$
\begin{align*}
\left\langle A_{N_{1}}^{2} \pi_{*}^{\prime}(\mathbf{x}, \mathbf{y}), \pi_{*}^{\prime}(\mathbf{u}, \mathbf{v})\right\rangle & =\frac{-\mathbf{x} \cdot \mathbf{u}+\mathbf{y} \cdot \mathbf{v}}{\sqrt{2}}, \tag{1.5}\\
\left\langle A_{N_{2}}^{2} \pi_{*}^{\prime}(\mathbf{x}, \mathbf{y}), \pi_{*}^{\prime}(\mathbf{u}, \mathbf{v})\right\rangle & =-\frac{\mathbf{x} \cdot \mathbf{v}+\mathbf{y} \cdot \mathbf{u}}{\sqrt{2}},
\end{align*}
$$

where (\mathbf{x}, \mathbf{y}) and $(\mathbf{u}, \mathbf{v}) \in T_{(\mathrm{e}, \mathbf{f})}^{\prime}$.

2. Surfaces and holomorphic curves of complex quadric

Let Σ^{2} be a Riemann surface and let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a conformal immersion to the complex quadric. Then there exists a local lift $\widetilde{\varphi}: U \rightarrow P(U$ is an open set in Σ^{2}) of φ, i.e., $\widetilde{\varphi}(p)=(\mathbf{e}(p), \mathbf{f}(p)) \in P$ for $p \in U$ (cf. $\left.\S 1\right)$, where $(\mathbf{e}(p), \mathbf{f}(p))$ is an ordered orthonormal frame of the 2-plane $\varphi(p) \in Q^{n-1}$. Put $\tilde{\psi}=\tilde{\imath} \circ \tilde{\varphi}: \Sigma^{2} \rightarrow S^{2 n+1} \subset$ \mathbb{C}^{n+1} and $\psi=\imath \circ \varphi: \Sigma^{2} \rightarrow \mathbb{C P}^{n}$, respectively. Then $\tilde{\psi}$ is written as

$$
\begin{equation*}
\tilde{\psi}(p)=\mathbf{e}(p)+i \mathbf{f}(p), \tag{2.1}
\end{equation*}
$$

where \mathbf{e} and \mathbf{f} are both \mathbb{R}^{n+1}-valued function on some open set of Σ^{2}.
Let $\left(t_{1}, t_{2}\right)$ be an isothermal coordinate on some coordinate neighborhood U of Σ^{2}. We put the differential of \mathbf{e} and \mathbf{f} with respect to $\left(t_{1}, t_{2}\right)$ as

$$
\begin{equation*}
\mathbf{e}_{j}:=\partial \mathbf{e} / \partial t_{j}=\lambda_{j} \mathbf{f}+\mathbf{p}_{j}, \quad \mathbf{f}_{j}:=\partial \mathbf{e} / \partial t_{j}=-\lambda_{j} \mathbf{e}+\mathbf{q}_{j} \quad(j=1,2), \tag{2.2}
\end{equation*}
$$

where $\lambda_{j}: \Sigma^{2} \rightarrow \mathbb{R}(j=1,2)$ is a function, and $\mathbf{p}_{j}, \mathbf{q}_{j} \perp \operatorname{span}\{\mathbf{e}, \mathbf{f}\}$. Then the differential map $\left(\widetilde{\varphi}_{*}\right)_{p}: T_{p}\left(\Sigma^{2}\right) \rightarrow T_{\widetilde{\varphi}(p)}(P)$ is

$$
\begin{equation*}
\left(\widetilde{\varphi}_{*}\right)_{p}\left(\partial / \partial t_{j}\right)=\left(\lambda_{j} \mathbf{f}+\mathbf{p}_{j},-\lambda_{j} \mathbf{e}+\mathbf{q}_{j}\right) \tag{2.3}
\end{equation*}
$$

and the horizontal part with respect to $\pi^{\prime}: P \rightarrow Q^{n-1}$ is

$$
\begin{equation*}
\mathcal{H}\left(\widetilde{\varphi}_{*}\right)_{p}\left(\partial / \partial t_{j}\right)=\left(\mathbf{p}_{j}, \mathbf{q}_{j}\right) . \tag{2.4}
\end{equation*}
$$

Since $\left(t_{1}, t_{2}\right)$ is an isothermal coordinate of Σ^{2}, we have

$$
\begin{equation*}
\rho:=\left\|\mathbf{p}_{1}\right\|^{2}+\left\|\mathbf{q}_{1}\right\|^{2}=\left\|\mathbf{p}_{2}\right\|^{2}+\left\|\mathbf{q}_{2}\right\|^{2}, \quad \mathbf{p}_{1} \cdot \mathbf{p}_{2}+\mathbf{q}_{1} \cdot \mathbf{q}_{2}=0 \tag{2.5}
\end{equation*}
$$

(1.3) and (2.4) imply

Proposition 2.1. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be an immersion from a Riemann surface to a complex quadric. Then

$$
\begin{align*}
\varphi \text { is holomorphic } & \Longleftrightarrow \mathbf{p}_{1}=\mathbf{q}_{2} \text { and } \mathbf{p}_{2}=-\mathbf{q}_{1}, \tag{2.6}\\
\varphi \text { is anti-holomorphic } & \Longleftrightarrow \mathbf{p}_{1}=-\mathbf{q}_{2} \text { and } \mathbf{p}_{2}=\mathbf{q}_{1} .
\end{align*}
$$

Note that the Kähler angle α of the immersion $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is given by

$$
\begin{aligned}
\cos \alpha & =\rho^{-1}\left\langle J \varphi_{*}\left(\partial / \partial t_{1}\right), \varphi_{*}\left(\partial / \partial t_{2}\right)\right\rangle \\
& =\rho^{-1}\left(\mathbf{p}_{1} \cdot \mathbf{q}_{2}-\mathbf{p}_{2} \cdot \mathbf{q}_{1}\right) .
\end{aligned}
$$

Suppose that the immersion $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is holomorphic, i.e., (2.6) holds. Then (2.3) is written as

$$
\begin{equation*}
\left(\widetilde{\varphi}_{*}\right)_{p}\left(\partial / \partial t_{1}\right)=\left(\lambda_{1} \mathbf{f}+\mathbf{p}_{1},-\lambda_{1} \mathbf{e}-\mathbf{p}_{2}\right) \tag{2.7}
\end{equation*}
$$

$$
\left(\widetilde{\varphi}_{*}\right)_{p}\left(\partial / \partial t_{2}\right)=\left(\lambda_{2} \mathbf{f}+\mathbf{p}_{2},-\lambda_{2} \mathbf{e}+\mathbf{p}_{1}\right)
$$

and the horizontal part of these vectors are

$$
\begin{aligned}
& \mathcal{H}\left(\tilde{\varphi}_{*}\right)_{p}\left(\partial / \partial t_{1}\right)=\left(\mathbf{p}_{1},-\mathbf{p}_{2}\right) \\
& \mathcal{H}\left(\tilde{\varphi}_{*}\right)_{p}\left(\partial / \partial t_{2}\right)=\left(\mathbf{p}_{2}, \mathbf{p}_{1}\right)
\end{aligned}
$$

Example 2.2. Let $\psi_{n}: \mathbb{C P}^{1} \rightarrow \mathbb{C} \mathbb{P}^{n}$ be the Veronese embedding of order n given by

$$
\psi_{n}(z)=\left[1, \sqrt{\binom{n}{1}} z, \sqrt{\binom{n}{2}} z^{2}, \ldots, \sqrt{\binom{n}{k}} z^{k}, \ldots, \sqrt{\binom{n}{n-1}} z^{n-1}, z^{n}\right]
$$

where z is an inhomogeneous coordinate of $\mathbb{C P}^{1}$. Then $\psi_{n}\left(\mathbb{C P}^{1}\right)$ is contained in some Q^{n-1} in $\mathbb{C P}^{n}$ if and only if n is even. When $n=4 m(m \geq 1), \psi_{4 m}: \mathbb{C P}^{1} \rightarrow Q^{4 m-1} \subset$ $\mathbb{C} \mathbb{P}^{4 m}$ is represented as:

$$
\begin{aligned}
\psi_{4 m}(z)= & 1+z^{4 m}, i\left(1-z^{4 m}\right), \\
& \sqrt{\binom{4 m}{1}}\left(z-z^{4 m-1}\right), i \sqrt{\binom{4 m}{1}}\left(z+z^{4 m-1}\right), \\
& \sqrt{\binom{4 m}{2}}\left(z^{2}+z^{4 m-2}\right), i \sqrt{\binom{4 m}{2}}\left(z^{2}-z^{4 m-2}\right) \\
& \sqrt{\binom{4 m}{3}}\left(z^{3}-z^{4 m-3}\right), i \sqrt{\binom{4 m}{3}}\left(z^{3}+z^{4 m-3}\right) \\
& \cdots, \\
& \sqrt{\binom{4 m}{2 m-1}}\left(z^{2 m-1}-z^{2 m+1}\right), i \sqrt{\binom{4 m}{2 m-1}}\left(z^{2 m-1}+z^{2 m+1}\right) \\
& \left.\sqrt{2\binom{4 m}{2 m}} z^{2 m}\right]
\end{aligned}
$$

and when $n=4 m-2(m \geq 1), \psi_{4 m-2}: \mathbb{C P}^{1} \rightarrow Q^{4 m-3} \subset \mathbb{C P}^{4 m-2}$ is represented as:

$$
\begin{aligned}
\psi_{4 m-2}(z)= & {\left[1+z^{4 m-2}, i\left(1-z^{4 m-2}\right)\right.} \\
& \sqrt{\binom{4 m-2}{1}}\left(z-z^{4 m-3}\right), i \sqrt{\binom{4 m-2}{1}}\left(z+z^{4 m-3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\binom{4 m-2}{2}}\left(z^{2}+z^{4 m-4}\right), i \sqrt{\binom{4 m-2}{2}}\left(z^{2}-z^{4 m-4}\right) \\
& \sqrt{\binom{4 m-2}{3}}\left(z^{3}-z^{4 m-5}\right), i \sqrt{\binom{4 m-2}{3}}\left(z^{3}+z^{4 m-5}\right) \\
& \cdots, \\
& \sqrt{\binom{4 m-2}{2 m-2}}\left(z^{2 m-2}+z^{2 m}\right), i \sqrt{\binom{4 m-2}{2 m-2}}\left(z^{2 m-2}-z^{2 m}\right) \\
& \left.i \sqrt{2\binom{4 m-2}{2 m-1}} z^{2 m-1}\right]
\end{aligned}
$$

Example 2.3. Let f be a holomorphic immersion from a Riemann surface Σ^{2} to $\mathbb{C} \mathbb{P}^{m}$, and let \imath^{\prime} be the inclusion of $\mathbb{C} \mathbb{P}^{m}$ to $Q^{2 m}$ defined by $\pi(\mathbf{z}) \mapsto \pi^{\prime}((\mathbf{z}, i \mathbf{z}))$. Then the composition $\imath^{\prime} \circ f$ gives a holomorphic curve of $Q^{2 m}$.

Example 2.4. Let f be an immersion from a Riemann surface Σ^{2} to \mathbb{R}^{n+1}. Then the Gauss map $G: \Sigma^{2} \rightarrow Q^{n-1}$ of f is anti-holomorphic if and only if the immersion f is minimal (cf. [8]). So from a (non-flat) minimal surface in \mathbb{R}^{n+1}, we can find a holomorphic curve $\bar{G}: \Sigma^{2} \rightarrow Q^{n-1}$ by taking the complex conjugate of G.

Theorem 2.5 ([1, 4]). There exists a canonical 1-1 correspondence between the set of generalized minimal immersions $\chi: S^{2} \rightarrow S^{2 m}(1)$ which are not contained in any lower dimensional subspace of $\mathbb{R}^{2 m+1}$ and the set of totally isotropic holomorphic curves $\Xi: S^{2} \rightarrow \mathbb{C P}^{2 m}$ which are not contained in any complex hyperplane of $\mathbb{C} \mathbb{P}^{2 m}$. The correspondence is the one that associates with minimal immersion χ its directrix curve.

This theorem holds for pseudo-holomorphic maps [4] χ from a Riemann surface Σ^{2} to $\rightarrow S^{2 m}(1)$, i.e.

$$
\left(\left(\partial^{j} \chi, \partial^{k} \chi\right)\right)=0, \quad j+k>0
$$

where $\partial^{j} \chi=\partial^{j} \chi / \partial z^{j}, z$ is a local isothermal parameter of Σ^{2}, and ((,)) denotes the symmetric product of $\mathbb{C}^{2 m+1}$.

A holomorphic curve $\Xi: \Sigma^{2} \rightarrow \mathbb{C P}^{2 m}$ is totally isotropic if and only if $\Xi\left(\Sigma^{2}\right)$ is not contained in any complex hyperplane of $\mathbb{C P}^{2 m}$ and for a local expression ξ of Ξ,

$$
((\xi, \xi))=\left(\left(\xi^{\prime}, \xi^{\prime}\right)\right)=\cdots=\left(\left(\xi^{m-1}, \xi^{m-1}\right)\right)=0
$$

where $\xi^{k}=\partial^{k} \xi$. In particular, the image of a totally isotropic holomorphic curve Ξ : $S^{2} \rightarrow \mathbb{P}^{2 m}(\mathbb{C})$ is contained in $Q^{2 m-1}$, for $((\xi, \xi))=0$. So Ξ gives a holomorphic curve
of the complex quadric.
The directrix curve of a minimal immersion $\chi: S^{2} \rightarrow S^{2 m}(1)$ is nothing but the map $\Xi: \Sigma^{2} \rightarrow Q^{2 m-1}$ defined by $\Xi(p)=$ the ($m-1$)-th normal space at p with respect to χ.

Example 2.6. Let $\chi: S^{2}(1 / 3) \rightarrow S^{4}(1)$ be the Veronese immersion from the sphere of constant Gaussian curvature $1 / 3$ to the unit 4 -sphere. Then the directrix curve of χ is congruent to $\psi_{4}: S^{2} \rightarrow Q^{3} \subset \mathbb{C P}^{4}$ of Example 2.2.

Definition 2.7. For a holomorphic curve $\varphi: \Sigma^{2} \rightarrow Q^{n-1}, x \in \Sigma^{2}$ is called a real point [10, p. 131] if

$$
\mathbf{p}_{1} \wedge \mathbf{p}_{2}=0
$$

at x, and $x \in \Sigma^{2}$ is called an isotropic point [10, p. 130], if

$$
\begin{equation*}
\left\|\mathbf{p}_{1}\right\|^{2}=\left\|\mathbf{p}_{2}\right\|^{2} \neq 0, \text { and } \mathbf{p}_{1} \cdot \mathbf{p}_{2}=0 \tag{2.8}
\end{equation*}
$$

at x, respectively. φ is called first order isotropic [10, p. 134]) if every point $x \in \Sigma^{2}$ is isotropic.

With respect to the above notation, a holomorphic curve $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is first order isotropic if and only if $\left(\xi^{\prime}, \xi^{\prime}\right)=0$. On the other hand, if every point of Σ^{2} is real, then $\varphi\left(\Sigma^{2}\right)$ is contained in a totally geodesic Q^{1} in Q^{n-1} [10, Theorem 3.1]. These definitions do not depend on the choice of the section (e,f).

For a holomorphic curve $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ (which in not necessary first order isotropic), put

$$
\begin{array}{r}
\mathbf{p}_{j, k}^{*}=\text { orthogonal component of } \frac{\partial \mathbf{p}_{j}}{\partial t_{k}} \text { to } \operatorname{span}\{\mathbf{e}, \mathbf{f}\} \text { in } \mathbb{R}^{n+1}, \tag{2.9}\\
\mathbf{p}_{j, k}^{* *}=\text { orthogonal component of } \frac{\partial \mathbf{p}_{j}}{\partial t_{k}} \text { to } \operatorname{span}\left\{\mathbf{e}, \mathbf{f}, \mathbf{p}_{1}, \mathbf{p}_{2}\right\} \text { in } \mathbb{R}^{n+1} .
\end{array}
$$

Since

$$
\bar{\nabla}_{\varphi_{*}\left(\partial / \partial t_{2}\right)}^{Q} \varphi_{*}\left(\partial / \partial t_{1}\right)=\pi_{*}^{\prime}\left(\mathbf{p}_{1,2}^{*}+\lambda_{1} \mathbf{p}_{1},-\mathbf{p}_{2,2}^{*}-\lambda_{1} \mathbf{p}_{2}\right)
$$

and

$$
\bar{\nabla}_{\varphi_{*}\left(\partial / \partial t_{1}\right)}^{Q} \varphi_{*}\left(\partial / \partial t_{2}\right)=\pi_{*}^{\prime}\left(\mathbf{p}_{2,1}^{*}-\lambda_{2} \mathbf{p}_{2}, \mathbf{p}_{1,1}^{*}-\lambda_{2} \mathbf{p}_{1}\right)
$$

are equal (cf. (1.4)), we have

$$
\begin{equation*}
\mathbf{p}_{1,1}^{* *}+\mathbf{p}_{2,2}^{* *}=0, \quad \mathbf{p}_{1,2}^{* *}=\mathbf{p}_{2,1}^{* *} . \tag{2.10}
\end{equation*}
$$

Suppose the holomorphic curve $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is first order isotropic. Then the second fundamental form σ^{φ} of φ is written as

$$
\begin{aligned}
& \sigma^{\varphi}\left(\partial / \partial t_{1}, \partial / \partial t_{1}\right)=-\sigma^{\varphi}\left(\partial / \partial t_{2}, \partial / \partial t_{2}\right)=\pi_{*}^{\prime}\left(\mathbf{p}_{1,1}^{* *},-\mathbf{p}_{1,2}^{* *}\right), \\
& \sigma^{\varphi}\left(\partial / \partial t_{1}, \partial / \partial t_{2}\right)=\pi_{*}^{\prime}\left(\mathbf{p}_{1,2}^{* *}, \mathbf{p}_{1,1}^{* *}\right) .
\end{aligned}
$$

Using (1.5) and the Gauss equation, the Gauss curvature $K^{\Sigma^{2}}$ of Σ^{2} with respect to the metric induced by the first order isotropic holomorphic curve $\psi=\imath \circ \varphi: \Sigma^{2} \rightarrow \mathbb{C P}^{n}$ is given by

$$
\begin{align*}
K^{\Sigma^{2}}= & 2-\frac{1}{2}\left(\left\|\sigma^{\varphi}\right\|^{2}+\left\|A_{N_{1}}^{2}\right\|^{2}+\left\|A_{N_{2}}^{2}\right\|^{2}\right) \tag{2.11}\\
= & 2-\frac{1}{\rho^{2}}\left(\left\|\sigma^{\varphi}\left(\partial / \partial t_{1}, \partial / \partial t_{1}\right)\right\|^{2}+\left\|\sigma^{\varphi}\left(\partial / \partial t_{1}, \partial / \partial t_{2}\right)\right\|^{2}\right. \\
& +\left\langle A_{N_{1}}^{2} \varphi_{*}\left(\partial / \partial t_{1}\right), \varphi_{*}\left(\partial / \partial t_{1}\right)\right\rangle^{2}+\left\langle A_{N_{1}}^{2} \varphi_{*}\left(\partial / \partial t_{1}\right), \varphi_{*}\left(\partial / \partial t_{2}\right)\right\rangle^{2} \\
& \left.+\left\langle A_{N_{2}}^{2} \varphi_{*}\left(\partial / \partial t_{1}\right), \varphi_{*}\left(\partial / \partial t_{1}\right)\right\rangle^{2}+\left\langle A_{N_{2}}^{2} \varphi_{*}\left(\partial / \partial t_{1}\right), \varphi_{*}\left(\partial / \partial t_{2}\right)\right\rangle^{2}\right) \\
= & 2-\frac{1}{\rho^{2}}\left(2\left(\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}+\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}\right)+\left(\left\|\mathbf{p}_{1}\right\|^{2}-\left\|\mathbf{p}_{2}\right\|^{2}\right)^{2}+4\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}\right) \\
= & 1-\frac{2}{\rho^{2}}\left(\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}+\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}-2\left(\left\|\mathbf{p}_{1}\right\|^{2}\left\|\mathbf{p}_{2}\right\|^{2}-\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}\right)\right) .
\end{align*}
$$

3. Immersions of some circle bundles over surfaces in complex quadric to sphere

Let M^{3} be a 3-dimensional submanifolds foliated by (oriented) great circles of unit sphere $S^{n}(1)$ with an immersion $\Phi: M^{3} \rightarrow S^{n}(1)$, and let $C(p)$ be the great circle of the foliation through $p \in M^{3}$. We note that the foliation on M^{3} is regular in the sense of Palais [16, p. 13] (i.e. every point has a coordinate chart distinguished by the foliation, such that each leaf intersects the chart in at most one 2-dimensional slice). This implies that the space of leaves Σ^{2} is an 2-dimensional manifold, for each $C(p)$ is complete. Since $C(p)$ is an element of Q^{n-1}, we have a map $\tilde{\varphi}: M^{3} \rightarrow Q^{n-1}$ defined by $\widetilde{\varphi}(p)=C(p)$. Then we can easily see that $\widetilde{\varphi}$ factors through an immersion $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ (cf. [5, p. 142, Theorem 4.6]).

Example 3.1. Let M^{3} be a hypersurface of $S^{4}(1)$ on which type number (i.e., rank of shape operator A) of M is 2 . Then each integral curve of 1 -dimensional distribution $\operatorname{ker} A$ on M^{3} is a part of great circle of $S^{4}(1)$. In particular, minimal Cartan hypersurface (i.e., the minimal isoparametric hypersurface with 3 distinct constant principal curvatures $c, 0,-c$ and $c \neq 0$) of unit 4 -sphere is foliated by great circles of S^{4}.

Example 3.2. As a generalization of Example 3.1, let M^{3} be a 3 -dimensional submanifold of $S^{n}(1)$ with $n \geq 5$. Suppose dimension of subspace $V(p)$ of tangent space $T_{p}\left(M^{3}\right)$, defined by

$$
V(p)=\left\{X \in T_{p}\left(M^{3}\right) \mid \sigma^{M}(X, Y)=0 \text { for any } Y \in T_{p}\left(M^{3}\right)\right\},
$$

is 1 for each $p \in M$, where σ^{M} denotes second fundamental form of M^{3} in $S^{n}(1)$. Then each integral curve of 1-dimensional distribution $V(p)$ on M^{3} is a part of great circle of $S^{n}(1)$.

Example 3.3. Let Σ^{2} be a 2 -dimensional surface of $\mathbb{C} \mathbb{P}^{m}$. Then $M^{3}=\pi^{-1}\left(\Sigma^{2}\right)$ is a 3-dimensional submanifold foliated by great circles $\pi^{-1}(p)$ for $p \in \Sigma^{2}$ of $S^{2 m+1}(1)$.

Example 3.4. Let $S^{1}\left(c_{1}\right) \times S^{2}\left(c_{2}\right)$ be a Riemann product of the circle of radius $1 / \sqrt{c_{1}}$ in \mathbb{R}^{2} and the round 2 -sphere of radius $1 / \sqrt{c_{2}}$ on which $1 / c_{1}+1 / c_{2}=1$ holds. We parameterize the immersion $\Phi: S^{1}\left(c_{1}\right) \times S^{2}\left(c_{2}\right) \rightarrow S^{4}(1)$ into the unit 4-sphere as:

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{c_{1}}}(\cos \theta, \sin \theta), \frac{1}{\sqrt{c_{2}}}(\cos u \cos v, \cos u \sin v, \sin u)\right) \mapsto \\
& \left(\frac{1}{\sqrt{c_{1}}}(\cos \theta, \sin \theta), \frac{1}{\sqrt{c_{2}}}(\cos (\theta+u) \cos v, \cos (\theta+u) \sin v, \sin (\theta+u))\right)
\end{aligned}
$$

Then integral curves of the vector field $\partial / \partial \theta$ are great circles of S^{4}.
Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a conformal immersion from a Riemann surface Σ^{2} to the complex quadric Q^{n-1} as in $\S 2$, and let $P\left(Q^{n-1}, S^{1}\right)$ be the circle bundle over Q^{n-1} (cf. $\S 1$), which is the pullback bundle of the Hopf fibration $S^{2 n+1}\left(\mathbb{C P}^{n}, S^{1}\right)$, where P is the space of ordered two orthonormal vectors in \mathbb{R}^{n+1}. We denote the pullback bundle over Σ^{2} with respect to φ as $\pi_{\varphi}: \varphi^{*} P \rightarrow \Sigma^{2}$, and let $M^{3}=\varphi^{*} P$. By the definition, there is a bundle chart $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}(\alpha \in \Lambda)$ of $\varphi^{*} P$ such that

$$
u \in \pi_{\varphi}^{-1}\left(U_{\alpha}\right) \rightarrow\left(\pi_{\varphi}(u), \varphi_{\alpha}(u)\right) \in U_{\alpha} \times S^{1}
$$

gives a homeomorphism. If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\varphi_{\beta}(u)\left(\varphi_{\alpha}(u)\right)^{-1}$ gives rise to the transition function

$$
x \in U_{\alpha} \cap U_{\beta} \rightarrow \Theta_{\beta \alpha}(x) \in S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}
$$

Note that if $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$, then we can see that

$$
\Theta_{\gamma \alpha}(p)=\Theta_{\gamma \beta}(p)+\Theta_{\beta \alpha}(p), \quad p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}
$$

For each $\alpha \in \Lambda$, we can take the (differentiable) section $\rho_{\alpha}: U_{\alpha} \rightarrow \pi_{\varphi}^{-1}\left(U_{\alpha}\right)$ as

$$
\left.\pi_{\varphi}\left(\rho_{\alpha}(p)\right)=p, \quad \varphi_{\alpha}\left(\rho_{\alpha}(p)\right)=e \quad \text { (identity }\right)
$$

If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then we have

$$
\begin{equation*}
\rho_{\alpha}(p)=\rho_{\beta}(p) \Theta_{\beta \alpha}(p), \quad p \in U_{\alpha} \cap U_{\beta} . \tag{3.1}
\end{equation*}
$$

Since $\rho_{\alpha}(p)$ and $\rho_{\beta}(p)$ are viewed as elements in P, we may write them as

$$
\rho_{\alpha}(p)=\left(\mathbf{e}_{\alpha}(p), \mathbf{f}_{\alpha}(p)\right), \quad \rho_{\beta}(p)=\left(\mathbf{e}_{\beta}(p), \mathbf{f}_{\beta}(p)\right),
$$

where $\mathbf{e}_{\alpha}(p), \mathbf{f}_{\alpha}(p)$ and $\mathbf{e}_{\beta}(p), \mathbf{f}_{\beta}(p)$ are oriented orthonormal basis of the two-plane $\varphi(p) \in Q^{n-1}$. Then (3.1) is written as

$$
\begin{align*}
\left(\mathbf{e}_{\alpha}(p), \mathbf{f}_{\alpha}(p)\right)= & \left(\cos \Theta_{\beta \alpha}(p) \mathbf{e}_{\beta}(p)+\sin \Theta_{\beta \alpha}(p) \mathbf{f}_{\beta}(p),\right. \tag{3.2}\\
& \left.-\sin \Theta_{\beta \alpha}(p) \mathbf{e}_{\beta}(p)+\cos \Theta_{\beta \alpha}(p) \mathbf{f}_{\beta}(p)\right) .
\end{align*}
$$

Note that the pullback bundle $M^{3}=\varphi^{*} P$ is also realized as the quotient space $\Lambda \times$ $\Sigma^{2} \times S^{1} / \sim$, where

$$
\begin{equation*}
(\alpha, p, \theta) \sim(\beta, q, \zeta) \Longleftrightarrow p=q \in U_{\alpha} \cap U_{\beta}, \text { and } \zeta=\theta+\Theta_{\beta \alpha} . \tag{3.3}
\end{equation*}
$$

For each $p \in \Sigma^{2}$, the fiber $\pi_{\varphi}^{-1}(p)$ with respect to $\pi_{\varphi}: \varphi^{*} P \rightarrow \Sigma^{2}$ is identified with the great circle $\varphi(p) \in Q^{n-1}$ (cf. Remark 1.1).

We define the map $\Phi: M^{3}=\varphi^{*} P \rightarrow S^{n}(1)$ as

$$
\begin{equation*}
\Phi([\alpha, p, \theta])=\cos \theta \mathbf{e}_{\alpha}(p)+\sin \theta \mathbf{f}_{\alpha}(p), \tag{3.4}
\end{equation*}
$$

where $[\alpha, p, \theta]$ is the equivalence class of $(\alpha, p, \theta) \in \Lambda \times \Sigma^{2} \times S^{1}$. By (3.2) and (3.3), Φ is well-defined. We can see that Φ maps each fiber $\pi_{\varphi}^{-1}(p)$ for $p \in \Sigma^{2}$ to the corresponding great circle $\varphi(p) \in Q^{n-1}$

If $p \in U_{\alpha} \subset \Sigma^{2}$, then $p \mapsto\left(\mathbf{e}_{\alpha}(p), \mathbf{f}_{\alpha}(p)\right)$ gives a lift of $\left.\varphi\right|_{U_{\alpha}}: U_{\alpha} \rightarrow Q^{n-1}$ to P. For simplicity we denote $(\mathbf{e}(p), \mathbf{f}(p))$ instead of $\left(\mathbf{e}_{\alpha}(p), \mathbf{f}_{\alpha}(p)\right)$, and we use the same notations as $\S 1$. We may view Φ as a \mathbb{R}^{n+1}-valued function on M^{3}. Using (2.2), we get that the first order differential of Φ is

$$
\begin{align*}
& \Phi_{\theta}=\frac{\partial \Phi}{\partial \theta}=-\sin \theta \mathbf{e}+\cos \theta \mathbf{f}, \tag{3.5}\\
& \Phi_{j}=\frac{\partial \Phi}{\partial t_{j}}=\cos \theta\left(\lambda_{j} \mathbf{f}+\mathbf{p}_{j}\right)+\sin \theta\left(-\lambda_{j} \mathbf{e}+\mathbf{q}_{j}\right) \quad(j=1,2), \tag{3.6}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi \wedge \Phi_{\theta}=\mathbf{e} \wedge \mathbf{f} \tag{3.7}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\Psi_{j}:=\Phi_{j}-\lambda_{j} \Phi_{\theta} \tag{3.8}
\end{equation*}
$$

$$
=\cos \theta \mathbf{p}_{j}+\sin \theta \mathbf{q}_{j}, \quad(j=1,2)
$$

So

$$
\begin{aligned}
\Psi_{1} \wedge \Psi_{2}= & \cos ^{2} \theta\left(\mathbf{p}_{1} \wedge \mathbf{p}_{2}\right)+\cos \theta \sin \theta\left(\mathbf{p}_{1} \wedge \mathbf{q}_{2}-\mathbf{p}_{2} \wedge \mathbf{q}_{1}\right) \\
& +\sin ^{2} \theta\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2}\right)
\end{aligned}
$$

Hence we have
Proposition 3.5. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a conformal immersion from a Riemann surface Σ^{2} to the complex quadric Q^{n-1}, and let $P\left(Q^{n-1}, S^{1}\right)$ be the circle bundle over Q^{n-1}, where $P=S O(n+1) / S O(n-1)$ is the space of ordered two orthonormal vectors in \mathbb{R}^{n+1}. Then
(1) The map Φ from the pullback bundle $\varphi^{*} P$ to $S^{n}(1)$ defined by (3.4) maps each fiber $\pi_{\varphi}^{-1}(p)$ for $p \in \Sigma^{2}$ of the circle bundle $\pi_{\varphi}: P \rightarrow \Sigma^{2}$ to the corresponding great circle $\varphi(p) \in Q^{n-1}$ of $S^{n}(1)$.
(2) Φ is regular at $[\alpha, p, \theta] \in \varphi^{*} P$ if and only if at $p \in U_{\alpha} \subset \Sigma^{2}, \varphi$ satisfies

$$
\cos ^{2} \theta\left(\mathbf{p}_{1} \wedge \mathbf{p}_{2}\right)+\cos \theta \sin \theta\left(\mathbf{p}_{1} \wedge \mathbf{q}_{2}-\mathbf{p}_{2} \wedge \mathbf{q}_{1}\right)+\sin ^{2} \theta\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2}\right) \neq 0
$$

(3) If $\varphi\left(\Sigma^{2}\right)$ is not contained in a totally geodesic Q^{n-2} in Q^{n-1}, then $\Phi\left(\varphi^{*} P\right)$ is not contained in a totally geodesic $S^{n-1}(1)$ in $S^{n}(1)$.

We suppose that Φ is an immersion, i.e., with respect to a basis $\left\{\Phi_{\theta}, \Psi_{1}, \Psi_{2}\right\}$ of the tangent space $T_{(\mathbf{p}, \theta)} M$, the metric of M induced by Φ is given as follows:

$$
\begin{aligned}
& \left\|\Phi_{\theta}\right\|^{2}=1, \quad \Phi_{\theta} \cdot \Psi_{1}=\Phi_{\theta} \cdot \Psi_{2}=0, \\
& \left\|\Psi_{1}\right\|^{2}=\left\|\mathbf{p}_{1}\right\|^{2} \cos ^{2} \theta+2 \mathbf{p}_{1} \cdot \mathbf{q}_{1} \cos \theta \sin \theta+\left\|\mathbf{q}_{1}\right\|^{2} \sin ^{2} \theta, \\
& \Psi_{1} \cdot \Psi_{2}=\mathbf{p}_{1} \cdot \mathbf{p}_{2} \cos ^{2} \theta+\left(\mathbf{p}_{1} \cdot \mathbf{q}_{2}+\mathbf{p}_{2} \cdot \mathbf{q}_{1}\right) \cos \theta \sin \theta+\mathbf{q}_{1} \cdot \mathbf{q}_{2} \sin ^{2} \theta, \\
& \left\|\Psi_{2}\right\|^{2}=\left\|\mathbf{p}_{2}\right\|^{2} \cos ^{2} \theta+2 \mathbf{p}_{2} \cdot \mathbf{q}_{2} \cos \theta \sin \theta+\left\|\mathbf{q}_{2}\right\|^{2} \sin ^{2} \theta .
\end{aligned}
$$

We find the condition whether the tangent vectors Φ_{θ} of each great circle corresponding to a two-plane $\varphi(p) \subset \mathbb{R}^{n}$ is a null direction of the second fundamental form σ^{Φ} of $\Phi: M^{3} \rightarrow S^{n}(1)$ or not. Since $D_{\Phi_{\theta}} \Phi_{\theta}=-\Phi$, clearly

$$
\begin{equation*}
\sigma^{\Phi}\left(\Phi_{\theta}, \Phi_{\theta}\right)=0 \tag{3.9}
\end{equation*}
$$

where D is a flat connection of \mathbb{R}^{n+1}. By the fact that

$$
\begin{equation*}
D_{\Phi_{\theta}} \Psi_{j}=-\sin \theta \mathbf{p}_{j}+\cos \theta \mathbf{q}_{j} \quad(j=1,2) \tag{3.10}
\end{equation*}
$$

is orthogonal to Φ and Φ_{θ}, we have

$$
\sigma^{\Phi}\left(\Phi_{\theta}, \Psi_{j}\right)=0 \Leftrightarrow \Psi_{1} \wedge \Psi_{2} \wedge D_{\Phi_{\theta}} \Psi_{j}=0
$$

Hence

$$
\begin{align*}
\sigma^{\Phi}\left(\Phi_{\theta}, \Psi_{1}\right)=0 & \Longleftrightarrow-\mathbf{p}_{1} \wedge \mathbf{q}_{1} \wedge\left(\cos \theta \mathbf{p}_{2}+\sin \theta \mathbf{q}_{2}\right)=0 \tag{3.11}\\
& \Longleftrightarrow\left\{\begin{array}{l}
\mathbf{p}_{1} \wedge \mathbf{q}_{1} \wedge \mathbf{p}_{2}=0 \\
\mathbf{p}_{1} \wedge \mathbf{q}_{1} \wedge \mathbf{q}_{2}=0
\end{array}\right.
\end{align*}
$$

and

$$
\begin{align*}
\sigma^{\Phi}\left(\Phi_{\theta}, \Psi_{2}\right)=0 & \Longleftrightarrow \mathbf{p}_{2} \wedge \mathbf{q}_{2} \wedge\left(\cos \theta \mathbf{p}_{1}+\sin \theta \mathbf{q}_{1}\right)=0 \tag{3.12}\\
& \Longleftrightarrow\left\{\begin{array}{l}
\mathbf{p}_{2} \wedge \mathbf{q}_{2} \wedge \mathbf{p}_{1}=0 \\
\mathbf{p}_{2} \wedge \mathbf{q}_{2} \wedge \mathbf{q}_{1}=0
\end{array}\right.
\end{align*}
$$

Consequently we have
Proposition 3.6. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be an immersion from a surface to a complex quadric, and let $\Phi: M^{3}=\varphi^{*} P \rightarrow S^{n}(1)$ be the corresponding immersion defined by (3.4). Then the tangent vectors Φ_{θ} of each great circle corresponding to a twoplane $\varphi(p) \subset \mathbb{R}^{n}$ is a null direction of the second fundamental form σ^{Φ} of Φ if and only if

$$
\operatorname{dim} \operatorname{span}\left\{\mathbf{p}_{1}, \mathbf{q}_{1}, \mathbf{p}_{2}, \mathbf{q}_{2}\right\} \leq 2
$$

Because of Proposition 2.1, we get
Corollary 3.7. Under the same assumption as in Proposition 3.6, if φ is either holomorphic or anti-holomorphic, then the tangent vectors Φ_{θ} of each great circle corresponding to a two-plane $\varphi(p) \subset \mathbb{R}^{n}$ is a null direction of the second fundamental form σ^{Φ} of Φ.

Remark 3.8. In Example 3.4, generalized Clifford torus $\Phi: S^{1}\left(c_{1}\right) \times S^{2}\left(c_{2}\right) \rightarrow$ $S^{4}(1) \subset S^{n}(1)$ is given by a totally real surface Σ^{2} in Q^{n-1}. But there is no null direction of the second fundamental form σ^{Φ} of Φ.

Next we try to find the condition such that the immersion $\Phi: M^{3}=\varphi^{*} P \rightarrow S^{n}(1)$ is minimal. Since $\Phi \wedge \Phi_{\theta}=\mathbf{e} \wedge \mathbf{f}, \Phi$ is minimal if and only if

$$
\begin{align*}
& \Psi_{1} \wedge \Psi_{2} \wedge\left\{\left\|\Psi_{2}\right\|^{2} D_{\Psi_{1}} \Psi_{1}-\left(\Psi_{1} \cdot \Psi_{2}\right)\left(D_{\Psi_{1}} \Psi_{2}+D_{\Psi_{2}} \Psi_{1}\right)\right. \tag{3.13}\\
& \left.\quad+\left\|\Psi_{1}\right\|^{2} D_{\Psi_{2}} \Psi_{2}\right\} \equiv 0 \quad \bmod (\mathbf{e}, \mathbf{f})
\end{align*}
$$

Differentiating Ψ_{j} by $\Psi_{k}=\Phi_{k}-\lambda_{k} \Phi_{\theta}$ (see (3.5)), we get

$$
D_{\Psi_{k}} \Psi_{j}=\cos \theta\left(\mathbf{p}_{j, k}-\lambda_{k} \mathbf{q}_{j}\right)+\sin \theta\left(\mathbf{q}_{j, k}+\lambda_{k} \mathbf{p}_{j}\right),
$$

where $\mathbf{p}_{j, k}=\partial \mathbf{p}_{j} / \partial t_{k}$ and $\mathbf{q}_{j, k}=\partial \mathbf{q}_{j} / \partial t_{k}$ in \mathbb{R}^{n+1}, respectively. Put

$$
\begin{aligned}
A_{j, k} & =\mathbf{p}_{j, k}^{*}-\lambda_{k} \mathbf{q}_{j},
\end{aligned} \quad \mathbf{p}_{j, k}^{*}=\mathbf{p}_{j, k}+\left(\mathbf{p}_{j} \cdot \mathbf{p}_{k}\right) \mathbf{e}+\left(\mathbf{p}_{j} \cdot \mathbf{q}_{k}\right) \mathbf{f}, ~\left(\mathbf{q}_{j, k}\right)
$$

i.e., $\mathbf{p}_{j, k}^{*}$ and $\mathbf{q}_{j, k}^{*}$ are orthogonal components of $\mathbf{p}_{j, k}$ and $\mathbf{q}_{j, k}$ to $\operatorname{span}\{\mathbf{e}, \mathbf{f}\}$ in \mathbb{R}^{n+1}, respectively. Then we obtain

$$
D_{\Psi_{k}} \Psi_{j} \equiv \cos \theta A_{j, k}+\sin \theta B_{j, k} \quad \bmod (\mathbf{e}, \mathbf{f}) .
$$

Note that (2.2), (3.2) and $\partial^{2} \Phi / \partial t_{j} \partial t_{k}=\partial^{2} \Phi / \partial t_{k} \partial t_{j}$ imply

$$
A_{j, k}=A_{k, j} \text { and } B_{j, k}=B_{k, j}
$$

By direct calculations, we have

$$
\begin{aligned}
& \left\|\Psi_{2}\right\|^{2} D_{\Psi_{1}} \Psi_{1}-\left(\Psi_{1} \cdot \Psi_{2}\right)\left(D_{\Psi_{1}} \Psi_{2}+D_{\Psi_{\Psi}} \Psi_{1}\right)+\left\|\Psi_{1}\right\|^{2} D_{\Psi_{2}} \Psi_{2} \\
\equiv & \cos ^{3} \theta C_{0}+\cos ^{2} \theta \sin \theta C_{1}+\cos \theta \sin ^{2} \theta C_{2}+\sin ^{3} \theta C_{3}, \quad \bmod (\mathbf{e}, \mathbf{f})
\end{aligned}
$$

where

$$
\begin{aligned}
C_{0}= & \left\|\mathbf{p}_{2}\right\|^{2} A_{1,1}-2\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right) A_{1,2}+\left\|\mathbf{p}_{1}\right\|^{2} A_{2,2}, \\
C_{1}= & \left\|\mathbf{p}_{2}\right\|^{2} B_{1,1}-2\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right) B_{1,2}+\left\|\mathbf{p}_{1}\right\|^{2} B_{2,2}, \\
& +2\left(\mathbf{p}_{2} \cdot \mathbf{q}_{2}\right) A_{1,1}-2\left(\mathbf{p}_{1} \cdot \mathbf{q}_{2}+\mathbf{p}_{2} \cdot \mathbf{q}_{1}\right) A_{1,2}+2\left(\mathbf{p}_{1} \cdot \mathbf{q}_{1}\right) A_{2,2} \\
C_{2}= & \left\|\mathbf{q}_{2}\right\|^{2} A_{1,1}-2\left(\mathbf{q}_{1} \cdot \mathbf{q}_{2}\right) A_{1,2}+\left\|\mathbf{q}_{1}\right\|^{2} A_{2,2}, \\
& +2\left(\mathbf{p}_{2} \cdot \mathbf{q}_{2}\right) B_{1,1}-2\left(\mathbf{p}_{1} \cdot \mathbf{q}_{2}+\mathbf{p}_{2} \cdot \mathbf{q}_{1}\right) B_{1,2}+2\left(\mathbf{p}_{1} \cdot \mathbf{q}_{1}\right) B_{2,2} \\
C_{3}= & \left\|\mathbf{q}_{2}\right\|^{2} B_{1,1}-2\left(\mathbf{q}_{1} \cdot \mathbf{q}_{2}\right) B_{1,2}+\left\|\mathbf{q}_{1}\right\|^{2} B_{2,2} .
\end{aligned}
$$

Since $\cos ^{5} \theta, \cos ^{4} \theta \sin \theta, \ldots, \sin ^{5} \theta$ are independent functions in (3.13), we get
Proposition 3.9. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be an immersion from a surface to a complex quadric, and let $\Phi: M^{3}=\varphi^{*} P \rightarrow S^{n}(1)$ be the corresponding immersion defined by (3.4). Then Φ is minimal if and only if the following equations hold:

$$
\begin{aligned}
& \mathbf{p}_{1} \wedge \mathbf{p}_{2} \wedge C_{0}=0 \\
& \left(\mathbf{p}_{1} \wedge \mathbf{q}_{2}-\mathbf{p}_{2} \wedge \mathbf{q}_{1}\right) \wedge C_{0}+\mathbf{p}_{1} \wedge \mathbf{p}_{2} \wedge C_{1}=0, \\
& \mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge C_{0}+\left(\mathbf{p}_{1} \wedge \mathbf{q}_{2}-\mathbf{p}_{2} \wedge \mathbf{q}_{1}\right) \wedge C_{1}+\mathbf{p}_{1} \wedge \mathbf{p}_{2} \wedge C_{2}=0 \\
& \mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge C_{1}+\left(\mathbf{p}_{1} \wedge \mathbf{q}_{2}-\mathbf{p}_{2} \wedge \mathbf{q}_{1}\right) \wedge C_{2}+\mathbf{p}_{1} \wedge \mathbf{p}_{2} \wedge C_{3}=0, \\
& \mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge C_{2}+\left(\mathbf{p}_{1} \wedge \mathbf{q}_{2}-\mathbf{p}_{2} \wedge \mathbf{q}_{1}\right) \wedge C_{3}=0, \\
& \mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge C_{3}=0
\end{aligned}
$$

Corollary 3.10. Under the same assumption as Proposition 3.9, suppose $n \geq 5$ and $\operatorname{dim} \operatorname{span}\left\{\mathbf{p}_{1}, \mathbf{q}_{1}, \mathbf{p}_{2}, \mathbf{q}_{2}\right\}=4$. Then Φ is minimal if and only if the following equations hold:

$$
\begin{array}{ll}
C_{0}=\mu_{0} \mathbf{p}_{1} \quad+\nu_{0} \mathbf{p}_{2}, \\
C_{1} & =\mu_{1} \mathbf{p}_{1}+\mu_{0} \mathbf{q}_{1}+\nu_{1} \mathbf{p}_{2}+\nu_{0} \mathbf{q}_{2}, \\
C_{2} & =\mu_{2} \mathbf{p}_{1}+\mu_{1} \mathbf{q}_{1}+\nu_{2} \mathbf{p}_{2}+\nu_{1} \mathbf{q}_{2}, \\
C_{3} & =\quad \mu_{2} \mathbf{q}_{1}+\nu_{2} \mathbf{q}_{2},
\end{array}
$$

where $\mu_{0}, \mu_{1}, \mu_{2}, \nu_{0}, \nu_{1}, \nu_{2}$ are some functions on Σ^{2}.

4. Three dimensional submanifolds of the sphere given by holomorphic curves of the complex quadric

In this section, as a special case of $\S 2$, we investigate 3 -dimensional submanifold M^{3} of $S^{n}(1)$ given by holomorphic curve Σ^{2} of Q^{n-1}. We use the same notation as $\S 2$ and $\S 3$.

Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a holomorphic immersion from a Riemann surface Σ^{2} to the complex quadric Q^{n-1} and let $\pi_{\varphi}: \varphi^{*} P \rightarrow \Sigma^{2}$ be the pullback bundle of the circle bundle $P\left(Q^{n-1}, S^{1}\right)(P=S O(n+1) / S O(n-1)$ is the set of ordered orthonormal 2 -vectors in \mathbb{R}^{n+1}) with respect to φ. We consider the map $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$ defined by (3.4). Using (2.2), we get that the first order differential of Φ is

$$
\begin{aligned}
& \Phi_{\theta}=\frac{\partial \Phi}{\partial \theta}=-\sin \theta \mathbf{e}+\cos \theta \mathbf{f} \\
& \Phi_{1}=\frac{\partial \Phi}{\partial t_{1}}=\cos \theta\left(\lambda_{1} \mathbf{f}+\mathbf{p}_{1}\right)+\sin \theta\left(-\lambda_{1} \mathbf{e}-\mathbf{p}_{2}\right) \\
& \Phi_{2}=\frac{\partial \Phi}{\partial t_{2}}=\cos \theta\left(\lambda_{2} \mathbf{f}+\mathbf{p}_{2}\right)+\sin \theta\left(-\lambda_{2} \mathbf{e}+\mathbf{p}_{1}\right)
\end{aligned}
$$

As in §3, we denote

$$
\begin{aligned}
& \Psi_{1}:=\Phi_{1}-\lambda_{1} \Phi_{\theta}=\cos \theta \mathbf{p}_{1}-\sin \theta \mathbf{p}_{2} \\
& \Psi_{2}:=\Phi_{2}-\lambda_{2} \Phi_{\theta}=\cos \theta \mathbf{p}_{2}+\sin \theta \mathbf{p}_{1}
\end{aligned}
$$

Using Proposition 3.5, we get
Proposition 4.1. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a holomorphic immersion from a Riemann surface Σ^{2} to the complex quadric Q^{n-1}, and let $\varphi^{*} P\left(\Sigma^{2}, S^{1}\right)$ be the pullback bundle of the circle bundle $P\left(Q^{n-1}, S^{1}\right)(P=S O(n+1) / S O(n-1))$ with respect to φ. Then the map $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$ defined by (3.4) is regular at each point in $\pi_{\varphi}^{-1}(x)$ for $x \in \Sigma^{2}$ if and only if x is not a real point for φ (Definition 2.7). Consequently if
the holomorphic curve $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is first order isotropic, then the corresponding map $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$ is always an immersion.

With respect to a basis $\left\{\Phi_{\theta}, \Psi_{1}, \Psi_{2}\right\}$ of the tangent space $T_{[\alpha, \mathbf{p}, \theta]} M$, the metric of $\varphi^{*} P$ induced by Φ is given as follows:

$$
\begin{aligned}
\left\|\Phi_{\theta}\right\|^{2} & =1, \quad \Phi_{\theta} \cdot \Psi_{1}=\Phi_{\theta} \cdot \Psi_{2}=0 \\
\left\|\Psi_{1}\right\|^{2} & =\left\|\mathbf{p}_{1}\right\|^{2} \cos ^{2} \theta-2 \mathbf{p}_{1} \cdot \mathbf{p}_{2} \cos \theta \sin \theta+\left\|\mathbf{p}_{2}\right\|^{2} \sin ^{2} \theta \\
\Psi_{1} \cdot \Psi_{2} & =\mathbf{p}_{1} \cdot \mathbf{p}_{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+\left(\left\|\mathbf{p}_{1}\right\|^{2}-\left\|\mathbf{p}_{2}\right\|^{2}\right) \cos \theta \sin \theta \\
\left\|\Psi_{2}\right\|^{2} & =\left\|\mathbf{p}_{2}\right\|^{2} \cos ^{2} \theta+2 \mathbf{p}_{1} \cdot \mathbf{p}_{2} \cos \theta \sin \theta+\left\|\mathbf{p}_{1}\right\|^{2} \sin ^{2} \theta
\end{aligned}
$$

Put

$$
\begin{align*}
\rho & =\left\|\mathbf{p}_{1}\right\|^{2}+\left\|\mathbf{p}_{2}\right\|^{2}, \\
\rho_{1} & =\left\|\mathbf{p}_{1}\right\|^{2}-\left\|\mathbf{p}_{2}\right\|^{2}, \tag{4.1}\\
\rho_{2} & =2 \mathbf{p}_{1} \cdot \mathbf{p}_{2} .
\end{align*}
$$

Note that the holomorphic immersion $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is first order isotropic (cf. Definition 2.7) if and only if $\rho_{1}=\rho_{2}=0$. Then we have

$$
\begin{aligned}
\left\|\Psi_{1}\right\|^{2} & =\frac{1}{2}\left(\rho+\rho_{1} \cos 2 \theta-\rho_{2} \sin 2 \theta\right) \\
\Psi_{1} \cdot \Psi_{2} & =\frac{1}{2}\left(\rho_{1} \sin 2 \theta+\rho_{2} \cos 2 \theta\right) \\
\left\|\Psi_{2}\right\|^{2} & =\frac{1}{2}\left(\rho-\rho_{1} \cos 2 \theta+\rho_{2} \sin 2 \theta\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta & :=\left\|\Psi_{1}\right\|^{2}\left\|\Psi_{2}\right\|^{2}-\left(\Psi_{1} \cdot \Psi_{2}\right)^{2}=\frac{\rho^{2}-\rho_{1}^{2}-\rho_{2}^{2}}{4} \\
& =\left\|\mathbf{p}_{1}\right\|^{2}\left\|\mathbf{p}_{2}\right\|^{2}-\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}>0 .
\end{aligned}
$$

Next, we calculate the second fundamental form of $\Phi: M^{3} \rightarrow S^{n}(1)$. By (3.9), (3.11) and (3.12), we have

$$
\sigma^{\Phi}\left(\Phi_{\theta}, \Phi_{\theta}\right)=\sigma^{\Phi}\left(\Phi_{\theta}, \Psi_{j}\right)=0 \quad(j=1,2)
$$

(3.10) yields that

$$
\begin{aligned}
& D_{\Psi_{j}} \Psi_{1}=\cos \theta\left(\mathbf{p}_{1, j}+\lambda_{j} \mathbf{p}_{2}\right)+\sin \theta\left(-\mathbf{p}_{2, j}+\lambda_{j} \mathbf{p}_{1}\right), \\
& D_{\Psi_{j}} \Psi_{2}=\cos \theta\left(\mathbf{p}_{2, j}-\lambda_{j} \mathbf{p}_{1}\right)+\sin \theta\left(\mathbf{p}_{1, j}+\lambda_{j} \mathbf{p}_{2}\right)
\end{aligned}
$$

Since $\operatorname{span}\{\Phi\}+T_{\Phi}\left(M^{3}\right)$ is spanned by $\mathbf{e}, \mathbf{f}, \mathbf{p}_{1}, \mathbf{p}_{2}$, second fundamental form of Φ is (cf. (2.9) and (2.10))

$$
\begin{aligned}
\sigma_{11} & :=\sigma^{\Phi}\left(\Psi_{1}, \Psi_{1}\right)=\cos \theta \mathbf{p}_{1,1}^{* *}-\sin \theta \mathbf{p}_{1,2}^{* *}, \\
\sigma_{12} & :=\sigma^{\Phi}\left(\Psi_{1}, \Psi_{2}\right)=\cos \theta \mathbf{p}_{1,2}^{* *}+\sin \theta \mathbf{p}_{1,1}^{* *} \\
\sigma_{22} & :=\sigma^{\Phi}\left(\Psi_{2}, \Psi_{2}\right)=-\cos \theta \mathbf{p}_{1,1}^{* *}+\sin \theta \mathbf{p}_{1,2}^{* *} .
\end{aligned}
$$

Hence the mean curvature vector H^{Φ} of $\Phi: M^{3} \rightarrow S^{n}(1)$ is

$$
\begin{aligned}
H^{\Phi} & =\frac{1}{\Delta}\left(\left\|\Psi_{2}\right\|^{2} \sigma_{11}-2 \Psi_{1} \cdot \Psi_{2} \sigma_{12}+\left\|\Psi_{1}\right\|^{2} \sigma_{22}\right) \\
& =\frac{2}{\Delta}\left(-\cos \theta\left(\rho_{1} \mathbf{p}_{1,1}^{* *}+\rho_{2} \mathbf{p}_{1,2}^{* *}\right)+\sin \theta\left(-\rho_{1} \mathbf{p}_{1,2}^{* *}+\rho_{2} \mathbf{p}_{1,1}^{* *}\right)\right)
\end{aligned}
$$

Consequently we obtain
Theorem 1. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a holomorphic immersion from a Riemann surface Σ^{2} to complex quadric Q^{n-1}, and let $\pi_{\varphi}: \varphi^{*} P \rightarrow \Sigma^{2}$ be the pullback bundle of the circle bundle $P\left(Q^{n-1}, S^{1}\right)$ with respect to φ, where $P=S O(n+1) / S O(n-1)$ is the set of ordered two orthonormal vectors. Suppose the map $\Phi: \varphi^{*} P \rightarrow S^{n}(1)$ defined by (3.4), i.e. each fiber $\pi_{\varphi}^{-1}(p)$ for $p \in \Sigma^{2}$ is mapped to the corresponding great circle $\varphi(p) \in Q^{n-1}$, is an immersion. Then Φ is minimal (i.e. $H^{\Phi}=0$) if and only if either Φ is totally geodesic $\left(\mathbf{p}_{1,1}^{* *}=\mathbf{p}_{1,2}^{* *}=0\right)$ or the holomorphic curve φ is first order isotropic ($\rho_{1}=\rho_{2}=0$).

Theorem 1 and Proposition 4.1 imply
Theorem 2. Let χ be a full minimal immersion from 2-sphere S^{2} (resp. a pseudo holomorphic map [4] from a Riemann surface Σ^{2}) to $S^{2 m}(1)$ and let $\pi_{\Xi}: \Xi^{*} P \rightarrow S^{2}$ (resp. $\left.\Sigma^{2}\right)$ be the pullback bundle of the circle bundle $P\left(Q^{2 m-1}, S^{1}\right)(P=S O(2 m+$ 1)/ $S O(2 m-1)$) with respect to the directrix curve $\Xi: S^{2}\left(\right.$ resp. $\left.\Sigma^{2}\right) \rightarrow Q^{2 m-1}$. Then the immersion $\Phi: \varphi^{*} P \rightarrow S^{2 m}(1)$ defined by (3.4), i.e. each fiber $\pi_{\Xi}^{-1}(p)$ for $p \in$ S^{2} (resp. Σ^{2}) is mapped to the corresponding great circle $\Xi(p) \in Q^{2 m-1}$, is full and minimal.

Remark 4.2. In Theorem 2, the minimal immersion $\Phi: \Xi^{*} P \rightarrow S^{2 m}(1)$ is realized as a tube of radius $\pi / 2$ over the minimal 2 -sphere S^{2} or the pseudo-holomorphic map Σ^{2} with respect to the ($m-1$)-th normal space. More precisely, let $e_{2 m-1}, e_{2 m}$ be a local orthonormal frame field of the ($m-1$)-th normal space on some open neighborhood U of either a minimal S^{2} or a pseudo holomorphic Σ^{2}. Then on $\pi_{\Xi}^{-1}(U)=$ $U \times S^{1}, \Phi$ is given by

$$
\Phi(x, \theta)=\cos \theta e_{2 m-1}+\sin \theta e_{2 m} .
$$

Example 4.3. Let $\psi_{4}: \mathbb{C P}^{1} \rightarrow Q^{3} \subset \mathbb{C P}^{4}$ be the Veronese curve of order 4 in Example 2.2. Then the minimal immersion Φ from the pullback bundle over $\mathbb{C P}^{1}$ with respect to ψ_{4} to $S^{4}(1)$ given by (3.4) is nothing but the Cartan minimal hypersurface (cf. Example 3.1).

Put

$$
g^{11}=\left\|\Psi_{2}\right\|^{2} / \Delta, \quad g^{12}=-\Psi_{1} \cdot \Psi_{2} / \Delta, \quad g^{22}=\left\|\Psi_{1}\right\|^{2} / \Delta .
$$

Then the square of the length of H^{Φ} is

$$
\begin{aligned}
\left\|H^{\Phi}\right\|^{2}= & \left(g^{22}\right)^{2}\left\|\sigma_{11}\right\|^{2}+4\left(g^{12}\right)^{2}\left\|\sigma_{12}\right\|^{2}+\left(g^{11}\right)^{2}\left\|\sigma_{22}\right\|^{2} \\
& +4 g^{22} g^{12} \sigma_{11} \cdot \sigma_{12}+4 g^{11} g^{12} \sigma_{12} \cdot \sigma_{22}+2 g^{11} g^{22} \sigma_{11} \cdot \sigma_{22} \\
= & \frac{4}{\Delta^{2}}\left(\cos ^{2} \theta\left(\rho_{1}^{2}\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}+2 \rho_{1} \rho_{2}\left(\mathbf{p}_{1,1}^{* *} \cdot \mathbf{p}_{1,2}^{* *}\right)+\rho_{2}^{2}\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}\right)\right. \\
& +2 \sin \theta \cos \theta\left(\left(\rho_{1}^{2}-\rho_{2}^{2}\right)\left(\mathbf{p}_{1,1}^{* *} \cdot \mathbf{p}_{1,2}^{* *}\right)+\rho_{1} \rho_{2}\left(\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}-\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}\right)\right) \\
& \left.+\sin ^{2} \theta\left(\rho_{1}^{2}\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}-2 \rho_{1} \rho_{2}\left(\mathbf{p}_{1,1}^{* *} \cdot \mathbf{p}_{1,2}^{* *}\right)+\rho_{2}^{2}\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}\right)\right) .
\end{aligned}
$$

The square of the length of the second fundamental form $\left\|\sigma^{\Phi}\right\|^{2}$ is given by

$$
\begin{aligned}
\left\|\sigma^{\Phi}\right\|^{2}= & \left(g^{11}\right)^{2}\left\|\sigma_{11}\right\|^{2}+\left(g^{22}\right)^{2}\left\|\sigma_{22}\right\|^{2} \\
& +2\left(g^{11} g^{22}+\left(g^{12}\right)^{2}\right)\left\|\sigma_{12}\right\|^{2}+2\left(g^{12}\right)^{2} \sigma_{11} \cdot \sigma_{22} \\
& +4 g^{11} g^{12} \sigma_{11} \cdot \sigma_{12}+4 g^{12} g^{22} \sigma_{12} \cdot \sigma_{22} .
\end{aligned}
$$

Hence, using $\sigma_{11}=-\sigma_{22}$, we get

$$
\begin{aligned}
\left\|H^{\Phi}\right\|^{2}-\left\|\sigma^{\Phi}\right\|^{2}= & 2\left(\left(g^{12}\right)^{2}-g^{11} g^{22}\right)\left(\left\|\sigma_{11}\right\|^{2}+\left\|\sigma_{12}\right\|^{2}\right) \\
& +8\left(g^{22}-g^{11}\right) g^{12} \sigma_{11} \cdot \sigma_{12} \\
= & -\frac{1}{\Delta}\left(\left\|\mathbf{p}_{1,1}^{*}\right\|^{2}+\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}\right)-\frac{1}{\Delta^{2}}\left(2 \rho_{1} \rho_{2} \cos 4 \theta+\left(\rho_{1}^{2}-\rho_{2}^{2}\right) \sin 4 \theta\right) \\
& \cdot\left(2 \mathbf{p}_{1,1}^{* *} \cdot \mathbf{p}_{1,2}^{* *} \cos 2 \theta+\left(\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}-\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}\right) \sin 2 \theta\right) .
\end{aligned}
$$

Since $\cos 4 \theta \cos 2 \theta, \cos 4 \theta \sin 2 \theta, \sin 4 \theta \cos 2 \theta$ and $\sin 4 \theta \sin 2 \theta$ are independent functions, we finally obtain

Theorem 3. Let $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ be a holomorphic immersion from a Riemann surface Σ^{2} to the complex quadric Q^{n-1}, and let Φ be the immersion from of the pullback bundle $\pi_{\varphi}: \varphi^{*} P \rightarrow \Sigma^{2}$ of the circle bundle $P\left(Q^{n-1}, S^{1}\right)(P=$ $S O(n+1) / S O(n-1))$ with respect to φ to sphere defined by which each fiber $\pi_{\varphi}^{-1}(p)$ for $p \in \Sigma^{2}$ is mapped to the corresponding great circle $\varphi(p) \in Q^{n-1}$ (cf. (3.4)).
(1) If the length of the mean curvature vector $\left\|H^{\Phi}\right\|$ with respect to Φ is constant along each great circles $\varphi(p)$ for $p \in \Sigma^{2}$, then M is minimal.
(2) The scalar curvature $R^{M}=6+\left\|H^{\Phi}\right\|^{2}-\left\|\sigma^{\Phi}\right\|^{2}$ of M^{3} is constant along each great circles $\varphi(p)$ for $p \in \Sigma^{2}$ if and only if the corresponding holomorphic curve φ satisfies either
(i) $\rho_{1}=\rho_{2}=0$, i.e., first order isotropic, or
(ii) $\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}=\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}$ and $\mathbf{p}_{1,1}^{* *} \cdot \mathbf{p}_{1,2}^{* *}=0$.
(3) The scalar curvature R^{M} is constant on M^{3}, if and only if the corresponding holomorphic curve φ satisfies either
(i) First order isotropic and the Gauss curvature $K^{\Sigma^{2}}$ is constant, or
(ii) Not first order isotropic, $\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}=\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}, \mathbf{p}_{1,1}^{* *} \cdot \mathbf{p}_{1,2}^{* *}=0$ and $\left\|\mathbf{p}_{1,1}^{* *}\right\|^{2}+$ $\left\|\mathbf{p}_{1,2}^{* *}\right\|^{2}=C\left(\left\|\mathbf{p}_{1}\right\|^{2}\left\|\mathbf{p}_{2}\right\|^{2}-\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}\right)$ for some constant C.
(4) Suppose the holomorphic immersion $\varphi: \Sigma^{2} \rightarrow Q^{n-1}$ is of first order isotropic, and so the immersion from $M^{3}=\varphi^{*} P$ to $S^{n}(1)$ defined by (3.4) is minimal. Then the scalar curvature R^{M} of M^{3} is constant if and only if the Gauss curvature $K^{\Sigma^{2}}$ of the corresponding holomorphic curve φ is constant.

References

[1] J.M. Barbosa: On minimal immersions of S^{2} into $S^{2 m}$, Trans. Amer. Math. Soc. 210 (1975), 75-106.
[2] J.M. Barbosa, M. Dajczer and L.P. Jorge: Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J. 33 (1984), 531-547.
[3] R.L. Bryant: Conformal and minimal immersions of compact surfaces into the 4 -sphere, J. Differential Geometry, 17 (1982), 455-473.
[4] E. Calabi: Quelques applications de l'analyse complexe aux surfaces d'aire minima, Topics in Complex Manifolds, Univ. of Montreal, Montreal, Canada, 59-81, 1967.
[5] T.E. Cecil and P.J. Ryan: Tight and taut immersions of manifolds, Research Notes in Math. 107, Pitman, Boston, 1985.
[6] B.Y. Chen and T. Nagano: Totally geodesic submanifolds of symmetric spaces, I, Duke Math. J. 44 (1977), 745-755.
[7] S.S. Chern: On the minimal immersions of the two sphere in a space of constant curvature, Problem in Analysis, Princeton Univ. Press, 27-40, 1970.
[8] S.S. Chern and R. Osserman: Complete minimal surfaces in Euclidean n-spaces, J. Analyse Math. 19 (1967), 15-34.
[9] N. Ejiri: Equivariant minimal immersions of S^{2} into $S^{2 m}(1)$, Trans. Amer. Math. Soc. 297 (1986), 105-124.
[10] G.R. Jensen, M. Rigoli and K. Yang: Holomorphic curves in the complex quadric, Bull. Austral. Math. Soc. 35 (1987), 125-148.
[11] M. Kimura: Minimal hypersurfaces foliated by geodesics of 4- dimensional space forms, Tokyo J. Math. 16 (1993), 241-260.
[12] M. Kimura: Kähler surfaces in \mathbb{P}^{n} given by holomorphic maps from \mathbb{P}^{1} to \mathbb{P}^{n-2}, Arch. Math. 63 (1994), 472-476.
[13] M. Kimura: Curves in $S U(n+1) / S O(n+1)$ and some submanifolds in $P^{n}(\mathbb{C})$ space, Saitama Math. J. 14 (1996), 79-89.
[14] M. Kimura: Holomorphic curves in complex Grassmann manifold and ruled Kähler submanifolds in complex projective space, Bull. Facl. Educ. Ibaraki Univ. 46 (1997), 21-33.
[15] S. Kobayashi and K. Nomizu: Foundations in Differential Geometry II, Wiley-Interscience,

New York, 1969.
[16] R. Palais: A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., AMS, (1957).

Department of Mathematics Faculty of Science and Engineering Shimane University
Matsue, Shimane 690-8504, Japan
e-mail: mkimura@math.shimane-u.ac.jp

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 11640057), Ministry of Education, Science and Culture.

