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1. Introduction

A set of closed disks on a plane is called a circle packing when they are arranged

as follows. For each pair of distinct disks, they are disjoint or tangent. Moreover, the

complement of the union of all disks is a disjoint union of triangular regions. Thus

by taking the dual to the circle packing, we obtain a triangulation. We call its isotopy

class a combinatorial type of the packing. A circle packing can be defined not only on

a plane but also on a surface with a metric obviously by regarding a circle as a set of

points with equal distance to the center. In this global case, a disk in the packing may

be tangent to itself and a dual to the packing may be a triangulation in general sense.

A surface will mean a surface with a reference homeomorphism (known as a marking)

from a fixed surface throughout this paper.

It is not hard to show, and in fact will be shown in the third section that the

set of flat tori, tori with Euclidean structures, which admit circle packings is dense

in the space of all flat tori. However that set is known to be fairly poor by Andreev

and Thurston. To describe this rigid property more precisely, recall that the space of

flat tori up to similarity can be identified with the upper half plane H. It was shown

in [3] among other things that, to each triangulation, there is a unique flat torus up

to similarity that admits a circle packing with a prescribed one as its combinatorial

type. Then since the set of isotopy classes of triangulations on the torus is countable,

only countably many flat tori admit circle packings in particular. This implies the fact,

which we call Andreev-Thurston rigidity, that the flat structure on a torus with a pack-

ing does not admit any deformations which carry circle packings of the constant com-

binatorial type.

Let us consider a torus with another, more relaxed geometric structure in Thurs-

ton's sense on which the circle packing still makes sense. Namely we enlarge the

transformation group to the complex affine group. The complex affine geometry is

modeled on the complex plane C with the group of complex affine transformations,

or equivalently similarity transformations. It is expressed in general as z \-+ az + b

(α, b e C, fl^O). Remark that by restricting the group to the Euclidean isometry, we

obtain the flat geometry. Although there are no canonical metrics on an affine torus,

transition maps are similar transformations and preserve the shapes of figures. There-

fore we still can define circles on an affine torus. A circle on an affine torus is defined
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as a point set which the developing map of the torus send to the union of circles on

C.

It is well known, for instance in [1], that, for each flat torus, there is a complex

one-dimensional family of affine tori that are conformally equivalent to the prescribed

flat one, and hence the set of affine tori can be identified with the product H x C.

A conformal map sends a circle to a circle infmitesimally but not actually. Hence the

image of a packing on an affine torus by a conformal map is distorted in the flat torus.

However one may still expect that the circle packing on affine tori have more flexible

nature for the deformation in contrast with the rigidity for flat tori.

In fact, we will see in the fourth section that there are particular affine tori with

this flexible nature.

Theorem 3.3. There is a real two-dimensional continuous family of affine tori

that admit packings of type T(ω0, 0). Moreover, the family covers the space of flat tori

up to similarity by two to one manner except one point.

This theorem describes how much we can deform affine structures so as to carry

packings with one particular combinatorial type. Hence it is obviously not powerful

enough to see the global picture of the set of affine tori that admit circle packings

in any sense. However since, as we will see later, an affine structure on tori can be

well understood by looking at simple plane figure, quadrilaterals, it is strong enough

to conclude

Theorem 3.4. The set of affine tori that admit circle packings is dense in the set

of all affine tori.

Next section is for preparation. In the third section, known results about the flat

torus and the main theorems about the affine torus are described. The proofs of the

main theorems are given in the fourth section.

I would like to thank Sadayoshi Kojima for helpful advice and Kazuo Masuda for

his help on calculation.

2. Preliminary

A 2-manifold M is called an affine surface if, for every pair of local charts ψ\

and ψ2, the transition map ψ\ o φ^1 is a restriction of a complex affine map that is

expressed as z H> az + b (a, b e C, a Φ 0). Moreover, if every transition map is

a restriction of a complex affine map with \a\ - 1, M is called a flat surface. It is

known that the torus is the unique closed 2-manifold that admits an affine structure,

see [2].

Let S be an affine torus. Let ψ\ : U\ —> C and ψ2 : Ui —• C be local charts. If

U\ Π U2 Φ 0, ψ\° φ\~l is a restriction of a complex affine map T. Thus, if U\ Π U2 is
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connected, we can extend ψ\ to a map φ : U\ U U2 —> C by defining

ί(^i(z) if z e ί/i,

[ T O φ2(z) if ze U2.

By gluing local charts over and over again along paths in S, we get a developing map

d : 5 —• C, where 5 is the universal cover of S.

We fix two oriented simple closed curves a and b that are representatives of gen-

erators of the fundamental group of S. By the uniformization theorem, we can identify

S with C. Covering transformations of S act as translations on C. With an appropri-

ate normalization, the covering transformations corresponding to α and b can be rep-

resented by translations Z H Z + 1 and z ι-* z + ω where Im ω > 0. We call ω e H the

Teichmiiller parameter of an affine torus S.

Since S can be identified with C, a developing map d can be regarded as a self

map of C. We explicitly represent the developing map as a function defined on C.

At first, since covering transformations descend to affine maps on C, d satisfies the

identities, d(z + 1) = αAd(z) + bA, d(z + ω) = αBd(z) + bB, where αA, bA, αB and bB

should be some constant. Since d is a conformal map, d\z) φ 0 (z e C) where d\z)

is the derivative of d at z. Then d"Id' is well-defined and a constant function c on

C. We call c e C the affine parameter of the affine torus S. Affine tori with the same

Teichmuller parameter are classified by the affine parameter c. If an affine torus is flat,

then the affine parameter c is 0.

If the affine parameter c is 0, that is to say, the affine torus is flat, we can choose

d so that d(z) = z. Therefore the developed image of the simple closed curves α and

b forms a lattice composed of parallelograms. The coordinates of vertices of one par-

allelogram are 0, 1, ω and ω + 1 e C, and the other parallelograms can be obtained

from the parallelogram by translations.

If the affine parameter c is not 0, that is to say, the affine torus is not flat, we

can choose d so that d(z) = ecz. The developed image of the simple closed curves α

and b winds around the origin as in Fig. 2. The coordinates of vertices of one building

block of a lattice are 1, ec, ecω and ec(ω+ι\ and other regions can be obtained from the

region by the transformation z H> e

kc+lcω

z o n Q where k, I are integers. In this case,

the developing map is not a homeomorphism between S and C, but can be considered

as a homeomorphism between S and C, where C is the universal cover of C — {O}.

We use this interpretation if necessary.

The space of affine tori can be identified with H x C. The space of all flat tori

lies on H x {0}. We denote by T(ω, c) an affine torus with a Teichmuller parameter ω

and an affine parameter c.

Recall that an open disk on an affine torus is a point set on the torus whose de-

veloped image is a disjoint union of Euclidean disks.
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Fig. 1. Fig. 2.

Developed image in the case c = 0 Developed image in the case c -φ 0

Fig. 3. Fundamental regions of Ί(ω, c) and T(ωf, cr) for ω' = (1 + 3u;)/(3 + lω)

Lemma 2.1. If there exists a circle packing on an affine torus T(ω, c), then for

any k,l,m,n € Z such that k + lω ^ 0 and (m + nω)/(k + lω) e H, there also exists a

circle packing on T(ωf, c') where ω' = (m + nω)/(k + /α;) β«J cr = (k + /α;)c.

Proof. If there is a circle packing on T(ω, c), there exists a circle packing on

C which is invariant by the action of the holonomy group of T(ω, c). It is easy

to see that the holonomy group of T(ω\ c') is included in the holonomy group of

T(ω, c). Hence this circle packing is invariant by the action of the holonomy group

of T(ωf, cθ, and T(ωr, c') admits a circle packing. D

3. Theorem

Several deep results about circle packings on flat tori have been known. For in-

stance, a special case of Theorem 13.7.1 in [3] can be simplified to the following

statement for the application to our case.

Theorem 3.1 (Thurston). Let S be a torus and r a triangulation of S. Then

there is a unique flat tori up to similarity such that the l-skeleton of r is isotopic to

the dual of some circle packing.
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This result implies the following countable denseness easily.

Corollary 3.2. The set of flat tori that admit circle packings is countable and

dense in the space of all flat tori.

Proof. Since, for each « e N , the set of combinatorially equivalent classes of tri-

angulations with n triangles is finite, the set of combinatorially equivalent classes of

triangulations is countable. Since the mapping class group is countable as a set, the

set of isotopy classes of triangulations is countable. By Theorem 3.1, for each triangu-

lation, a unique flat torus admits a circle packing whose dual is isotopic to 1-skeleton

of the triangulation. Hence the set of flat tori that admit circle packings is countable

in the Teichmuller space.

The flat torus corresponding to ωo = (1 + A/3)/2 admits a circle packing with one

circle, whose dual is developed to the regular hexagonal tiling on C. Then, by Lemma

2.1, for each m e Z and n, έ e N , the flat torus corresponding to (m +nωo)/k admits

a circle packing. So the set of flat tori that admit some circle packings is dense in the

Teichmuller space. D

Our main concern in this paper is to discuss the corresponding results for circle

packings on affine tori. We are primarily interested in a packing combinatorially equiv-

alent to a circle packing with one circle which the flat torus T(ωo, 0) admits. Let us

call such a packing of type T(ω0, 0). Finding affine structures on the torus which sup-

port a circle packing of this type, the following result is obtained.

Theorem 3.3. There is a real two-dimensional continuous family of affine tori

that admit packings of type T(ωo, 0). Moreover, the family covers the space of flat tori

up to similarity by two to one manner except one point.

With detailed analysis using Lemma 2.1, the following fact derives from the above

result.

Theorem 3.4. The set of affine tori that admit circle packings is dense in the set

of all affine tori.

These theorems are the main results in this paper and proved in the next section.

4. Proof

We explicitly represent the necessary condition for an affine torus T(ω, c) to admit

a circle packing of type Γ(CJ0, 0). The developed image of an affine torus is divided

into quadrilateral fundamental regions by the simple closed curves a and b. Vertices of

a fundamental region are 1, ec, ecω and ec ( α ; + 1 ). The radii of circles centered at these
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c{ω-\

Fig. 4.

vertices on C must be r, r\ec\, r\ecω\ and r\ec(ω+l)\ respectively so that the union of

the circles on C is invariant by the holonomy. Thus the condition can be described by

\ec - 1| =r + r\ec\,

\ecω - 1 | =r + r\ecω\,

\ecω -ec\ =r\ec\+r\ec

I Imc| < π,

|Imcα;| < π,

\\mc(ω - 1)| < 7Γ.

Note that inequality conditions are necessary so that the circles actually make a pack-

ing on C.

Three equations above can be transformed to

\ecw \ecw\ + \ec :(= r).

Using the identity 1 - (\ez - l\/(\ez\ + I))2 = (cosIm(z/2)/ coshRe(z/2))2, the equation

can be expressed as

(1)
cosIm(c/2) cosIm{(cu;)/2} c(

coshRe(c/2) ~ coshRe{(cω)/2} ~ coshRe{c(α; -

Let / be a smooth function such that / : Cr -> R, f(z) = cos Im(z/2)/cosh Re(z/2),

where C' = {z e C | | Imz| < π}. The range of / is 0 < f(z) < 1. For 0 < t < 1, let

Lt be the level set Lt = {z e Cr | /(z) = ί}. Then the equation (1) is translated into

the following condition.

(2) c, cω, c(ω — 1) e

Note that 0, c, cα;, and c(u;— 1) form a parallelogram. Conversely, for c e Cf such

that c φ 0, assume that there exist the points z\ and Z2 ^ ^/(c) such that 0, c, zi and

Z2 form a parallelogram. By setting ω = z\/c, the pair (ω, c) satisfies the condition (2).

By definition of / , Lt is homeomorphic to Sι and surrounds the origin, for each
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Fig. 5.

0 < t < 1. By the symmetry of / , Lt is symmetric about the real axis, the imaginary

axis and the origin. The region bounded by Lt is a convex set.

Using these natures, we have

Lemma 4.1. For any nonzero c e Cf, there is the unique ω e H such that

T(ω, c) admits a packing of type T(ωo, 0).

Proof. In Fig. 5, there are points z\ and zi such that 0, c, z\ and Z2 form a

parallelogram. Moreover, since the region bounded by L/(c) is convex, there exist only

two such pairs (zi, zi) and (z[, zr

2) w € H is derived from one of the pairs, and
1 — ω φ H from the other. D

With this lemma, we can define the following function.

DEFINITION 4.2. Let Ω(c) denote the value ω in the lemma, given for each

nonzero c eC. Further, put Ω(0) = ω{). Thus, we define a function Ω : C' -> H.

By definition, the torus Γ(Ω(c), c) has a packing of type T(ωo, 0).

We can tell the rough behavior of Ω.

For each t e (0, 1), there are twelve particular points on Lt (Fig. 6). These points

lie on the axes or the bisectors. Note that qp\P3Ps, qpiP\P§, ••• are parallelograms.

As t decreases, the ellipse-like closed curve L/(c) becomes larger. Then, these points

make loci l\, /2, ..., In- C can be divided by these loci and the origin. We denote

each region by C\, C2, ..., Cn (Fig. 7). Similarly, H is divided into six regions by

circles \ω\ = 1, \ω — 1| = 1 and a line Re a; = 1/2. We denote each region by H\, H2,

. , H6 (Fig. 8).

Assume that c e C\. Let ωc denote Ω(c). Then cωc and c(ωc — 1) belong to C3

and C5 respectively. Since \cωc\ < \c(ωc — 1)| < \c\, ωc belongs to H\. Therefore

Ω(Ci) C Hi. Similarly, Ω(Cf) and Ω(C/+6) are included in Hi9 for / = 1, 2, 3, 4, 5, 6.

Ω has the following properties.

(Continuity) Let ωc denote Ω(c). We introduce a new variable

c Λ cω cω , c
k = coslm - coshRe — = coslm — coshRe - .

2 2 2 2



880 S. MlZUSHIMA

PA

P2

i
P9 pϊol PU

Fig. 6. 12 points on

k ?^Λ

14

hi

'/ll

Fig. 7. 12 regions on C

Fig. 8. Six regions on H

Then we can solve the equation (1) and have an expression of k and cωc/2 in term of

k(c) =

kλ (c) = 1 + cos Im - cosh Re - + sin Im - sinh Re - ,

c c
k2(c) = sinlm - sinh Re - ,

k3(c) = 1 + 2 cos Im - cosh Re - + sin2 Im - sinh2 Re - ,

cωcRe — - = εM(c)cosh- 1 He)

I m — - = ευ(c)cos

[cosIm(c/2)_

-1 Γ k(c)

[coshRe(c/2)_

Now, εu(c) and εv(c) mean the sign of Recα;c and lmcωc, and are constant on each

region C;. Ω is continuous on C/. {Ω|Cl} are glued neatly. Then Ω is continuous on

e.
(Nearly Two-to-One Property) For t e (0, 1] and θ e [0, π], let pit, θ) be the

intersection point of Lt and the ray RQ = {seιθ \ s > 0}. Let r(ί, θ) be the distance

between p(t, θ) and the origin. For any fixed t\ and t2 € (0, 1) such that t\ > t2,
r(t\,θ) and r(t2, θ)/r(t\,θ) are monotonously decreasing as θ is increasing from 0 to
7Γ.

Suppose that there exist c and d such that c 7̂  ±c r and Ω(c) = Ω(cr) Let ωc
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denote Ω(c). Now,

\c'\ \c'ωc\ \c\ωc-\)\
(3)

\cωc\ \c(ωc-l)\

Let t and t' denote /(c) and f(cf). There are three cases;

(i) t = t' and argc f argc',

(ii) t ft' and argc = argc',

(iii) t ft' and argc f argc'.

In every case, we get a contradiction to the equation (3) by monotoneities of r(t, θ)

and r(t2,θ)/r(tι,θ).
It was proved that, if Ω(c) equals Ω(c'), then c = c' or c = — c'. Conversely, Ω(c)

is equal to Ω(—c) for any c. Therefore Ω is two-to-one except c = 0.

(Surjectivity) Take ω\ e H\. There is a sufficiently small number t\ such that

ImΩ(c) < ImcJi for all c e Lh Π C\. Now let A be the intersection of C\ and the

region inside of Lh. The boundary of A consists of part of /i, part of l2 and Ltχ Π

C\. The image of the boundary dA by Ω is the union of part of h\9 part of h2 and

Ω(Lt] Π Ci), and then surrounds ω\. By the continuity of Ω, ω\ belongs to Ω(A). Hi

is proved to be included in the image of Ω as well as H\. Hence Ω is surjective.

From the properties of Ω above, Theorem 3.3 is now obvious. Finally, we prove

Theorem 3.4.

At first, we fix c\ e C. Let Q and ω^ denote cγ/k e C and Ω(c\/k) for

a natural number k > K where K is a sufficiently large number. By Lemma 2.1,

T((m +nωk)/k, c\) admits a circle packing for m e Z and H G N . Since ω* converges

to (1 + \/3)/2 as k goes to infinity, {((m + nω^jk, c\) \ k > K, m e Z, n e N} is dense

in a horizontal section H x {c\}. That is to say that the set of affine tori which admit

some circle packings is dense in the section. Then the set is dense in H x C.
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