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1. Introduction

In this paper we systematically develop, as a technical tool for our main applica-

tion below, a stochastic calculus for generalized Dirichlet forms (cf. [15]). In particu-
lar, we show Fukushima's decomposition of additive functional including its extended
version to functions not necessarily in the domain f of the generalized Dirichlet form,
cf. Theorem 4.5 (ii), and an Itό-type formula in this framework. The extended version
of the Fukushima decomposition will be applied in combination with the Itό-type for-
mula in Subsection 6.3. The class of generalized Dirichlet forms is much larger than
the well-studied class of symmetric and coercive Dirichlet forms as in [6] resp. [10]
and time dependent Dirichlet forms as in [12]. It contains examples of an entirely new
kind (cf. Section 6, [15]). Therefore, the results obtained in this paper lead to exten-
sions of the corresponding results in the "classical" theories. In particular the proofs
are "locally" completely different (cf. e.g. Theorem 2.3 and Theorem 2.5; though for
the reader's convenience we tried to follow the line of argument in [6] as closely as

possible). This difference has several reasons: First of all we do not assume any sec-
tor condition', in certain cases we have to handle £-quasi-lower-semicontinuous func-

tions instead of ^-quasi-continuous functions (cf. e.g. Remark 2.6 (i)), and finally, the
Dirichlet space of the classical situation generalizes to a space T which is not nec-
essarily stable under composition with normal contractions. In contrast to the classical
theory it is not known whether regularity or quasi-regularity alone imply the existence

of an associated process. An additional structural assumption on T is made in [15,
IV.2, D3] (i.e. the existence of a nice intermediate space y has to be assumed) in or-
der to construct explicitly an associated m -tight special standard process M.

In addition to the new theoretical results described above we also present new ap-
plications. In Section 6 we construct weak solutions to stochastic differential equations
in infinite dimensions of the type

(1) dX, = dW, + β»(X,)dt+ β(X,)dt, X0 = z.
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Here (XΛ>o takes values in some real separable Banach space £, z € £, (Wt)t>o is
an E-valued Brownian motion, β is some square integrable vector field on E taking

values in a real separable Hubert space H c E and j8£ : E — » £ is the logarithmic

derivative of μ associated with H (cf. Subsection 6.1). In the symmetric case, when

β = 0, equation (1) has been studied intensively in [1].

In Subsection 6.2 we give a first application of (1) for more explicit maps β*^

and β using existence results of [2] on invariant probability measures for some given

linear operator L, i.e. measures μ solving the equation / Ludμ = 0 for all finitely

based smooth functions u. We also use results of [16] on the existence of diffusions

associated to extensions of such operators. More precisely, in this case we assume E

also to be a Hubert space and that H C E densely by a Hubert-Schmidt map. We then

apply (1) with ~β = (l/2)(U-j8{J) where B : E -> E is a Borel measurable vector field

of the form B = -idE + υ, v : E -+ H, satisfying (B.1)-(B.3) of Subsection 6.2. Under

these assumptions on B there exists an invariant probability measure μ such that the

stochastic differential equation

(2) dXt=dWt-^Xtdt + ̂ v(Xt)dt, XQ = z

admits a weak solution M = (Ω, (.TO^o, (XΛ>o» (^z)ze£) for μ-a.e. (even (quasi-)
every) z e E. In particular μ is absolutely continuous w.r.t. the Gaussian measure γ

on E with Radon-Nikodym derivative φ2 where φ is in //1'2(£;χ), i.e., the Sobolev

space over (£", //, γ). Moreover β^ = —ids + 2(Vφ/φ). It is known (see [2, Theo-

rem 3.10]) that the generator of M restricted to the finitely based smooth functions

L = (1/2)Δ// +(l/2)# V is μ-symmetric if and only if v = 2(Vφ/φ) or equivalently

B = β%. In our general, i.e., non-symmetric situation, 2(Vφ/φ) is the orthogonal pro-

jection of v on the closure of the set [Vu \ u e TC^\ in L2(E, H\μ). The diffusion

M = (Ω, (J^)t>o, (Xt)t>o, (Pz)zeε) which is in duality to M w.r.t. μ weakly solves

^ ^ 1 ̂  V<0 ^
(3) dX,=dW,--Xtdt + 2-^(Xt)dt-

2 φ

for μ-a.e. (even (quasi-)every) z G E where (Wt)t>o is an E-valued

motion starting at 0 G E with covariance given by the inner product of H. Thus,

adding the drifts of (2) and (3) we obtain 2β% as in the symmetric case (cf. e.g. [5]).

In Section 6.3 we show that M also satisfies an Itό-type formula.

Let us now briefly summarize the contents of the remaining Sections 2-5. In Sec-

tion 2 we introduce the framework and then establish an integral representation the-

orem for coexcessive functions. As a result we obtain a description of ^-exceptional

sets in terms of an appropriate class of measures SOQ. This is the key-point for the

proof of Theorem 4.5(i) and (ii) below. In the symmetric case our class of measures

SQO is smaller than the corresponding one in [6, p. 78]. As a consequence the uniform

convergence in Lemma 4.1 can be determined (cf. Remark 4.3 below) by a weaker
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semi-norm than in [6, Lemma 5.1.2.]. In Section 3 following [13] we associate to ev-
ery positive continuous additive functional of M its corresponding Revuz measure. Sec-
tion 4 is devoted to the Fukmhima-decomposίtion. Note that for the proof we only
assume the coresolvent to be sub-Markovian and strongly continuous on V. No dual
process is needed. In Theorem 4.5(ii) we give conditions for the extension of the de-
composition. In Section 5 similarly to [6], [11] we derive an Itό-type formula for the
transformation of the martingale part of the decomposition. However, since f is not
necessarily stable under composition with continuously differentiable Lipschitz func-
tions we have to make some assumptions (cf. Theorem 5.6). But these assumptions
are easy to check in applications (see Subsection 6.3).

For a large class of further examples and applications as well as for a more de-
tailed presentation we refer to [19] and to forthcoming papers.

2. Framework and supplementary Potential Theory of generalized Dirichlet
forms

Let E be a Hausdorff space such that its Borel σ-algebra B(E) is generated
by the set C(E) of all continuous functions on E. Let m be a σ-finite measure on
(E, B(E)) such that H = L2(E, m) is a separable (real) Hubert space with inner prod-
uct ( , )Ή Let (A, V) be a real valued coercive closed form on H. Then V equipped
with inner product A\(u, υ) := (l/2)(A(u, v) + A(v, u)) + (M, υ)u is again a separable
real Hubert space. Let || ||y be the corresponding norm. Identifying Ή with its dual
Ή! we have that V C H c V densely and continuously.

For a linear operator Λ defined on a linear subspace D of one of the Hubert
spaces V, H or V we will use from now on the notation (Λ, D). Let (Λ, D(Λ,H))
be a linear operator on H satisfying the following conditions:

Dl (i) (Λ, D(Λ, H)) generates a Co-semigroup of contractions

(ii) (£/Λ>o can be restricted to a Co-semigroup on V.

Denote by (Λ, D(Λ, V)) the generator corresponding to the restricted semigroup. From
[15, Lemma I.2.3., p. 12] we have that if (Λ, D(Λ, H)} satisfies Dl then
Λ : D(Λ, H) Π V -> V is closable as an operator from V into V. Let (Λ, F) denote
its closure, then f is a real Hubert space with corresponding norm

By [15, Lemma I.2.4., p. 13] the adjoint semigroup (Ut)t>o of (t/Λ>o can be extended
to a Co-semigroup on V and the corresponding generator (Λ, D(Λ, V')) is the dual
operator of (Λ, D(Λ, V)). Let f := D(Λ, V) Π V. Then f is a real Hubert space with
corresponding norm
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Let the form £ be given by

ί A(u, v) - (Λιι, v) for u e T, v e V
E(μ, υ) := \

\ A(u, v) - (Λv, ii) for u e V, v € T

and εa(u, v) := £(M, v) + α(«, υ)^ for α > 0. £ is called the bilinear form associated
with (A, V) and (A, Z)(Λ, W)).
Here, ( , •) denotes the dualization between V and V. Note that ( , •) restricted to
Ή, x V coincides with ( , )Ή and that £ is well-defined. It follows, from [15, Propo-
sition I.3.4., p. 19], that for all a > 0 there exist continuous, linear bijections Wa :

V -+ F and Wa : V -> T such that Sa(Waf, u) = (/, u) = £„(«, W a f ) , V/ e V7,
u e V. Furthermore (Wα)α>o and (Wα)<*>o satisfy the resolvent equation

Wa - Wβ = (β - a)WaWβ and Wα - Wβ = (β - a)WaWβ.

Restricting Wa to Ή we get a strongly continuous contraction resolvent (Ga)a>o on H
satisfying lim^ooαGα/ = / in V for all / e V. The resolvent (Gα)α>o is called the
resolvent associated with S. Let (Gα)α>o be the adjoint of (Ga)a>o in W. (Gα)α>o is
called the core solvent associated with E.
By [15, Proposition I.4.6., p. 24] we have that (Ga)a>o is sub-Markovian if and only
if

D2 « G ^ ^ M + Λ l E V and £(«, M - M+ Λ 1) > 0

is satisfied.

DEFINITION 2.1. The bilinear form £ associated with (.4, V) and (A, D(Λ, W)) is
called a generalized Dirichlet form if D2 holds.

An element u of 7ϊ is called 1-excessive (resp. 1-coexcessive) if βGβ+\u < u
(resp. βGβ+\u < u) for all β > 0. Let 7* (resp. P) denote the 1-excessive (resp.
1-coexcessive) elements of V. For an arbitrary Borel set B € B(E) and an element
u € H such that {υ e W I υ > u 1 B ] Π f J 0 (resp. ύ e Pf (cf. below for the
definition of Pf)) let Mβ := eu.\B be the l-reduced function (resp. M# := ^.ιfl be the

l-coreduced function) of u - IB (resp. M IB) as defined in [15, Definition III. 1.8., p.
65]. Let ua

B (resp. ua

B), a > 0 denote the element (u lβ)a (resp. (M IB)<X) of [15,
Prop. III. 1.6., p. 62]. Note that in general only if B is open our definition of reduced
function coincides with the one of [6, p. 92], [10, Exercise IΠ.3.10(ii), p. 84]. In par-
ticular, if B € B(E) is such that m(B) = 0, then UB = 0. Note also that by our def-
inition of reduced function [15, III. Lemma 2.1.(ii)] extends to general Borel sets. If
B = E we rather use the notation eu instead of UE> An increasing sequence of closed
subsets (Fk)k>\ is called an £-nest, if for every function u e P Π T it follows that
WF; -* 0 in Ή and weakly in V. A subset N c E is called ^-exceptional if there is
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an £-nest (Fk)k>\ such that N c Γ\k>\E\Fk A property of points in E holds £-quasi-
everywhere (£-q.e.) if the property holds outside some £ -exceptional set. A function /

defined up to some ^-exceptional set N c E is called ^-quasi-continuous (£-q.c.)(resp.

£-quasi-lower-semicontinuous (£-q.l.s.c.)) if there exists an £-nest (FjO^N* such that

U*>ι Fk c E \N and f\pk is continuous (resp. lower-semicontinuous) for all k.

For an £-nest (F*)*>ι let

Fk C A C E, f\Fk is continuous Vk
k>\

C A C E, f\pk is lower-semicontinuous V&

We denote by / an £-q.c. m-version of /, conversely / denotes the m-class repre-

sented by an £-q.c. m-version / of /.

DEFINITION 2.2. The generalized Dirichlet form 8 associated with (A, V) and

(Λ, D(Λ, H)) is called quasi-regular if:

(i) There exists an £-nest (^)*>ι consisting of compact sets,
(ii) There exists a dense subset of T whose elements have £-q.c. m-versions.

(iii) There exist un e T, n e N, having £-q.c. m-versions ύn, n e N, and an £-

exceptional set Λf c E such that [ύn \ n e N} separates the points of E \ N.

From now on we assume that we have given a quasi-regular generalized Dirichlet

form. We remark that by quasi-regularity every element in T admits an £-q.c. in-

version. Let C.VcH. We define T>c '= {u e T> \ 3/ € C, u < /}. For a subset
G C H denote by Q all the £-q.c. m-versions of elements in Q. In particular TV de-
notes the set of all £-q.c. m-versions of 1-excessive elements in V which are domi-

nated by elements of F. Note that FΓ\P C.P? and that P? - P? is a linear lattice,

that is u Λ a e P? - P? for all a > 0 and all u e P^ - Pp. We emphasize that an

element in P? not necessarily admits an £-q.c. m-version.

We are now in the situation to state an integral representation theorem for ele-

ments in Pp.

Theorem 2.3. Let u e P$. Then there exists a unique σ-finite and positive mea-

sure μ& on (E, B(E)) charging no S-exceptional set, such that

I = lim £!(/, αGα+ιw) V/ e P? -

Proof. Set 7β(/) = lirn^oo £ι(/, ctGa+\u\ f e P? - P^. The limit exists since

£ι(/, aGa+\u) splits into two parts which are both increasing and bounded. Then la is

a nonnegative linear functional on Pp-Pp. Let (/Π)Π€N cPf-Pr such that fn | 0
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pointwise on E for n -> oo. Similar to the proof of Theorem 1 in [4] we will show
that

(4) Iu(fn) ίOasn^oo.

Fix φ € Ll(E\m)<M3(E) such that Ojc φ < 1. By [15, Lemma IΠ.3.10., p. 73] there
exists an £-nest (F*)*€N, such that G\φ > \/k everywhere on Fk for all k e N. Since
8 is quasi-regular we may assume that F*, k e N, is compact. We may further assume
by [15, Lemma 3.5., p. 71] that (/Λ)Λ€N C C({Fk}). From Dini's Theorem we know
that given ICQ € N there exists n(ko) € N, such that for all n > n(k$)

fn < — G\φ m-a.e. on Fko.
KQ

Since /„ < f\ e P? - P? there exists / € F such that /„ < / and therefore we have
for all n e N

fn < — Gιφ + fF<o m-a.e..

Let / e f such that u < /. Then

h(fn) = lim 5ι(/
or -κx>

< lim sup ε\ [—

Since limic^^l/^Giφ + fpc

k ~ 0 weakly in V we conclude that limn_>oo h(fn) = 0
and (4) is shown. By the Theorem of Daniell-Stone there exists a unique measure say
μ& on σ(Pr - PF) such that P^ - V? C Ll(μ&). By [15, Proposition IV. 1.9., p. 77]
we know that P? — P? separates the points of E \ N where N is an 5-exceptional set
and consequently σ(Pjr - P^) D B(E \ N). Since μ&(N) = liπiα^oo 8 \(l #, aGa+\ύ) =
0 for every 5-exceptional set N we may assume that μ& is a Borel-measure. Finally
fE G\φdμ,& < E\(G\φ, /) < oo implies that μ^ is σ-finite. D

From now on we fix an m-tight special standard process

M = (Ω,

with lifetime ζ such that the resolvent Raf of M is an £-q.c. m-version of Gaf for
all a. > 0, / G H Π Bb(E). Note that in addition to quasi-regularity a structural as-
sumption on T is made in [15, IV.2, D3] in order to construct explicitly an associated
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m-tight special standard process. Since we make no use of this technical assumption

and since it may be subject to some further progress we instead prefer to assume the

existence of M. We remark that we use the resolvent of M in the proofs of Lemma

2.4 and Theorem 2.5 below but that the corresponding statements are independent of

M and only depend on the generalized Dirichlet form.

We remark that whenever we fix a filtration in this paper, it will be the natural

filtration.
For u G P we denote by ΰ some £-q.l.s.c. regularization, i.e. ΰ := supn>! nRn+\u.

Lemma 2.4. Let F c E be closed, g € L2(E\m) Π B(E)+.

Then supping, ,)f) C F.

Proof. Fix φ e L{(E\m) Π B(E)+ such that 0 < φ < 1. Define φr :=

E.[f™Fe-'φ(Yt)dt] where DF = inf{ί > 0 | 7, e F}. Using the strong Markov prop-

erty of M it is easy to see that φF is a Borel measurable m-version of an 1-excessive

element in V and that φF > (G\φ)F. In particular φF is 1-supermedian for (Ra)a>o

and

(5) (G\φ)F = supnRn+ι(G{φ)F < supnRn+^ < φ* £-q.e.,
n>\ n>\

furthermore

, ί > 0 8-q.e. on Fc

Rιφ - φ* is j
[ 0 on F.

Since At(G,g)F

 (*oes not charge f-exceptional sets it follows from (5) that

Γ F C

J J l8 F

but the expression on the right hand side is equal to zero since by G\φ = (G\φ)F

m-a.e. on F

ί Rι

= lim lim εl(βRβ+ι(Gιφ)F,(Gιg)a

F)α->oo β-+oo

< sup / βRβ+\(Gλφ)Fdμ,(G^F = / (G{φ)Fdμ(ό{g}F.
β>\ J J

For intermediate steps cf. [15, III.l, p. 60ffl. Now μ(clg)F(Fc) = 0 follows by a stan-

dard argument, because μ(G,g)F ^s σ -finite. D
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As a generalization of [6, p. 78] we introduce the following class of measures

Soo := {μa I u € PG.UI and ^u(E) < 00}

where H^ are the positive and bounded elements in Ή. Then we have

Theorem 2.5. For B € B(E) the following conditions are equivalent:
(i) B is E -exceptional

(ii) μ(B) = 0 Vμ e Soo

Proof, (i) => (ii) is clear. Next we will show -«(i) => --(ii). Fix φ e Ll(E\m)Γ\

B(E) such that 0 < φ < 1. If B is not 8 -exceptional then

cap^,(£) = mf[((Gιφ)u, φ)n\UDB,U open} > 0.

Since cap^, is regular there exists a compact K c B with cap^(A') > 0. Let DQ — DJ

= [fn\n e N} be a countable dense subset of bounded functions in f with 5-q.c.

= { f n \ n E N} c j - DJ c which separate them- versions D -

points of E \ N where Λ^ is an ^-exceptional set (cf. [15, Proposition IV.1.9.(ii), p.

77] for the existence). There exists further (cf. [15, Lemma IV.1.10., p. 77]) an f-nest

(Fk)kεN consisting of compact metrizable sets such that (R\φ, fn\n € N} C C({Fk\)
and such that R\φ > \/k S-q.e. on F^ for all k > 1. We may further assume, that
N c Γ\k>\ Fk- Choose no € N such that cap^,(tf Π Fk) > 0 for all k > n0. Since
cap.,,(F,c) — > 0, there exists k0 > w0 with

ψ -

(6)

Let ppk be a metric on F 0̂ which is compatible with the relative topology on Fk0 in-

herited from E. Define for n e N

J_

n

Bn := Fko(z, K n Fko) < -

Then Bn U F£ C F is open for all n and thus

capφ(K Π F*0) = ^ίnf^cap^(I/)

(/ open

< mfcapv(βπUF^o
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since (G\φ)BnuFc

k < (G\ψ)nn + (G\ψ)Fk - It now follows from (6) that

(7) ®

where (G \φ)<χ> is defined to be the weak limit of ((G\φ)^n)n€^ in V. Note that

(Gι^)oo e PG\-H+ and thus there exists a unique μ(d]φ)00 by Theorem 2.3. For con-

venience we set μn := μφιφ^ n e N, and Aoo := μ<G ,*>)«,• We have to show

supρ(Aoo) C K Π F*0, because then by (7)

0 < / Riψdμ^ = I

Clearly supp(Aoo) C KΠFko implies Aoo(^) < oo and thus Aoo € 5oo. We will proceed
in several steps.

Step 1. There exists a subsequence such that μnk converges weakly to some μ:

By Lemma 2.4 we know that supp(Aπ) C F^ for all n G N and thus we have for all

/ € C0(F*0)

sup I
n € N | J

neN

< 00.

It follows that [μn;n 6 N} is relatively compact for the vague topology. Let us choose

a subsequence (μnk)keN which is convergent to some μ with respect to the vague

topology. Since F*0 is compact it follows that (A/ι*)*€N is weakly convergent to μ.

Step 2. μ is finite and supp(μ) C K Π F*0:

Since lF,o € Cb(Fko) it follows that

μ(F*0) = lim A**(F*o) < *o£ι(GnP, GI^) < oo.
Λ— >OO

Further, since /?/ ^ (K Γ\ Fko)
c as 7 ^̂  oo (the complements are taken in F^) we

conclude by the Porte-manteau-Theorem and Lemma 2.4 that

μ((K Π FkJ) = lim μ(B. c) < lim liminf An*CB/) = 0.
j-+oo 7->cx) «)fc>7

Step 3. μ does not charge ^-exceptional sets:

Setting A(^) = μ(A Π F^) for A e B(E) we may interpret μ as a Borel measure on

E. We will make no distinction between μ and μ in the following. Let (£*)*€N be an
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arbitrary 5-nest. Then (with the complements in E)

< lim liminfμπ .(££)
k-*oo ;-> oo J

< lim liminf / k^R\φd{ιn.
*->oo y-»oo JEck

< fc0 lim liminf / E. \ I e~fφ(Yt)dt dμn.fc_>oo j-+oo J |y J

< k0 lim cap (Ec

k)k-+oo ψ

= 0

implies that μ(N) = 0 for every £ -exceptional set Λf e B(E).

Step 4. μ = Acx>:
Let / € F. There exists (/mt)Λ€N CD+-D% such that lim^-.oo /m^_= / in f. By [15,
Corollary ΠI.3.8., p. 73] we may assume that (/m,)*€N C ~D^ - ̂  converges 5-q.e.
to some £-q.c m-version / of /. We will show that (/mjt)*eN is L^μJ-Cauchy. Since

l/m*-/m,l € C^F^) and |/m,-/m/| < efmk-fm+efmι-fmk £:-q.e. where ^/Wfc-/m/^/m/-/mt

are some 5-q.l.s.c. regularizations we have

l/m, - fmι\dμ < lim / (eΛt_/m/ +efmι-fat)dμn

< \\efmk-fmι+efmι-fmk\\n\\Ψ\\H

and we conclude by [15, Lemma ΠI.2.2.(i), p. 66]. Then for a new subsequence even-

tually

fdμ= lim lim / fmkdfinJ k-+ooj-+ooj J

= lim lim £ι(/m,,
k-+oo j-+oo

but since μ does not charge 5-exceptional sets by Step 3 the equality holds for every
€ -q.c. m-version / of /. From this it is easy to see that μ = μoo. Π

REMARK 2.6. (i) Note that if every element in PG\UI admits an 8 -q.c. in-
version then before Step 1 in the proof of Theorem 2.5 one can show directly
supp(μoo) C K. Indeed we may assume that G\φ, (G\φ)-β., a Ra+\(G \φ)-β . are contin-

uous on Bj for every 7, a e N. We may also assume that G\φ > 1/fco on each Bj.
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We then have for each j e N

/ Gιφ-(G{φ)j dβao = lim lim lim / ((Gιφ)j -aRa+ι(Gιφ)
J } U-+OQ n>j β-+00 J J

< lim \\(GlφyΈ -aRa+ι(Gιφyg Ά τ f
a— >oo J J

and the last expression is zero by Dini's Theorem (here || \\oojj. denotes the sup norm

on the compact space Bj). We then conclude as in the proof of Lemma 2.4.
(ii) The assertion of Theorem 2.5 remains true if we replace SQO by [μ € SOQ I

μ(E) = I}. Note also that if (Gα)α>o is sub-Markovian we may replace SOQ by the
larger class {μ^ | \\u\\oo < oo and μ^(E) < 00} and then our definition coincides with
the one of [6, p. 78].

(iii) Similar to [6], [12] it is possible to define the measures of finite (co-)energy
integral and to show that these measures have properties similar to those in [6], [12].
We will also use the notation U\μ^ for H.

3. Positive continuous additive functional and Revuz measure

A family (A,)r>o of functions on Ω is called an additive functional (abbreviated

AF) of M = (Ω, CF,),>o, (K,),>o, (/>zWJ, if:
(i) A,( ) is ft -measurable for all t > 0.
(ii) There exists a defining set Λ e f^ and an ^-exceptional set N c £, such that

PJΛ] = 1 for all z € E\N, θt(A) c Λ for all t > 0 and for each ω e Λ, t H>
At(ω) is right continuous on [0, oo[ and has left limits on ]0, ζ(ώ)[, A^(ω) = 0,
IΛ^ω)! < oo for t < ζ(ω), At(ώ) - Aζ(ω) for t > ζ (ω) and At+s(ω) = At(ω) +
As(θtω) for 5, t > 0.

An AF A is called a continuous additive functional (abbreviated CAP), if t i-> At(ω)
is continuous on [0, oo), a positive, continuous additive functional (abbreviated PCAF)
if At(ώ) > 0 and a finite AF, if | At(ω) |< oo for all t > 0, ω € Λ. Two AF's A, B
are said to be equivalent (in notation A = B) if for each t > 0 Pz(At = Bt) = 1 for
£-q.e. z € E. For a Borel measure v on E and B € B(E) let PV(B) := f Pz(B)v(dz)
and Ev be the expectation w.r.t. Pv. The energy of an AF A of M is then defined by

(8) e(A) = 1 lim a2Em \ Γ e""* A2

t dλ ,
2«^oo [Jo J

whenever this limit exists in [0, oo]. We will set e(A) for the same expression but with
lim instead of lim.

From now on let us assume that the coresolvent (Gα)α>o associated with £ is sub-
Markovian.

Theorem 3.1. Let A be a PCAF of M. Then there exists a unique positive mea-
sure μA on (E, B(E)), charging no S -exceptional set and called the Revuz measure of
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A, such that

(9)
/£

fdμA = lim ctEm \ Γ e~at f(Yt)dλλ for all f e B(E)\
«-»°° LΛ J

Furthermore, there exists an E-nest of compact sets (Fn)n>\ such that μ^(Fπ) < oo

and such that UAlpn is an E-q.l.s.c. m-version of some element in PG^I for eacn n-

Proof. As usual we set U£f(z) := Ez[f™e'"'f(Yt)dAt] for a PCAF A of M
and / € S(£)+. Then we have the following resolvent equations (cf. e.g. [14, 36.16])
for 0 < a < β and / e B(E)+

but one has to be careful not to substract because we make no finiteness assumptions
on UAf. As usual the sub-Markovianity of (Gα)α>o then implies the existence of μ^
Clearly μA does not charge E -exceptional sets. Fix φ € Ll(E\m) Π B(E) such that
0 < φ < 1. For z e E set

Γ' Γζ

Φ(z) '=EZ\ e
L /o

By the original proof of D. Revuz (cf. [13, p. 509]) we have

Φ £-q.e.

and since UAΦ is £-q.l.s.c. —Φ is also £-q.l.s.c. Let (Fn)n>\ be an £-nest of compact
sets such that -Φ E C/({FΠ}). Then

Fn : = ( Φ > -)πF π , n> 1,
I n\

are compact subsets of E and similar to the proof of [6, Lemma 5.1.7.] one can show
that (?„)„>! is an ί-nest. Finally (as in [13, Lemme II.2, p. 508]) U\\pn < nU\Φ <
nR\φ έ^-q.e. implies that μA(Fn) < oo, n > 1. Indeed, by the resolvent equation (10)
and the sub-Markovianity of (Gα)α>o we have for all β > 1, n > 1

β(Rβnφ-Uβ

A\pn)dm

= j(β(Rιnφ - U\\pn) -(β- l)βRβ(Rιnφ - U\\~Fn

*f
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hence / βRβnφdm > f βU^lfn dm for all β > 1, and therefore μA(Fn) < f nφdm <
oo, n > 1. Clearly U\\pn is f-q.l.s.c. and by [15, Lemma IΠ.2.1.(i), p. 65] U\lfΛ is

an m- version of some element in Pc}n
+

b f°Γ e^ch n. D

Let A be a PCAF and let μ^ be the associated Revuz measure of Theorem 3.1.
From its proof we know that there exists an £-nest of compact sets (Fn)n€N such
that μA(Fn) < oo and such that U\\pn is an f-q.l.s.c. w-version of some element in
PG\HI Since E.[At] < e'sup,^ U\\jpn £-q.e. it is straightforward to see by (10) that
for any v e Soo, t > 0

(11) £v[A,]<

4. Fukushima's decomposition of AF's

For the proof of Theorem 4.5 below we follow the same strategy as in [6, Chapter

5]. Let u be an £-q.c. function. Then (u(Ύt) — M(ίo))r>o is &n AF of M, and indepen-
dent (up to equivalence) of the special choice u. We then set

(12) A[u]

It follows from the sub-Markovianity of (Ga)a>o that for ύ e Ή,

(13) e(Aίu]) < Tϊm"

Note that in the case where (Ga)a>o is strongly continuous on V the right hand side
above is equal to S(u, u) for all u € f. Define

M := {M I M is a finite AF, EJM,2] < oo, Ez[Mt] = 0

for £-q.e. z e E and all t > 0}.

M € M is called a martingale additive functional (MAP). Furthermore define

(14) M= {M G M I e(M) < oo}.

o
The elements of M are called MAF's of finite energy.

Let M 6 M. There exists an ^-exceptional set NM, such that (Af f,^i, Pz)t>o is
a square integrable martingale for all z € E \ NM - Analogous to [9, III. Theoreme 3]
or see also [6, A. 3] there exists after a method of perfection a unique (up to equiva-
lence) PCAF (M), called the sharp bracket of M, such that (M,2 - (M ),, Tt, Pz)t>o is
a martingale for all z € E \ WΛ/. It then follows that one half of the total mass of the
Revuz measure μ(M) associated to the quadratic variation of M € M is equal to the
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energy of M , i.e.

(15) e(M)=\ I dμ(M}.
2 JE

For Λ/, L eM let

Then ((M, L)t)t>o is a CAP of bounded variation on each finite interval of t and sat-
isfies

Ez(Mt Lt) = EZ((M, L),) Vί > 0, £-q.e. z € E.

Furthermore the finite signed measure μ<Λ/,L> defined by μ(M,L) = (l/2)(μ(Λf+L> —
β(M) — μ<L)) is related to (M, L) in the sense of Theorem 3.1. If / € β/,(E)+, then

o o

/ μ<v) is symmetric, bilinear and positive on M x M , where / μ(Λ/,L)CA) '=
o o

JA f dμ,(M,L) for every A e B(E) and every pair (M, L) eΛΊ x .Λ/ί Define

λfc = {N \N is a finite CAP, *(#) = 0, Ez[\Nt\] < oo

for f-q.e.z G £ and all t > 0}.

The "isometry" (15) and the continuity statement (13) are fundamental for the stochas-
tic calculus related to £.

o

We set A =M ΘΛ/C. Namely A consists of AF's such that

A is a linear space of AF's of finite energy. Furthermore by (11) this decomposition
is unique. We define the mutual energy of A, B € A by

, B) = - lim oί2Em \ ί e~at AtBt dλ .
2 α-+oo [Jo J

By the Cauchy-Schwarz inequality we know that e(A, B) = 0 when either A or B is
in λfc. Therefore

(16) e(A) = e(M) if A = M + N, M εjCt, N € Mc.

Using Theorem 2.5 and the Lemma of Borel-Cantelli the proof of the following lemma
is similar to the proof of [6, Lemma 5.1.2.(i), p. 182]

Lemma 4.1. Let (Fk)k>\ be an E-nest. Let u, ΐin € C({Fk}\ n G N. Let
( Sπ)neN C M, such that limn_>00 Sn = 0. Suppose that there exists for each μ G SOQ
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and T > 0 a constant CΓ'μ, such that

ί \ Cτ^
Pμ( sup \ϋ(Yt)-un(Yt)\>ε}< - Sn.

\o<r<r / £

Then there exists a subsequence («Λt)fc€N» such that for E-q.e. z G E

Pz(unk(Yt) converges to u(Yt) uniformly in t on each compact interval 0/[0, oo)) = 1.

In contrast to [6], [12] in the following lemma we determine convergence in a
weaker semi-norm (cf. Remark 4.3 below).

Lemma 4.2. Let ύ e H?+ where H?+ := [u e H \ u, -u € HT} and let ε > 0.

Then we have for any μ e SQO ana T > 0

Pμ ( sup \u(Yt)\ >ε]< — \\h\\u\\eu +e.u\\H>
\0<r<Γ / £

where h is in Ή^ such that U\μ < G\h.

Proof. Set U = [\u\ > ε}. Then {sup0<,<Γ \u(Yt)\ > ε] c [σu < T\σu < ζ] where
<7{/ is the first hitting time of U, i.e. σ^ = inf{ί > 0 | Yt € U}. By the right-continuity
of the associated process we have Pz-a.s. for f-q.e. z e E

eT~°~,v M - -1 on {συ<T\σv<ξ}
\u(Yσu)\ is

ε [ > 0 elsewhere.

Let ?M, ?_M be £-q.l.s.c. regularizations of eu, β-u. Since \u\ < eu +e-u £-q.e. by
making use of our smaller class of measures SOQ it is just straightforward to conclude.

D

REMARK 4.3. Let us define a semi-norm on H^ by \\υ\\e := \\eυ + e-v\\n. Let

(wnXieN C HΓ+ be || He-convergent to u e HΓ+_. Then, using Lemma 4.2 we see that
Lemma 4.1 applies. Since for / e T, \\f\\e < 6 K \\f\\p we have in particular, that if
w, un e T, n e N such that un —> u in T then un —> u w.r.t. || \\e.n—too n—*oo

Using Theorem 2.5 and (11) the proof of the following theorem is similar to [6,
p. 203].

o

Theorem 4.4. Let (Mn)n^ C.Λ/ί be e-Cauchy. Then there exists a subsequence
o

\ and a unique M e.Λ/f, such that limn^^ e(Mn — M) = 0 and for 8-q.e. z € E

Pz( lim M"k = Mt uniformly in t on each compact interval of [0, oo)) = 1.
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Let us assume from now on that (Ga)a>o is strongly continuous on V.

o

Theorem 4.5. (i) Let u e F. There exists a unique M l"J eΛΊ and a unique

N[u] € λίc such that

(17) A[M] = Λί[M] + 7V[M].

(ii) Let (Fk)k>\ be an E-nest. Let ύ, un e C({Fk})> n e N, such that we have

(17) for A[u"\ n e N and such that e(A[u"~u]) — > 0. Assume furthermore that the
n-*oo

conditions of Lemma 4.1 are satisfied for u, «„, n € N. Then (17) extends to A[u].

REMARK 4.6. (i) In general it is not possible to find a decomposition of the ad-
ditive functional (ΰ(Yt) - ΰ(YQ))t>Q for all u e P of type (17) where N}U} is of zero

energy. Here u denotes a 1 -excessive regularization of M. As an example consider the

uniform motion (to the right) on the real line and ΰ(x) = e*l(_ooto)00, Jc G E.

(ii) If we do not require the strong continuity of (Gα)α>o on V Theorem 4.5(i)

applies to all u e F, such that aGau -* u in V as a, -> oo.

Proof (of Theorem 4.5). After all preparations (among others Theorem 2.3, The-

orem 2.5, Theorem 3.1, (11), Lemma 4.2) we can finally show (i) similar to the proof

of the corresponding statement in [6, Theorem 5.2.2., p. 203ff]. Therefore we omit the

proof of (i) and only show (ii).

Let (17) be valid for «„, n € N. By the uniqueness of the decomposition we know
that M[M«] - M[Um] = M[u»-Um]. With (13) and (16) we have

e(Mlu"-Um]) = *(A[""-|I"]) < 2e(A[u-"»]) + 2e(A[u~Um]).

o

It follows that (M["nl)n€N CM is £-Cauchy and then by Theorem 4.4 it makes sense
to set

M[u] = lim Λί[M"] in (A e)
n—*OQ

= A[U]-M[U\

It only remains to show W[M] e Λ/"c Note that there exists a subsequence n^ such that

for £-q.e. z € E

Pz(Nt
Unk converges uniformly in t on each compact interval of [0, oo)) = 1

since the same is true for A[u] and M[M] by Lemma 4.1 and Theorem 4.4. Therefore
N[u] is a CAR Finally

e(N[u]) = e(A[u~u"] - (M[u] -
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< 3e(A[u~u"]) + 3e(M[u] - MM)

implies that N[u] is of zero energy. D

5. An Itό type formula

Lemma 5.1. Let f E Bb(E) and M eM Then there exists a unique element
o

denoted by f M €.Λ/ί» such that

(18) \ ί fdμ(M,L) = e(f M, L) for all L
2 Jε

Proof. Let first / e Bb(E)+ and M, L eM. Since

2 J

0 0

there exists a unique bounded linear map 7/ \M — >M* such that (1/2) JE fdμ(M,L)
= e(Tf(M), L). Finally we set / M := 7>(M) and 7>(M) := 7>(M) - 7>-(M) for

/ = /+ - /- € Bb(E). D

Let us assume from now on that in Dl(ii) the adjoint semigroup (f/f)/>o of
can also be restricted to a Co-semigroup on V. Let (A, D(Λ, 7i)) denote the generator
of (Ut)t>o on Ή9 Λ(u, v) := A(υ, M), M, v € V and let the coform 8 be defined as the
bilinear form associated with (A, V) and (Λ, D(Λ, 7ΐ)). Note that since (Gα)α>o was
assumed to be sub-Markovian the corresponding statement of D2 holds for the coform.
Let us further assume from now on that the coform E is quasi-regular too. We fix an

m-tight special standard process M = (Ω, CFΛ^o, (^ί)ί>o» (^)z€£Δ) such that Raf =
E.[f^0e-atf(Yi)dt] is an S-q.c. (= £-q.c.) m-version of Gaf for all / € W Π βfe(E).
Necessary and sufficient conditions for the existence of such a process are given in
[15]. M is then in duality to M w.r.t. m.

REMARK 5.2. (i) Let (Pf)b denote the set of bounded elements of Pf. By

quasi-regularity of 8 we know that (P^)b — (Pp)b separates the points of E \ N,
where N is an ^-exceptional set. However, note that an element in (P^)b not nec-
essarily admits an S -q.c. n-version. Let μ, v be finite measures on (£, B(E)) charg-
ing no f-exceptional set. Then by [14, Appendices A.0.8] it follows that μ = v if

/ Rafdμ = f ϊtjdv for all / € (IζJ .
(ii) Let A, B be two PCAF's. If μA = μB then A = B. Indeed if μA = μB then

by (10) and (19) for every £-nest (FjO*€N of compact sets U^lfk = UB\Fk £-q.e. for
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each k e N and β > 0. We may even choose (FjO*€N (cf. the proof of Theorem 3.1)
such that Ul

BlFk < kR{φ for every k e N. Then with Λ(1) := /0 \Fk(Ys)dASJ Λ(2) :=
/0 lFk(Ys)dBs for fixed k remarking that / v^dv < f2kR\φdv < oo for any v e Soo
(where υι; is as in [6, Theorem 5.1.2.]) we conclude as in the proof of [6, Theorem
5.1.2.]. Since k e N was arbitrary we get A = B.

Let μ,A be the measure defined in Theorem 3.1. Then as in [11, Lemma 4.1.7., p.
91] one shows that for every / e B(E)+, g e L2(E; m) Π %(£)+, β > 0

(19) I fRβgdμA = lim α(ίCV, *β*)κ
J (X-+OG

Lemma 5.3. For f e Bh(E) and M, L eΛt Then we have

Proof. Let M eM and / e Bb(E). Analogous to [9, Theoreme 4, p. 127] or
~ o

[6, Theorem A.3.19.] there exists (after perfection) a unique M eΛ<» such that for all

L G.M, t > 0 and £-q.e. z G £

EJ(Af , L)t] = £z Γjί' f(Y,)d(M, L)s] .

For all g € L2(E\m)f}Bb(E\ a. > 0, we then have

I Ragdμ(M,L) = I (Rag)fdμ{MtL},
JE JE

and consequently

μ*(f M,L) = / M{Λ/,L}»

ί̂ / O

since ^(Λf — / M, L) = 0, for all L eΛi by the preceding Lemma. D

The proof of the next Theorem is based on the proof of Theorem 5.3.2. in [11,
p. 160]. For convenience we write μ(UjV) instead of P(MM,MM) and μ<U) instead of

Theorem 5.4 (Product rule). Let f = (/!,...,/„) be an n-tuple of S -q.c. in-
versions of bounded elements in 7ί such that Λ[φ(^)] admits the decomposition of
Theorem 4.5 for all Φ e Cl(E") with Φ(0) = 0 and let e(A[^-kR^i]) -+ 0, as k -» oo,
1 < i < n. Let further the martingale part M [M] of the decomposition of Theorem 4.5
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be continuous for all u in G\Ub. Let Φ, Ψ € Cl(Rn), Φ(0) = Ψ(0) = 0 and w e Ή,,

w bounded such that we have the decomposition of Theorem 4.5 for AM, then:

(20) μ<Φ(/) Ψ(/),u») = φ(/l> •••> Λ) μ<Ψ(/),«>> + *(/!» — » /«) μ<Φ(/),u;>

Proof. It is enough to show

I hdμ(φ2(f^w}=2 I AΦ(/ι, ..., /„) dμ(φ(f^w}

JE JE

for /i = /fyg, g € %(£)+n^1(£:'m)' £ > °> because then we will consider
)- We may furthermore assume that f hdm = 1. Then by (19)

I
JE

= lim a(a + β)Ehma-^oo

= lim α(α + β)Ehmα-^ oo

= 2 lim α(α + β)Ehφ(7)m \ Γ e~(a+β)l (Φ(f)(Yt) - Φ(f)(Y0))(w(Yt) - w(Y0))dt]
«-*oo [JO J

[f-<
lim a(a + β)Ehm \ / e^**™(Φ(f)(Yt) - Φ(f)(Y0))2(w(Yt) - w(YQ)) dt

= 2 lim Ia + lim Πa.

By (19) and Lebesgue's Theorem we have

lim Ia = lim a(U%,ft

nw}l,hΦ(f))
(X-+OO OC-+00 V V J h '

= lim a Hi
α->oo χ-> oo

= lim a, lir

= lim a I Ra+β(hΦ(f))dμ(Φ(n,w}a— too J £

= /
JEE

and for some constant L > 0 lim^oo Πa is dominated by

nL Σ ΠS α(α + 0)EΛm Γ ί °° ̂ ^^(/(r,) - fi(Yo))2\ϋ>(Yt) - w(YQ)\ dλ .
~^a~^oc Uo J

For 1 < i < n, A: e N, we set /^ = kRkfi. Since we assumed that e(A[fi~fkί]) -> 0, as
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k -» oo, 1 < ί < n, it is enough to show that for 1 < / < n

Γ r°° Ί
lim a(a + β)Ehm I e~(a+β)t(fki(Yt) - /*/(r0))2|u>(F,) - u>(F0)l dt

tends to zero as k -» oo. By our assumption (M^ki\ F^ Phm)t>o is a continuous square
integrable martingale and consequently by the Burkholder-Davis-Gundy inequality

where C > 0 is a constant independent of /*/. Then

Πm" a(a + β)Ehm
Γ
Uo

w(Yt)-w(Yώ\dt\

1/2 / Γ χ 1/2

(f

1/2

Then

lim a (a +
α->oo

= lim a(a +

= 2 lim α(α
Of— >OO

= 2 lim α(α
α^ oo

β)Ehm

β)Ehm

[Γ.Jo

[Γ
+ β)Ehm

+ β)Ehm

\L
(L

e-(«+β)

e-(<*+β)

oo /»oo

/ '

°°*-(°+

t-s o

-2J

for every γ > 0. Now since
in E and since

is bounded by the same constant for £-q.e.

for έ^-q.e. z in £" as y -+ oo we conclude by Lebesgue's Theorem. D

Theorem 5.5 (Chain rule). Let f - (/!,...,/„) be an n-tuple of S-q.c. in-
versions of bounded elements in H such that A[φ(^)] admits the decomposition of
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Theorem 4.5 for all Φ e C^R") with Φ(0) = 0 and let e(A[^-kR^i]) -> 0, as k -> oo,
l < / < n . Ltff further the martingale part M[u] of the decomposition of Theorem 4.5
be continuous for all u in G\Hb- Let Φ G C^R"), Φ(0) = 0 and w € H, w bounded
such that we have the decomposition of Theorem 4.5 for AM, then

(21)

Proof. We first observe that any powers of the coordinate functions satisfy (21)
by the product rule and then by the product rule again all polynomials of n variables
vanishing at the origin.

Let K C R" be a compact set such that J(z) € K for £-q.e. z e E. Let
X € C°°(RΛ), x = 1 on K C K' = supp(χ). There exists (cf. [3, Π.4.2, 4.3, p.
57]) a sequence of polynomials vanishing at the origin (pj)j€^, such that PJ — > Φ,

-

dxi) — > (3Φ/3JC/), 1 < i < π, uniformly on tf7. Note that [(Φ - p/)χ]()(z) =
j-»00

(Φ - pj)(f)(z) for ί-q.e. z € £. Then we have for all g e L\E\m) Π βfe(£), α > 0

= iM^ / ^α

= I

where the second identity followed from the product rule. Because of (15) the third
identity follows since we assumed to have the decomposition of Theorem 4.5 for all
Φ(/) like above and therefore

- M[^(/)]) = e(A[((φ~

|a((φ-/>, )x)||2 „

The last expression tends to zero as j -* oo. D

Summarizing we get the following

Theorem 5.6 (Itό's Formula). Let / = (/!,..., /„) be an n-tuple of 8-q.c. m-
versions of bounded elements in H such that Λ[φ(^)] admits the decomposition of The-
orem 4.5 for all Φ € Cl(R") with Φ(0) = 0 and let e(A{fi~kRkfi}) -> 0, as k -+ oo,
1 < i < n. Let further the martingale part M^ of the decomposition of Theorem 4.5
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be continuous for all u in G\Hb- Then we have

Φ(/l, - , fn)(Yt) ~ Φ(/l, , /n)(lW = f" ?^(/l,..-,/»)

for all Φ /ite above and this decomposition is orthogonal w.r.t. e( , •)•

Proof. The assertion follows by Lemma 5.1, Lemma 5.3 and Theorem 5.5 be-
cause

fίh =0. D( M(*</» - £ 2±(7). Mt/'M = 1

6. An example

6.1. Weak solutions of SDE's in infinite dimensions Let £ be a separable
real Banach space and (/f, ( , •)//) a separable real Hubert space such that H c E
densely and continuously. Identifying H with its topological dual H' we obtain that
E' c H c E densely and continuously. Define the linear space of finitely based
smooth functions on E by

fCf := {/(/,, ..., /M) I m € N, / e C?QK")9 /i, ..., /m € £'}.

Here C£°(Rm) denotes the set of all infinitely differentiable (real- valued) functions on
Rm with all partial derivatives bounded. For u e FC™, k € E let

du d
ττ(z) '= T"α^ + J*) l*=0' z € E
ok as

It follows that if u = /(/i, ..., lm) ana k e H we have that

//, *> » , z € E.

Consequently, k ι-> (du/dk)(z) is continuous on // and we can define VM(Z) G // by

a//(v«(z),t>» = — ω.

Let μ be finite positive measure on (E, B(E)). Assume for simplicity supp(μ) = E.
An element k in E is called well-μ-αdmissible if there exist β£ e L2(£;μ) such that
for all M, v in FC^
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Let us assume

(A.I) There exists a dense linear subspace K of E' consisting of well-μ-admissible

elements.

Then it is well known that the densely defined positive definite symmetric bilinear

form

1 r
£. tr/JOO

' b

is closable on L2(E;μ) and that the closure (£°, Z>(£°)) is a symmetric quasi-regular

Dirichlet form. Let (L°, D(L°)) be the associated generator. Let ~β € L2(E, H\μ) (i.e.

~β : E -> E is β(E)/β(£)-measurable, ~β(E) c // and ||^||// E L2(E;μ)) be such that

/*
(22) (£, Vu)H dμ = Q for all w € ^C^°.

Since ,FC£° is dense in D(£°) (22) implies that f(β,Vu)Hdμ = Q for all M €
and thus /(0, Vu)Hvdμ = -/{]8, Vv}Hudμ for all w, υ € D(SQ)b. Let

LM := L°w H- (/», VM>// , 11 € D(L%.

It then follows from [16, Proposition 4.1.] that (L,D(LQ)h) is closable on Ll(E',μ)

and that the closure (L, D(L)) generates a Markovian Co-semigroup of contractions.

Furthermore D(L)b c D(£°) and for u € D(L)/>, υ e

(23) (w, υ) - f(β, Vu)Hυdμ = -fluυdμ.

Let (L,D(L)) with associated resolvent (Gα)α>0 be the part of (L, D(L)) on

(Lr, D(Z/)) with associated resolvent (G^)α>0 be the adjoint of (L, D(L)) in L2(E;μ).

According to [15, 1.4.9. (ii)] (L, D(L)) is associated with the generalized Dirichlet

form

r/ \ (-Lii, υ) for ιι € D(L), υ € L2(£;μ)
f (M, υ) := <

[ (M, -L'υ) for u € L2(E;μ), υ € D(L')

where ( , •) is the inner product in L2(E;μ). There exists (cf. [16, Th.4.6., Prop. 4.7.])

a μ-tight special standard process M = (Ω, J7^, (Xf)ί>o, (Pz)z€£Δ) w^ ^^e ^me C that
is associated with (L, D(L)) in the sense that /?«/(•) := E.[f™ e~at f(Xt)dt] is an f°-

q.c. m-version of Gaf for all / e β/,(£) Π L2(£;μ), α > 0. Furthermore Pz[£ =

+00] = 1, PJf »-> X, is continuous on [0, cc)] = 1 for £°-q.e z € E. Note that by [16,
Lemma 4.5] L-nests and £°-nests coincide. Therefore ^-exceptional and 5°-exceptional
sets coincide.
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Since —β satisfies the same assumptions as β the closure (L , D(L )) of L'u :=
L°u — (β, V w > / / , u G D(L°)b on Ll(E\μ) generates a Markovian Co-semigroup of
contractions too, D(L)b c D(£°) and for u e D(L')b, v e D(8\ £°(M, v) +
f(β,Vu)Hvdμ = —fLuvdμ. It is easy to see that the part of (L , D(L)) on
L2(E\μ) is (L', D(L')). Let (/^)α>o denote the resolvent of the associated coprocess.
Since (G^)α>o is sub-Markovian and strongly continuous on V = L2(E;μ), Theo-
rem 4.5 applies for u e D(L) with N}U} = f^Lu(Xs)ds. Let υ € D(L)b, g e
L2(E\ μ) Π S»(£)+, y > 0, then by (19)

Rf

γgdμ(v} = 2£°(υ, vR'γg) - £°(υ2, R'γg)

= I R'γg(Vυ,Vv)Ήdμ.

Now let un € D(L)/> such that un —> u in D(L). Since by (23) un —> u in
rt—»OO AI-» 00

we have / R'γgdμ(u} = f R'γg(Vu, Vu)Hdμ. In particular f R'γgdμ(u) = / R'γgdμA

where A = /0(Vw(X,), Vu(Xs))H ds. Therefore by Remark 5.2(i) and (ii) it follows
that ( M [ u ] ) t = fo(Vu(Xs),Vu(Xs))Hds. Note that (M[u]} is finite since (Vu,Vu)H e
Ll(E',μ). Assume

(A.2) uk( ) :=E> (k, -)E e L2(£; μ) for all keK.

Here £/{•, •}£ denotes the dualization between £ and E'. Then clearly M* G Z>(L),

2 * » //»

and

(25)

Choosing an ONB KQ c K of H which separates the points of E by Theorem 4.5
applied to u^, k G KQ we get a countable system of 1-dimensional SDE's with inde-
pendent 1-dimensional Brownian motions according to (25) and drifts given according
to (24). If we assume

(A.3) For one (and hence all) t > 0 there exists a probability measure μt on
(£, #(£)), such that

" for all k G E'

similar to [1, Theorem 6.6] it is then possible to lift the countable system of 1-
dimensional equations to a single equation on £", namely we have
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Theorem 6.1. There exist maps W, NQ : Ω — > C([0, oo), E) with the following

properties:

(i) ω H> W,(ω) := W(ω)(t) and ω H> N?(ω) := N°(ω)(t) are both Ft/B(E) measur-
able for t > 0.

(ii) There exists an €Q-exeptional set S C E such that under each Pz, z € E\S,
W = (Wt)t>Q is an E-valued (ft\>Q-Brownian motion starting at 0 € E with
covariance {•,•}# (i.e. under each Pz, z G E\S, for all 0 < s < t Wt — Ws

is independent of J-s and (k, Wt — WS)E is mean zero Gaussian with variance

(t - s)\\k\\]i\
(iii) For each k e K, t > 0 and S°-q.e. z £ E we have Pz-a.s.

£,(t, Wt)E = M\Uk} and E,(k, N?)E = J [ β£(Xs)ds.
2 Jo

(iv) For SQ-q.e. z £ E we have Pz-a.s.

(26) Xt=z + W, + N?

where the last integral is in the sense of Bochner (cf. the following Remark 6.2)

and where for k e K (k, /0' β(Xs)ds)H = &(β(X8\ k)H ds.

REMARK 6.2. (i) The assumption that the Gaussian measures satisfying (A.3)

exist is of course, necessary. It just means that there exists (cf. [7, p. 74]) a Brow-

nian semigroup on E with covariance {•,•)//» i.e., there is a Brownian motion on E
over H. Hence (A.3) is the best one could hope for.

(ii) In the above general situation there is no garantee that k h* β£(z), k e K, is
represented by an element in E for μ-a.e. z € E. But if we assume

(A.4) There exists a β(E)/β(£)-measurable map β^ : E -> E such that
(a) £/{*, β%)E = β£ μ-a.s. for each k e K,

(b) \\β*\\EeLl(E;μ)
then we may define the process Λf° in Theorem 6.1 as a Bochner integral. In

fact, it is easy to see that ||/^||E € Ll(E;μ)Γ\B(E) implies the finiteness of the
AF f v \ \ β % \ \ E ( X s ) d s . Hence, by [20, Theorem 1, p. 133, Corollary 2, p. 134],

Λf,° := (\/2)^β^(Xs)ds, t > 0 (where the integral is in the sense of Bochner

Pz-a.s for £°-q.e. z G E) has the desired properties.
(iii) It is easy to see that (A.4) is equivalent to the following assumption:

(A.4') There exists a #(£)/#( £>measurable map B : E -* E such that

(a) (l/2)£'{Jt, B)E = Luk μ-a.s. for each k e K,

(b) \\B\\E €Ll(E 9μ).

Analogous to (ii) we may then replace W,°+/0' β(Xs)ds in (26) by the Bochner integral

(l/2)βB(X,)ds.
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6.2. Applications In this subsection we assume that £ is a separable real
Hubert space with inner product || ||£ := ( , >^2 and that H c E densely by a Hubert-
Schmidt map. Then there exists a nonnegative definite injective self-adjoint Hubert-
Schmidt operator T on E such that H = T(E) and || \\H = \\T~l - \\E- Analogous to
[7, Theorem 4.4 Step 3.] we see that || \\E is measurable over //, hence (A.3) holds.
Let B : E ->> E be a Borel measurable vector field satisfying the following conditions:

(B.I) lιmME^00(B(z)9 z)E = -oo,
(B.2) E'(l,B)E:E-*1!ί is weakly continuous for all / G E'.

(B.3) There exist Ci, C2, d G (0, oo), such that \\B(z)\\E < Ci +C2||z|ll for al1 '* e E

Then by [2, Theorem 5.2.] there exists a probability measure μ on (E, B(E)) such that

£'(/, B)E G L2(E;μ) for all / G E' and such that

ί Λ 1 , v \ , ^ r 11(27) I I -Δ//W + - (Vw, 5)f I αμ = 0 for all u G j-u^

where Δ// is the Gross-Laplacian, i.e.,

= Σ

~̂ i

'OO

Assume that β(z) = -z + υ(z), v : E ̂  H. Because of (B.I), (B.3) it follows by [2,
Lemma 5.1.] that v e L2(E, H\μ). In particular we have \\Z\\E £ LP(E, μ) for all p >
1. Let / be a Gaussian measure on E with covariance (•,•)//• By [2, Theorem 3.5.]
dμ = φ2 dγ where φ is in the Sobolev space //1<2(£;χ). Furthermore the logarithmic
derivative β^ of μ associated with H exists and admits the representation β#(z) =
— z + (2Vφ/φ)(z). Note that possibly supp(μ) ̂  E. Nevertheless, since every k € £' is
well-μ-admissible (thus in particular (A.I) holds)

n rfμ, M, υ € ^C,°°,

is well-defined and closable on L2(E\ μ) and the closure is a symmetric quasi-regular
Dirichlet form. Let (L°, D(L°)) be the associated generator. It is easy to see that
TC£ C D(L°) and

Set ~β := (1/2)(B - β%). Clearly ^ € L2(£, // μ) and by (27) since fLQudμ = 0,

i()S,(28) I (β, Vu)H dμ = Q for all u G
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As in 6.1 we then construct a conservative diffusion M = (Ω, J^, (Xt)t>o,

associated to the part on L2(E;μ) (which we denote by (L, D(L))) of the closure

on Ll(E,μ) of LQu + (β,Vu)H, u € D(L%. Note that Lu = (l/2)Δ//w + (1/2)

X £ /{VM,£)£, u e fC^. Surely (A.2) is satisfied and clearly Luk = (\/Ί)E.(k, B)E

hence (A.4') holds. By Theorem 6.1 and Remark 6.2(ii) we then have Pz-a.s. for S°-

q.e. z Ξ E (thus in particular Pμ-a.s.)

(29) Xt = z + Wt - 1 f Xs ds + i Γ
^ Jo ^ Jo

where (W,)f>o is an E-valued (^i)r>o-Brownian motion starting at 0 e E with covari-

ance ( , •)// and where ( \ / 2 ) / Q X s d s , (1/2) /Qv(Xs)ds are in the sense of Bochner

/Va.s. for £°-q.e. z e E. Note that J> - 2(Vφ/φ), Vu)Hdμ = 0 for all u in /"C °̂.

Let (L', £>(Z/)) denote the adjoint operator of (L,D(L)) on L2(£;μ). Clearly, since

L'Mjt = E'(k,(l/2)idE^(2Vφ/φ)-(l/2)υ)E and ||W£||£, ||2Vφ/φ||£, ||υ||£ € L2(£;μ)
the coprocess M = (Ω, ^Όo, (X/),^, (^2)26^) associated to (L', D(L')) weakly solves

i rί - r^ vφ ^ \ f* ^
t~- Xsds+ 2^(Xs)ds-- I v(Xs)ds

2 Jo Jo Ψ 2 Jo

for ε°-q.e. z £ E where (Wt)t>o is an E-valued (J^X^o-Brownian motion starting at

0 € E with covariance ( , •)//.

6.3. An Itδ-type formula Let (Gα)α>o be the resolvent associated to (L, D(Γ)).

Since Ga\Li = Gα, a > 0, it follows that D(L)h C D(L)b is dense w.r.t. the L1-
graph norm. Note that since 1 e D(L), the 1-reduced function βf exists for all / e

L°°(E;μ). Let un := nGnu, u e D(L)b By [16, Lemma 4.4.(iii)] we have that eu-Un +

eMπ_M —> 0 in D(f°), hence in L2(E;μ). Furthermore ?(Λ["-M"]) = (-ΐ(u - αn), α -

wn) —^ 0. Now (cf. Remark 4.3) by Theorem 4.5(ii) the decomposition (17) extends

to Λ[M], u G D(L)b. Similar to the finite dimensional case [16, Remark 1.7.(iii)] one

can show that D(L)b is an algebra. Hence the decomposition (17) extends to Λlp(^)],

where / = (/i,..., /„) is an n-tuple of elements in D(L)b and p is a real polynomial

in n variables. Let Φ e C^R71) with Φ(0) = 0. Let pJ9 j e N, χ be similar as in the

proof of Theorem 5.5. We then have by Lemma 4.2 for any μ e SQO, T > 0

Pμ( sup |(Φ - py )(/)(X,)| > ε] < —n\\h\\H Y] I 8((Φ " Pj)x) I \\efl+e-fl\\H.
\o</<r / e ^ II 9^/ U oo

Furthermore
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Hence, by Theorem 4.5(ii), the decomposition (17) extends to Λ[φ(^)]. As a conse-

quence Theorem 5.6 applies to the martingale part Λf [φ(^)] of the decomposition.
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