Atsumi, T. Osaka J. Math. **36** (1999), 1059 – 1062

SHORT PROOFS OF HIRAMINE' RESULTS ON CHARACTER VALUES

TSUYOSHI ATSUMI

(Received January 08, 1998)

1. Introduction

Let G and H be finite groups of order n. A mapping f from G into H is called a planar function of degree n if, for each element $\tau \in H$ and $u \in G^* = G - \{1\}$, there exists exactly one $x \in G$ such that $f(ux)f(x)^{-1} = \tau$. In [2] Hiramine has shown that if both G and H are abelian groups of order 3p with $p(\geq 5)$ a prime, then there exists no planar function from G into H. To prove this he has established two results on character values. Their proofs are slightly complicated. In this note we shall give short proofs.

In section 2 we shall present Proposition 2 which is useful for the proof of Result 2. In section 3 we shall state Hiramine' results and give short proofs.

We follow the notation and terminology of [2].

2. Planar Functions and Equations in Group Algebras

Let G and H be finite groups of order n. Throughout this article elements of G will be denoted by small Roman letters and elements of H by small Greek letters. Let f be a mapping from G into H and $S_{\alpha} = \{x \in G | f(x) = \alpha\}, \alpha \in H$. If $S_{\alpha} \neq \emptyset$, we

Let f be a mapping from G into H and $S_{\alpha} = \{x \in G | f(x) = \alpha\}, \alpha \in H$. If $S_{\alpha} \neq \emptyset$, we set $\hat{S}_{\alpha} = \sum_{x \in S_{\alpha}} x \in C[G]$ and $\hat{S}_{\alpha}^{-1} = \sum_{x \in S_{\alpha}} x^{-1} \in C[G]$, otherwise $\hat{S}_{\alpha} = \hat{S}_{\alpha}^{-1} = 0$, where C[G] is the group algebra of G over the complex number field C. Let $G_0 = G \times H$ be the direct product of groups G, H.

To prove the results we need two propositions.

The following is Proposition 2.1 [2].

Proposition 1. The following are equivalent.

(i) The function f is planar.

(ii) In the group algebra C[G] of G,

$$\sum_{\alpha \in H} \hat{S}_{\tau\alpha} \hat{S}_{\alpha}^{-1} = \sum_{\alpha \in H} \hat{S}_{\alpha\tau}^{-1} \hat{S}_{\alpha} = \begin{cases} \hat{G} + n - 1 & \text{if } \tau = 1, \\ \hat{G} - 1 & \text{otherwise.} \end{cases}$$

T. Atsumi

REMARK 1. If $\tau \neq 1$, then it follows from the equation in (ii) of the proposition above that in the group algebra $C[G_0]$ of G_0 ,

$$\sum_{\alpha \in H} \hat{S}_{\tau \alpha} \tau \alpha \hat{S}_{\alpha}^{-1} \alpha^{-1} = (\hat{G} - 1)\tau.$$

We prove the following

Proposition 2. We have in $C[G_0]$,

$$\left(\sum_{\alpha \in H} \hat{S}_{\alpha} \alpha\right) \left(\sum_{\beta \in H} \hat{S}_{\beta}^{-1} \beta^{-1}\right) = \hat{G} + n - 1 + \sum_{\tau \in H, \ \tau \neq 1} (\hat{G} - 1)\tau.$$

Proof of Proposition 2.

$$\begin{split} (\sum_{\alpha \in H} \hat{S}_{\alpha} \alpha) (\sum_{\beta \in H} \hat{S}_{\beta}^{-1} \beta^{-1}) &= \sum_{\tau \in H} \left(\sum_{\beta \in H} \hat{S}_{\tau\beta} \tau \beta \hat{S}_{\beta}^{-1} \beta^{-1} \right) \\ &= \hat{G} + n - 1 + \sum_{\tau \in H, \ \tau \neq 1} (\hat{G} - 1) \tau, \quad \text{by Remark 1.} \end{split}$$

We complete the proof of Proposition 2.

3. Proofs of Hiramine' Results

We start with the following well-known facts about character theory. These facts play important parts in the proofs of his results.

FACT 1. Let G be an abelian group and χ an arbitrary (linear) character of G. Then χ is a homomorphism from G into $C^* = C - \{0\}$. So we can extend this homomorphism χ to an algebra homomorphism $\overline{\chi}$ from C[G] into C.

FACT 2. Let H_1, H_2 be finite groups and G_1 the direct product of H_1, H_2 . Then all irreducible characters of G_1 are obtained as follows. Let $\chi_0, ..., \chi_{s-1}$ be the irreducible characters of $H_1, \rho_0, ..., \rho_{t-1}$ the irreducible characters of H_2 . Then G_1 has exactly st irreducible characters $\Psi_{ij}(0 \le i \le s-1, 0 \le j \le t-1)$, satisfying $\Psi_{ij}(h_1h_2) = \chi_i(h_1)\rho_j(h_2)$, where $h_1 \in H_1, h_2 \in H_2$.

Proof. See[1, p.54].

REMARK 2. In Fact 2 if both χ_i and ρ_j are linear characters, then Ψ_{ij} is a homomorphism from G_1 to C^* . As in Fact 1, we have an algebra homomorphism $\overline{\Psi}_{ij}$ from $C[G_1]$ into C which is an extension of Ψ_{ij} .

1060

Now we shall start to state Hiramine' results and prove them. In the remainder of this section we assume that f is a planar function and that G is an abelian group of order n. Let $\chi_0(=1_G), \ldots, \chi_{n-1}$ be the irreducible (linear) characters of G, where 1_G denote the principal character of G. We set

$$d_i^{(\alpha)} = \begin{cases} \sum_{x \in S_\alpha} \chi_i(x) & \text{if } S_\alpha \neq \emptyset, \\ 0 & \text{if } S_\alpha = \emptyset \end{cases}$$

for each $0 \le i \le n-1$ and for each $\alpha \in H$. Now we state one of Hiramine' results[2].

RESULT 1. The following hold (i) $d_0^{(\alpha)} = |S_{\alpha}|$ and

$$\sum_{\alpha \in H} d_0^{(\tau \alpha)} d_0^{(\alpha)} = \sum_{\alpha \in H} d_0^{(\alpha \tau)} d_0^{(\alpha)} = \begin{cases} 2n-1 & \text{if } \tau = 1, \\ n-1 & \text{otherwise} \end{cases}$$

(ii) For $i \neq 0$,

$$\sum_{\alpha \in H} d_i^{(\tau \alpha)} \overline{d_i^{(\alpha)}} = \sum_{\alpha \in H} \overline{d_i^{(\alpha \tau)}} d_i^{(\alpha)} = \begin{cases} n-1 & \text{if } \tau = 1, \\ -1 & \text{otherwise} \end{cases}$$

(Here \overline{d} denotes the complex conjugate of $d \in C$.)

Proof. Since G is abelian, from Fact 1 we note that for each $0 \le i \le n-1$, $\overline{\chi_i}$ is an algebra homomorphism from C[G] into C. We shall prove (i). It is immediate that $d_0^{(\alpha)} = |S_\alpha|$. If $\tau = 1$, then the equation in (ii) of Proposition 1 becomes

$$\sum_{\alpha \in H} \hat{S}_{\alpha} \hat{S}_{\alpha}^{-1} = \sum_{\alpha \in H} \hat{S}_{\alpha}^{-1} \hat{S}_{\alpha} = \hat{G} + n - 1.$$

We apply $\overline{\chi_0}$ to this equation. Then

$$\sum_{\alpha \in H} \overline{\chi_0}(\hat{S}_\alpha) \overline{\chi_0}(\hat{S}_\alpha^{-1}) = \sum_{\alpha \in H} \overline{\chi_0}(\hat{S}_\alpha^{-1}) \overline{\chi_0}(\hat{S}_\alpha) = \overline{\chi_0}(\hat{G} + n - 1) ,$$

which implies the equation for $\tau = 1$ in (i). Similarly we can prove the equation for $\tau \neq 1$ in (i). We have proved (i). Next we shall prove (ii). By applying the algebra homomorphism $\overline{\chi_i}$ ($i \neq 0$) to the equation in (ii) of Proposition 1 we can prove (ii). This completes the proof of Result 1.

We state another result on character values in [2].

T. Atsumi

RESULT 2. With the same notation and assumption as in Result 1, suppose that H is abelian and let $\rho_0(=1_H), ..., \rho_{n-1}$ be the irreducible characters of H. Set $z_{ij} = \sum_{\alpha \in H} d_i^{(\alpha)} \rho_j(\alpha)$. Then,

- (i) $z_{0,0} = n$, and $z_{i,0} = 0 (i \neq 0)$
- (ii) For $j \neq 0$, $z_{ij}\overline{z_{ij}} = n$.

Proof. Since χ_i and ρ_j are linear, from Remark 2 we see that $\overline{\Psi}_{ij}$ is an algebra homomorphism from $C[G_0]$ into C. First we shall prove (ii). We apply $\overline{\Psi}_{ij}$ $(j \neq 0)$ to the equation in Proposition 2. Then we get (ii). We have proved (ii). Next we shall prove (i). Similarly by using $\overline{\Psi}_{i0}$ we can prove (i). This completes the proof of Result 2.

REMARK 3. Nakagawa[3] has proved Result 2 by using Gaussian sums.

References

- [1] L. Dornhoff: Group representation theory, Part A, Marcel Dekker, New York, 1971.
- [2] Y. Hiramine: Planar functions and related group algebras, J. of Algebra 152 (1992), 135-145.
- [3] N. Nakagawa: Left cyclic planar functions of degree p^n , Utilitas Math. in press.

Department of Mathematics Faculty of Science Kagoshima University Kagoshima 890-0065, Japan e-mail: atsumi@sci.kagoshima-u.ac.jp