SHORT PROOFS OF HIRAMINE' RESULTS ON CHARACTER VALUES

TsuYoshi ATSUMI

(Received January 08, 1998)

1. Introduction

Let G and H be finite groups of order n. A mapping f from G into H is called a planar function of degree n if, for each element $\tau \in H$ and $u \in G^{*}=G-\{1\}$, there exists exactly one $x \in G$ such that $f(u x) f(x)^{-1}=\tau$. In [2] Hiramine has shown that if both G and H are abelian groups of order $3 p$ with $p(\geq 5)$ a prime, then there exists no planar function from G into H. To prove this he has established two results on character values. Their proofs are slightly complicated. In this note we shall give short proofs.

In section 2 we shall present Proposition 2 which is useful for the proof of Result 2. In section 3 we shall state Hiramine' results and give short proofs.

We follow the notation and terminology of [2].

2. Planar Functions and Equations in Group Algebras

Let G and H be finite groups of order n. Throughout this article elements of G will be denoted by small Roman letters and elements of H by small Greek letters.
Let f be a mapping from G into H and $S_{\alpha}=\{x \in G \mid f(x)=\alpha\}, \alpha \in H$. If $S_{\alpha} \neq \emptyset$, we set $\hat{S}_{\alpha}=\sum_{x \in S_{\alpha}} x \in C[G]$ and $\hat{S}_{\alpha}^{-1}=\sum_{x \in S_{\alpha}} x^{-1} \in C[G]$, otherwise $\hat{S}_{\alpha}=\hat{S}_{\alpha}^{-1}=0$, where $C[G]$ is the group algebra of G over the complex number field C. Let $G_{0}=G \times H$ be the direct product of groups G, H.

To prove the results we need two propositions.
The following is Proposition 2.1 [2].
Proposition 1. The following are equivalent.
(i) The function f is planar.
(ii) In the group algebra $C[G]$ of G,

$$
\sum_{\alpha \in H} \hat{S}_{\tau \alpha} \hat{S}_{\alpha}^{-1}=\sum_{\alpha \in H} \hat{S}_{\alpha \tau}^{-1} \hat{S}_{\alpha}= \begin{cases}\hat{G}+n-1 & \text { if } \tau=1, \\ \hat{G}-1 & \text { otherwise } .\end{cases}
$$

REMARK 1. If $\tau \neq 1$, then it follows from the equation in (ii) of the proposition above that in the group algebra $C\left[G_{0}\right]$ of G_{0},

$$
\sum_{\alpha \in H} \hat{S}_{\tau \alpha} \tau \alpha \hat{S}_{\alpha}^{-1} \alpha^{-1}=(\hat{G}-1) \tau
$$

We prove the following
Proposition 2. We have in $C\left[G_{0}\right]$,

$$
\left(\sum_{\alpha \in H} \hat{S}_{\alpha} \alpha\right)\left(\sum_{\beta \in H} \hat{S}_{\beta}^{-1} \beta^{-1}\right)=\hat{G}+n-1+\sum_{\tau \in H, \tau \neq 1}(\hat{G}-1) \tau .
$$

Proof of Proposition 2.

$$
\begin{aligned}
\left(\sum_{\alpha \in H} \hat{S}_{\alpha} \alpha\right)\left(\sum_{\beta \in H} \hat{S}_{\beta}^{-1} \beta^{-1}\right) & =\sum_{\tau \in H}\left(\sum_{\beta \in H} \hat{S}_{\tau \beta} \tau \beta \hat{S}_{\beta}^{-1} \beta^{-1}\right) \\
& =\hat{G}+n-1+\sum_{\tau \in H, \tau \neq 1}(\hat{G}-1) \tau, \quad \text { by Remark } 1 .
\end{aligned}
$$

We complete the proof of Proposition 2.

3. Proofs of Hiramine' Results

We start with the following well-known facts about character theory. These facts play important parts in the proofs of his results.

FACT 1. Let G be an abelian group and χ an arbitrary (linear) character of G. Then χ is a homomorphism from G into $C^{*}=C-\{0\}$. So we can extend this homomorphism χ to an algebra homomorphism $\bar{\chi}$ from $C[G]$ into C.

FACT 2. Let H_{1}, H_{2} be finite groups and G_{1} the direct product of H_{1}, H_{2}. Then all irreducible characters of G_{1} are obtained as follows. Let $\chi_{0}, \ldots, \chi_{s-1}$ be the irreducible characters of $H_{1}, \rho_{0}, \ldots, \rho_{t-1}$ the irreducible characters of H_{2}. Then G_{1} has exactly st irreducible characters $\Psi_{i j}(0 \leq i \leq s-1,0 \leq j \leq t-1)$, satisfying $\Psi_{i j}\left(h_{1} h_{2}\right)=\chi_{i}\left(h_{1}\right) \rho_{j}\left(h_{2}\right)$, where $h_{1} \in H_{1}, h_{2} \in H_{2}$.

Proof. See[1, p.54].
Remark 2. In Fact 2 if both χ_{i} and ρ_{j} are linear characters, then $\Psi_{i j}$ is a homomorphism from G_{1} to C^{*}. As in Fact 1, we have an algebra homomorphism $\bar{\Psi}_{i j}$ from $C\left[G_{1}\right]$ into C which is an extension of $\Psi_{i j}$.

Now we shall start to state Hiramine' results and prove them. In the remainder of this section we assume that f is a planar function and that G is an abelian group of order n. Let $\chi_{0}\left(=1_{G}\right), \ldots, \chi_{n-1}$ be the irreducible (linear) characters of G, where 1_{G} denote the principal character of G. We set

$$
d_{i}^{(\alpha)}= \begin{cases}\sum_{x \in S_{\alpha}} \chi_{i}(x) & \text { if } S_{\alpha} \neq \emptyset \\ 0 & \text { if } S_{\alpha}=\emptyset\end{cases}
$$

for each $0 \leq i \leq n-1$ and for each $\alpha \in H$. Now we state one of Hiramine' results[2].

Result 1. The following hold

(i) $d_{0}^{(\alpha)}=\left|S_{\alpha}\right|$ and

$$
\sum_{\alpha \in H} d_{0}^{(\tau \alpha)} d_{0}^{(\alpha)}=\sum_{\alpha \in H} d_{0}^{(\alpha \tau)} d_{0}^{(\alpha)}=\left\{\begin{aligned}
2 n-1 & \text { if } \tau=1 \\
n-1 & \text { otherwise }
\end{aligned}\right.
$$

(ii) For $i \neq 0$,

$$
\sum_{\alpha \in H} d_{i}^{(\tau \alpha)} \overline{d_{i}^{(\alpha)}}=\sum_{\alpha \in H} \overline{d_{i}^{(\alpha \tau)}} d_{i}^{(\alpha)}= \begin{cases}n-1 & \text { if } \tau=1 \\ -1 & \text { otherwise }\end{cases}
$$

(Here \bar{d} denotes the complex conjugate of $d \in C$.)
Proof. Since G is abelian, from Fact 1 we note that for each $0 \leq i \leq n-1, \overline{\chi_{i}}$ is an algebra homomorphism from $C[G]$ into C. We shall prove (i). It is immediate that $d_{0}^{(\alpha)}=\left|S_{\alpha}\right|$. If $\tau=1$, then the equation in (ii) of Proposition 1 becomes

$$
\sum_{\alpha \in H} \hat{S}_{\alpha} \hat{S}_{\alpha}^{-1}=\sum_{\alpha \in H} \hat{S}_{\alpha}^{-1} \hat{S}_{\alpha}=\hat{G}+n-1 .
$$

We apply $\overline{\chi_{0}}$ to this equation. Then

$$
\sum_{\alpha \in H} \overline{\chi_{0}}\left(\hat{S}_{\alpha}\right) \overline{\chi_{0}}\left(\hat{S}_{\alpha}^{-1}\right)=\sum_{\alpha \in H} \overline{\chi_{0}}\left(\hat{S}_{\alpha}^{-1}\right) \overline{\chi_{0}}\left(\hat{S}_{\alpha}\right)=\overline{\chi_{0}}(\hat{G}+n-1),
$$

which implies the equation for $\tau=1$ in (i). Similarly we can prove the equation for $\tau \neq 1$ in (i). We have proved (i). Next we shall prove (ii). By applying the algebra homomorphism $\overline{\chi_{i}}(i \neq 0)$ to the equation in (ii) of Proposition 1 we can prove (ii). This completes the proof of Result 1.

We state another result on character values in [2].

Result 2. With the same notation and assumption as in Result 1, suppose that H is abelian and let $\rho_{0}\left(=1_{H}\right), \ldots, \rho_{n-1}$ be the irreducible characters of H. Set $z_{i j}=$ $\sum_{\alpha \in H} d_{i}^{(\alpha)} \rho_{j}(\alpha)$. Then,
(i) $z_{0,0}=n$, and $z_{i, 0}=0(i \neq 0)$
(ii) For $j \neq 0, z_{i j} \overline{z_{i j}}=n$.

Proof. Since χ_{i} and ρ_{j} are linear, from Remark 2 we see that $\bar{\Psi}_{i j}$ is an algebra homomorphism from $C\left[G_{0}\right]$ into C. First we shall prove (ii). We apply $\bar{\Psi}_{i j}(j \neq 0)$ to the equation in Proposition 2. Then we get (ii). We have proved (ii). Next we shall prove (i). Similarly by using $\bar{\Psi}_{i 0}$ we can prove (i). This completes the proof of Result 2.

Remark 3. Nakagawa[3] has proved Result 2 by using Gaussian sums.

References

[1] L. Dornhoff: Group representation theory, Part A, Marcel Dekker, New York, 1971.
[2] Y. Hiramine: Planar functions and related group algebras, J. of Algebra 152 (1992), 135-145.
[3] N. Nakagawa: Left cyclic planar functions of degree p^{n}, Utilitas Math. in press.

Department of Mathematics
Faculty of Science
Kagoshima University
Kagoshima 890-0065, Japan
e-mail: atsumi@sci.kagoshima-u.ac.jp

