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0. Introduction

Let D be a bounded domain of Rd with its smooth boundary dD. Let Lα, a E A (A
is a given set), be non-degenerate second-order linear differential operator with parameter
α of the following type:

(0.1) La=

and let also L be a (nonlinear) operator, given by the formula L = s u p α € A Lα, which is
called the maximal operator. Let consider a Dirichlet eigenvalue problem with respect to
Lon£>;

(0.2) Lu + \u = 0 on D, u > 0 on D, and U\BD = 0.

In this paper, under the assumption that there exist an eigenvalue λ and corresponding

(smooth) eigenfunction u satisfying (0.2), we will discuss various properties of λ and also

obtain a probabilistic representation for λ.
We shall prove in §2 that λ is smaller than any λα, a G A, where for each α G A, λα is
the smallest eigenvalue of linear operator Lα. In §3, we shall show that λ is the limit of a
sequence of the principal eigenvalues, each of them corresponds to a linear operator in the
class. Finally, in §4, we shall obtain a probabilistic representation for λ.
Our method of proof is similar to that of [3] and [4]. Namely, it proceeds firstly by consid-

ering the transformation such that v = — log u, after then by applying Bellman equation's
method to the equation with respet to υ obtained by such logarithmic transformation of
(0.2). Therefore our results mainly rely on the theory of stochastic control and Bellman

equation developped by [1], [5] and [6](See also [2]) .
C.Pucci showed in [8] that λ = minλ01, in the case where α(α, x) = a(x) and α( ) is a
matrix-valued bounded measurable function. In [8], he also gave an interesting example in

which D = {x e Rd',\x\ < l}, and there exist an eigenvalue and corresponding (smooth)
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eigenfunction relative to Eq.(0.2). His method of proof depends upon entirely the theory
of differential equations (to the detail, see Remark 1.1 below).

On the otherhand, in [3] and [4], stochastic representation problems for the principal eigen-
value of second order linear differential equations are discussed. Result in [3] is concerned
to a Dirichlet problem on a bounded domain, while one in [4] is concerned to the whole
domain, namely finite-horizen problem.

1. Notations, definitions and preliminaries

Let D be an open set in Rd with compact closure D and smooth boundary 3D. Let

A be a convex subset in a Euclidean space Rl. For any component a in A, define the

operator La by (0.1), whose coefficients α(α,x),6(α,ίc) and c(o;,x), (α,z) G A x Rd,

are d x d-matrix, d-vector and nonnegative valued functions, respectively. Assume that

they satisfy the following conditions;

(A.I) for any a G A, / (α, x) is Lipshitz continuous on Rd and / is continuous in a
uniformly with respect to x (/ = α, b and c). Furthermore, the matrix a is symmetric and
uniformly positive definite; there exists a positive constant μ such that

(1.1) μ|£|2 < (a(a,x)ξ,ξ), for alia G A, x G Rdand ξ G Rd.

Put £ = {Lα, a G A}. Let Q be the class of functions u such that u G C(D}[} H2>d(D),
u(x) > 0 for x G D and u(x) = 0 for x G dD. Let Λ be the set of real numbers λα for
which there exist an La G C and a function ua G Q such that

(1.2) Laua(x) + λαttα(x) = 0 a.e. inxeD.

Then it is shown from the maximum principle that all such λα 's are positive. Let L

be the maximizing operator relative to the class C, given by the formula; for any u G Q

and x G D,

(1.3) Lu(x) = supLau(x).
α€Λ

Throughout this paper we assume the following hypothesis.

(A.2) There exist a function u G Q (we assume that u(x) < 1, for convenience) and a
real number λ such that

(1.4) Lu(x) + \u(x) = 0 a.e. in D.

REMARK 1.1. In [8](Theorem II), C.Pucci gave an interesting example that (A.2)

holds, in which he assumed that D = {x G Rd; x\ < 1} and α(α, x) = α(x),where α( )
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is a measurable function of x. In this case, therefore, A is a set of symmetric uniformly

positive definite d x d-matrices (in addition, it was assumed that the trace of a — 1 and

μ < 1/d ). It is also shown in [8](Theorem I) that if (A.2) is true then λ = mma^A Λ.

2. Lower bound for Λ

Let assume (A.I) and (A.2). Let υ(x) = -log u(x) for x G D, then υ G C(D) Γ\Hf^(D)

(i.e. v G H^d(D') for any D' such that D1 C D' C D), v > 0 in D and v(x) /* oo as

x — > dD. Moreover, it is easily seen from (1.3) and (1.4) that

(2.1)

sup{Vΐ;(x)*α(α, x)Vv(x)/2 — trace α(α, x)V2f(x)/2 — 6(α, x)* Vf(x) — c(α, x)}

= — λ,α.e. in lλ

Here, 6* denotes the transposed vector of b and so on, moreover we used the abbrevi-

ated notations such as α(α, x) = {a^j(o;,x), 1 <i,j < d},6(a,x) = {6j(a,x),l < i <

d},Vv(x) = {div(x),l < ί < d},V2v(x) = {didjv(x),l < ί,j < d},etc. Eq.(2.1)

implies that for all a £ A and for a.a.x,

(2.2) traceα(α,x)V2^(x)/2+6(α,x)*Vv(x)+c(α,x)-Vτ;(x)*α(α,x)V'i;(x)/2 > λ,

which can be written in the form;

trace α(α, x) V2v(x)/2 + fr(α, x)* Vυ(x) + c(α, x)+
( } * , / 3 ) + |/?|2/2} > λ,

where σ(α, x), a e A, x G # d , is a d x d-matrix such that σσ* = α. Note that in this

case σ can be taken so as to be also Lipshitz continuous in x.

For any fixed x G D and a G A such that λα G A, let consider the following

stochastic differential equation;

dXt =σ(a,Xt)dBt-a(a,Xt)Vva(Xt)dt + b(a,Xt)dt

X0 =x,

where, (Bt), 0 < t < oo, is a ̂ -valued Brownian motion, ι>α = - logua and ΐ ^ G Q.

Then we have a lemma.

Lemma 2.1. For each a £ A such that λ" G Λ and x £ D, there exists a solution

(X^'x) of Eq.(2.4) on a probability space satisfying the standard conditions, and this

process does not leave D at last. Moreover, λα is represented as follows;

(2.5) liminf E[ί {c(a,X^x)+Vva(X?>x)*a(a,X^x)Vυa(X^x}/'2}dr}/t= λα.
*->°° Λ)
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(for the proof, see [3]).

Let {Dn}H£N be an increasing sequence of bounded open sets in Rd such that for

each n, Dn C Dn C Aι+ι and U n >ι Dn

 = D. For any fixed n, a G A such that λα G Λ

and x G Dn, applying the Ito formula to v and (X^x), we obtain the following.

v(X?£J-v(x)
rtf\rn

(26. = {trace aaV2v + (6α)*Vv - (Vv)*aaVva} (X^x)dr

H- (square integrable martingale),

where τ n is the first exit time of (X?'x) from Dn, and we used the abbreviations such as

fa(x) = / (α, x)(f — α, 6),etc. Adding to the both terms of (2.6) the quantity

rt/\rn

\ {(Vva)*aaVva/2 + ca

Jo

and taking the expectation, one sees that

/ *Λτ n

E[«(Xt

αχ?J - KX) + / {(VvaraaVva/
Jo

rt/\τn

= E[ {trace ααV2ι;/2 + (6α)* Vv + cα

7o

>\E[t/\τn}.

The last inequality is due to (2.3), in which we put β(x) — — σa(x)*Vva(x) such

that σa(x)σa(x)* = aa(x}. From (A.2), it is not difficult to show (e.g.[8]) that there exist

positive constants c\ and 02 such that for any x G D,

(2.8) cιd(x) <u(x) <c2d(x),

where d(x)(x G D] denotes the distance between x and 3D. It is also shown that

(2.9) sup (liminf E[v(X^x

r )]) < oo,
£>0 ^ n-+oo n )

for Vx G D and Vα G A such that λ α G Λ (c.f.[3]). Dividing by t and then taking the limit
in (2.7) as n -> oo and t — > oo (note that τn /* oo as n /* oo) we deduce that for any α,

(2.10) liminf E[ ί {(V^α)*ααV^/2 + cα} (X^x)dr]/t > λ,E[ ί {(V^α)*α
JQ
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from which we obtain a theorem.

Theorem 2.1. Let assume (A.2), then λ < λ α for any λ α G Λ.

REMARK 2.1. Let α( ) be a smooth function on Rd with its values in A, then it is
well known that there exist an eigenvalue λα(') and a corresponding eigenfunction belong-
ing to Q. Moreover, we can show by the same way as Theorem 2.1 that λ < λα(') for such
OL'S.

Now let consider the minimizing operator L1', given by U — infαG^ La. Moreover,
let assume that there exist a u' G Q and a real number λ7 such that

(2.11) L'uf + λV = 0 a.e. in D.

Then we have the following.

Theorem 2.2. Assume (2.11), then λα < λ' for any λ α G Λ.

Proof. Since the proof is almost similar to that for λ, we will sketch only the differ-
ent points. First, remark that if λα G Λ then it holds that

(2.12) λα < liminf E[ ί {(Vv)* α
ί->00 JQ

(aa(x) = α(α,α:),eίc.). Here, for each a G A and x G D, (X t

α ' x),0 < t < oo, is a
process determined by the following stochastic differential equation;

d X t =<ra

(c.f.Eq.(2.4)). In order to show (2.12) it must be important to note that the process (X?'x)
satisfies the inequality (2.9)(to the detail, see [3], Th.3). On the otherhand, it can be
deduced easily from Eq.(2.1 1) that for all λα G Λ,

/•*
(2.14) liminf E[ \ {(Vv)* aa Vv/2 + cα} (X?>x)dr]/t < λ;.

-

The assertion of the theorem follows immediately from (2. 12) and (2. 14).

From these results we obtain the following.
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Corollary 2.1. // λα e Λ rtew λ < λα < λ'.

REMARK 2.2. (a) C.Pucci also proved in his formulation that λ' = max Λ by using

differential equation's method ([8]).

(b) The results, obtained in the following sections of this paper with respect to (L, λ, v ),

can be also extended easily to (L7, λ', υ ') without any change of the proof.

3. Successive approximation for Λ

We deduced in Theorem 2. 1 that λ < inf Λ. In this section, we shall prove that λ could

be approximated by a sequence of the principal eigenvalues, each of them corresponds to

a linear operator with smooth coefficients, by using the analogus method as [8]. Assume

(A.2). Let a = a(x) be a measurable function with values in A. Put

La^u(x) + \u(x) = Σ,\ i=laij(a(x),x)didju(x)/2
(3.1)

+ Σi=ι bi(θί(x), x)diu(x) — c(a(x) , x)u(x) + \u(x)

Since A is a convex subset in a Eucledian space, for each n there exist a function

α n (x) given on Rd which is infinitely differentiable, has values in A and a constant kn

such that

II hn | |L°°(£>)< l/ra, supxsup /€ Λd |αn(/)(z)| < oo,
(3.2) || σ(an(x),x)-σ(an(y),y} \\ + || b(θLn(x),x)-b(an(y),y) \\< knx-y\,

for all x G Rd,

where for each n, x and /, an^ means the derivative of an in the /-direction, and we put

(3.3) hn(x) = LaMu(x) + \u(x).

^αn( ) j s g i v e n i n (3.1), in which α( ) is replaced by α n ( )(see [5] p.215 or [2]). For any n,

let un G Q and λ n be the solution of the eigenvalue problem (1.2) in which the parameter

a is replaced with α n (.) (see Remark 2.1).

For each n, let tn = supxeD u(x)/un(x) then 0 < tn < oo (c.f.(2.8)). For any n, if we

put sn = tn\/\n then

λnSnUn(x) - \u(x) > 0 1Π D.

From these results one sees that

(3.4) La^ \snun - u)(x] + hn(x) < 0 α.e. inD.
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For each n, let wn be a solution of the following equation

rjan^wn(x} = hn(x) a.e. x £ D
(3.5)

wn(x) = 0 forxG <9D.

Now suppose that for MX £ D and Vn, wn satisfies the condition;

(3.6) wn(x)\ < Md(x)/n,

where M is a constant indepedent of n and x (see Remark 3.1 below). We deduce from

(3.2)~ (3.6) that

7*n( ) ( S n W n — u + wn) < 0 a.e. inD

(3.7)

snun — u + wn = 0 on dD.

In virtue of the maximum principle, it follows by (3.7) that for any x and n,

snun(x) - u(x) + wn(x) > 0.

From the definitions of sn and tn, one deduce that for Vn, MX £ D,

λ/λn > u(x)/tnun(x) - wn(x)/u(x)

^ ' } > u(x)/tnun(x) - M/cn > 1 - M/cn

where c is a constant independent of n and x (see (2.8) and (3.6)). As n —>• oo in (3.8) we
obtain a theorem.

Theorem 3.1. Let {an} be a sequence of smooth functions on Rd such that

θίn(x) € A for all x G D, satisfying the conditions such as (3.2). Let also \ n be
the first eigenvalue of Eq.(1.2) associated with an. If the condition (3.6) is true, then
λ > limsupn^0 0λn.

Combine this theorem with Theorem 2.1 and Remark 2.1, we deduce

Corollary 3.1. Let assume the condition (3.6). Then λ — limn_> 0 0 λn.
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REMARK 3.1. The condition (3.6) would be satisfied if D is convex. In fact, using

the results in [7] or [6](p.207) it can be shown that if hn is given by (3.3), then the (unique)

solution wn of Eq.(3.5) has the property such that supα.GD |Viί;n(x)| < 3 M/n, where M

is a constant independent of n. For any x G D, let ξ be the nearest point to x on 3D. By

the mean value theorem,

wn(x) - wn(ξ) = I Vwn(ηx + (1 - r?)ξ) - (x -
Jo

Now, if we suppose that D is convex, then ηx + (1 - η)ξ G D for Vr? G (0,1). Since

wn(ξ) = 0 for Vξ G dD9 we get

|wn(x)| < sup |Vu>n(x)||x - ξ\ < M - d(x)/n ,

where M does not depend on n and x.

4. Variational formula for Λ

Let λ and u be given in (A.2) and in this section we want to obtain a probabilistic

representation for λ like as one for λα(c.f.(2.5)). For that purpose, in addition to the

assumptions made in Section 1 ~ 3, we impose to assume that A is compact. Then it is

well known (see [1], p. 168, e.g.) that there exists a measurable function a(x] with values

in A, which satisfies the following equation;

(4.1) La^u(x) + λu(x) = 0 a.e. in D

Then we have a theorem.

Theorem 4.1. Assume (A.2) then λ can be represented as follows; for all x G D,

(4.2)

where v(x) = — logu(z) and (X? ),0 < t < oo, is a solution of the following

stochastic differential equation;

dXt=σ(Xt)dBt-a(Xt)Vv(Xt)dt
V ~,

A O = X.

Here x G D, (Bt),0 < t < oo, is a Rd -valued Brownian motion, b(x) = 6(α(x),x),

and for any x,σ(x) is a d x d- matrix such that σ(x)σ(x)* = a(x) (= α(α(x),a:)).
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The previous results in Section 1 ~ Section 3 indicate us that in order to show the
theorem it is sufficient to prove the existence of a (weak) solution (Xt) of Eq.(4.3)(c.f.
Lemma 2.1). Since a(-) is not continuous in general (see Remark 4.1 below), the proof
of the theorem will be divided into several stages. First of all, for any fixed x € D, let us
consider stochastic differential equation of the form;

( 4 4 )

where (Bt) is a d-dimensional Brownian motion. Since the matrix σ is uniformly positive
definite and, moreover, the coefficients σ and b are bounded measurable function on Rd,
there exists a solution (Xt) of Eq.(4.4) on a suitable probability space (Ω, F, Q\ Ft) satis-
fying the standard conditions (see [5], Th.2.6.1, p.87).
Let {Dn}, n £ TV, be an increasing sequence of sets given in §2. Let also {ψn},n £ N,
be a sequence of smooth functions on Rd such that ψn G C°°(Rd), 0 < ψn(x) <
1, ^ n (x) = l(ifx € i5n), ψn(x) — 0(ifz does not belong to D n +ι) Put ^n(x) =
^n(x)Vt;(αj) for any n G N and x £ 7id, then for each n, gn(x) is bounded measurable
function of x. For any n, ί £ [0, oo) and x £ D n , let define a function /on(ί) by the
formula

(4.5) pn(t) = exp{- f σ(Xrγ9n(Xr)dBr - f \σ(XrΓgn(Xr)\2dr/2}
Jo Jo

where (Bt, Xt) is the solution of Eq.(4.4). Since σ and gn are bounded measurable func-
tions, for each n, pn (•) is a square integrable martingale with respect to (ft, Q). Given any
fixed x £ D, let define P n and (B™),n £ AT, 0 < t < oo, by the following formulas i.e.,

(4.6) P n ( ) - /

(4.7) dB? = dBt + σ(Xt)*ί7n(-ϊt)Λ, BO = 0,

then the following result is due to I.V.Girsanov.

Lemma 4.1. For ίwy n, P n w α probability measure on T^Q = Vt>o
the triple (Bp,Ft, Pn) is an Rd -valued Brownian motion. This is equivalent to say that
for each n and x(e Z)n), (Ω,^7, Pn^ft^ Xt, B™ ) w fl (weak) solution of the following
stochastic differential equation;

dXt = σ(X^dBt - a(Xt)9n(Xt)dt + b(Xt)dt
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Applying the Ito formula to v and (Xt), the solution of Eq.(4.8), we deduce for any n

and x e Dn

(4.9)

/£Λτ n

{
.

+{square integrable martingale},

where rn means the first exit time of (X.) from Dn. To the both parts of (4.9), adding the
quantity

and then taking the mathematical expectation with respect to Pn (denote by -En[ ])» one
obtains

(4.10)

/ Γ Λ T n

{(Vt;)*-α W2
_

/ tΛτn

= υ(x)+En[ {traceα V2t;/2-(Vt;)* α^ n /2+(Vv)* 6H-c}(Xr)dr].
«/o

On the otherhand, since w(x) = - logv(x), Vx e -D and w satisfies (4.1) a.e. in D, it turns

out that v satisfies the following equation for a.e. in £>;

Σd

ij=ι atjWdidjvW/ϊ + Σ t i 6i(x)ftt;(x) + c(x}~
(4.11)

Σfϊj==ι^ ( ^ i φ ) ^ Φ ) / 2 = λ.

Using (4.10) and (4.1 1) we deduce

(4.12)
rtf\τn

n[υ(XtΛTn)+ \ {(VvΓ a gn/2+c} (Xr)dr]
Jo

= v(x) + \En[t^τn}.

But if we note that

(Vυ)* α gn(x) -f c(x) = (Vυ)* α Vυ - ̂ n (x) + c(x) > 0 on D n ,
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then for any t, n and x G Dn,

En[v(XtArJ] <v(z) + λί.

Since v(x) > 0 on D, it follows that

On the otherhand, remember that if x £ D then v(x) > — \ogczd(x) (because of (2.8)).

This implies that υ(x) > dn for Vx £ Dn where {dn} is a sequence of numbers such that

dn /* oo as n — >• oo. Therefore for any ί, n and x £ D n ,

Summarizing these results we have a lemma.

Lemma 4.2. For all t > 0 and x e D,

(4.13) lim P n ( τ n < ί ) = 0.
n — >oo

Using this lemma we deduce

Lemma 4.3. There exists a solution (in weak sense) of Eq.(4.3) on a probability

space (Ω, J 7, P \.J-t) satisfying the standard conditions on which is given a Rd -valued

Brownian motion (Bt).

(For the proof, see Stroock-Varadhan [9], Th. 1.3.5 and Cor. 10. 1.2, etc.) Then we can

show Theorem 4.1 in the same way as [3](Theorem 3) using Lemma 4 .1~ Lemma 4.3 .

R E M A R K 4.1. In general, we could not expect that there exists a continuous func-

tion Oί(x) satisfing Eq.(4.1) for almost all x G D (see [8],Theorem II). But in the case

where we can choose a(x) to be continuous, the martingale problem for (α, agn -f- b) is

well posed. Therefore the proof of the theorem is followed immediately from [3] and

[9](seealso[l].p.l70).
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