SCATTERING THEORY FOR TIME-DEPENDENT HARTREE-FOCK TYPE EQUATION

Takeshi WADA

(Received November 4, 1997)

1. Introduction

In this paper we consider the scattering problem for the following system of nonlinear Schrödinger equations with nonlocal interaction

$$
\begin{align*}
i \frac{\partial}{\partial t} u_{j} & =-\frac{1}{2} \Delta u_{j}+f_{j}(\vec{u}), \quad(t, x) \in \mathbf{R} \times \mathbf{R}^{n} \tag{1}\\
u_{j}(0, x) & =\phi_{j}(x), \quad j=1, \cdots, N \tag{2}
\end{align*}
$$

Here Δ denotes the Laplacian in x,

$$
f_{j}(\vec{u})=\sum_{k=1}^{N}\left(V *\left|u_{k}\right|^{2}\right) u_{j}-\sum_{k=1}^{N}\left[V *\left(u_{j} \bar{u}_{k}\right)\right] u_{k}
$$

and $*$ denotes the convolution in \mathbf{R}^{n}. In this paper we treat the case $n \geq 2$ and $V(x)=|x|^{-\gamma}$ with $0<\gamma<n$.

The system (1)-(2) appears in the quantum mechanics as an approximation to a fermionic N -body system and is called the time-dependent Hartree-Fock type equation.

Throughout the paper we use the following notation:
$\mathbf{N}=\{1,2,3, \cdots\}, \quad \nabla=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right), U(t)=\exp (i t \Delta / 2), M(t)=$ $\exp \left(i|x|^{2} / 2 t\right), J=U(t) x U(-t)=M(t)(i t \nabla) M(-t)$. For $1 \leq p \leq \infty, p^{\prime}=p /(p-1)$, $\delta(p)=n / 2-n / p .\|\cdot\|_{p}$ denotes the norm of $L^{p}\left(\mathbf{R}^{n}\right)$ (if $p=2$, we write $\|\cdot\|_{2}=$ $\|\cdot\|)$. For $1 \leq q, r \leq \infty$ and for the interval $I \subset \mathbf{R},\|\cdot\|_{q, r, I}$ denotes the norm of $L^{r}\left(I ; L^{q}\left(\mathbf{R}^{n}\right)\right)$, namely, $\|u\|_{q, r, I}=\left[\int_{I}\left(\int_{\mathbf{R}^{n}}|u(t, x)|^{q} d x\right)^{r / q} d t\right]^{1 / r}$. For positive integers l and $m, \Sigma^{l, m}$ denotes the Hilbert space defined as

$$
\Sigma^{l, m}=\left\{\psi \in L^{2}\left(\mathbf{R}^{n}\right) ;\|\psi\|_{\Sigma^{l, m}}=\left(\sum_{|\alpha| \leq l}\left\|\nabla^{\alpha} \psi\right\|^{2}+\sum_{|\beta| \leq m}\left\|x^{\beta} \psi\right\|^{2}\right)^{1 / 2}<\infty\right\}
$$

When we use N^{\prime} 'th direct sums of various function spaces, we denote them by the same symbols and denote these elements by writing arrow over the letter, like \vec{f}.

Now we state our main theorem.

Theorem 1.1. (i) Suppose that $1<\gamma<\min (4, n)$, and $l, m \in \mathbf{N}$. Then for any $\vec{\phi}^{(+)} \in \Sigma^{l, m}$, there exists a unique $\vec{\phi} \in \Sigma^{l, m}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left\|\vec{\phi}^{(+)}-U(-t) \vec{u}(t)\right\|_{\Sigma^{l, m}}=0 \tag{3}
\end{equation*}
$$

where $\vec{u}(t)$ is the solution of (1)-(2) with $U(-t) \vec{u}(t) \in C\left(\mathbf{R} ; \Sigma^{l, m}\right)$. For any $\vec{\phi}^{(-)} \in$ $\Sigma^{l, m}$, the same result as above holds valid with $+\infty$ replaced by $-\infty$ in (3).
(ii) Suppose that $4 / 3<\gamma<\min (4, n)$, and $l, m \in \mathbf{N}$. And if $\gamma \leq \sqrt{2}$, suppose, in addition, that $m \geq 2$. Then for any $\vec{\phi} \in \Sigma^{l, m}$, there exist $\vec{\phi}^{(\pm)} \in \Sigma^{l, m}$ such that the solution of (1)-(2) with $U(-t) \vec{u}(t) \in C\left(\mathbf{R} ; \Sigma^{l, m}\right)$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty}\left\|\vec{\phi}^{(\pm)}-U(-t) \vec{u}(t)\right\|_{\Sigma^{l, m}}=0 \tag{4}
\end{equation*}
$$

By Theorem 1.1 (i), if $1<\gamma<\min (4, n)$, we can define the operator W_{+}in $\Sigma^{l, m}$ as

$$
W_{+}: \vec{\phi}^{(+)} \longmapsto \vec{\phi}
$$

which is called the wave operator. The operator W_{-}is defined similarly. Under the condition of $4 / 3<\gamma<\min (4, n)(m \geq 2$ if $\gamma \leq \sqrt{2})$, Theorem 1.1 (ii) implies the completeness of $W_{ \pm}$, namely, Range $W_{ \pm}=\Sigma^{l, m}$.

There are many papers for the following equation

$$
\begin{align*}
i \frac{\partial u}{\partial t} & =-\frac{1}{2} \Delta u+f(u), \quad(t, x) \in \mathbf{R} \times \mathbf{R}^{n} \tag{5}\\
u(0, x) & =\phi(x) \tag{6}
\end{align*}
$$

where

$$
f(u)=\left[V *|u|^{2}\right] u=\int_{\mathbf{R}^{n}}|x-y|^{-\gamma}|u(t, y)|^{2} d y u(t, x)
$$

(see, for example, $[5,7,8,9,12]$). The equation (5)-(6) is called the Hartree type equation. For the scattering problem for (5)-(6), the following results are known (see [9]).
[A] Suppose that $1<\gamma<\min (4, n)$, and $l, m \in \mathbf{N}$. Then, for any $\phi^{(+)} \in \Sigma^{l, m}$, there exists a unique $\phi \in \Sigma^{l, m}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left\|\phi^{(+)}-U(-t) u(t)\right\|_{\Sigma^{l, m}}=0 \tag{7}
\end{equation*}
$$

where $u(t)$ is the solution of (5)-(6) with $U(-t) u(t) \in C\left(\mathbf{R} ; \Sigma^{l, m}\right)$. For any $\phi^{(-)} \in$ $\Sigma^{l, m}$, the same result as above holds valid with $+\infty$ replaced by $-\infty$ in (7).
[B] Suppose that $4 / 3<\gamma<\min (4, n)$, and $l, m \in \mathbf{N}$. Then, for any $\phi \in \Sigma^{l, m}$, there exist unique $\phi^{(\pm)} \in \Sigma^{l, m}$ such that the solution $u(t)$ of (5)-(6) with $U(-t) u(t) \in$ $C\left(\mathbf{R} ; \Sigma^{l, m}\right)$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty}\left\|\phi^{(\pm)}-U(-t) u(t)\right\|_{\Sigma^{l, m}}=0 \tag{8}
\end{equation*}
$$

Our main Theorem is the analogous results to [A], $[\mathrm{B}]$.
Since $U(t)$ is unitary in H^{l}, (4) implies that the asymptotic profiles of $\vec{u}(t)$ as $t \rightarrow \pm \infty$ are $U(t) \vec{\phi}^{(\pm)}$; and by the estimates

$$
\left\|U(t) \vec{\phi}^{(\pm)}\right\|_{p} \leq(2 \pi|t|)^{-\delta(p)}\left\|\vec{\phi}^{(\pm)}\right\|_{p^{\prime}}, \quad 2 \leq p \leq \infty
$$

it is expected that

$$
\begin{equation*}
\|\vec{u}(t)\|_{p}=O\left(|t|^{-\delta(p)}\right) \tag{9}
\end{equation*}
$$

as $t \rightarrow \pm \infty$. Indeed, in Corollary 4.1, we shall prove (9) for $p=\infty$ under the suitable condition for $\vec{\phi}$.

Conversely, if (9) holds for some p sufficiently large, We can prove Theorem 1.1(ii). Actually, in Propositions 3.1 and 3.2, we prove (9) for some $p>2$. This decay estimate is the key point of our proof of the main theorem.

The proof of Theorems $[\mathrm{B}]$ is much more simple than our proof of Theorem 1.1 (ii). But we cannot apply the method in [9] for (5)-(6) to prove Theorem 1.1 (ii). So we shall use the method in our work [15] to prove the main theorem.

2. Preliminaries

First, we collect various inequalities which will be used in later sections.
Lemma 2.1. (The Gagliardo-Nirenberg inequality) Let $1 \leq q, r \leq \infty$ and j, m be any integers satisfying $0 \leq j<m$. If u is any function in $W^{m, q}\left(\mathbf{R}^{n}\right) \cap L^{r}\left(\mathbf{R}^{n}\right)$, then

$$
\begin{equation*}
\sum_{|\alpha|=j}\left\|\nabla^{\alpha} u\right\|_{p} \leq C\left(\sum_{|\beta|=m}\left\|\nabla^{\beta} u\right\|_{q}\right)^{a}\|u\|_{r}^{1-a} \tag{10}
\end{equation*}
$$

where

$$
\frac{1}{p}-\frac{j}{n}=a\left(\frac{1}{q}-\frac{m}{n}\right)+(1-a) \frac{1}{r}
$$

for all a in the interval $j / m \leq a \leq 1$, where the constant C is independent of u, with the following exception: if $m-j-(n / q)$ is a nonnegative integer, then (10) is asserted for $j / m \leq a<1$.

For the proof of Lemma 2.1, see $[3,14]$.

Lemma 2.2. Let $\alpha>0$. Then

$$
\begin{equation*}
\left\|(-\Delta)^{\alpha / 2} f g\right\| \leq C\left(\left\|(-\Delta)^{\alpha / 2} f\right\|\|g\|_{\infty}+\|f\|_{\infty}\left\|(-\Delta)^{\alpha / 2} g\right\|\right) \tag{11}
\end{equation*}
$$

This lemma is essentially due to $[4,6]$. The lemma is obtained as in the proof of Lemma 3.4 in [4] and Lemma 3.2 in [6], by using the theory of Besov space (for Besov space, see [1]).

Lemma 2.3. (The Hardy-Littlewood-Sobolev inequality) Let $0<\gamma<n, 1<$ $p, q<\infty$ and $1+1 / p=\gamma / n+1 / q$. Then

$$
\begin{equation*}
\left\||x|^{-\gamma} * \phi\right\|_{p} \leq C\|\phi\|_{q} . \tag{12}
\end{equation*}
$$

For the proof, see [10, 13].
A pair (q, r) of real numbers is called admissible, if it satisfies the condition $0 \leq$ $\delta(q)=2 / r<1$. Then

Lemma 2.4. If a pair (q, r) is admissible, then for any $\psi \in L^{2}\left(\mathbf{R}^{n}\right)$, we have

$$
\begin{equation*}
\|U(t) \psi\|_{q, r, \mathbf{R}} \leq C\|\psi\| \tag{13}
\end{equation*}
$$

Lemma 2.5. We put $(G u)(t)=\int_{t_{0}}^{t} U(t-\tau) u(\tau) d \tau$. Let $I \subset \mathbf{R}$ be an interval containing t_{0}, and let pairs $\left(q_{j}, r_{j}\right), j=1,2$, be admissible. Then G maps $L^{r_{1}^{\prime}}\left(I ; L^{q_{1}^{\prime}}\right)$ into $L^{r_{2}}\left(I ; L^{q_{2}}\right)$ and satisfies

$$
\begin{equation*}
\|G u\|_{q_{2}, r_{2}, I} \leq C\|u\|_{q_{1}^{\prime}, r_{1}^{\prime}, I}, \tag{14}
\end{equation*}
$$

where C is independent of I.

For the proof of Lemmas 2.4 and 2.5, see [11, 16].
Next, we summarize the results for the Cauchy problem to (1)-(2) . We convert (1)-(2) into the integral equations

$$
\begin{equation*}
u_{j}(t)=U(t) \phi_{j}-i \int_{0}^{t} U(t-\tau) f_{j}(\vec{u}(\tau)) d \tau, \quad j=1, \cdots, N \tag{15}
\end{equation*}
$$

then
Proposition 2.1. (i) Suppose that $n \geq 2,0<\gamma<\min (4, n)$, and $l, m \in \mathbf{N}$. Then for any $\vec{\phi} \in H^{l}$, there exists a unique solution $\vec{u}(t) \in C\left(\mathbf{R} ; H^{l}\right)$ of (15). The solution $\vec{u}(t)$ satisfies following equalities.

$$
\begin{equation*}
\left(u_{j}(t), u_{k}(t)\right)=\left(\phi_{j}, \phi_{k}\right), \quad j, k=1, \cdots, N \tag{16}
\end{equation*}
$$

especially,

$$
\begin{equation*}
\left\|u_{j}(t)\right\|=\left\|\phi_{j}\right\|, \quad j=1, \cdots, N \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
E(\vec{u}(t))=E(\vec{\phi}) \tag{18}
\end{equation*}
$$

where
$E(\vec{\psi})=\sum_{j=1}^{N}\left\|\nabla \psi_{j}\right\|^{2}+P(\vec{\psi})$,
$P(\vec{\psi})=\sum_{j, k=1}^{N} \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}}|x-y|^{-\gamma}\left(\left|\psi_{j}(x)\right|^{2}\left|\psi_{k}(y)\right|^{2}-\psi_{j}(x) \bar{\psi}_{k}(x) \psi_{k}(y) \bar{\psi}_{j}(y)\right) d x d y ;$
(ii) Furthermore, if $\vec{\phi} \in \Sigma^{l, m}$, then $U(-t) \vec{u}(t) \in C\left(\mathbf{R} ; \Sigma^{l, m}\right)$, and the solution $\vec{u}(t)$ satisfies
(19) $\quad \sum_{j=1}^{N}\left\|x U(-t) u_{j}(t)\right\|^{2}+t^{2} P(\vec{u}(t))=\sum_{j=1}^{N}\left\|x \psi_{j}\right\|^{2}+(2-\gamma) \int_{0}^{t} \tau P(\vec{u}(\tau)) d \tau$.

REMARK. (i) By the Cauchy-Schwarz inequality, $P(\vec{\psi}) \geq 0$.
(ii) The equalities (17), (18) and (19) are called the L^{2}-norm, the energy, and the pseudo-conformal conservation laws, respectively.

The proof of Propositions 2.1 is similar to that of the corresponding result for (5)-(6), so we shall omit it (see, for example, [8, 9, 12]).

3. Decay estimates for some norm of the solution

In this section we shall estimate the L^{p}-norm of the solution $\vec{u}(t)$ of (1)-(2) to prove the main theorem. We use the following transform

$$
\begin{aligned}
v_{j}(t) & =\mathcal{F} M(t) U(-t) u_{j}(t) \\
& =(i t)^{n / 2} \exp \left(-i t|x|^{2} / 2\right) u_{j}(t, t x)
\end{aligned}
$$

where \mathcal{F} is the Fourier transform in \mathbf{R}^{n}. This transform was introduced by N. Hayashi and T. Ozawa [7]. Then the equations (1) are transformed into the equations

$$
\begin{equation*}
i \frac{\partial}{\partial t} v_{j}=-\frac{1}{2 t^{2}} \Delta v_{j}+\frac{1}{t^{\gamma}} f_{j}(\vec{v}), \quad j=1, \cdots, N \tag{20}
\end{equation*}
$$

and if $\vec{\phi} \in \Sigma^{1, m}$, then $\vec{v}(t) \in C\left((0, \infty) ; \Sigma^{m, 1}\right)$. The relations (17) and (19) are equivalent to

$$
\begin{equation*}
\frac{d}{d t}\left\|v_{j}(t)\right\|=0, \quad j=1, \cdots, N \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{-2} \frac{d}{d t} \sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2}+t^{-\gamma} \frac{d}{d t} P(\vec{v}(t))=0 \tag{22}
\end{equation*}
$$

respectively. Using the relation (22), we show
Lemma 3.1. Suppose that $n \geq 2,0<\gamma<\min (4, n)$, and $\vec{\phi} \in \Sigma^{1,1}$. Then, for $t \geq 1$,

$$
\sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2} \leq \begin{cases}C t^{2-\gamma} & \text { if } \gamma \leq \sqrt{2} \tag{23}\\ C & \text { if } \gamma>\sqrt{2}\end{cases}
$$

Here, the constants C depend on $\|\vec{\phi}\|_{\Sigma^{1,1}}$.
Proof. If $\gamma<2$,

$$
\frac{d}{d t}\left(t^{\gamma-2} \sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2}+P(\vec{v}(t))\right)=(\gamma-2) t^{\gamma-3} \sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2} \leq 0
$$

and if $\gamma \geq 2$,

$$
\frac{d}{d t}\left(\sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2}+t^{2-\gamma} P(\vec{v}(t))\right)=(2-\gamma) t^{1-\gamma} P(\vec{v}(t)) \leq 0
$$

Hence

$$
\sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2} \leq \begin{cases}C t^{2-\gamma} & \text { if } \gamma<2 \tag{24}\\ C & \text { if } \gamma \geq 2\end{cases}
$$

So we shall prove (23) when $\sqrt{2}<\gamma<2$. We multiply (20) by $\Delta \bar{v}_{j}$, and integrate the imaginary part over \mathbf{R}^{n}. Then

$$
\frac{1}{2} \frac{d}{d t}\left\|\nabla v_{j}(t)\right\|^{2}=t^{-\gamma} \operatorname{Im} \int_{\mathbf{R}^{n}} f_{j}(\vec{v}) \Delta \bar{v}_{j} d x
$$

Since $\operatorname{Im} \int_{\mathbf{R}^{n}} V *\left|v_{k}\right|^{2}\left|\nabla v_{j}\right|^{2} d x$ and $\operatorname{Im} \sum_{j, k=1}^{N} \int_{\mathbf{R}^{n}} V *\left(v_{j} \bar{v}_{k}\right) \nabla v_{k} \cdot \nabla \bar{v}_{j} d x$ are equal to zero, we have, by Hölder's inequality and Lemma 2.3,

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2} \\
= & t^{-\gamma} \operatorname{Im} \sum_{j, k=1}^{N}\left[\int_{\mathbf{R}^{n}} v_{j} \nabla\left(V *\left|v_{k}\right|^{2}\right) \cdot \nabla \bar{v}_{j} d x+\int_{\mathbf{R}^{n}} v_{k} \nabla\left(V *\left(v_{j} \bar{v}_{k}\right)\right) \cdot \nabla \bar{v}_{j} d x\right] \\
\leq & C t^{-\gamma}\|\vec{v}(t)\|_{\rho}^{2} \sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2},
\end{aligned}
$$

where $\rho=2 n /(n-\gamma)$. By Lemma 2.1 and (24), we have

$$
\begin{aligned}
\left\|v_{j}(t)\right\|_{\rho} & \leq C\left\|v_{j}\right\|^{1-\gamma / 2}\left\|\nabla v_{j}\right\|^{\gamma / 2} \\
& \leq C t^{\left(2 \gamma-\gamma^{2}\right) / 4}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{d}{d t} \sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2} \leq C t^{-\gamma^{2} / 2} \sum_{j=1}^{N}\left\|\nabla v_{j}(t)\right\|^{2} \tag{25}
\end{equation*}
$$

Since $\gamma^{2} / 2>1$ if $\gamma>\sqrt{2}$, (25) and Gronwall's inequality yield (23).
Lemma 3.1 immediately implies

Proposition 3.1. Suppose that $\sqrt{2}<\gamma<\min (4, n)$, and $\vec{\phi} \in \Sigma^{1,1}$. Then for the number p satisfying $0 \leq \delta(p) \leq 1$ if $n \geq 3$ and $0 \leq \delta(p)<1$ if $n=2$, the solution of (1)-(2) has the estimate

$$
\begin{equation*}
\|\vec{u}(t)\|_{p} \leq C(1+|t|)^{-\delta(p)} . \tag{26}
\end{equation*}
$$

Proof. Since $\|\vec{u}(t)\|_{p}=t^{-\delta(p)}\|\vec{v}(t)\|_{p}$, Lemma 2.1 and Lemma 3.1 yield (26).
Now we show the L^{p} decay estimate of the solution in case $1<\gamma \leq \sqrt{2}$.
Lemma 3.2. Suppose that $1<\gamma \leq \sqrt{2}$ and $\vec{\phi} \in \Sigma^{1,2}$. Then we have for $t \geq 1$,

$$
\sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2} \leq \begin{cases}C t^{\left(\gamma^{2}-8 \gamma+10\right) /(2-\gamma)} & \text { if } n \geq 3 \tag{27}\\ C t^{\left(\gamma^{2}-8 \gamma+10\right) /(2-\gamma)+\varepsilon} & \text { if } n=2\end{cases}
$$

Here ε is a positive number which can be chosen arbitrarily small, and the constant C depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$, and $\varepsilon($ the case $n=2)$.

Proof. We apply Δ to the both side of (20) and obtain

$$
\begin{equation*}
i \frac{\partial}{\partial t} \Delta v_{j}=-\frac{1}{2 t^{2}} \Delta^{2} v_{j}+\frac{1}{t^{\gamma}} \Delta f_{j}(\vec{v}), \quad j=1, \cdots, N \tag{28}
\end{equation*}
$$

Multiplying (28) by $\Delta \bar{v}_{j}$, integrating the imaginary part over \mathbf{R}^{n}, we have

$$
\frac{1}{2} \frac{d}{d t}\left\|\Delta v_{j}(t)\right\|^{2}=\frac{1}{t^{\gamma}} \operatorname{Im} \int_{\mathbf{R}^{n}} \Delta f_{j}(\vec{v}) \Delta \bar{v}_{j} d x
$$

Since $\operatorname{Im} \int_{\mathbf{R}^{n}} V *\left|v_{k}\right|^{2}\left|\Delta v_{j}\right|^{2} d x$ and $\operatorname{Im} \sum_{j, k=1}^{N} \int_{\mathbf{R}^{n}} V *\left(v_{j} \bar{v}_{k}\right) \Delta v_{k} \Delta \bar{v}_{j} d x$ are equal to zero,

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2} \tag{29}\\
= & t^{-\gamma} \operatorname{Im} \sum_{j, k=1}^{N}\left[\int_{\mathbf{R}^{n}} \Delta\left(V *\left|v_{k}\right|^{2}\right) v_{j} \Delta \bar{v}_{j} d x+2 \int_{\mathbf{R}^{n}} \nabla\left(V *\left|v_{k}\right|^{2}\right) \cdot \nabla v_{j} \Delta \bar{v}_{j} d x\right. \\
& \left.+\int_{\mathbf{R}^{n}} \Delta\left(V *\left(v_{j} \bar{v}_{k}\right)\right) v_{k} \Delta \bar{v}_{j} d x+2 \int_{\mathbf{R}^{n}} \nabla\left(V *\left(v_{j} \bar{v}_{k}\right)\right) \cdot \nabla v_{k} \Delta \bar{v}_{j} d x\right] .
\end{align*}
$$

(i) Case $n \geq 3$. Hölder's inequality, Lemma 2.1 and Lemma 2.3 imply that the first term in the brackets of the right of (29) is dominated by

$$
\begin{aligned}
& C \int_{\mathbf{R}^{n}}|x|^{-\gamma-1} *\left(\left|\nabla v_{k}\right|\left|v_{k}\right|\right)\left|v_{j}\right|\left|\Delta v_{j}\right| d x \\
\leq & C\left\|\nabla v_{k}\right\|\left\|v_{k}\right\|_{2 n /(n-2 \gamma)}\left\|v_{j}\right\|_{2 n /(n-2)}\left\|\Delta v_{j}\right\| \\
\leq & C\left(\sum_{j=1}^{N}\left\|\nabla v_{j}\right\|\right)^{4-\gamma}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}\right\|^{2}\right)^{\gamma / 2}
\end{aligned}
$$

The other terms are estimated similarly. Therefore, it follows from (23) that for $t \geq 1$,

$$
\begin{align*}
\frac{d}{d t} \sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2} & \leq C t^{-\gamma}\left(\sum_{j=1}^{N}\left\|\nabla v_{j}\right\|\right)^{4-\gamma}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2}\right)^{\gamma / 2} \tag{30}\\
& \leq C t^{\left(8-8 \gamma+\gamma^{2}\right) / 2}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2}\right)^{\gamma / 2}
\end{align*}
$$

Integrating this differential inequality, we have

$$
\begin{equation*}
\left(\sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2}\right)^{1-\gamma / 2} \leq C t^{\left(10-8 \gamma+\gamma^{2}\right) / 2}+\left(\sum_{j=1}^{N}\left\|\Delta v_{j}(1)\right\|^{2}\right)^{1-\gamma / 2} \tag{31}
\end{equation*}
$$

which implies (27). Since $\left\|\Delta v_{j}(1)\right\|=\left\||x|^{2} U(-1) u(1)\right\| \leq C\|\vec{\phi}\|_{\Sigma^{1,2}}$, the constant C in (23) depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$.
(ii) Case $n=2$. Since

$$
V *=\frac{2^{n-\gamma} \pi^{n / 2} \Gamma\left(\frac{n-\gamma}{2}\right)}{\Gamma\left(\frac{\gamma}{2}\right)}(-\Delta)^{(\gamma-n) / 2}, \quad 0<\gamma<n
$$

we have for $n=2,-\Delta V *=C(-\Delta)^{\gamma / 2}$. Hence, by using Hölder's inequality, Lemma 2.1 and Lemma 2.2, we can estimate the first term in the brackets of the right of (29) by

$$
\begin{align*}
& C\left\|(-\Delta)^{\gamma / 2}\left|v_{k}\right|^{2}\right\|\left\|v_{j}\right\|_{\infty}\left\|\Delta v_{j}\right\| \tag{32}\\
\leq & C\left\|(-\Delta)^{\gamma / 2} v_{k}\right\|\|\vec{v}\|_{\infty}^{2}\left\|\Delta v_{j}\right\| \\
\leq & C\|\vec{v}\|_{\infty}^{2}\left(\sum_{j=1}^{N}\left\|\nabla v_{j}\right\|\right)^{2-\gamma}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}\right\|^{2}\right)^{\gamma / 2} .
\end{align*}
$$

Since Lemma 2.1 implies

$$
\begin{aligned}
\left\|v_{k}\right\|_{\infty} & \leq C\left\|\Delta v_{k}\right\|^{2 /(\theta+2)}\left\|v_{k}\right\|_{\theta}^{\theta /(\theta+2)} \\
& \leq C\left\|v_{k}\right\|^{2 /(\theta+2)}\left\|\nabla v_{k}\right\|^{(\theta-2) /(\theta+2)}\left\|\Delta v_{k}\right\|^{2 /(\theta+2)},
\end{aligned}
$$

where $2 \leq \theta<\infty$, the right of (32) is dominated by

$$
C\|v\|^{a}\left(\sum_{j=1}^{N}\left\|\nabla v_{j}\right\|\right)^{4-\gamma-2 a}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}\right\|^{2}\right)^{(\gamma+a) / 2}
$$

with $a=2 /(\theta+2)$. The second term in the brackets of the right of (29) is estimated by

$$
\begin{aligned}
& \left\|V *\left(\left|\nabla v_{k} \| v_{k}\right|\right)\right\|_{n /(\gamma-1)}\left\|\nabla v_{j}\right\|_{2 n /(n-\gamma+1)}\left\|\Delta v_{j}\right\| \\
\leq & C\|\vec{v}\|_{\infty}\left(\sum_{j=1}^{N}\left\|\nabla v_{j}\right\|\right)^{3-\gamma}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}\right\|^{2}\right)^{\gamma / 2} \\
\leq & C\|\vec{v}\|^{a}\left(\sum_{j=1}^{N}\left\|\nabla v_{j}\right\|\right)^{4-\gamma-2 a}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}\right\|^{2}\right)^{(\gamma+a) / 2}
\end{aligned}
$$

The other terms are estimated similarly. Therefore, we have

$$
\begin{equation*}
\frac{d}{d t} \sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2} \leq C t^{\left(8-8 \gamma+\gamma^{2}\right) / 2}\left(\sum_{j=1}^{N}\left\|\Delta v_{j}(t)\right\|^{2}\right)^{(\gamma+a) / 2} \tag{33}
\end{equation*}
$$

Since the number a can be chosen arbitrarily small, this differential equation implies (27).

Lemma 3.3. Suppose that $n \geq 2,1<\gamma \leq \sqrt{2}$ and $\vec{\phi} \in \Sigma^{1,2}$. Then we have for $t \geq 1$,

$$
\begin{equation*}
\|\vec{v}(t)\|_{p} \leq C \tag{34}
\end{equation*}
$$

Here, p satisfies $0<\delta(p)<(\gamma-1)(2-\gamma) /(6-4 \gamma)$, and the constant C depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$.

Proof. For simplicity, we prove the lemma in case $n \geq 3$. We put $\|\vec{v}\|_{p, *}=$ $\left[\int_{\mathbf{R}^{n}}\left(\sum_{l=1}^{N}\left|v_{l}\right|^{2}\right)^{p / 2} d x\right]^{1 / p}$, which is equivalent to the norm $\|\vec{v}\|_{p}=\sum_{l=1}^{N}\left\|v_{l}\right\|_{p}$. We multiply the equation (20) by $\left(\sum_{l=1}^{N}\left|v_{l}\right|^{2}\right)^{(p-2) / 2} \bar{v}_{j}$, integrate their imaginary part over \mathbf{R}^{n}, and add them. Then we have

$$
\begin{equation*}
\frac{1}{p} \frac{d}{d t}\|\vec{v}(t)\|_{p, *}^{p}=-\frac{1}{2 t^{2}} \operatorname{Im} \sum_{j=1}^{N} \int_{\mathbf{R}^{n}} \Delta v_{j}\left(\sum_{l=1}^{N}\left|v_{l}\right|^{2}\right)^{(p-2) / 2} \bar{v}_{j} d x \tag{35}
\end{equation*}
$$

since $\operatorname{Im} \int_{\mathbf{R}^{n}} V *\left|v_{k}\right|^{2}\left(\sum_{l=1}^{N}\left|v_{l}\right|^{2}\right)^{(p-2) / 2}\left|v_{j}\right|^{2} d x$ and
$\operatorname{Im} \sum_{j, k=1}^{N} \int_{\mathbf{R}^{n}} V *\left(v_{j} \bar{v}_{k}\right) v_{k} \bar{v}_{j}\left(\sum_{l=1}^{N}\left|v_{l}\right|^{2}\right)^{(p-2) / 2} d x$ are equal to zero. By the integration by parts and Hölder's inequality,

$$
\begin{aligned}
\frac{1}{p} \frac{d}{d t}\|\vec{v}(t)\|_{p, *}^{p} & =\frac{1}{2 t^{2}} \operatorname{Im} \sum_{j=1}^{N} \int_{\mathbf{R}^{n}} \nabla v_{j} \cdot \nabla\left(\left(\sum_{l=1}^{N}\left|v_{l}\right|^{2}\right)^{(p-2) / 2} \bar{v}_{j}\right) d x \\
& \leq C t^{-2} \sum_{j=1}^{N} \int_{\mathbf{R}^{n}}\left|\nabla v_{j}\right|^{2}\left(\sum_{l=1}^{N}\left|v_{l}\right|^{2}\right)^{(p-2) / 2} d x \\
& \leq C t^{-2} \sum_{j=1}^{N}\left\|\nabla v_{j}\right\|_{p}^{2}\|\vec{v}(t)\|_{p, *}^{(p-2)}
\end{aligned}
$$

We note that when $1<\gamma \leq \sqrt{2}$, we have $0<(\gamma-1)(2-\gamma) /(6-4 \gamma)<1$, and so $2<p<2 n /(n-2)$. Then, Lemma 2.1, Lemma 3.1 and Lemma 3.2 yield

$$
\begin{aligned}
\left\|\nabla v_{j}\right\|_{p} & \leq C\left\|\nabla v_{j}\right\|^{1-\delta(p)}\left\|\Delta v_{j}\right\|^{\delta(p)} \\
& \leq C t^{\eta} .
\end{aligned}
$$

Here

$$
\eta=2-\gamma+\frac{6-4 \gamma}{2-\gamma} \delta(p)
$$

and the constant C depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$. Therefore,

$$
\begin{equation*}
\frac{d}{d t}\|\vec{v}(t)\|_{p, *}^{p} \leq C t^{-2+\eta}\|\vec{v}(t)\|_{p, *}^{(p-2)} . \tag{36}
\end{equation*}
$$

Since $\eta<1$ for p satisfying $0<\delta(p)<(\gamma-1)(2-\gamma) /(6-4 \gamma)$, the estimate (34) follows by integrating the differential inequality (36).

By this lemma, we have
Proposition 3.2. Suppose that $n \geq 2,1<\gamma \leq \sqrt{2}$ and $\vec{\phi} \in \Sigma^{1,2}$. Then the solution of (1)-(2) has the following estimate

$$
\begin{equation*}
\left.\|\vec{u}(t)\|_{p} \leq C \dot{(1}+|t|\right)^{-\delta(p)}, \tag{37}
\end{equation*}
$$

where p satisfies $0<\delta(p)<(\gamma-1)(2-\gamma) /(6-4 \gamma)$.

4. Proof of the main theorem

In this section, we shall prove Theorem 1.1. Since we can prove part (i) of the Theorem similar to the Theorem [A] for Hartree type equation, we omit the proof. Throughout this section, we put $q=4 n /(2 n-\gamma)$ and $r=8 / \gamma$. Then the pair (q, r) is admissible. To prove part (ii), we introduce the following Banach space:

$$
X^{l, m}(I)=\left\{u \in C\left(I ; H^{l}\right) ;\|u\|_{X^{l, m}(I)}<\infty\right\}
$$

where

$$
\|u\|_{X^{l, m}(I)}=\sum_{|\alpha| \leq l}\left(\left\|\nabla^{\alpha} u\right\|_{2, \infty, I}+\left\|\nabla^{\alpha} u\right\|_{q, r, I}\right)+\sum_{|\beta| \leq m}\left(\left\|J^{\beta} u\right\|_{2, \infty, I}+\left\|J^{\beta} u\right\|_{q, r, I}\right) .
$$

Let $I=[T, \infty)$, where T will be defined later. Using Hölder's inequality, Lemma 2.1 and Lemma 2.3, we have

$$
\begin{equation*}
\sum_{|\alpha|=l}\left\|\nabla^{\alpha} f_{j}(\vec{u})\right\|_{q^{\prime}} \leq C\|\vec{u}\|_{q}^{2} \sum_{k=1}^{N} \sum_{|\alpha|=l}\left\|\nabla^{\alpha} u_{k}\right\|_{q} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{|\beta|=m}\left\|J^{\beta} f_{j}(\vec{u})\right\|_{q^{\prime}} \leq C\|\vec{u}\|_{q}^{2} \sum_{k=1}^{N} \sum_{|\beta|=m}\left\|J^{\beta} u_{k}\right\|_{q} . \tag{39}
\end{equation*}
$$

So we have, by Lemma 2.1 and Lemma 2.5,

$$
\begin{equation*}
\sum_{|\alpha| \leq l}\left\|\nabla^{\alpha} u_{j}\right\|_{2, \infty, I} \leq \sum_{|\alpha| \leq l}\left\|\nabla^{\alpha} U(-T) u_{j}(T)\right\|+C \sum_{|\alpha| \leq l}\left\|\nabla^{\alpha} f_{j}(\vec{u})\right\|_{q^{\prime}, r^{\prime}, I} \tag{40}
\end{equation*}
$$

Under the assumption of the theorem, Proposition 3.1 or Proposition 3.2 implies $\|\vec{u}(t)\|_{q}$ $\leq C t^{-\gamma / 4}$. Therefore, by using (38) and Hölder's inequality, the second term in the right of (40) is dominated by

$$
\begin{align*}
& C \sum_{k=1}^{N} \sum_{|\alpha| \leq l}\left[\int_{T}^{\infty}\left(\|\vec{u}(\tau)\|_{q}^{2}\left\|\nabla^{\alpha} u_{k}(\tau)\right\|_{q}\right)^{r^{\prime}} d \tau\right]^{1 / r^{\prime}} \tag{41}\\
\leq & C \sum_{k=1}^{N} \sum_{|\alpha| \leq l}\left[\int_{T}^{\infty}\left(\tau^{-\gamma / 2}\left\|\nabla^{\alpha} u_{k}(\tau)\right\|_{q}\right)^{r^{\prime}} d \tau\right]^{1 / r^{\prime}} \\
\leq & C\left(\int_{T}^{\infty} \tau^{-2 \gamma /(4-\gamma)} d \tau\right)^{(4-\gamma) / 4} \sum_{k=1}^{N} \sum_{|\alpha| \leq l}\left\|\nabla^{\alpha} u_{k}\right\|_{q, r, I} .
\end{align*}
$$

If $\gamma>4 / 3$, the integral in the right of (41) converges. Hence,

$$
\begin{equation*}
\sum_{|\alpha| \leq l}\left\|\nabla^{\alpha} u_{j}\right\|_{2, \infty, I} \leq\left\|U(-T) u_{j}(T)\right\|_{\Sigma^{l, m}}+C T^{(4-3 \gamma) / 4}\|\vec{u}\|_{X^{l, m}(I)} \tag{42}
\end{equation*}
$$

We can estimate

$$
\sum_{|\alpha| \leq l}\left\|\nabla^{\alpha} u_{j}\right\|_{q, r, I}, \sum_{|\beta| \leq m}\left\|J^{\beta} u_{j}\right\|_{2, \infty, I}, \text { and } \sum_{|\beta| \leq m}\left\|J^{\beta} u_{j}\right\|_{q, r, I}
$$

similarly. Therefore,

$$
\begin{equation*}
\|\vec{u}\|_{X^{l, m}(I)} \leq C\|U(-T) \vec{u}(T)\|_{\Sigma^{l, m}}+C T^{(4-3 \gamma) / 4}\|\vec{u}\|_{X^{l, m}(I)} . \tag{43}
\end{equation*}
$$

If we choose T sufficiently large so that $C T^{(4-3 \gamma) / 4} \leq 1 / 2$, (43) implies

$$
\|\vec{u}\|_{X^{l, m}(I)} \leq C\|U(-T) \vec{u}(T)\|_{\Sigma^{l, m}} .
$$

Therefore, $\|\vec{u}\|_{X^{l, m}(\mathbf{R})}$ is finite. Once this has been proved, by the similar argument, for $t>s>0$, we have

$$
\begin{aligned}
(44)\|U(-t) \vec{u}(t)-U(-s) \vec{u}(s)\|_{\Sigma^{l, m}} & \leq C\left(\int_{s}^{t} \tau^{-2 \gamma /(4-\gamma)} d \tau\right)^{(4-\gamma) / 4}\|\vec{u}\|_{X^{l, m}(\mathbf{R})} \\
& \leq C\left(t^{(4-3 \gamma) / 4}-s^{(4-3 \gamma) / 4}\right)
\end{aligned}
$$

The right of (44) tends to zero as s, t tend to infinity. Thus the theorem has been proved.

Corollary 4.1. Suppose that $4 / 3<\gamma<\min (4, n)$, and $l, m \geq 1+[n / 2]$. Then for any $\vec{\phi} \in \Sigma^{l, m}$, the solution $\vec{u}(t)$ of (1)-(2) satisfies

$$
\begin{equation*}
\|\vec{u}(t)\|_{\infty} \leq C(1+|t|)^{-n / 2} \tag{45}
\end{equation*}
$$

Proof. By the relation $J^{\beta} \vec{u}(t)=M(t) x^{\beta} M(-t) \vec{u}(t)$ and Lemma 2.1.

References

[1] J. Bergh and J. Löfström: Interpolation spaces, An introduction, Springer Verlag, 1976.
[2] J. M. Chadam and R.T. Glassey: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys. 16 (1975), 1122-1130.
[3] A. Friedman: Partial differential equations. Holt-Rinehart and Winston, 1969.
[4] J. Ginibre, T. Ozawa and G. Velo: On the existence of the wave operators for a class of nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Phys. Théor. 60 (1994), 211-239.
[5] J. Ginibre and G. Velo: On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z. 170 (1980), 109-136.
[6] J. Ginibre and G. Velo: The global Cauchy problem for the non linear Klein-Gordon equation, Math. Z. 189 (1985), 487-505.
[7] N. Hayashi and T. Ozawa: Scattering theory in the weighted $L^{2}\left(\mathbf{R}^{n}\right)$ spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), 17-37.
[8] N. Hayashi and T. Ozawa: Smoothing effect for some Schrödinger equations, J. Funct. Anal. 85 (1989), 307-348.
[9] N. Hayashi and Y. Tsutsumi: Scattering theory for Hartree type equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), 187-213.
[10] L. Hörmander: The analysis of linear partial differential operators I, Springer Verlag, 1983.
[11] T. Kato: On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), 113-129.
[12] H. Nawa and T. Ozawa: Nonlinear scattering with nonlocal interaction, Comm. Math. Phys. 146 (1992), 259-275.
[13] E. M. Stein: Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
[14] H. Tanabe: Functional analytic methods for partial differential equations, Marcel Dekker, 1997.
[15] T. Wada: Asymptotic behavior of the solutions of Hartree type equation, Adv. Math. Sci. Appl. 6 (1996), 67-77.
[16] K. Yajima: Exsistence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), 415-426.

Department of Mathematics Graduate School of Science Osaka University
Toyonaka, Osaka560, Japan

