Wada, T. Osaka J. Math. **36** (1999), 905-918

SCATTERING THEORY FOR TIME-DEPENDENT HARTREE-FOCK TYPE EQUATION

Takeshi WADA

(Received November 4, 1997)

1. Introduction

In this paper we consider the scattering problem for the following system of nonlinear Schrödinger equations with nonlocal interaction

(1)
$$i\frac{\partial}{\partial t}u_j = -\frac{1}{2}\Delta u_j + f_j(\vec{u}), \quad (t,x) \in \mathbf{R} \times \mathbf{R}^n,$$

(2)
$$u_j(0,x) = \phi_j(x), \qquad j = 1, \cdots, N.$$

Here Δ denotes the Laplacian in x,

$$f_j(\vec{u}) = \sum_{k=1}^N (V * |u_k|^2) u_j - \sum_{k=1}^N [V * (u_j \bar{u}_k)] u_k,$$

and * denotes the convolution in \mathbb{R}^n . In this paper we treat the case $n \ge 2$ and $V(x) = |x|^{-\gamma}$ with $0 < \gamma < n$.

The system (1)-(2) appears in the quantum mechanics as an approximation to a fermionic N-body system and is called the time-dependent Hartree-Fock type equation.

Throughout the paper we use the following notation:

 $\mathbf{N} = \{1, 2, 3, \cdots\}, \ \nabla = (\partial/\partial x_1, \cdots, \partial/\partial x_n), \ U(t) = \exp(it\Delta/2), M(t) = \exp(i|x|^2/2t), \ J = U(t)xU(-t) = M(t)(it\nabla)M(-t). \ \text{For } 1 \le p \le \infty, \ p' = p/(p-1), \\ \delta(p) = n/2 - n/p. \ \|\cdot\|_p \ \text{denotes the norm of } L^p(\mathbf{R}^n) \ \text{(if } p = 2, \ \text{we write } \|\cdot\|_2 = \|\cdot\|). \ \text{For } 1 \le q, r \le \infty \ \text{and for the interval } I \subset \mathbf{R}, \ \|\cdot\|_{q,r,I} \ \text{denotes the norm of } L^r(I; L^q(\mathbf{R}^n)), \ \text{namely, } \|u\|_{q,r,I} = \left[\int_I \left(\int_{\mathbf{R}^n} |u(t,x)|^q dx\right)^{r/q} dt\right]^{1/r}. \ \text{For positive interval } L^{p,r} = L^{p,r} \ \text{denotes the Jilbert encoded on}$

integers l and m, $\Sigma^{l,m}$ denotes the Hilbert space defined as

$$\Sigma^{l,m} = \Big\{ \psi \in L^2(\mathbf{R}^n); \|\psi\|_{\Sigma^{l,m}} = \Big(\sum_{|\alpha| \le l} \|\nabla^{\alpha}\psi\|^2 + \sum_{|\beta| \le m} \|x^{\beta}\psi\|^2 \Big)^{1/2} < \infty \Big\}.$$

When we use N'th direct sums of various function spaces, we denote them by the same symbols and denote these elements by writing arrow over the letter, like \vec{f} .

Now we state our main theorem.

T. WADA

Theorem 1.1. (i) Suppose that $1 < \gamma < \min(4, n)$, and $l, m \in \mathbb{N}$. Then for any $\vec{\phi}^{(+)} \in \Sigma^{l,m}$, there exists a unique $\vec{\phi} \in \Sigma^{l,m}$ such that

(3)
$$\lim_{t \to +\infty} \|\vec{\phi}^{(+)} - U(-t)\vec{u}(t)\|_{\Sigma^{l,m}} = 0,$$

where $\vec{u}(t)$ is the solution of (1)-(2) with $U(-t)\vec{u}(t) \in C(\mathbf{R}; \Sigma^{l,m})$. For any $\vec{\phi}^{(-)} \in \Sigma^{l,m}$, the same result as above holds valid with $+\infty$ replaced by $-\infty$ in (3).

(ii) Suppose that $4/3 < \gamma < \min(4, n)$, and $l, m \in \mathbb{N}$. And if $\gamma \leq \sqrt{2}$, suppose, in addition, that $m \geq 2$. Then for any $\vec{\phi} \in \Sigma^{l,m}$, there exist $\vec{\phi}^{(\pm)} \in \Sigma^{l,m}$ such that the solution of (1)-(2) with $U(-t)\vec{u}(t) \in C(\mathbb{R}; \Sigma^{l,m})$ satisfies

(4)
$$\lim_{t \to \pm \infty} \|\vec{\phi}^{(\pm)} - U(-t)\vec{u}(t)\|_{\Sigma^{l,m}} = 0.$$

By Theorem 1.1 (i), if $1 < \gamma < \min(4, n)$, we can define the operator W_+ in $\Sigma^{l,m}$ as

$$W_+: \vec{\phi}^{(+)} \longmapsto \vec{\phi},$$

which is called the wave operator. The operator W_{-} is defined similarly. Under the condition of $4/3 < \gamma < \min(4, n)$ $(m \ge 2$ if $\gamma \le \sqrt{2})$, Theorem 1.1 (ii) implies the completeness of W_{\pm} , namely, $\operatorname{Range} W_{\pm} = \Sigma^{l,m}$.

There are many papers for the following equation

(5)
$$i\frac{\partial u}{\partial t} = -\frac{1}{2}\Delta u + f(u), \quad (t,x) \in \mathbf{R} \times \mathbf{R}^n,$$

(6)
$$u(0,x) = \phi(x),$$

where

$$f(u) = [V * |u|^{2}]u = \int_{\mathbf{R}^{n}} |x - y|^{-\gamma} |u(t, y)|^{2} dy \ u(t, x)$$

(see, for example, [5, 7, 8, 9, 12]). The equation (5)-(6) is called the Hartree type equation. For the scattering problem for (5)-(6), the following results are known (see [9]).

[A] Suppose that $1 < \gamma < \min(4, n)$, and $l, m \in \mathbb{N}$. Then, for any $\phi^{(+)} \in \Sigma^{l,m}$, there exists a unique $\phi \in \Sigma^{l,m}$ such that

(7)
$$\lim_{t \to +\infty} \|\phi^{(+)} - U(-t)u(t)\|_{\Sigma^{l,m}} = 0,$$

where u(t) is the solution of (5)-(6) with $U(-t)u(t) \in C(\mathbf{R}; \Sigma^{l,m})$. For any $\phi^{(-)} \in \Sigma^{l,m}$, the same result as above holds valid with $+\infty$ replaced by $-\infty$ in (7).

[B] Suppose that $4/3 < \gamma < \min(4, n)$, and $l, m \in \mathbb{N}$. Then, for any $\phi \in \Sigma^{l,m}$, there exist unique $\phi^{(\pm)} \in \Sigma^{l,m}$ such that the solution u(t) of (5)-(6) with $U(-t)u(t) \in C(\mathbb{R}; \Sigma^{l,m})$ satisfies

(8)
$$\lim_{t \to \pm \infty} \|\phi^{(\pm)} - U(-t)u(t)\|_{\Sigma^{l,m}} = 0.$$

Our main Theorem is the analogous results to [A], [B].

Since U(t) is unitary in H^l , (4) implies that the asymptotic profiles of $\vec{u}(t)$ as $t \to \pm \infty$ are $U(t)\vec{\phi}^{(\pm)}$; and by the estimates

$$\|U(t)\vec{\phi}^{(\pm)}\|_{p} \le (2\pi|t|)^{-\delta(p)} \|\vec{\phi}^{(\pm)}\|_{p'}, \quad 2 \le p \le \infty,$$

it is expected that

(9)
$$\|\vec{u}(t)\|_p = O(|t|^{-\delta(p)})$$

as $t \to \pm \infty$. Indeed, in Corollary 4.1, we shall prove (9) for $p = \infty$ under the suitable condition for $\vec{\phi}$.

Conversely, if (9) holds for some p sufficiently large, We can prove Theorem 1.1(ii). Actually, in Propositions 3.1 and 3.2, we prove (9) for some p > 2. This decay estimate is the key point of our proof of the main theorem.

The proof of Theorems [B] is much more simple than our proof of Theorem 1.1 (ii). But we cannot apply the method in [9] for (5)-(6) to prove Theorem 1.1 (ii). So we shall use the method in our work [15] to prove the main theorem.

2. Preliminaries

First, we collect various inequalities which will be used in later sections.

Lemma 2.1. (The Gagliardo-Nirenberg inequality) Let $1 \le q, r \le \infty$ and j, mbe any integers satisfying $0 \le j < m$. If u is any function in $W^{m,q}(\mathbf{R}^n) \cap L^r(\mathbf{R}^n)$, then

(10)
$$\sum_{|\alpha|=j} \|\nabla^{\alpha} u\|_{p} \leq C \left(\sum_{|\beta|=m} \|\nabla^{\beta} u\|_{q}\right)^{a} \|u\|_{r}^{1-a}$$

T. WADA

where

$$\frac{1}{p} - \frac{j}{n} = a(\frac{1}{q} - \frac{m}{n}) + (1 - a)\frac{1}{r}$$

for all a in the interval $j/m \le a \le 1$, where the constant C is independent of u, with the following exception: if m-j-(n/q) is a nonnegative integer, then (10) is asserted for $j/m \le a < 1$.

For the proof of Lemma 2.1, see [3, 14].

Lemma 2.2. Let $\alpha > 0$. Then

(11)
$$\|(-\Delta)^{\alpha/2} fg\| \le C(\|(-\Delta)^{\alpha/2} f\| \|g\|_{\infty} + \|f\|_{\infty} \|(-\Delta)^{\alpha/2} g\|).$$

This lemma is essentially due to [4, 6]. The lemma is obtained as in the proof of Lemma 3.4 in [4] and Lemma 3.2 in [6], by using the theory of Besov space (for Besov space, see [1]).

Lemma 2.3. (The Hardy-Littlewood-Sobolev inequality) Let $0 < \gamma < n, 1 < p, q < \infty$ and $1 + 1/p = \gamma/n + 1/q$. Then

(12)
$$|| |x|^{-\gamma} * \phi ||_p \le C ||\phi||_q.$$

For the proof, see [10, 13].

A pair (q,r) of real numbers is called admissible, if it satisfies the condition $0 \le \delta(q) = 2/r < 1$. Then

Lemma 2.4. If a pair (q, r) is admissible, then for any $\psi \in L^2(\mathbf{R}^n)$, we have

(13)
$$||U(t)\psi||_{q,r,\mathbf{R}} \le C||\psi||.$$

Lemma 2.5. We put $(Gu)(t) = \int_{t_0}^t U(t-\tau)u(\tau)d\tau$. Let $I \subset \mathbf{R}$ be an interval containing t_0 , and let pairs $(q_j, r_j), j = 1, 2$, be admissible. Then G maps $L^{r'_1}(I; L^{q'_1})$ into $L^{r_2}(I; L^{q_2})$ and satisfies

(14)
$$\|Gu\|_{q_2,r_2,I} \le C \|u\|_{q'_1,r'_1,I},$$

where C is independent of I.

For the proof of Lemmas 2.4 and 2.5, see [11, 16].

Next, we summarize the results for the Cauchy problem to (1)-(2). We convert (1)-(2) into the integral equations

(15)
$$u_j(t) = U(t)\phi_j - i \int_0^t U(t-\tau)f_j(\vec{u}(\tau))d\tau, \quad j = 1, \cdots, N,$$

then

Proposition 2.1. (i) Suppose that $n \ge 2$, $0 < \gamma < \min(4, n)$, and $l, m \in \mathbf{N}$. Then for any $\vec{\phi} \in H^l$, there exists a unique solution $\vec{u}(t) \in C(\mathbf{R}; H^l)$ of (15). The solution $\vec{u}(t)$ satisfies following equalities.

(16)
$$(u_j(t), u_k(t)) = (\phi_j, \phi_k), \quad j, k = 1, \cdots, N,$$

especially,

(17)
$$||u_j(t)|| = ||\phi_j||, \quad j = 1, \cdots, N;$$

and

(18)
$$E(\vec{u}(t)) = E(\vec{\phi}),$$

where

$$\begin{split} E(\vec{\psi}) &= \sum_{j=1}^{N} \|\nabla \psi_{j}\|^{2} + P(\vec{\psi}), \\ P(\vec{\psi}) &= \sum_{j,k=1}^{N} \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} |x - y|^{-\gamma} (|\psi_{j}(x)|^{2} |\psi_{k}(y)|^{2} - \psi_{j}(x) \bar{\psi}_{k}(x) \psi_{k}(y) \bar{\psi}_{j}(y)) dx dy; \end{split}$$

(ii) Furthermore, if $\phi \in \Sigma^{l,m}$, then $U(-t)\vec{u}(t) \in C(\mathbf{R}; \Sigma^{l,m})$, and the solution $\vec{u}(t)$ satisfies

(19)
$$\sum_{j=1}^{N} \|xU(-t)u_j(t)\|^2 + t^2 P(\vec{u}(t)) = \sum_{j=1}^{N} \|x\psi_j\|^2 + (2-\gamma) \int_0^t \tau P(\vec{u}(\tau)) d\tau.$$

REMARK. (i) By the Cauchy-Schwarz inequality, $P(\vec{\psi}) \ge 0$.

(ii) The equalities (17), (18) and (19) are called the L^2 -norm, the energy, and the pseudo-conformal conservation laws, respectively.

The proof of Propositions 2.1 is similar to that of the corresponding result for (5)-(6), so we shall omit it (see, for example, [8, 9, 12]).

3. Decay estimates for some norm of the solution

In this section we shall estimate the L^p -norm of the solution $\vec{u}(t)$ of (1)-(2) to prove the main theorem. We use the following transform

$$v_j(t) = \mathcal{F}M(t)U(-t)u_j(t)$$

= $(it)^{n/2}\exp(-it|x|^2/2)u_j(t,tx)$,

where \mathcal{F} is the Fourier transform in \mathbb{R}^n . This transform was introduced by N. Hayashi and T. Ozawa [7]. Then the equations (1) are transformed into the equations

(20)
$$i\frac{\partial}{\partial t}v_j = -\frac{1}{2t^2}\Delta v_j + \frac{1}{t^{\gamma}}f_j(\vec{v}), \quad j = 1, \cdots, N,$$

and if $\vec{\phi} \in \Sigma^{1,m}$, then $\vec{v}(t) \in C((0,\infty); \Sigma^{m,1})$. The relations (17) and (19) are equivalent to

(21)
$$\frac{d}{dt} \|v_j(t)\| = 0, \quad j = 1, \cdots, N$$

and

(22)
$$t^{-2}\frac{d}{dt}\sum_{j=1}^{N} \|\nabla v_j(t)\|^2 + t^{-\gamma}\frac{d}{dt}P(\vec{v}(t)) = 0,$$

respectively. Using the relation (22), we show

Lemma 3.1. Suppose that $n \ge 2$, $0 < \gamma < \min(4, n)$, and $\phi \in \Sigma^{1,1}$. Then, for $t \ge 1$,

(23)
$$\sum_{j=1}^{N} \|\nabla v_j(t)\|^2 \leq \begin{cases} Ct^{2-\gamma} & \text{if } \gamma \leq \sqrt{2}, \\ C & \text{if } \gamma > \sqrt{2}. \end{cases}$$

Here, the constants C depend on $\|\vec{\phi}\|_{\Sigma^{1,1}}$.

Proof. If $\gamma < 2$,

$$\frac{d}{dt}\left(t^{\gamma-2}\sum_{j=1}^{N} \|\nabla v_j(t)\|^2 + P(\vec{v}(t))\right) = (\gamma-2)t^{\gamma-3}\sum_{j=1}^{N} \|\nabla v_j(t)\|^2 \le 0,$$

and if $\gamma \geq 2$,

$$\frac{d}{dt}\left(\sum_{j=1}^{N} \|\nabla v_j(t)\|^2 + t^{2-\gamma} P(\vec{v}(t))\right) = (2-\gamma)t^{1-\gamma} P(\vec{v}(t)) \le 0.$$

Hence

(24)
$$\sum_{j=1}^{N} \|\nabla v_j(t)\|^2 \leq \begin{cases} Ct^{2-\gamma} & \text{if } \gamma < 2, \\ C & \text{if } \gamma \ge 2. \end{cases}$$

So we shall prove (23) when $\sqrt{2} < \gamma < 2$. We multiply (20) by $\Delta \bar{v}_j$, and integrate the imaginary part over \mathbf{R}^n . Then

$$\frac{1}{2}\frac{d}{dt}\|\nabla v_j(t)\|^2 = t^{-\gamma} \operatorname{Im} \int_{\mathbf{R}^n} f_j(\vec{v}) \Delta \bar{v}_j dx.$$

Since $\operatorname{Im} \int_{\mathbf{R}^n} V * |v_k|^2 |\nabla v_j|^2 dx$ and $\operatorname{Im} \sum_{j,k=1}^N \int_{\mathbf{R}^n} V * (v_j \bar{v}_k) \nabla v_k \cdot \nabla \bar{v}_j dx$ are equal to zero, we have, by Hölder's inequality and Lemma 2.3,

$$\begin{aligned} &\frac{1}{2} \frac{d}{dt} \sum_{j=1}^{N} \|\nabla v_j(t)\|^2 \\ &= t^{-\gamma} \operatorname{Im} \sum_{j,k=1}^{N} \left[\int_{\mathbf{R}^n} v_j \nabla (V * |v_k|^2) \cdot \nabla \bar{v}_j dx + \int_{\mathbf{R}^n} v_k \nabla (V * (v_j \bar{v}_k)) \cdot \nabla \bar{v}_j dx \right] \\ &\leq C t^{-\gamma} \|\vec{v}(t)\|_{\rho}^2 \sum_{j=1}^{N} \|\nabla v_j(t)\|^2, \end{aligned}$$

where $\rho = 2n/(n-\gamma)$. By Lemma 2.1 and (24), we have

$$\begin{aligned} \|v_j(t)\|_{\rho} &\leq C \|v_j\|^{1-\gamma/2} \|\nabla v_j\|^{\gamma/2} \\ &\leq C t^{(2\gamma-\gamma^2)/4}. \end{aligned}$$

Therefore,

(25)
$$\frac{d}{dt} \sum_{j=1}^{N} \|\nabla v_j(t)\|^2 \le C t^{-\gamma^2/2} \sum_{j=1}^{N} \|\nabla v_j(t)\|^2.$$

Since $\gamma^2/2 > 1$ if $\gamma > \sqrt{2}$, (25) and Gronwall's inequality yield (23).

Lemma 3.1 immediately implies

Proposition 3.1. Suppose that $\sqrt{2} < \gamma < \min(4, n)$, and $\phi \in \Sigma^{1,1}$. Then for the number p satisfying $0 \le \delta(p) \le 1$ if $n \ge 3$ and $0 \le \delta(p) < 1$ if n = 2, the solution of (1)-(2) has the estimate

(26)
$$\|\vec{u}(t)\|_{p} \leq C(1+|t|)^{-\delta(p)}.$$

Proof. Since $\|\vec{u}(t)\|_p = t^{-\delta(p)} \|\vec{v}(t)\|_p$, Lemma 2.1 and Lemma 3.1 yield (26).

Now we show the L^p decay estimate of the solution in case $1 < \gamma \leq \sqrt{2}$.

Lemma 3.2. Suppose that $1 < \gamma \leq \sqrt{2}$ and $\vec{\phi} \in \Sigma^{1,2}$. Then we have for $t \geq 1$,

(27)
$$\sum_{j=1}^{N} \|\Delta v_j(t)\|^2 \leq \begin{cases} Ct^{(\gamma^2 - 8\gamma + 10)/(2-\gamma)} & \text{if } n \ge 3, \\ Ct^{(\gamma^2 - 8\gamma + 10)/(2-\gamma) + \varepsilon} & \text{if } n = 2. \end{cases}$$

Here ε is a positive number which can be chosen arbitrarily small, and the constant C depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$, and ε (the case n = 2).

Proof. We apply Δ to the both side of (20) and obtain

(28)
$$i\frac{\partial}{\partial t}\Delta v_j = -\frac{1}{2t^2}\Delta^2 v_j + \frac{1}{t^{\gamma}}\Delta f_j(\vec{v}), \quad j = 1, \cdots, N.$$

Multiplying (28) by $\Delta \bar{v}_j$, integrating the imaginary part over \mathbf{R}^n , we have

$$\frac{1}{2}\frac{d}{dt}\|\Delta v_j(t)\|^2 = \frac{1}{t^{\gamma}} \operatorname{Im} \int_{\mathbf{R}^n} \Delta f_j(\vec{v}) \Delta \bar{v}_j dx.$$

Since $\operatorname{Im} \int_{\mathbf{R}^n} V * |v_k|^2 |\Delta v_j|^2 dx$ and $\operatorname{Im} \sum_{j,k=1}^N \int_{\mathbf{R}^n} V * (v_j \bar{v}_k) \Delta v_k \Delta \bar{v}_j dx$ are equal to zero,

$$(29) \qquad \frac{1}{2} \frac{d}{dt} \sum_{j=1}^{N} \|\Delta v_j(t)\|^2$$
$$= t^{-\gamma} \operatorname{Im} \sum_{j,k=1}^{N} \left[\int_{\mathbf{R}^n} \Delta (V * |v_k|^2) v_j \Delta \bar{v}_j dx + 2 \int_{\mathbf{R}^n} \nabla (V * |v_k|^2) \cdot \nabla v_j \Delta \bar{v}_j dx \right.$$
$$+ \int_{\mathbf{R}^n} \Delta (V * (v_j \bar{v}_k)) v_k \Delta \bar{v}_j dx + 2 \int_{\mathbf{R}^n} \nabla (V * (v_j \bar{v}_k)) \cdot \nabla v_k \Delta \bar{v}_j dx \right].$$

(i) Case $n \ge 3$. Hölder's inequality, Lemma 2.1 and Lemma 2.3 imply that the first term in the brackets of the right of (29) is dominated by

$$C \int_{\mathbf{R}^{n}} |x|^{-\gamma-1} * (|\nabla v_{k}| |v_{k}|) |v_{j}| |\Delta v_{j}| dx$$

$$\leq C \|\nabla v_{k}\| \|v_{k}\|_{2n/(n-2\gamma)} \|v_{j}\|_{2n/(n-2)} \|\Delta v_{j}\|$$

$$\leq C (\sum_{j=1}^{N} \|\nabla v_{j}\|)^{4-\gamma} (\sum_{j=1}^{N} \|\Delta v_{j}\|^{2})^{\gamma/2}.$$

The other terms are estimated similarly. Therefore, it follows from (23) that for $t \ge 1$,

$$(30) \qquad \frac{d}{dt} \sum_{j=1}^{N} \|\Delta v_j(t)\|^2 \leq Ct^{-\gamma} \left(\sum_{j=1}^{N} \|\nabla v_j\|\right)^{4-\gamma} \left(\sum_{j=1}^{N} \|\Delta v_j(t)\|^2\right)^{\gamma/2} \\ \leq Ct^{(8-8\gamma+\gamma^2)/2} \left(\sum_{j=1}^{N} \|\Delta v_j(t)\|^2\right)^{\gamma/2}.$$

Integrating this differential inequality, we have

(31)
$$\left(\sum_{j=1}^{N} \|\Delta v_j(t)\|^2\right)^{1-\gamma/2} \le Ct^{(10-8\gamma+\gamma^2)/2} + \left(\sum_{j=1}^{N} \|\Delta v_j(1)\|^2\right)^{1-\gamma/2},$$

which implies (27). Since $\|\Delta v_j(1)\| = \| \|x\|^2 U(-1)u(1)\| \le C \|\vec{\phi}\|_{\Sigma^{1,2}}$, the constant C in (23) depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$.

(ii) Case n = 2. Since

$$V* = \frac{2^{n-\gamma} \pi^{n/2} \Gamma(\frac{n-\gamma}{2})}{\Gamma(\frac{\gamma}{2})} (-\Delta)^{(\gamma-n)/2}, \quad 0 < \gamma < n,$$

we have for n = 2, $-\Delta V * = C(-\Delta)^{\gamma/2}$. Hence, by using Hölder's inequality, Lemma 2.1 and Lemma 2.2, we can estimate the first term in the brackets of the right of (29) by

(32)

$$C\|(-\Delta)^{\gamma/2}|v_{k}|^{2}\| \|v_{j}\|_{\infty}\|\Delta v_{j}\|$$

$$\leq C\|(-\Delta)^{\gamma/2}v_{k}\| \|\vec{v}\|_{\infty}^{2}\|\Delta v_{j}\|$$

$$\leq C\|\vec{v}\|_{\infty}^{2}\left(\sum_{j=1}^{N}\|\nabla v_{j}\|\right)^{2-\gamma}\left(\sum_{j=1}^{N}\|\Delta v_{j}\|^{2}\right)^{\gamma/2}.$$

Since Lemma 2.1 implies

$$\begin{aligned} \|v_k\|_{\infty} &\leq C \|\Delta v_k\|^{2/(\theta+2)} \|v_k\|_{\theta}^{\theta/(\theta+2)} \\ &\leq C \|v_k\|^{2/(\theta+2)} \|\nabla v_k\|^{(\theta-2)/(\theta+2)} \|\Delta v_k\|^{2/(\theta+2)}, \end{aligned}$$

where $2 \le \theta < \infty$, the right of (32) is dominated by

$$C \|v\|^{a} \left(\sum_{j=1}^{N} \|\nabla v_{j}\| \right)^{4-\gamma-2a} \left(\sum_{j=1}^{N} \|\Delta v_{j}\|^{2} \right)^{(\gamma+a)/2}$$

with $a = 2/(\theta + 2)$. The second term in the brackets of the right of (29) is estimated by

$$\|V * (|\nabla v_k| |v_k|) \|_{n/(\gamma-1)} \|\nabla v_j\|_{2n/(n-\gamma+1)} \|\Delta v_j\|$$

$$\leq C \|\vec{v}\|_{\infty} \left(\sum_{j=1}^N \|\nabla v_j\|\right)^{3-\gamma} \left(\sum_{j=1}^N \|\Delta v_j\|^2\right)^{\gamma/2}$$

$$\leq C \|\vec{v}\|^a \left(\sum_{j=1}^N \|\nabla v_j\|\right)^{4-\gamma-2a} \left(\sum_{j=1}^N \|\Delta v_j\|^2\right)^{(\gamma+a)/2}$$

The other terms are estimated similarly. Therefore, we have

(33)
$$\frac{d}{dt} \sum_{j=1}^{N} \|\Delta v_j(t)\|^2 \le C t^{(8-8\gamma+\gamma^2)/2} \left(\sum_{j=1}^{N} \|\Delta v_j(t)\|^2\right)^{(\gamma+a)/2}$$

Since the number a can be chosen arbitrarily small, this differential equation implies (27).

Lemma 3.3. Suppose that $n \ge 2$, $1 < \gamma \le \sqrt{2}$ and $\phi \in \Sigma^{1,2}$. Then we have for $t \ge 1$,

$$\|\vec{v}(t)\|_p \le C.$$

Here, p satisfies $0 < \delta(p) < (\gamma - 1)(2 - \gamma)/(6 - 4\gamma)$, and the constant C depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$.

Proof. For simplicity, we prove the lemma in case $n \ge 3$. We put $\|\vec{v}\|_{p,*} = [\int_{\mathbf{R}^n} (\sum_{l=1}^N |v_l|^2)^{p/2} dx]^{1/p}$, which is equivalent to the norm $\|\vec{v}\|_p = \sum_{l=1}^N \|v_l\|_p$. We multiply the equation (20) by $(\sum_{l=1}^N |v_l|^2)^{(p-2)/2} \bar{v}_j$, integrate their imaginary part over \mathbf{R}^n , and add them. Then we have

(35)
$$\frac{1}{p}\frac{d}{dt}\|\vec{v}(t)\|_{p,*}^{p} = -\frac{1}{2t^{2}}\operatorname{Im}\sum_{j=1}^{N}\int_{\mathbf{R}^{n}}\Delta v_{j}\left(\sum_{l=1}^{N}|v_{l}|^{2}\right)^{(p-2)/2}\bar{v}_{j}dx,$$

since $\operatorname{Im} \int_{\mathbf{R}^n} V * |v_k|^2 \left(\sum_{l=1}^N |v_l|^2\right)^{(p-2)/2} |v_j|^2 dx$ and $\operatorname{Im} \sum_{j,k=1}^N \int_{\mathbf{R}^n} V * (v_j \bar{v}_k) v_k \bar{v}_j \left(\sum_{l=1}^N |v_l|^2\right)^{(p-2)/2} dx$ are equal to zero. By the integration by parts and Hölder's inequality,

$$\begin{split} \frac{1}{p} \frac{d}{dt} \| \vec{v}(t) \|_{p,*}^{p} &= \frac{1}{2t^{2}} \mathrm{Im} \sum_{j=1}^{N} \int_{\mathbf{R}^{n}} \nabla v_{j} \cdot \nabla \left(\left(\sum_{l=1}^{N} |v_{l}|^{2} \right)^{(p-2)/2} \bar{v}_{j} \right) dx \\ &\leq Ct^{-2} \sum_{j=1}^{N} \int_{\mathbf{R}^{n}} |\nabla v_{j}|^{2} \left(\sum_{l=1}^{N} |v_{l}|^{2} \right)^{(p-2)/2} dx \\ &\leq Ct^{-2} \sum_{j=1}^{N} \| \nabla v_{j} \|_{p}^{2} \| \vec{v}(t) \|_{p,*}^{(p-2)}. \end{split}$$

We note that when $1 < \gamma \le \sqrt{2}$, we have $0 < (\gamma - 1)(2 - \gamma)/(6 - 4\gamma) < 1$, and so 2 . Then, Lemma 2.1, Lemma 3.1 and Lemma 3.2 yield

$$\begin{aligned} \|\nabla v_j\|_p &\leq C \|\nabla v_j\|^{1-\delta(p)} \|\Delta v_j\|^{\delta(p)} \\ &\leq Ct^{\eta}. \end{aligned}$$

Here

$$\eta = 2 - \gamma + rac{6 - 4\gamma}{2 - \gamma} \delta(p),$$

and the constant C depends on $\|\vec{\phi}\|_{\Sigma^{1,2}}$. Therefore,

(36)
$$\frac{d}{dt} \|\vec{v}(t)\|_{p,*}^p \le Ct^{-2+\eta} \|\vec{v}(t)\|_{p,*}^{(p-2)}$$

Since $\eta < 1$ for p satisfying $0 < \delta(p) < (\gamma - 1)(2 - \gamma)/(6 - 4\gamma)$, the estimate (34) follows by integrating the differential inequality (36).

By this lemma, we have

Proposition 3.2. Suppose that $n \ge 2$, $1 < \gamma \le \sqrt{2}$ and $\vec{\phi} \in \Sigma^{1,2}$. Then the solution of (1)-(2) has the following estimate

(37)
$$\|\vec{u}(t)\|_{p} \leq C(1+|t|)^{-\delta(p)},$$

where p satisfies $0 < \delta(p) < (\gamma - 1)(2 - \gamma)/(6 - 4\gamma)$.

4. Proof of the main theorem

In this section, we shall prove Theorem 1.1. Since we can prove part (i) of the Theorem similar to the Theorem [A] for Hartree type equation, we omit the proof. Throughout this section, we put $q = 4n/(2n - \gamma)$ and $r = 8/\gamma$. Then the pair (q, r) is admissible. To prove part (ii), we introduce the following Banach space:

$$X^{l,m}(I) = \left\{ u \in C(I; H^l); \|u\|_{X^{l,m}(I)} < \infty \right\},\$$

where

$$\|u\|_{X^{l,m}(I)} = \sum_{|\alpha| \le l} (\|\nabla^{\alpha} u\|_{2,\infty,I} + \|\nabla^{\alpha} u\|_{q,r,I}) + \sum_{|\beta| \le m} (\|J^{\beta} u\|_{2,\infty,I} + \|J^{\beta} u\|_{q,r,I}).$$

Let $I = [T, \infty)$, where T will be defined later. Using Hölder's inequality, Lemma 2.1 and Lemma 2.3, we have

(38)
$$\sum_{|\alpha|=l} \|\nabla^{\alpha} f_j(\vec{u})\|_{q'} \le C \|\vec{u}\|_q^2 \sum_{k=1}^N \sum_{|\alpha|=l} \|\nabla^{\alpha} u_k\|_q$$

and

(39)
$$\sum_{|\beta|=m} \|J^{\beta}f_{j}(\vec{u})\|_{q'} \leq C \|\vec{u}\|_{q}^{2} \sum_{k=1}^{N} \sum_{|\beta|=m} \|J^{\beta}u_{k}\|_{q}.$$

So we have, by Lemma 2.1 and Lemma 2.5,

(40)
$$\sum_{|\alpha| \le l} \|\nabla^{\alpha} u_j\|_{2,\infty,I} \le \sum_{|\alpha| \le l} \|\nabla^{\alpha} U(-T) u_j(T)\| + C \sum_{|\alpha| \le l} \|\nabla^{\alpha} f_j(\vec{u})\|_{q',r',I}.$$

Under the assumption of the theorem, Proposition 3.1 or Proposition 3.2 implies $\|\vec{u}(t)\|_q \leq Ct^{-\gamma/4}$. Therefore, by using (38) and Hölder's inequality, the second term in the right of (40) is dominated by

(41)

$$C\sum_{k=1}^{N}\sum_{|\alpha|\leq l} \left[\int_{T}^{\infty} \left(\|\vec{u}(\tau)\|_{q}^{2}\|\nabla^{\alpha}u_{k}(\tau)\|_{q}\right)^{r'}d\tau\right]^{1/r'}$$

$$\leq C\sum_{k=1}^{N}\sum_{|\alpha|\leq l} \left[\int_{T}^{\infty} \left(\tau^{-\gamma/2}\|\nabla^{\alpha}u_{k}(\tau)\|_{q}\right)^{r'}d\tau\right]^{1/r'}$$

$$\leq C\left(\int_{T}^{\infty} \tau^{-2\gamma/(4-\gamma)}d\tau\right)^{(4-\gamma)/4}\sum_{k=1}^{N}\sum_{|\alpha|\leq l} \|\nabla^{\alpha}u_{k}\|_{q,r,I}.$$

If $\gamma > 4/3$, the integral in the right of (41) converges. Hence,

(42)
$$\sum_{|\alpha| \le l} \|\nabla^{\alpha} u_j\|_{2,\infty,I} \le \|U(-T)u_j(T)\|_{\Sigma^{l,m}} + CT^{(4-3\gamma)/4} \|\vec{u}\|_{X^{l,m}(I)}$$

We can estimate

$$\sum_{|\alpha| \le l} \|\nabla^{\alpha} u_j\|_{q,r,I}, \sum_{|\beta| \le m} \|J^{\beta} u_j\|_{2,\infty,I}, \text{and} \sum_{|\beta| \le m} \|J^{\beta} u_j\|_{q,r,I}$$

similarly. Therefore,

(43)
$$\|\vec{u}\|_{X^{l,m}(I)} \leq C \|U(-T)\vec{u}(T)\|_{\Sigma^{l,m}} + CT^{(4-3\gamma)/4} \|\vec{u}\|_{X^{l,m}(I)}.$$

If we choose T sufficiently large so that $CT^{(4-3\gamma)/4} \leq 1/2$, (43) implies

$$\|\vec{u}\|_{X^{l,m}(I)} \le C \|U(-T)\vec{u}(T)\|_{\Sigma^{l,m}}$$

Therefore, $\|\vec{u}\|_{X^{l,m}(\mathbf{R})}$ is finite. Once this has been proved, by the similar argument, for t > s > 0, we have

$$(44) \|U(-t)\vec{u}(t) - U(-s)\vec{u}(s)\|_{\Sigma^{l,m}} \leq C \left(\int_{s}^{t} \tau^{-2\gamma/(4-\gamma)} d\tau \right)^{(4-\gamma)/4} \|\vec{u}\|_{X^{l,m}(\mathbf{R})} \\ \leq C \left(t^{(4-3\gamma)/4} - s^{(4-3\gamma)/4} \right).$$

The right of (44) tends to zero as s, t tend to infinity. Thus the theorem has been proved.

Corollary 4.1. Suppose that $4/3 < \gamma < \min(4, n)$, and $l, m \ge 1 + \lfloor n/2 \rfloor$. Then for any $\vec{\phi} \in \Sigma^{l,m}$, the solution $\vec{u}(t)$ of (1)-(2) satisfies

(45)
$$\|\vec{u}(t)\|_{\infty} \leq C(1+|t|)^{-n/2}.$$

Proof. By the relation $J^{\beta}\vec{u}(t) = M(t)x^{\beta}M(-t)\vec{u}(t)$ and Lemma 2.1.

T. WADA

References

- [1] J. Bergh and J. Löfström: Interpolation spaces, An introduction, Springer Verlag, 1976.
- [2] J. M. Chadam and R.T. Glassey: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys. 16 (1975), 1122-1130.
- [3] A. Friedman: Partial differential equations. Holt-Rinehart and Winston, 1969.
- [4] J. Ginibre, T. Ozawa and G. Velo: On the existence of the wave operators for a class of nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Phys. Théor. 60 (1994), 211–239.
- [5] J. Ginibre and G. Velo: On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z. 170 (1980), 109–136.
- [6] J. Ginibre and G. Velo: The global Cauchy problem for the non linear Klein-Gordon equation, Math. Z. 189 (1985), 487–505.
- [7] N. Hayashi and T. Ozawa: Scattering theory in the weighted $L^2(\mathbb{R}^n)$ spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), 17–37.
- [8] N. Hayashi and T. Ozawa: Smoothing effect for some Schrödinger equations, J. Funct. Anal. 85 (1989), 307-348.
- [9] N. Hayashi and Y. Tsutsumi: Scattering theory for Hartree type equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), 187–213.
- [10] L. Hörmander: The analysis of linear partial differential operators I, Springer Verlag, 1983.
- [11] T. Kato: On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), 113-129.
- [12] H. Nawa and T. Ozawa: Nonlinear scattering with nonlocal interaction, Comm. Math. Phys. 146 (1992), 259–275.
- [13] E. M. Stein: Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
- [14] H. Tanabe: Functional analytic methods for partial differential equations, Marcel Dekker, 1997.
- [15] T. Wada: Asymptotic behavior of the solutions of Hartree type equation, Adv. Math. Sci. Appl. 6 (1996), 67–77.
- [16] K. Yajima: Exsistence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), 415–426.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka560, Japan