Quasi $K O_{*}$-types of $C W$-spectra X
 with $K U_{*} X \cong$ Free $\oplus Z / 2^{m}$
 Dedicated to the memory of Professor Katsuo Kawakubo

 ZEN-ICHI YOSIMURA

 ZEN-ICHI YOSIMURA}
(Received February 13, 1998)

1. Introduction

Let $K O, K U$ and $K C$ denote the real, the complex and the self-conjugate K spectrum, respectively. Given $C W$-spectra X, Y we say that X is quasi $K O_{*}$-equivalent to Y if $K O \wedge X$ is isomorphic to $K O \wedge Y$ as a $K O$-module spectrum, in other words, if there exists a map $h: Y \rightarrow K O \wedge X$ inducing an isomorphism $h_{*}: K O_{*} Y \rightarrow K O_{*} X$. Note that if X is quasi $K O_{*}$-equivalent to Y, then $K U_{*} X$ is isomorphic to $K U_{*} Y$ as a ($Z / 2$-graded) abelian group with involution ψ_{C}^{-1}, in this case we say that X has the same \mathcal{C}-type as Y. We are interested in the determination of the quasi $K O_{*}$-type of any $C W$-spectrum X using the information of its $K U$-homology group $K U_{*} X \cong$ $K U_{0} X \oplus K U_{1} X$ with the conjugation ψ_{C}^{-1}.

Let $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ be the stable Hopf map of order 2 and $C\left(\eta^{l}\right)$ denote the cofiber of the map $\eta^{l}: \Sigma^{l} \rightarrow \Sigma^{0}$. The sphere spectrum $S=\Sigma^{0}$ and the cofibers $C\left(\eta^{l}\right)(l=$ $1,2)$ are typical examples of spectra X with $K U_{*} X$ free. In [1, Theorem 3.2] Bousfield has completely determined the quasi $K O_{*}$-type of a $C W$-spectrum X with $K U_{*} X$ free.

Bousfield's Theorem . Let X be a $C W$-spectrum such that $K U_{*} X \cong K U_{0} X \oplus$ $K U_{1} X$ is free. Then it has the same quasi $K O_{*}$-type as a certain wedge sum of copies of $\Sigma^{i}(0 \leq i \leq 7), \Sigma^{j} C(\eta)(0 \leq j \leq 1)$ and $\Sigma^{k} C\left(\eta^{2}\right)(0 \leq k \leq 3)$. (Cf. [6, Theorem 2.4]).

Let $S Z / 2^{m}$ denote the Moore spectrum of type $Z / 2^{m}$. In [4] and [5] we introduced some 3-cells spectra X_{m} and X_{m}^{\prime} constructed as the cofibers of certain maps $f: \Sigma^{i} \rightarrow S Z / 2^{m}$ and $f^{\prime}: \Sigma^{i-1} S Z / 2^{m} \rightarrow \Sigma^{0}$ and some 4-cells spectra $X Y_{m}, X^{\prime} Y_{m}^{\prime}$ and $Y^{\prime} X_{m}$ obtained as the cofibers of their mixed maps. In [5, Theorems 3.3, 4.2 and 4.4] by using these small spectra we have also determined the quasi $K O_{*}$-type of a $C W$-spectrum X such that $K U_{0} X \cong F \oplus Z / 2^{m}$ with F free and $K U_{1} X=0$. The purpose of this note is to determine completely the quasi $K O_{*}$-type of a $C W$ spectrum X such that $K U_{*} X \cong F \oplus Z / 2^{m}$ with F free and finitely generated, without
the restriction that $K U_{1} X=0$.
Notice that the self-conjugate K-spectrum $K C$ may be regarded as the fiber of the map $1-\psi_{C}^{-1}: K U \rightarrow K U$. For any map $f: Y \rightarrow K U \wedge X$ with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ we can choose a map $g: Y \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ in which $\zeta: K C \rightarrow K U$ is the complexification map. In $\S 2$ we show that under a certain assumption such a map g is chosen to satisfy a nice property that $g_{*}: K C_{i} Y \rightarrow K C_{i} X(i=0,2)$ are nearly the canonical inclusions if $f_{*}: K U_{*} Y \rightarrow K U_{*} X$ is the canonical inclusion in the category \mathcal{C} of abelian groups with involution ψ_{C}^{-1}. In $\S 3$ we give the most refined direct sum decomposition of $K U_{*} X$ in the category \mathcal{C} when $K U_{*} X$ is free (Proposition 3.2), and then prove Bousfield's Theorem (Theorem 3.3) along the line adopted in [4, 5]. Our new proof is very simple, and it is applicable to prove our main results (Theorems 5.1, 5.2 and 5.3). In order to distinguish $C W$-spectra X such that $K U_{*} X \cong F \oplus Z / 2^{m}$ with F free and finitely generated we divide them into ten kinds of \mathcal{C}-types (Proposition 4.1). In $\S 4$ we give the most refined direct sum decomposition of $K U_{*} X$ in the category \mathcal{C} when the \mathcal{C}-type of X is known (Proposition 4.3), and in $\S 5$ we prove our main results (Theorems 5.1, 5.2 and 5.3) by applying our method developed in $[4,5]$.

2. K-spectra $K O, K U$ and $K C$

Let $K O, K U$ and $K C$ denote the real, the complex and the self-conjugate K spectrum, respectively. As relations among these K-spectra we have the following cofiber sequence:
i) $\quad \Sigma^{1} K O \xrightarrow{\eta \wedge 1} K O \xrightarrow{\epsilon_{U}} K U \xrightarrow{\epsilon_{O} \beta_{U}^{-1}} \Sigma^{2} K O$
ii) $\quad \Sigma^{2} K O \xrightarrow{\eta^{2} \wedge 1} K O \xrightarrow{\epsilon_{C}} K C \xrightarrow{\tau \beta_{C}^{-1}} \Sigma^{3} K O$
iii) $K C \xrightarrow{\zeta} K U \xrightarrow{\beta_{U}^{-1}\left(1-\psi_{C}^{-1}\right)} \Sigma^{2} K U \xrightarrow{\gamma \beta_{U}} \Sigma^{1} K C$
iv) $\quad \Sigma^{1} K C \xrightarrow{\left(-\tau, \tau \beta_{C}^{-1}\right)} K O \vee \Sigma^{4} K O \xrightarrow{\epsilon_{U} \vee \beta_{U}^{2} \epsilon_{U}} K U \xrightarrow{\epsilon_{C} \epsilon_{O} \beta_{U}^{-1}} \Sigma^{2} K C$
v) $\quad \Sigma^{2} K U \xrightarrow{\left(-\epsilon_{O} \beta_{U}, \epsilon_{O} \beta_{U}^{-1}\right)} K O \vee \Sigma^{4} K O \xrightarrow{\epsilon_{C} \vee \beta_{C} \epsilon_{C}} K C \xrightarrow{\epsilon_{U} \tau \beta_{C}^{-1}} \Sigma^{3} K U$
where $\beta_{U}: \Sigma^{2} K U \rightarrow K U$ and $\beta_{C}: \Sigma^{4} K C \rightarrow K C$ are the periodicity maps satisfying $\zeta \beta_{C}=\beta_{U}^{2} \zeta, \beta_{C} \gamma=\gamma \beta_{U}^{2}$ and $\psi_{C}^{-1} \beta_{U}=-\beta_{U} \psi_{C}^{-1}$. The maps involved in (2.1) satisfy the following equalities:

$$
\begin{align*}
\zeta \epsilon_{C}=\epsilon_{U}, \tau \gamma=\epsilon_{O}, \epsilon_{O} \epsilon_{U} & =2, \epsilon_{U} \epsilon_{O}=1+\psi_{C}^{-1} \tag{2.2}\\
\tau \epsilon_{C}=\eta \wedge 1 \text { and } \gamma \beta_{U} \zeta & =\eta \wedge 1 .
\end{align*}
$$

For any $C W$-spectrum Y its K-homology and K-cohomology groups are related

Lemma 2.2. For any homomorphisms $a_{i}: H_{i}^{\prime} \rightarrow H_{i}, d_{i}: T_{i}^{\prime} \rightarrow T_{i}, b_{i}: H_{i}^{\prime} \rightarrow T_{i}$ and $c_{i}: H_{i} \rightarrow T_{i+1}^{\prime}(i=0,1)$ there exists a map $f: Y \rightarrow K U \wedge X$ so that $f_{*}:$ $K U_{i} Y \rightarrow K U_{i} X$ and $D f_{*}: K U_{i} D X \rightarrow K U_{i} D Y(i=0,1)$ are represented by the matrices $\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & d_{i}\end{array}\right)$ and $\left(\begin{array}{cc}a_{i}^{*} & 0 \\ c_{i} & d_{i+1}^{*}\end{array}\right)$, respectively.

Proof. Choose a map $f^{\prime}: Y \rightarrow K U \wedge X$ such that $f_{*}^{\prime}: K U_{i} Y \rightarrow K U_{i} X(i=0,1)$ is represented by the matrix $\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & d_{i}\end{array}\right)$. Then $D f_{*}^{\prime}: K U_{i} D X \rightarrow K U_{i} D Y(i=0,1)$ is represented by a certain matrix $\left(\begin{array}{cc}a_{i}^{*} & 0 \\ x_{i} & d_{i+1}^{*}\end{array}\right)$. Use a geometric resolution of Y given in (2.5). The difference $c_{i}-x_{i}: H_{i} \rightarrow T_{i+1}^{\prime}(i=0,1)$ has a coextension $y_{i}: H_{i} \rightarrow$ $K U_{i+1} D V$ satisfying $D \delta_{*} y_{i}=c_{i}-x_{i}$. Choose a map $h: \Sigma^{1} V \rightarrow K U \wedge X$ such that $D h_{*}: K U_{i} D X \rightarrow K U_{i+1} D V(i=0,1)$ coincides with y_{i}. Setting $f=f^{\prime}+h \delta: Y \rightarrow$ $K U \wedge X$ it satisfies the desired property.

Let \mathcal{C} be the category of abelian groups with involution ψ_{C}^{-1}, modelled on $K U$ homology groups $K U_{*} X$. Given $C W$-spectra X, Y we say that they have the same \mathcal{C}-type if $K U_{*} X$ and $K U_{*} Y$ are isomorphic in the category \mathcal{C}.

Proposition 2.3. Let X and Y be finite $C W$-spectra with $K U_{1} X$ and $K U_{1} Y$ free. If X and $D X$ have the same \mathcal{C}-types as Y and $D Y$, respectively, then there exists a map $f: Y \rightarrow K U \wedge X$ with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ such that $f_{*}: K U_{*} Y \rightarrow K U_{*} X$ and $D f_{*}: K U_{*} D X \rightarrow K U_{*} D Y$ are isomorphisms in the category \mathcal{C}.

Proof. Identify $K U_{*} X$ and $K U_{*} D X$ with $K U_{*} Y$ and $K U_{*} D Y$ in the category \mathcal{C}, respectively. By means of Lemma 2.2 we can choose a map $f: Y \rightarrow K U \wedge X$ such that $f_{*}: K U_{*} Y \rightarrow K U_{*} X$ and $D f_{*}: K U_{*} D X \rightarrow K U_{*} D Y$ are both the identity. By virtue of Lemma 2.1 such a map f satisfies the desired equality.

For a $C W$-spectrum X with $K U_{*} X$ free we have direct sum decompositions

$$
\begin{equation*}
K U_{0} X \cong A \oplus B \oplus C \oplus C, \quad K U_{1} X \cong D \oplus E \oplus F \oplus F \tag{2.7}
\end{equation*}
$$

in the category \mathcal{C}, where A, B, C, D, E and F are free and $\psi_{C}^{-1}=1$ on A or D, $\psi_{C}^{-1}=-1$ on B or E and $\psi_{C}^{-1}=\left(\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right)$ on $C \oplus C$ or $F \oplus F$. Using the cofiber sequence (2.1.iii) we can easily compute its $K C$-homology groups $K C_{i} X(i=$ $0,1,2,3)$ as follows:

$$
\begin{align*}
& K C_{0} X \cong A \oplus C \oplus D \oplus E_{2} \oplus F, \quad K C_{1} X \cong A_{2} \oplus B \oplus C \oplus D \oplus F \\
& K C_{2} X \cong B \oplus C \oplus D_{2} \oplus E \oplus F, \quad K C_{3} X \cong A \oplus B_{2} \oplus C \oplus E \oplus F \tag{2.8}
\end{align*}
$$

by the following universal coefficient sequences:
i) $\quad 0 \rightarrow \operatorname{Ext}\left({K O_{3+i}} Y, Z\right) \rightarrow K O^{i} Y \rightarrow \operatorname{Hom}\left(K O_{4+i} Y, Z\right) \rightarrow 0$
ii) $\quad 0 \rightarrow \operatorname{Ext}\left(K U_{5+i} Y, Z\right) \rightarrow K U^{i} Y \rightarrow \operatorname{Hom}\left(K U_{6+i} Y, Z\right) \rightarrow 0$
iii) $\quad 0 \rightarrow \operatorname{Ext}\left(K C_{6+i} Y, Z\right) \rightarrow K C^{i} Y \rightarrow \operatorname{Hom}\left(K C_{7+i} Y, Z\right) \rightarrow 0$.

When $C W$-spectra X and Y are finite, we have a duality isomorphism

$$
\begin{equation*}
D:[Y, K \wedge X] \cong[D X, K \wedge D Y] \tag{2.4}
\end{equation*}
$$

for $K=K U, K O$ or $K C$ where $D X$ and $D Y$ denote the S-duals of X and Y. Therefore $K^{i} Y$ may be replaced by $K_{-i} D Y$ whenever Y is finite.

For any $C W$-spectrum Y there exists a geometric resolution

$$
\begin{equation*}
V \xrightarrow{\psi} W \xrightarrow{\varphi} Y \xrightarrow{\delta} \Sigma^{1} V \tag{2.5}
\end{equation*}
$$

so that $0 \rightarrow K U_{*} V \rightarrow K U_{*} W \rightarrow K U_{*} Y \rightarrow 0$ is a short exact sequence with $K U_{*} V$ and $K U_{*} W$ free. Using its geometric resolution we have the following universal coefficient sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(K U_{*-1} Y, K U_{*} X\right) \rightarrow[Y, K U \wedge X] \rightarrow \operatorname{Hom}\left(K U_{*} Y, K U_{*} X\right) \rightarrow 0 \tag{2.6}
\end{equation*}
$$

for any $C W$-spectrum X.
Lemma 2.1. Let X and Y be finite $C W$-spectra with $K U_{1} X$ and $K U_{1} Y$ free. Then a map $f: Y \rightarrow K U \wedge X$ is trivial if $f_{*}: K U_{*} Y \rightarrow K U_{*} X$ and $D f_{*}:$ $K U_{*} D X \rightarrow K U_{*} D Y$ are both trivial.

Proof. Use a geometric resolution of Y given in (2.5). Since $f_{*}: K U_{*} Y \rightarrow$ $K U_{*} X$ is trivial, the composition map $f \varphi: W \rightarrow K U \wedge X$ is trivial. In other words, the composition map $(1 \wedge D \varphi) D f: D X \rightarrow K U \wedge D W$ is trivial. The S-dual map $D \varphi: D Y \rightarrow D W$ induces a split monomorphism $D \varphi_{*}: K U_{0} D Y \rightarrow K U_{0} D W$ under the assumption that $K U_{1} Y$ is free. Therefore $\left(D \varphi_{*}\right)^{*}: \operatorname{Ext}\left(K U_{1} D X, K U_{0} D Y\right) \rightarrow$ $\operatorname{Ext}\left(K U_{1} D X, K U_{0} D W\right)$ is a monomorphism. Hence the triviality of $D f_{*}: K U_{*} D X$ $\rightarrow K U_{*} D Y$ implies that the dual map $D f: D X \rightarrow K U \wedge D Y$ is in fact trivial.

Given finite $C W$-spectra X, Y we set $K U_{i} X \cong H_{i} \oplus T_{i}$ and $K U_{i} Y \cong H_{i}^{\prime} \oplus T_{i}^{\prime}(i=$ $0,1)$ where H_{i}, H_{i}^{\prime} are free and T_{i}, T_{i}^{\prime} are torsion. When $H=H_{i}, H_{i}^{\prime}$ and $T=T_{i}, T_{i}^{\prime}$ are identified with $H^{*} \cong \operatorname{Hom}(H, Z)$ and $T^{*} \cong \operatorname{Ext}(T, Z)$, respectively, we have isomorphisms $K U_{i} D X \cong H_{i} \oplus T_{i+1}$ and $K U_{i} D Y \cong H_{i}^{\prime} \oplus T_{i+1}^{\prime}(i=0,1)$ where $T_{2}=T_{0}$ and $T_{2}^{\prime}=T_{0}^{\prime}$.
where G_{2} stands for the $Z / 2$-module $G \otimes Z / 2$.
Let Y and X be $C W$-spectra having direct sum decompositions $K U_{0} Y \cong A \oplus B \oplus$ $C \oplus C \oplus M$ and $K U_{1} X \cong D \oplus E \oplus F \oplus F$ in the category \mathcal{C} where A, B, C, D, E and F are free objects on which ψ_{C}^{-1} behaves as stated in (2.7). Thus $K U_{1} X$ is assumed to be free. Note that $A \oplus C$ and $B \oplus C$ are direct summands of $K C_{0} Y$ and $K C_{2} Y$, respectively. For any map $f: Y \rightarrow K U \wedge X$ with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ we can choose homomorphisms

$$
\alpha_{0}: A \oplus C \rightarrow K C_{0} X, \quad \alpha_{2}: B \oplus C \rightarrow K C_{2} X
$$

such that $\zeta_{*} \alpha_{0}=f_{*} \zeta_{*} \mid A \oplus C$ and $\zeta_{*} \alpha_{2}=f_{*} \zeta_{*} \mid B \oplus C$.
Lemma 2.4. Assume that $K U_{1} X$ is free. For any map $f: Y \rightarrow K U \wedge X$ with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ there exists a map $g: Y \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ so that g_{*} : $K C_{i} Y \rightarrow K C_{i} X(i=0,2)$ satisfy $g_{*}\left|A=\alpha_{0}\right| A, g_{*}\left|B=\alpha_{2}\right| B,\left(g_{*}-\alpha_{0}\right)(C) \subset E_{2} \oplus F$ and $\left(g_{*}-\alpha_{2}\right)(C) \subset D_{2} \oplus F$.

Proof. Choose a map $g^{\prime}: Y \rightarrow K C \wedge X$ satisfying $(\zeta \wedge 1) g^{\prime}=f$, and then set $\alpha_{0}^{\prime}=\alpha_{0}-g_{*}^{\prime} \mid A \oplus C$ and $\alpha_{2}^{\prime}=\alpha_{2}-g_{*}^{\prime} \mid B \oplus C$. The homomorphisms $\alpha_{0}^{\prime}: A \oplus C \rightarrow$ $K C_{0} X$ and $\alpha_{2}^{\prime}: B \oplus C \rightarrow K C_{2} X$ are factorized through $D \oplus E_{2} \oplus F \subset K C_{0} X$ and $D_{2} \oplus E \oplus F \subset K C_{2} X$. Exchange them for the modified ones $\alpha_{0}^{\prime \prime}$ and $\alpha_{2}^{\prime \prime}$ with $\alpha_{0}^{\prime \prime}(C) \subset$ $D \oplus F$ and $\alpha_{2}^{\prime \prime}(C) \subset E \oplus F$, respectively. Choose homomorphisms $\beta_{i}: K U_{i} Y \rightarrow$ $K U_{i+1} X(i=0,2)$ such that $\gamma_{*} \beta_{0} \zeta_{*}\left|A \oplus C=\alpha_{0}^{\prime \prime}, \gamma_{*} \beta_{2} \zeta_{*}\right| B \oplus C=\alpha_{2}^{\prime \prime}$ and $\beta_{i} \mid M=0$. Then we get a map $h: Y \rightarrow \Sigma^{-1} K U \wedge X$ such that $h_{*}: K U_{*} Y \rightarrow K U_{*+1} X$ coincides with $\beta_{0}+\beta_{2}: K U_{0} Y \rightarrow K U_{1} X$. Setting $g=g^{\prime}+(\gamma \wedge 1) h: Y \rightarrow K C \wedge X$, it satisfies the desired property.

Assume that the short exact sequences

$$
\begin{equation*}
0 \rightarrow \gamma_{*}\left(K U_{i+1} X\right) \rightarrow K C_{i} X \rightarrow \zeta_{*}\left(K C_{i} X\right) \rightarrow 0 \quad(i=0,2) \tag{2.9}
\end{equation*}
$$

are splittable, whose splitting homomorphisms are denoted by

$$
\sigma_{i}: \zeta_{*}\left(K C_{i} X\right) \rightarrow K C_{i} X, \quad \rho_{i}: K C_{i} X \rightarrow \gamma_{*}\left(K U_{i+1} X\right)
$$

Now we may take as α_{0} and α_{2} in Lemma 2.4 the restricted homomorphisms $\sigma_{0} f_{*} \zeta_{*} \mid A \oplus$ C and $\sigma_{2} f_{*} \zeta_{*} \mid B \oplus C$, respectively.

Corollary 2.5. Assume that $K U_{1} X$ is free and the short exact sequences (2.9) are split. For any map $f: Y \rightarrow K U \wedge X$ with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ there exists a map $g: Y \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ so that $g_{*}: K C_{i} Y \rightarrow K C_{i} X(i=0,2)$ satisfy $\rho_{0} g_{*}\left|A=0, \rho_{2} g_{*}\right| B=0, \rho_{0} g_{*}(C) \subset E_{2} \oplus F$ and $\rho_{2} g_{*}(C) \subset D_{2} \oplus F$.

Let X be a finite $C W$-spectrum having a direct sum decomposition

$$
\begin{equation*}
K U_{-1} D X \cong D \oplus E \oplus F \oplus F \oplus N \tag{2.10}
\end{equation*}
$$

in the category \mathcal{C} where D, E and F are free objects on which ψ_{C}^{-1} behaves as stated in (2.7). In this case we may assume that ψ_{C}^{-1} behaves as $1 \oplus(-1)$ on the free part of N itself. Note that $\gamma_{*} K U_{-1} D X \cong D \oplus E_{2} \oplus F \oplus N_{-}$and $\gamma_{*} K U_{1} D X \cong D_{2} \oplus E \oplus F \oplus N_{+}$ in which $N_{ \pm}$denotes the cokernel of $1 \pm \psi_{C}^{-1}$ on N. If $K U_{1} X$ is free, then it follows that

$$
\text { Tor } K C_{0} X \cong E_{2} \oplus \operatorname{Tor} N_{-}, \quad \text { Tor } K C_{2} X \cong D_{2} \oplus \text { Tor } N_{+}
$$

because $\operatorname{Tor} K C_{i} X \cong \operatorname{Tor} K C_{6-i} D X$ by use of (2.3.iii) where Tor G stands for the torsion part of G.

Let X and Y be finite $C W$-spectra having direct sum decompositions

$$
K U_{-1} D X \cong D \oplus E \oplus F \oplus F \oplus N \quad \text { and } \quad K U_{-1} D Y \cong D^{\prime} \oplus E^{\prime} \oplus F^{\prime} \oplus F^{\prime} \oplus N^{\prime}
$$

in the category \mathcal{C} as given in (2.10). When $K U_{1} X$ and $K U_{1} Y$ are free, the restricted homomorphisms $g_{*}: K C_{i} Y \rightarrow K C_{i} X(i=0,2)$ to the torsion parts are given by $\tau_{0}(g): E_{2}^{\prime} \oplus \operatorname{Tor} N_{-}^{\prime} \rightarrow E_{2} \oplus \operatorname{Tor} N_{-}$and $\tau_{2}(g): D_{2}^{\prime} \oplus \operatorname{Tor} N_{+}^{\prime} \rightarrow D_{2} \oplus$ Tor N_{+}for any map $g: Y \rightarrow K C \wedge X$.

Lemma 2.6. Let $f: Y \rightarrow K U \wedge X$ be a map with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ such that $D f_{*}: K U_{-1} D X \rightarrow K U_{-1} D Y$ satisfies $D f_{*}(D \oplus E) \subset D^{\prime} \oplus E^{\prime}$ and $D f_{*}(N) \subset N^{\prime}$. Assume that $K U_{1} X$ and $K U_{1} Y$ are free. For any map $g: Y \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ the restricted homomorphisms $\tau_{i}(g)(i=0,2)$ are expressed as the direct $\operatorname{sum} f_{*} \oplus\left(D f_{*}\right)^{*}$.

Proof. The restricted homomorphisms $D g_{*}: K C_{6-i} D X \rightarrow K C_{6-i} D Y(i=0,2)$ to the torsion parts are induced by only $D f_{*}$. Hence our result is immediately shown by duality.

Let X and Y be finite $C W$-spectra such that $K U_{-1} D X$ and $K U_{-1} D Y$ are decomposed as previously and $K U_{0} Y$ is decomposed to a direct sum $A \oplus B \oplus M$ in the category \mathcal{C} where A and B are free objects on which ψ_{C}^{-1} behaves as stated in (2.7), and ψ_{C}^{-1} behaves as $1 \oplus(-1)$ on the free part $H \cong H^{+} \oplus H^{-}$of M itself. Assume that $K U_{1} X$ is free, and $D \oplus E_{2} \oplus F \subset K C_{0} X$ and $D_{2} \oplus E \oplus F \subset K C_{2} X$ are direct summands whose splitting epimorphisms are denoted by

$$
\rho_{0}: K C_{0} X \rightarrow D \oplus E_{2} \oplus F \quad \text { and } \quad \rho_{2}: K C_{2} X \rightarrow D_{2} \oplus E \oplus F .
$$

Lemma 2.7. Let $f: Y \rightarrow K U \wedge X$ be a map with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ such that $D f_{*}$: $K U_{-1} D X \rightarrow K U_{-1} D Y$ satisfies $D f_{*}(D \oplus E \oplus F \oplus F) \subset D^{\prime} \oplus E^{\prime} \oplus F^{\prime} \oplus F^{\prime}$. Assume that $K U_{1} X$ and $K U_{1} Y$ are free. Then there exists a map $g: Y \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ such that $g_{*}: K C_{i} Y \rightarrow K C_{i} X(i=0,2)$ satisfy $\rho_{0} g_{*}\left|A=0, \rho_{2} g_{*}\right| B=$ $0, \rho_{0} g_{*}\left(H^{+}\right) \subset E_{2}$ and $\rho_{2} g_{*}\left(H^{-}\right) \subset D_{2}$.

Proof. Take as α_{0} and α_{2} in Lemma 2.4 the restricted homomorphisms $\sigma_{0}^{\prime} D f_{*} \zeta_{*} \mid D \oplus F$ and $\sigma_{2}^{\prime} D f_{*} \zeta_{*} \mid E \oplus F$, respectively, where $\sigma_{0}^{\prime}: D^{\prime} \oplus F^{\prime} \rightarrow K C_{-1} D Y$ and $\sigma_{2}^{\prime}: E^{\prime} \oplus F^{\prime} \rightarrow K C_{1} D Y$ are splitting monomorphisms. Then we can choose a map $D g: D X \rightarrow K C \wedge D Y$ with $(\zeta \wedge 1) D g=D f$ such that $\rho_{0}^{\prime} D g_{*} \mid D \oplus F=0$ and $\rho_{2}^{\prime} D g_{*} \mid E \oplus F=0$ where $\rho_{0}^{\prime}: K C_{-1} D Y \rightarrow A \oplus H^{+}$and $\rho_{2}^{\prime}: K C_{1} D Y \rightarrow B \oplus H^{-}$ are the canonical projections. Evidently $g_{*}: K C_{i} Y \rightarrow K C_{i} X(i=0,2)$ satisfy $\rho_{0} g_{*}\left(A \oplus H^{+}\right) \subset E_{2}$ and $\rho_{2} g_{*}\left(B \oplus H^{-}\right) \subset D_{2}$ for the dual map g of $D g$. Such a map g is chosen to satisfy $\rho_{0} g_{*} \mid A=0$ and $\rho_{2} g_{*} \mid B=0$ by means of Lemma 2.4.

Let $h: V \rightarrow W$ be a map such that $h^{*}:\left[W, \Sigma^{1} K U \wedge X\right] \rightarrow\left[V, \Sigma^{1} K U \wedge X\right]$ is trivial, and $f: Y \rightarrow K U \wedge X$ be a map with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$ where Y denotes the cofiber of h. Assume that the composition map $\left(\epsilon_{O} \beta_{U}^{-1} \wedge 1\right) f i_{Y}: W \rightarrow \Sigma^{2} K O \wedge X$ is trivial where $i_{Y}: W \rightarrow Y$ is the canonical inclusion. Then there exists a map $k: Y \rightarrow$ $\Sigma^{1} K U \wedge X$ such that $\left(\tau \beta_{C}^{-1} \wedge 1\right) g i_{Y}=\left(\epsilon_{O} \beta_{U}^{-1} \wedge 1\right) k i_{Y}$ for each map $g: Y \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$. Such a map k is chosen to satisfy that the restricted homomorphism $k_{*}: K U_{*+1} Y \rightarrow K U_{*} X$ to $K U_{*} V$ is trivial if $K U_{*+1} Y \cong K U_{*+1} W \oplus K U_{*} V$. Replacing the map g by $g+\left(\gamma \beta_{U} \wedge 1\right) k$ we can observe that
(2.11) the composition map $\left(\tau \beta_{C}^{-1} \wedge 1\right) g i_{Y}: W \rightarrow \Sigma^{3} K O \wedge X$ is trivial (cf. [3, Lemma1.1]).

3. $C W$-spectra X such that $K U_{*} X$ is free

In this section we deal with a $C W$-spectrum X such that $K U_{*} X \cong K U_{0} X \oplus$ $K U_{1} X$ is free. For such a $C W$-spectrum X the $K U$-homology groups $K U_{i} X(i=$ 0,1) have direct sum decompositions in the category \mathcal{C} as given in (2.7) and the $K C$ homology groups $K C_{i} X(i=0,1,2,3)$ are computed as obtained in (2.8). Consider the induced homomorphisms
$\varphi_{i}=\left(\epsilon_{C} \epsilon_{O} \beta_{U}^{-1}\right)_{*}: K U_{i+2} X \rightarrow K C_{i} X$ and $\varphi_{i}^{\prime}=\left(\epsilon_{U} \tau \beta_{C}^{-1}\right)_{*}: K C_{i} X \rightarrow K U_{i-3} X$.
Using the equalities $\zeta_{*} \varphi_{i}=\left(\left(1+\psi_{C}^{-1}\right) \beta_{U}^{-1}\right)_{*}, \varphi_{i}^{\prime}\left(\gamma \beta_{U}\right)_{*}=\left(\left(1+\psi_{C}^{-1}\right) \beta_{U}^{-1}\right)_{*}, \varphi_{i}^{\prime} \varphi_{i}=$ $0, \varphi_{i} \varphi_{i+5}^{\prime}=0$ and $\left(\gamma \beta_{U}\right)_{*} \varphi_{i}^{\prime}=\varphi_{i-2} \zeta_{*}$ we can easily verify that the induced homo-
morphisms φ_{0} and φ_{2} are represented by the following matrices:

$$
\begin{align*}
& \tilde{\Gamma}_{0}=\left(\begin{array}{ccc}
\Gamma_{0} & 0 & 0 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right):(A \oplus B) \oplus C \oplus C \rightarrow\left(A \oplus D \oplus E_{2}\right) \oplus C \oplus F \\
& \tilde{\Gamma}_{2}=\left(\begin{array}{ccc}
\Gamma_{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right):(A \oplus B) \oplus C \oplus C \rightarrow\left(B \oplus D_{2} \oplus E\right) \oplus C \oplus F \tag{3.1}
\end{align*}
$$

in which $\Gamma_{0}=\left(\begin{array}{ll}2 & 0 \\ x & 0 \\ y & w\end{array}\right): A \oplus B \rightarrow A \oplus D \oplus E_{2}$ and $\Gamma_{2}=\left(\begin{array}{cc}0 & 2 \\ x & z \\ 0 & w\end{array}\right): A \oplus B \rightarrow$ $B \oplus D_{2} \oplus E$ for some x, y, z and w. Here the direct sum decompositions $K C_{0} X \cong$ $(A \oplus C) \oplus\left(D \oplus E_{2} \oplus F\right)$ and $K C_{2} X \cong(B \oplus C) \oplus\left(D_{2} \oplus E \oplus F\right)$ might be modified suitably if necessary.

Let D_{2}^{\prime} denote the cokernel of $x: A \rightarrow D_{2}$. Then we have direct sum decompositions $A \cong A^{\prime} \oplus G^{\prime}$ and $D \cong D^{\prime} \oplus G^{\prime}$ so that $x: A \rightarrow D_{2}$ is given by $0 \oplus q: A^{\prime} \oplus G^{\prime} \rightarrow D_{2}^{\prime} \oplus G_{2}^{\prime}$ where q is the mod 2 reduction. As is easily observed, the homomorphism $\binom{2}{x}: A \rightarrow A \oplus D$ is expressed as the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 1\end{array}\right): A^{\prime} \oplus G^{\prime} \rightarrow$ $A^{\prime} \oplus G^{\prime} \oplus D^{\prime} \oplus G^{\prime}$, although the direct sum decomposition $A \oplus D$ might be modified if necessary. Therefore its cokernel coincides with $A_{2}^{\prime} \oplus D^{\prime} \oplus G^{\prime}$, and the canonical epimorphism $\rho_{0}: A^{\prime} \oplus G^{\prime} \oplus D^{\prime} \oplus G^{\prime} \rightarrow A_{2}^{\prime} \oplus D^{\prime} \oplus G^{\prime}$ is represented by the matrix $\Lambda=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 2\end{array}\right)$. Since the torsion subgroup of $K O_{1} X \oplus K O_{5} X$ is a $Z / 2$ module, the cokernel of $\Gamma_{0}: A \oplus B \rightarrow A \oplus D \oplus E_{2}$ coincides with $A_{2}^{\prime} \oplus D \oplus E_{2}^{\prime}$ in which E_{2}^{\prime} is the cokernel of $w: B \rightarrow E_{2}$. Moreover the canonical epimorphism $\rho_{0}:\left(A^{\prime} \oplus G^{\prime} \oplus D^{\prime} \oplus G^{\prime}\right) \oplus E_{2} \rightarrow\left(A_{2}^{\prime} \oplus D^{\prime} \oplus G^{\prime}\right) \oplus E_{2}^{\prime}$ is represented by the matrix

$$
\Lambda_{y}=\left(\begin{array}{cccc}
& & \Lambda & \\
& 0 \\
0 & 0 & 0 & \pi y_{2}
\end{array}\right)
$$

where $y_{2}=y \mid G^{\prime}$ and $\pi: E_{2} \rightarrow E_{2}^{\prime}$ is the canonical projection. We obtain a similar result for $\Gamma_{2}: A \oplus B \rightarrow B \oplus D_{2} \oplus E$.

Lemma 3.1. The cokernels of $\left(\epsilon_{C} \epsilon_{O} \beta_{U}^{-1}\right)_{*}: K U_{i+2} X \rightarrow K C_{i} X(i=0,2)$ coincide with $A_{2}^{\prime} \oplus D \oplus E_{2}^{\prime} \oplus F$ and $B_{2}^{\prime} \oplus E \oplus D_{2}^{\prime} \oplus F$, respectively, and the canonical
epimorphisms

$$
\begin{gathered}
\rho_{0}:\left(A^{\prime} \oplus G^{\prime} \oplus D^{\prime} \oplus G^{\prime} \oplus E_{2}\right) \oplus C \oplus F \rightarrow\left(A_{2}^{\prime} \oplus D^{\prime} \oplus G^{\prime} \oplus E_{2}^{\prime}\right) \oplus F \\
\rho_{2}:\left(B^{\prime} \oplus G^{\prime \prime} \oplus E^{\prime} \oplus G^{\prime \prime} \oplus D_{2}\right) \oplus C \oplus F \rightarrow\left(B_{2}^{\prime} \oplus E^{\prime} \oplus G^{\prime \prime} \oplus D_{2}^{\prime}\right) \oplus F
\end{gathered}
$$

are represented by the matrices $\tilde{\Lambda}_{y}=\left(\begin{array}{ccc}\Lambda_{y} & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $\tilde{\Lambda}_{z}=\left(\begin{array}{ccc}\Lambda_{z} & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$, respectively, where $A \cong A^{\prime} \oplus G^{\prime}, D \cong D^{\prime} \oplus G^{\prime}, B \cong B^{\prime} \oplus G^{\prime \prime}$ and $E \cong E^{\prime} \oplus G^{\prime \prime}$ for some $G^{\prime}, G^{\prime \prime}$.

There exist two monomorphisms

$$
\begin{aligned}
& \theta_{0}: A_{2}^{\prime} \oplus D \oplus E_{2}^{\prime} \oplus F \rightarrow K O_{1} X \oplus K O_{5} X \\
& \theta_{2}: B_{2}^{\prime} \oplus E \oplus D_{2}^{\prime} \oplus F \rightarrow K O_{3} X \oplus K O_{7} X
\end{aligned}
$$

so that $\left(-\tau, \tau \beta_{C}\right)_{*}: K C_{i} X \rightarrow K O_{i+1} X \oplus K O_{i+5} X(i=0,2)$ are factorized as $\theta_{i} \rho_{i}$. Consider the restricted homomorphism $\theta_{0}: A_{2}^{\prime} \oplus E_{2}^{\prime} \rightarrow K O_{1} X \oplus K O_{5} X$. Then we can choose a basis $\left\{a_{i}, b_{j}\right\}$ of A_{2}^{\prime} such that $\theta_{0}\left(a_{i}\right)=\left(x_{i}, 0\right)$ for $1 \leq i \leq m+p$ and $\theta_{0}\left(b_{j}\right)=\left(0, y_{j}\right)$ for $1 \leq j \leq n+q$, although the direct sum decomposition $A_{2}^{\prime} \oplus E_{2}^{\prime}$ might be modified if necessary. We next choose a basis $\left\{c_{i}, d_{j}\right\}$ of $\theta_{0}^{-1}\left(K O_{1} X \oplus\{0\} \cup\right.$ $\left.\{0\} \oplus K O_{5} X\right) \cap E_{2}^{\prime}$ such that $\theta_{0}\left(c_{i}\right)=\left(z_{i}, 0\right)$ for $1 \leq i \leq r$ and $\theta_{0}\left(d_{j}\right)=\left(0, w_{j}\right)$ for $1 \leq j \leq s$, and moreover extend it to a basis $\left\{c_{i}, d_{j}, e_{k}, f_{l}\right\}$ of $\theta_{0}^{-1}\left(K O_{1} X \oplus L_{y} \cup\right.$ $\left.L_{x} \oplus K O_{5} X\right) \cap E_{2}^{\prime}$ where $L_{x} \cong Z / 2\left\{x_{1}, \ldots, x_{m+p}\right\}$ and $L_{y} \cong Z / 2\left\{y_{1}, \ldots, y_{n+q}\right\}$. Here we may take as $\theta_{0}\left(e_{k}\right)=\left(x_{m+k}, v_{k}\right)$ for $1 \leq k \leq p$ and $\theta_{0}\left(f_{l}\right)=\left(u_{l}, y_{n+l}\right)$ for $1 \leq l \leq q$ by relabelling $\left\{x_{i}, y_{j}\right\}$. As is easily observed, the set $\left\{c_{i}, d_{j}, e_{k}, f_{l}\right\}$ forms a basis of the whole E_{2}^{\prime}. However the elements given in the forms of $\left\{f_{l}\right\}$ can be removed by setting $a_{m+p+l}=b_{n+l}+f_{l}, x_{m+p+l}=u_{l}, e_{p+l}=f_{l}$ and $v_{p+l}=y_{n+l}$. Thus there exist a basis $\left\{a_{i}, b_{j}\right\}$ of A_{2}^{\prime} and a basis $\left\{c_{i}, d_{j}, e_{k}\right\}$ of E_{2}^{\prime} such that

$$
\begin{align*}
& \theta_{0}\left(a_{i}\right)=\left(x_{i}, 0\right) \quad \text { for } \quad 1 \leq i \leq m+p, \quad \theta_{0}\left(b_{j}\right)=\left(0, y_{j}\right) \quad \text { for } \quad 1 \leq j \leq n \\
& \theta_{0}\left(c_{i}\right)=\left(z_{i}, 0\right) \quad \text { for } \quad 1 \leq i \leq r, \quad \theta_{0}\left(d_{j}\right)=\left(0, w_{j}\right) \quad \text { for } \quad 1 \leq j \leq s \tag{3.2}\\
& \theta_{0}\left(e_{k}\right)=\left(x_{m+k}, v_{k}\right) \quad \text { for } \quad 1 \leq k \leq p .
\end{align*}
$$

Similarly we can choose bases of B_{2}^{\prime} and D_{2}^{\prime} using the restricted homomorphism θ_{2} : $B_{2}^{\prime} \oplus D_{2}^{\prime} \rightarrow \mathrm{KO}_{3} \mathrm{X} \oplus \mathrm{KO}_{7} \mathrm{X}$.

Proposition 3.2. Let X be a $C W$-spectrum with $K U_{*} X$ free. Then there are
direct sum decompositions

$$
\begin{array}{cl}
A \cong A^{0} \oplus A^{4} \oplus G^{0} \oplus G^{\prime}, & E \cong E^{3} \oplus E^{7} \oplus G^{0} \oplus G^{\prime \prime} \\
\quad B \cong B^{2} \oplus B^{6} \oplus G^{2} \oplus G^{\prime \prime}, & D \cong D^{1} \oplus D^{5} \oplus G^{2} \oplus G^{\prime} \\
\text { Tor } K O_{1} X \cong A_{2}^{0} \oplus E_{2}^{7} \oplus G_{2}^{0}, & \text { Tor } K O_{5} X \cong A_{2}^{4} \oplus E_{2}^{3} \oplus G_{2}^{0} \\
\text { Tor } K O_{3} X \cong B_{2}^{2} \oplus D_{2}^{1} \oplus G_{2}^{2}, & \text { Tor } K O_{7} X \cong B_{2}^{6} \oplus D_{2}^{5} \oplus G_{2}^{2}
\end{array}
$$

so that $\theta_{0} \mid A_{2}^{0} \oplus A_{2}^{4} \oplus E_{2}^{3} \oplus E_{2}^{7}$ and $\theta_{2} \mid B_{2}^{2} \oplus B_{2}^{6} \oplus D_{2}^{1} \oplus D_{2}^{5}$ behave identically, and $\theta_{0} \mid G_{2}^{0} \oplus G_{2}^{0}$ and $\theta_{2} \mid G_{2}^{2} \oplus G_{2}^{2}$ behave as the automorphism represented by the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Given $C W$-spectra X, Y we say that they have the same quasi $K O_{*}$-type if $K O \wedge$ Y is isomorphic to $K O \wedge X$ as a $K O$-module spectrum. The following result shown in [4, Proposition 1.1] is very useful in proving our main theorems.
(3.3) $C W$-spectra X and Y have the same quasi $K O_{*}$-type if and only if there exists a map $h: Y \rightarrow K O \wedge X$ inducing an isomorphism $\left(\left(\epsilon_{U} \wedge 1\right) h\right)_{*}: K U_{*} Y \rightarrow K U_{*} X$.

Applying Corollary 2.5, Lemma 3.1 and Proposition 3.2 we can show
Theorem 3.3. Let X be a $C W$-spectrum with $K U_{*} X$ free. Then there exist free abelian groups $A^{i}(0 \leq i \leq 7), C^{j}(0 \leq j \leq 1)$ and $G^{k}(0 \leq k \leq 3)$ so that X has the same quasi $K O_{*}$-type as the wedge sum $Y=\left(\underset{i}{\Sigma^{i}} S A^{i}\right) \vee\left(\vee_{j} \Sigma^{j} C(\eta) \wedge S C^{j}\right) \vee$ $\left(\vee_{k} \Sigma^{k} C\left(\eta^{2}\right) \wedge S G^{k}\right)$ where $S H$ denotes the Moore spectrum of type H and $C\left(\eta^{l}\right)$ denotes the cofiber of the map $\eta^{l}: \Sigma^{l} \rightarrow \Sigma^{0}(l=1,2)$. (Cf. [1, Theorem 3.2] and [6, Theorem 2.4]).

Proof. Using the free abelian groups chosen in Proposition 3.2 we set $A^{1+i}=$ $D^{1+i}, A^{2+i}=B^{2+i}, A^{3+i}=E^{3+i}(i=0,4), C^{0}=C, C^{1}=F, G^{1}=G^{\prime}$ and $G^{3}=G^{\prime \prime}$. For each component Y_{H} of the wedge sum Y there exists a unique map $f_{H}: Y_{H} \rightarrow$ $K U \wedge X$ such that $f_{H *}: K U_{*} Y_{H} \rightarrow K U_{*} X$ is the z inclusion, where H is taken to be $A^{i}(0 \leq i \leq 7), C^{j}(0 \leq j \leq 1)$ or $G^{k}(0 \leq k \leq 3)$. Choose a map $g_{H}: Y_{H} \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g_{H}=f_{H}$ as given in Corollary 2.5. Applying our method developed in $[4,5]$ we can easily find a map $h_{H}: Y_{H} \rightarrow K O \wedge X$ with $\left(\epsilon_{U} \wedge 1\right) h_{H}=f_{H}$, by means of Lemma 3.1 and Proposition 3.2. For example, in case of $H=G^{1}$ we get a map $h_{1}: \Sigma^{1} S G^{1} \rightarrow K O \wedge X$ satisfying $h_{1}\left(1 \wedge j_{Q}\right)=\left(\tau \beta_{C}^{-1} \wedge 1\right) g_{H}$ because $\left(\tau \beta_{C}^{-1} \wedge 1\right) g_{H}\left(1 \wedge i_{Q}\right)(\eta \wedge 1)=0$ where $i_{Q}: \Sigma^{0} \rightarrow C\left(\eta^{2}\right)$ and $j_{Q}: C\left(\eta^{2}\right) \rightarrow \Sigma^{3}$ denote the bottom cell inclusion and collapsing. Here the map g_{H} might be modified slightly by means of (2.11), but still it satisfies the property as given in Corollary 2.5. The map h_{1} is factorized as $(\eta \wedge 1) h_{1}^{\prime}$ for some h_{1}^{\prime} because it has at most order 4. Since the composition map $\left(\epsilon_{O} \beta_{U}^{-1} \wedge 1\right) f_{H}$ becomes trivial, there exists a map h_{H} with $\left(\epsilon_{U} \wedge 1\right) h_{H}=f_{H}$ as desired. Our result is now established by virtue of (3.3).

4. $K U_{*} X$ containing only one 2-torsion cyclic group $Z / 2^{m}$

In this section we deal with a $C W$-spectrum X such that $K U_{0} X \cong H \oplus Z / 2^{m}$ and $K U_{1} X \cong K$ with H, K free and finitely generated. In this case we may assume that $\psi_{C}^{-1}=1$ or $1+2^{m-1}$ on $Z / 2^{m}$ itself because X is replaced by $\Sigma^{2} X$ if $\psi_{C}^{-1}=$ -1 or $-1+2^{m-1}$ on $Z / 2^{m}$. Given such a $C W$-spectrum X we admit direct sum decompositions

$$
\begin{equation*}
K U_{0} X \cong A \oplus B \oplus C \oplus C \oplus M, \quad K U_{1} X \cong D \oplus E \oplus F \oplus F \tag{4.1}
\end{equation*}
$$

in the category \mathcal{C}, where A, B, C, D, E and F are free objects on which ψ_{C}^{-1} behaves as stated in (2.7) and M is one of the objects given in the following forms:

$$
\begin{array}{cccccc}
& \text { (I) } & \text { (II) } & \text { (III) } & \text { (IV) } & \text { (V) } \\
M & Z / 2^{m} & Z \oplus Z / 2^{m} & Z \oplus Z / 2^{m} & Z \oplus Z \oplus Z / 2^{m} & Z / 2^{m}(m \geq 3) \\
\psi_{C}^{-1} & 1 & \left(\begin{array}{cc}
1 & 0 \\
2^{m-1} & 1
\end{array}\right) & \left(\begin{array}{cc}
-1 & 0 \\
-1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
2^{m-1} & -1 & 1
\end{array}\right) & 1+2^{m-1}
\end{array}
$$

According to Bousfield[1, Theorem 11.1] any $C W$-spectrum X has the same $K_{*}{ }^{-}$ local type as a certain finite $C W$-spectrum Y if $K U_{*} X$ is finitely generated. So we may assume that a $C W$-spectrum X satisfying (4.1) is finite in our discussion. In order to distinguish such a $C W$-spectrum X we define its \mathcal{C}-type to be the pair (J, J') when the components M in $K U_{0} X$ and $K U_{-1} D X$ are given in forms of (J) and (J^{\prime}), respectively.

Proposition 4.1. Let X be a $C W$-spectrum satisfying (4.1). Then it has one of the following ten \mathcal{C}-types: (I, I), (II, II), (III, III), (V, V), (I, II), (I, III), (I, IV), (II, I), (III, I) and (IV, I).

Proof. It is sufficient to show that X never has the \mathcal{C}-types (II, III), (II, IV), (III, IV) and (IV, IV). Assume that the \mathcal{C}-type of X is (II, III). Thus we have the following direct sum decompositions $K U_{0} X \cong A \oplus B \oplus C \oplus C \oplus\left(Z^{A} \oplus Z / 2^{m}\right), K U_{1} X \cong D \oplus E \oplus$ $F \oplus F \oplus Z^{E}, K U_{-1} D X \cong D \oplus E \oplus F \oplus F \oplus\left(Z^{E} \oplus Z / 2^{m}\right), K U_{0} D X \cong A \oplus B \oplus C \oplus C \oplus Z^{A}$ in which $Z^{A} \cong Z^{E} \cong Z, \psi_{C}^{-1}=\left(\begin{array}{cc}1 & 0 \\ 2^{m-1} & 1\end{array}\right)$ on $Z^{A} \oplus Z / 2^{m}$ and $\psi_{C}^{-1}=\left(\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right)$ on $Z^{E} \oplus Z / 2^{m}$. By the aid of (2.1.iii) and (2.3.iii) we can easily calculate $K C_{0} X \cong$ $A \oplus C \oplus D \oplus E_{2} \oplus F \oplus Z^{A} \oplus Z / 2^{m+1}$ and $K C_{2} X \cong B \oplus C \oplus D_{2} \oplus E \oplus F \oplus Z^{E}$. Consider the induced homomorphisms $\varphi_{2}=\left(\epsilon_{C} \epsilon_{O} \beta_{U}^{-1}\right)_{*}: K U_{4} X \rightarrow K C_{2} X$ and $\varphi_{2}^{\prime}=\left(\epsilon_{U} \tau \beta_{C}^{-1}\right)_{*}: K C_{2} X \rightarrow K U_{-1} X$. Using the equalities $\zeta_{*} \varphi_{2}=\left(\left(1+\psi_{C}^{-1}\right) \beta_{U}^{-1}\right)_{*}$ and $\varphi_{2}^{\prime}\left(\gamma \beta_{U}\right)_{*}=\left(\left(1+\psi_{C}^{-1}\right) \beta_{U}^{-1}\right)_{*}$ we can observe that $\pi_{Z} \varphi_{2}^{\prime} \varphi_{2} \mid Z^{A}$ is non-trivial
where π_{Z} denotes the projection onto Z^{E}. This is a contradiction to $\varphi_{2}^{\prime} \varphi_{2}=0$. The other cases are similarly shown.

Let X be a $C W$-spectrum whose \mathcal{C}-type is one of the following seven types: (I, I), (II, I), (III, I), (IV, I), (II, II), (III, III) and (V, V). Thus we admit direct sum decompositions given in the following forms:

$$
\begin{gather*}
K U_{0} X \cong A \oplus B \oplus C \oplus C \oplus M, \quad K U_{1} X \cong D \oplus E \oplus F \oplus F \oplus K \\
K U_{-1} D X \cong D \oplus E \oplus F \oplus F \oplus N, \quad K U_{0} D X \cong A \oplus B \oplus C \oplus C \oplus H \tag{4.3}
\end{gather*}
$$

in the category \mathcal{C}. Here A, B, C, D, E and F are free objects on which ψ_{C}^{-1} behaves as stated in (2.7), and $M \cong H \oplus Z / 2^{m}$ and $N \cong K \oplus Z / 2^{m}$ are the objects in the category \mathcal{C} tabled below:

	(I, I)	(II, I)	(III, I)	(IV, I)
M	$Z / 2^{m}$	$Z \oplus Z / 2^{m}$	$Z \oplus Z / 2^{m}$	$Z \oplus Z \oplus Z / 2^{m}$
ψ_{C}^{-1}	1	$\left(\begin{array}{cc}1 & 0 \\ 2^{m-1} & 1\end{array}\right)$	$\left(\begin{array}{cc}-1 & 0 \\ -1 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 \\ 0 & -1 & 0 \\ 2^{m-1} & -1 & 1\end{array}\right)$
N	$Z / 2^{m}$	$Z / 2^{m}$	$Z / 2^{m}$	$Z / 2^{m}$
ψ_{C}^{-1}	1	1	1	1
	(II, II)	(III, III)	(V, V)	
M	$Z \oplus Z / 2^{m}$	$Z \oplus Z / 2^{m}$	$Z / 2^{m}$.	
ψ_{C}^{-1}	$\left(\begin{array}{cc}1 & 0 \\ 2^{m-1} & 1\end{array}\right)$	$\left(\begin{array}{cc}-1 & 0 \\ -1 & 1\end{array}\right)$	$1+2^{m-1}$	
N	$Z \oplus Z / 2^{m}$	$Z \oplus Z / 2^{m}$	$Z / 2^{m}$	
ψ_{C}^{-1}	$\left(\begin{array}{cc}1 & 0 \\ 2^{m-1} & 1\end{array}\right)$	$\left(\begin{array}{cc}-1 & 0 \\ -1 & 1\end{array}\right)$	$1+2^{m-1}$.	

By the aid of (2.1.iii) and (2.3.iii) we can calculate the $K C$-homology groups $K C_{i} X(i=0,1,2,3)$ as follows:
(4.5)

$$
\begin{aligned}
& K C_{0} X \cong A \oplus C \oplus D \oplus E_{2} \oplus F \oplus M^{0}, \quad K C_{1} X \cong A_{2} \oplus B \oplus C \oplus D \oplus F \oplus M^{1} \\
& K C_{2} X \cong B \oplus C \oplus D_{2} \oplus E \oplus F \oplus M^{2}, \quad K C_{3} X \cong A \oplus B_{2} \oplus C \oplus E \oplus F \oplus M^{3}
\end{aligned}
$$

in which $M^{i}(i=0,1,2,3)$ are the abelian groups tabled below:

	(I, I)	(II, I)	(III, I)	(IV, I)
M^{0}	$Z / 2^{m}$	$Z \oplus Z / 2^{m}$	$Z / 2^{m}$	$Z \oplus Z / 2^{m}$
M^{1}	$Z / 2$	$(*)_{m}$	Z	$Z \oplus Z / 2$
M^{2}	$Z / 2$	$Z / 2$	$Z \oplus Z / 2$	$Z \oplus Z / 2$
M^{3}	$Z / 2^{m}$	$Z \oplus Z / 2^{m-1}$	$Z / 2^{m+1}$	$Z \oplus Z / 2^{m}$

(II, II)
(III, III)
(V, V)
$Z \oplus(*)_{m}$
$Z / 2^{m+1} \quad Z / 2^{m-1}$
$Z \oplus Z / 2^{m-1}$
$Z \oplus \begin{array}{cc}Z \oplus 2^{m+1} & Z / 2^{m-1}\end{array}$
$M^{0} \quad Z \oplus Z \oplus Z / 2^{m-1}$
M^{1}
M^{2}
M^{3}
where $(*)_{1} \cong Z / 4$ and $(*)_{m} \cong Z / 2 \oplus Z / 2$ if $m \geq 2$.
Similarly to (3.1) we can observe that the induced homomorphisms $\varphi_{i}=$ $\left(\epsilon_{C} \epsilon_{O} \beta_{U}^{-1}\right)_{*}: K U_{i+2} X \rightarrow K C_{i} X(i=0,2)$ are represented by the following matrices

$$
\begin{align*}
& \left(\begin{array}{cc}
\tilde{\Gamma}_{0} & 0 \\
\beta_{0} & \gamma_{0}
\end{array}\right):(A \oplus B \oplus C \oplus C) \oplus M \rightarrow\left(A \oplus D \oplus E_{2} \oplus C \oplus F\right) \oplus M^{0} \\
& \left(\begin{array}{cc}
\tilde{\Gamma}_{2} & 0 \\
\beta_{2} & \gamma_{2}
\end{array}\right):(A \oplus B \oplus C \oplus C) \oplus M \rightarrow\left(B \oplus D_{2} \oplus E \oplus C \oplus F\right) \oplus M^{2} . \tag{4.7}
\end{align*}
$$

Here $\tilde{\Gamma}_{i}(i=0,2)$ are the same matrices given in (3.1), $\beta_{0}=0$ unless the \mathcal{C}-type of X is (III, III), $\beta_{2}=0$ unless the \mathcal{C}-type of X is (II, II), and $\gamma_{i}(i=0,2)$ are expressed as the matrices tabled below:

	$\gamma_{0}: M \rightarrow M^{0}$	$M \rightarrow M^{2}$	M	M^{0}	M^{2}
(I, I)	2	0	$Z / 2^{m}$	$Z / 2^{m}$	Z/2
(II, I)	$\left(\begin{array}{cc}1 & 0 \\ 2^{m-1} & 2\end{array}\right)$	(10)	$Z \oplus Z / 2^{m}$	$Z \oplus Z / 2^{m}$	Z/2
(III, I)	(-12)	$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$	$Z \oplus Z / 2^{m}$	$Z / 2^{m}$	$Z \oplus Z / 2$
(IV, I)	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 2^{m-1} & -1 & 2\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$	$Z \oplus Z \oplus Z / 2^{m}$	$Z \oplus Z / 2^{m}$	$Z \oplus Z / 2$
(II, II)	$\left(\begin{array}{rr}1 & 0 \\ -2^{m-1} & 0 \\ 0 & 1\end{array}\right)$	$\left\{\begin{array}{l}\left(\begin{array}{lll} \pm & 2\end{array}\right) \\ \left(\begin{array}{ll}10 \\ \epsilon & 1\end{array}\right)\end{array}\right.$	$Z \oplus Z / 2^{m}$	$Z \oplus Z \oplus Z / 2^{m-1}$	$\left\{\begin{array}{l}Z / 4 \\ Z / 2 \oplus Z / 2\end{array}\right.$
(III, III)	$\left(-1+2^{m} \epsilon 2\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$	$Z \oplus Z / 2^{m}$	$Z / 2^{m+1}$	$Z \oplus Z$
(V, V)	1	1	$Z / 2^{m}$	$Z / 2^{m-1}$	$Z / 2$

where $\epsilon=0$ or 1 .
Let us denote by $L^{i}(i=0,2)$ the cokernel of $\gamma_{i}: M \rightarrow M^{i}$. Note that $L^{0}=\{0\}$ unless the \mathcal{C}-type of X is (I, I), (II, I) or (II, II), and $L^{2}=\{0\}$ unless the \mathcal{C}-type of X is (I, I), (III, I) or (III, III). In the non-zero cases the canonical epimorphisms $\rho_{i}^{\prime}: M^{i} \rightarrow L^{i}(i=0,2)$ are represented by the rows tabled below:

		$\rho_{0}^{\prime}: M^{0} \rightarrow L^{0} \rightarrow L^{2}$
(I, I)	$1: Z / 2^{m} \rightarrow Z / 2$	(I, I)
(II, I)	$\left(2^{m-1} 1\right): Z / 2 \rightarrow Z / 2^{m} \rightarrow Z / 2$	(III, I) $(01): Z \oplus Z / 2 \rightarrow Z / 2$
(II, II) $\left(2^{m-1} 10\right): Z \oplus Z \oplus Z / 2^{m-1} \rightarrow Z$	(III, III)	$(01): Z \oplus Z \rightarrow Z$

Lemma 4.2. The cokernels of $\left(\epsilon_{C} \epsilon_{O} \beta_{U}^{-1}\right)_{*}: K U_{i+2} X \rightarrow K C_{i} X(i=0,2)$ coincide with $A_{2}^{\prime} \oplus D \oplus E_{2}^{\prime} \oplus F \oplus L^{0}$ and $B_{2}^{\prime} \oplus E \oplus D_{2}^{\prime} \oplus F \oplus L^{2}$, respectively, and the canonical epimorphisms

$$
\begin{gathered}
\tilde{\rho}_{0}:\left(A^{\prime} \oplus G^{\prime} \oplus D^{\prime} \oplus G^{\prime} \oplus E_{2} \oplus C \oplus F\right) \oplus M^{0} \rightarrow\left(A_{2}^{\prime} \oplus D^{\prime} \oplus G^{\prime} \oplus E_{2}^{\prime} \oplus F\right) \oplus L^{0} \\
\tilde{\rho}_{2}:\left(B^{\prime} \oplus G^{\prime \prime} \oplus E^{\prime} \oplus \dot{G}^{\prime \prime} \oplus D_{2} \oplus C \oplus F\right) \oplus M^{2} \rightarrow\left(B_{2}^{\prime} \oplus E^{\prime} \oplus G^{\prime \prime} \oplus D_{2}^{\prime} \oplus F\right) \oplus L^{2}
\end{gathered}
$$

are expressed as the direct sums $\rho_{0} \oplus \rho_{0}^{\prime}$ and $\rho_{2} \oplus \rho_{2}^{\prime}$, respectively. Here $\rho_{i}(i=0,2)$ are the same epimorphisms as given in Lemma 3.1.

There exist two monomorphisms

$$
\begin{aligned}
& \theta_{0}: A_{2}^{\prime} \oplus D \oplus E_{2}^{\prime} \oplus F \oplus L^{0} \rightarrow K O_{1} X \oplus K O_{5} X \\
& \theta_{2}: B_{2}^{\prime} \oplus E \oplus D_{2}^{\prime} \oplus F \oplus L^{2} \rightarrow K O_{3} X \oplus K O_{7} X
\end{aligned}
$$

so that $\left(-\tau, \tau \beta_{C}\right)_{*}: K C_{i} X \rightarrow K O_{i+1} X \oplus K O_{i+5} X(i=0,2)$ are factorized as $\theta_{i} \tilde{\rho}_{i}$. Consider the restricted homomorphism $\theta_{0}: A_{2}^{\prime} \oplus E_{2}^{\prime} \oplus L^{0} \rightarrow K O_{1} X \oplus K O_{5} X$ when the \mathcal{C}-type of X is (I, I) or (II, I). For the generator g of $L^{0} \cong Z / 2$ we set $\theta_{0}(g)=\left(x_{0}, y_{0}\right)$ in $K O_{1} X \oplus K O_{5} X$. Then the pair (x_{0}, y_{0}) is divided into the three types:
i) $\quad x_{0} \neq 0, \quad y_{0}=0$
ii) $\quad x_{0}=0, \quad y_{0} \neq 0$
iii) $x_{0} \neq 0, \quad y_{0} \neq 0$.

Here we may assume that the set $\theta_{0}^{-1}\left(K O_{1} X \oplus\left\{y_{0}\right\}\right) \cap E_{2}^{\prime}$ is empty in case of ii) and the set $\theta_{0}^{-1}\left(K O_{1} X \oplus\left\{y_{0}\right\} \cup\left\{x_{0}\right\} \oplus K O_{5} X\right) \cap E_{2}^{\prime}$ is empty in case of iii), although the generator g might be changed by using a suitable transformation on $E_{2}^{\prime} \oplus L^{0}$. As in (3.2) we can choose a basis $\left\{a_{i}, b_{j}\right\}$ of A_{2}^{\prime} and a basis $\left\{c_{i}, d_{j}, e_{k}\right\}$ of E_{2}^{\prime} such that

$$
\begin{gather*}
\theta_{0}\left(a_{i}\right)=\left(x_{i}, 0\right) \text { for } 1 \leq i \leq m+p, \quad \theta_{0}\left(b_{j}\right)=\left(0, y_{j}\right) \text { for } 1 \leq j \leq n \\
\theta_{0}\left(c_{i}\right)=\left(z_{i}, 0\right) \text { for } 1 \leq i \leq r, \quad \theta_{0}\left(d_{j}\right)=\left(0, w_{j}\right) \text { for } 1 \leq j \leq s \tag{4.10}\\
\theta_{0}\left(e_{k}\right)=\left(x_{k}, v_{k}\right) \text { for } \epsilon \leq k \leq p
\end{gather*}
$$

Here $\epsilon=0$ or 1 in case of \mathbf{i}), $\epsilon=1$ in cases of ii) and iii), and $x_{0}=x_{p+1}$ in case of iii). Similarly we can choose bases of $L^{2} \cong Z / 2, B_{2}^{\prime}$ and D_{2}^{\prime} using the restricted homomorphism $\theta_{2}: B_{2}^{\prime} \oplus D_{2}^{\prime} \oplus L^{2} \rightarrow K O_{3} X \oplus K O_{7} X$ when the \mathcal{C}-type of X is (I, I) or (III, I).

Proposition 4.3. i) Let X be a $C W$-spectrum whose \mathcal{C}-type is (I, I) or (II, I). Then it admits one of four kinds of direct sum decompositions given in the following forms:

$$
\begin{align*}
A \cong A^{0} \oplus A^{4} \oplus G^{0} \oplus G^{\prime}, & E \cong E^{3} \oplus E^{7} \oplus G^{0} \oplus G^{\prime \prime} \tag{A1}\\
\text { Tor } K O_{1} X \cong A_{2}^{0} \oplus E_{2}^{7} \oplus G_{2}^{0} \oplus L^{0}, & \text { Tor } K O_{5} X \cong A_{2}^{4} \oplus E_{2}^{3} \oplus G_{2}^{0} \\
A \cong A^{0} \oplus A^{4} \oplus G^{0} \oplus G^{\prime}, & E \cong E^{3} \oplus E^{7} \oplus G^{0} \oplus G^{\prime \prime} \\
\text { Tor } K O_{1} X \cong A_{2}^{0} \oplus E_{2}^{7} \oplus G_{2}^{0}, & \text { Tor } K O_{5} X \cong A_{2}^{4} \oplus E_{2}^{3} \oplus G_{2}^{0} \oplus L^{0} \\
A \cong A^{0} \oplus A^{4} \oplus Z^{A} \oplus G^{0} \oplus G^{\prime}, & E \cong E^{3} \oplus E^{7} \oplus G^{0} \oplus G^{\prime \prime} \\
\text { Tor } K O_{1} X \cong A_{2}^{0} \oplus E_{2}^{7} \oplus G_{2}^{0} \oplus L^{0}, & \text { Tor } K O_{5} X \cong A_{2}^{4} \oplus E_{2}^{3} \oplus G_{2}^{0} \oplus L^{0} \\
A \cong A^{0} \oplus A^{4} \oplus G^{0} \oplus G^{\prime}, & E \cong E^{3} \oplus E^{7} \oplus Z^{E} \oplus G^{0} \oplus G^{\prime \prime} \\
\text { Tor } K O_{1} X \cong A_{2}^{0} \oplus E_{2}^{7} \oplus G_{2}^{0} \oplus{L^{0}}, & \text { Tor } K O_{5} X \cong A_{2}^{4} \oplus E_{2}^{3} \oplus G_{2}^{0} \oplus Z / 2
\end{align*}
$$

Here $\theta_{0} \mid A_{2}^{0} \oplus A_{2}^{4} \oplus E_{2}^{3} \oplus E_{2}^{7}$ and $\theta_{0} \mid G_{2}^{0} \oplus G_{2}^{0}$ behave as in Proposition 3.2, $\theta_{0} \mid L^{0}$ behaves identically, and $\theta_{0} \mid Z_{2}^{A} \oplus L^{0}$ and $\theta_{0} \mid Z_{2}^{E} \oplus L^{0}$ behave as the automorphisms represented by the matrices $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, respectively, in which $Z^{A} \cong Z^{E} \cong Z$ and $Z_{2}^{A} \cong Z_{2}^{E} \cong L^{0} \cong Z / 2$.
ii) Let X be a $C W$-spectrum whose \mathcal{C}-type is (I, I) or (III, I). Then it admits one of four kinds of direct sum decompositions (B1), (B2), (B3) and (B4) given in similar forms to (A1), (A2), (A3) and (A4).
iii) Let X be a $C W$-spectrum whose \mathcal{C}-type is (IV, I), (II, II), (III, III) or (V, V). Then it admits only one kind of direct sum decompositions as given in Proposition 3.2.

For a $C W$-spectrum X of \mathcal{C}-type (I, I) we define its θ-type to be the pair (Ai, Bj) if it admits direct sum decompositios given in (Ai) and (Bj). Similarly we define its θ-type (Ai) or (Bj) for a $C W$-spectrum X of \mathcal{C}-type (II, I) or (III, I).

5. Main results

We now recall several small spectra constructed in [4] and [5]. Let $S Z / 2^{m}$ be the Moore spectrum of type $Z / 2^{m}$ with the bottom cell inclusion i and the top cell projection j. Denote by $M_{m}, N_{m}, Q_{m}, R_{m}, M_{m}^{\prime}, N_{m}^{\prime}, Q_{m}^{\prime}, R_{m}^{\prime}, V_{m}$ and W_{m} the cofibers of the following maps:

$$
\begin{array}{lll}
i \eta: \Sigma^{1} \rightarrow S Z / 2^{m}, & i \eta^{2}: \Sigma^{2} \rightarrow S Z / 2^{m}, & \tilde{\eta} \eta: \Sigma^{3} \rightarrow S Z / 2^{m}, \\
\tilde{\eta} \eta^{2}: \Sigma^{4} \rightarrow S Z / 2^{m}, & \eta j: S Z / 2^{m} \rightarrow \Sigma^{0}, & \eta^{2} j: \Sigma^{1} S Z / 2^{m} \rightarrow \Sigma^{0}, \\
\eta \bar{\eta}: \Sigma^{2} S Z / 2^{m} \rightarrow \Sigma^{0}, & \eta^{2} \bar{\eta}: \Sigma^{3} S Z / 2^{m} \rightarrow \Sigma^{0}, & \\
i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow S Z / 2^{m}, & i \bar{\eta}+\tilde{\eta} j: \Sigma^{1} S Z / 2 \rightarrow S Z / 2^{m}, &
\end{array}
$$

respectively. Here $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2^{m}$ and $\bar{\eta}: \Sigma^{1} S Z / 2^{m} \rightarrow \Sigma^{0}$ are a coextension and an extension of $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$. Given two cofibers X_{m}, Y_{m} of any maps f : $\Sigma^{i} \rightarrow S Z / 2^{m}, g: \Sigma^{j} \rightarrow S Z / 2^{m}(i \leq j)$ we denote by $X Y_{m}$ the cofiber of the map $f \vee g: \Sigma^{i} \vee \Sigma^{j} \rightarrow S Z / 2^{m}$. Dually we denote by $X^{\prime} Y_{m}^{\prime}$ the cofiber of the map (f, g) :
$\Sigma^{j} S Z / 2^{m} \rightarrow \Sigma^{j-i} \vee \Sigma^{0}$ for two cofibers $X_{m}^{\prime}, Y_{m}^{\prime}$ of any maps $f: \Sigma^{i} S Z / 2^{m} \rightarrow \Sigma^{0}, g$: $\Sigma^{j} S Z / 2^{m} \rightarrow \Sigma^{0}(i \leq j)$. Moreover we denote by $M^{\prime} M_{m}, N^{\prime} M_{m}, N^{\prime} N_{m}, Q^{\prime} Q_{m}$, $R^{\prime} Q_{m}$ and $R^{\prime} R_{m}$ the cofibers of the following maps:

$$
\begin{array}{lll}
\eta k_{M}: M_{m} \rightarrow \Sigma^{0}, & \eta^{2} k_{M}: \Sigma^{1} M_{m} \rightarrow \Sigma^{0}, & \eta^{2} k_{N}: \Sigma^{1} N_{m} \rightarrow \Sigma^{0} \\
\eta \bar{k}_{Q}: \Sigma^{2} Q_{m} \rightarrow \Sigma^{0}, & \eta^{2} \bar{k}_{Q}: \Sigma^{3} Q_{m} \rightarrow \Sigma^{0}, & \eta^{2} \bar{k}_{R}: \Sigma^{3} R_{m} \rightarrow \Sigma^{0}
\end{array}
$$

respectively. Here the $\operatorname{map} k_{M}: M_{m} \rightarrow \Sigma^{1}, k_{N}: N_{m} \rightarrow \Sigma^{1}, \bar{k}_{Q}: \Sigma^{1} Q_{m} \rightarrow \Sigma^{0}$ and $\bar{k}_{R}: \Sigma^{1} R_{m} \rightarrow \Sigma^{0}$ satisfy $k_{M} i_{M}=k_{N} i_{N}=j$ and $\bar{k}_{Q} i_{Q}=\bar{k}_{R} i_{R}=\bar{\eta}$ in which $i_{X}: S Z / 2^{m} \rightarrow X_{m}$ denotes the canonical inclusion.

The small spectra $S Z / 2^{m}, V_{m}, N_{m}, R_{m}, \Sigma^{2} N_{m}^{\prime}, R_{m}^{\prime}, N R_{m}, N^{\prime} R_{m}^{\prime}, \Sigma^{2} N^{\prime} N_{m}$ and $R^{\prime} R_{m}$ have the \mathcal{C}-type (I, I). As is easily observed (cf. [5, Lemma 3.2]), their θ-types are tabled as follows:

$S Z / 2^{m}$	V_{m}	N_{m}	R_{m}	$\Sigma^{2} N_{m}^{\prime}$	R_{m}^{\prime}
$(A 1, B 1)$	$(A 2, B 1)$	$(A 4, B 1)$	$(A 1, B 4)$	$(A 2, B 3)$	$(A 3, B 2)$
$N R_{m}$	$N^{\prime} R_{m}^{\prime}$	$\Sigma^{2} N^{\prime} N_{m}$	$R^{\prime} R_{m}$		
$(A 4, B 4)$	$(A 3, B 3)$	$(A 4, B 3)$	$(A 3, B 4)$		

The small spectra $Q_{m}, N Q_{m}$ and $R^{\prime} Q_{m}$ have the \mathcal{C}-type (II, I), and $M_{m}, M R_{m}$ and $\Sigma^{2} N^{\prime} M_{m}$ have the \mathcal{C}-type (III, I). Their θ-types are tabled as follows:

Q_{m}	$N Q_{m}$	$R^{\prime} Q_{m}$	M_{m}	$M R_{m}$	$\Sigma^{2} N^{\prime} M_{m}$
$(A 1)$	$(A 4)$	$(A 3)$	$(B 1)$	$(B 4)$	$(B 3)$

The small spectra $M Q_{m}, \Sigma^{1} Q^{\prime} Q_{m}, \Sigma^{3} M^{\prime} M_{m}$ and W_{m} have the \mathcal{C}-types (IV, I), (II, II), (III, III) and (V, V), respectively.

Applying Lemma 4.2 and Proposition 4.3 we can show the following three main results.

Theorem 5.1. Let X be a $C W$-spectrum whose \mathcal{C}-type is (I, I). Then there exist free abelian groups $A^{i}(0 \leq i \leq 7), C^{j}(0 \leq j \leq 1), G^{k}(0 \leq k \leq 3)$ and a certain small spectrum Y so that X has the same quasi $K O_{*}$-type as the wedge sum $\left(\vee_{i} \Sigma^{i} S A^{i}\right) \vee$ $\left(\underset{j}{\vee} \Sigma^{j} C(\eta) \wedge S C^{j}\right) \vee\left(\underset{k}{\vee} \Sigma^{k} C\left(\eta^{2}\right) \wedge S G^{k}\right) \vee Y$. Here Y is taken to be one of the following small spectra:

$$
\Sigma^{l} S Z / 2^{m}, \Sigma^{l} V_{m}, \Sigma^{l} N_{m}, \Sigma^{l} R_{m}, \Sigma^{2+l} N_{m}^{\prime}, \Sigma^{l} R_{m}^{\prime}, N R_{m}, N^{\prime} R_{m}^{\prime}, \Sigma^{2} N^{\prime} N_{m}, R^{\prime} R_{m}
$$

for $l=0,4$. (Cf. [5, Theorem 4.2]).

Proof. Let $Y_{i j}$ denote the small spectrum of θ-type (Ai, Bj) as listed in (5.1). When the θ-type of X is (Ai, Bj), there exists a map $f: Y_{i j} \rightarrow K U \wedge X$ such that $f_{*}: K U_{*} Y_{i j} \rightarrow K U_{*} X$ is the canonical inclusion in the category \mathcal{C}. By virtue of Proposition 2.3 such a map f is chosen to satisfy $\left(\psi_{C}^{-1} \wedge 1\right) f=f$. Then we get a map $g: Y_{i j} \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ such that $g_{*}: K C_{i} Y_{i j} \rightarrow K C_{i} X(i=0,2)$ are the canonical inclusions because of Corollary 2.5 and Lemma 2.6. It is sufficient to find a map $h: Y_{i j} \rightarrow K O \wedge X$ with $\left(\epsilon_{U} \wedge 1\right) h=f$ for each θ-type (Ai, Bj) by applying our method developed in [4,5], the remaining cases being quite similarly shown to Theorem 3.3. For example, in case of θ-type (A3, B4) we get a map k_{1} : $\Sigma^{1} R_{m} \rightarrow K O \wedge X$ such that $k_{1} j_{R^{\prime} R, R}=\left(\tau \beta_{C}^{-1} \wedge 1\right) g$ for the bottom cell collapsing $j_{R^{\prime} R, R}: R^{\prime} R_{m} \rightarrow \Sigma^{4} R_{m}$. As is easily checked, the composition map $(\eta \wedge 1) k_{1} i_{R}$: $\Sigma^{2} S Z / 2^{m} \rightarrow K O \wedge X$ is trivial where $i_{R}: S Z / 2^{m} \rightarrow R_{m}$ is the canonical inclusion. Therefore there exists a map $h_{1}: \Sigma^{6} \rightarrow K O \wedge X$ such that $h_{1} j_{R^{\prime} R}=\left(\tau \beta_{C}^{-1} \wedge 1\right) g$ for the top cell projection $j_{R^{\prime} R}: R^{\prime} R_{m} \rightarrow \Sigma^{9}$. Here the map g might be modified slightly by means of (2.11), but still it satisfies the property as given in Lemma 2.6. Since the composition map $h_{1} \eta$ is trivial, we can find a map $h: R^{\prime} R_{m} \rightarrow K O \wedge X$ with $\left(\epsilon_{U} \wedge 1\right) h=f$ as desired. The other cases are similarly established.

Theorem 5.2. Let X be a $C W$-spectrum whose \mathcal{C}-type is (II, I) or (III, I). Then there exist free abelian groups $A^{i}(0 \leq i \leq 7), C^{j}(0 \leq j \leq 1), G^{k}(0 \leq k \leq 3)$ and a certain small spectrum Y so that X has the same quasi $K O_{*}$-type as the wedge sum $\left(\underset{i}{\vee} \Sigma^{i} S A^{i}\right) \vee\left(\underset{j}{\vee} \Sigma^{j} C(\eta) \wedge S C^{j}\right) \vee\left(\underset{k}{\vee} \Sigma^{k} C\left(\eta^{2}\right) \wedge S G^{k}\right) \vee Y$. Here Y is taken to be one of the following small spectra:
i) $\quad Q_{m}, \quad \Sigma^{4} Q_{m}, \quad N Q_{m}, \quad R^{\prime} Q_{m} \quad$ in case of \mathcal{C}-type (II, I) ;
ii) $\quad M_{m}, \quad \Sigma^{4} M_{m}, \quad M R_{m}, \quad \Sigma^{2} N^{\prime} M_{m}$ in case of \mathcal{C}-type (III, I).
(Cf. [5, Theorem 4.4]).
Proof. Set $Y_{1}=Q_{m}, Y_{2}=\Sigma^{4} Q_{m}, Y_{3}=R^{\prime} Q_{m}$ and $Y_{4}=N Q_{m}$ if the \mathcal{C}-type of X is (II, I), and $Y_{1}=M_{m}, Y_{2}=\Sigma^{4} M_{m}, Y_{3}=\Sigma^{2} N^{\prime} M_{m}$ and $Y_{4}=M R_{m}$ if the \mathcal{C}-type of X is (III, I). When the θ-type of X is (Ak) or (Bk), there exists a map $f: Y_{k} \rightarrow K U \wedge X$ such that $f_{*}: K U_{*} Y_{k} \rightarrow K U_{*} X$ is the canonical inclusion in the category \mathcal{C}. Since such a map f is chosen to satisfy $\left(\psi_{C}^{-1} \wedge 1\right) f=f$, we get a map $g: Y_{k} \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ such that $g_{*}: K C_{i} Y_{k} \rightarrow K C_{i} X(i=0,2)$ are nearly the canonical inclusions because of Lemmas 2.6 and 2.7. It is sufficient to find a map $h: Y_{k} \rightarrow K O \wedge X$ with $\left(\epsilon_{U} \wedge 1\right) h=f$ for each θ-type (Ak) or (Bk) by applying our method developed in [4, 5]. For example, in case of θ-type (A4) we get a map $k_{1}: \Sigma^{1} Q_{m} \rightarrow K O \wedge X$ such that $k_{1} j_{R^{\prime} Q, Q}=\left(\tau \beta_{C}^{-1} \wedge 1\right) g$ for the bottom cell collapsing $j_{R^{\prime} Q, Q}: R^{\prime} Q_{m} \rightarrow \Sigma^{4} Q_{m}$. Since the composition map $(\eta \wedge 1) k_{1} i_{Q}: \Sigma^{2} S Z / 2^{m} \rightarrow$ $K O \wedge X$ is trivial for the canonical inclusion $i_{Q}: S Z / 2^{m} \rightarrow Q_{m}$, there exists a map $h_{1}: \Sigma^{5} \rightarrow K O \wedge X$ such that $h_{1} j_{R^{\prime} Q}=\left(\tau \beta_{C}^{-1} \wedge 1\right)$ where $j_{R^{\prime} Q}: R^{\prime} Q_{m} \rightarrow \Sigma^{8}$
is the top cell projection. Here the map g might be modified slightly by means of (2.11), but still it satisfies the property that $\rho_{0} g_{*}\left(H^{+}\right) \subset E_{2}$ and $\rho_{2} g_{*}\left(H^{-}\right) \subset D_{2}$ given in Lemma 2.7. The map h_{1} is factorized as $h_{1}^{\prime} \eta$ for some h_{1}^{\prime} because it has at most order 4. Recall that $R^{\prime} Q_{m}$ is the cofiber of the map $\tilde{h}_{R} \eta: \Sigma^{7} \rightarrow R_{m}^{\prime}$ where the map \tilde{h}_{R} satisfies $j_{R}^{\prime} \tilde{h}_{R}=\tilde{\eta}$ for the bottom cell collapsing $j_{R}^{\prime}: R_{m}^{\prime} \rightarrow \Sigma^{4} S Z / 2^{m}$. Evidently the composition map $h_{1} \eta j_{R^{\prime} Q}$ becomes trivial. Consequently we can find a map $h: R^{\prime} Q_{m} \rightarrow K O \wedge X$ with $\left(\epsilon_{U} \wedge 1\right) h=f$ as desired. The other cases are similarly established.

Theorem 5.3. Let X be a $C W$-spectrum whose \mathcal{C}-type is (IV, I), (II, II), (III, III) or (V, V). Then there exist free abelian groups $A^{i}(0 \leq i \leq 7), C^{j}(0 \leq j \leq 1), G^{k}(0 \leq$ $k \leq 3)$ and only a certain small spectrum Y so that X has the same quasi $K O_{*}$-type as the wedge sum $\left(\underset{i}{\vee} \Sigma^{i} S A^{i}\right) \vee\left(\underset{j}{\vee} \Sigma^{j} C(\eta) \wedge S C^{j}\right) \vee\left(\underset{k}{\vee} \Sigma^{k} C\left(\eta^{2}\right) \wedge S G^{k}\right) \vee Y$. Here Y is taken to be the following small spectrum corresponding to the \mathcal{C}-type of X :

$$
\left.\begin{array}{rlccc}
\mathcal{C} \text {-type } & = & (\mathrm{IV}, \mathrm{I}) & (\mathrm{II}, \mathrm{II}) & (\mathrm{III}, \mathrm{III})
\end{array}\right) \quad(\mathrm{V}, \mathrm{~V})
$$

(Cf. [5, Theorem 3.3]).
Proof. When the \mathcal{C}-type of X is (II, II), there exists a map $f: \Sigma^{1} Q^{\prime} Q_{m} \rightarrow$ $K U \wedge X$ such that $f_{*}: K U_{*-1} Q^{\prime} Q_{m} \rightarrow K U_{*} X$ is the canonical inclusion in the category \mathcal{C}. Since such a map f is chosen to satisfy $\left(\psi_{C}^{-1} \wedge 1\right) f=f$, we get a map $g: \Sigma^{1} Q^{\prime} Q_{m} \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g=f$ such that $g_{*}: K C_{i-1} Q^{\prime} Q_{m} \rightarrow K C_{i} X(i=$ 0,2) are nearly the canonical inclusions because of Lemmas 2.6 and 2.7. More precisely, $g_{*}: K C_{-1} Q^{\prime} Q_{m} \rightarrow K C_{0} X$ is represented by the matrix $\left(\begin{array}{ccc}x & y & 0 \\ 1 & 0 & 0 \\ 2 w & 1 & 0 \\ w & 0 & 1\end{array}\right): Z \oplus$ $Z \oplus Z / 2^{m-1} \rightarrow E_{2} \oplus Z \oplus Z \oplus Z / 2^{m-1}$ for some x, y, w and $g_{*}: K C_{1} Q^{\prime} Q_{m} \rightarrow K C_{2} X$ is given by the identity on $(*)_{m} \cong Z / 4$ or $Z / 2 \oplus Z / 2$ in essence. Evidently we get a map $k_{1}: \Sigma^{1} Q_{m} \rightarrow K O \wedge X$ such that $k_{1} j_{Q^{\prime} Q, Q}=\left(\tau \beta_{C}^{-1} \wedge 1\right) g$ for the bottom cell collapsing $j_{Q^{\prime} Q, Q}: Q^{\prime} Q_{m} \rightarrow \Sigma^{3} Q_{m}$. Here the map g might be modified slightly by means of (2.11), but still it satisfies the property mentioned above. Note that the composition map $k_{1} i_{Q} i: \Sigma^{1} \rightarrow K O \wedge X$ is factorized as $k_{1} i_{Q} i=k_{1}^{\prime} \eta$ for some k_{1}^{\prime}. This implies that $k_{1} i_{Q}=k_{1}^{\prime} \bar{\eta}+l j: \Sigma^{1} S Z / 2^{m} \rightarrow K O \wedge X$ for some l. On the other hand, it is easily checked that the composition map $(\eta \wedge 1) k_{1} i_{Q}$ is expressed as $k_{1}^{\prime} \eta \bar{\eta}$. Hence there exists a map $h_{1}: \Sigma^{5} \rightarrow K O \wedge X$ such that $h_{1} j_{Q^{\prime} Q}=\left(\tau \beta_{C}^{-1} \wedge 1\right) g$ for the top cell projection $j_{Q^{\prime} Q}: Q^{\prime} Q_{m} \rightarrow \Sigma^{7}$. Here the map g might be modified again, but it still satisfies the property mentioned previously. Since the composition map $h_{1} \eta^{2}$ is trivial, we get a map $\lambda: \Sigma^{8} \rightarrow K C \wedge X$ with $\left(\tau \beta_{C}^{-1} \wedge 1\right) \lambda=h_{1}$. Such a map λ is chosen to be expressed as $(\alpha, 0, t, 0)$ in $K C_{8} X \cong\left(A \oplus C \oplus D \oplus E_{2} \oplus\right.$
$F) \oplus Z \oplus Z \oplus Z / 2^{m-1}$ because of (4.5). Note that the element $\lambda=(\alpha, 0, t, 0)$ is carried to $\zeta_{*} \lambda=(\beta, 0,-t)$ in $K U_{8} X \cong(A \oplus B \oplus C \oplus C) \oplus Z \oplus Z / 2^{m}$ via $\zeta_{*}: K C_{8} X \rightarrow K U_{8} X$. Replacing the map g by $g-\lambda j_{Q^{\prime} Q}$ we can observe that $\left(\tau \beta_{C}^{-1} \wedge 1\right) g=0$ and $((\zeta \wedge 1) g)_{*}: K U_{-1} Q^{\prime} Q_{m} \rightarrow K U_{0} X$ is represented by the matrix $\left(\begin{array}{cc}-\beta & 0 \\ 1 & 0 \\ t & 1\end{array}\right): Z \oplus Z / 2^{m} \rightarrow(A \oplus B \oplus C \oplus C) \oplus Z \oplus Z / 2^{m}$. Consequently we can find a map $h: \Sigma^{1} Q^{\prime} Q_{m} \rightarrow K O \wedge X$ with $\left(\epsilon_{U} \wedge 1\right) h=f$ although the map $f: \Sigma^{1} Q^{\prime} Q_{m} \rightarrow K U \wedge X$ might be replaced suitably. Our result is now established by virtue of (3.3).

The case of \mathcal{C}-type (III, III) is established by a parallel discussion to the above one. On the other hand, the case of \mathcal{C}-type (IV, I) is similarly shown to Theorem 5.2. The remaining case of \mathcal{C}-type (V, V) is easy.

References

[1] A. K. Bousfield: A classification of K-local spectra, J. Pure and Applied algebra, 66 (1990), 121-163.
[2] M. Mimura, S. Oka and M. Yasuo: K-theory and the homotopy types of some function spaces, Contemporary Math., 146 (1993), 309-338.
[3] Z. Yosimura: The quasi KO-homology types of the real projective spaces, Proc. Int. Conf. at Kinosaki, Springer-Verlag, 1418 (1990), 156-174.
[4] Z. Yosimura: Quasi K-homology equivalences, I, Osaka J. Math., 27 (1990), 465-498.
[5] Z. Yosimura: Quasi K-homology equivalences, II, Osaka J. Math., 27 (1990), 499-528.
[6] Z. Yosimura: Quasi $K O_{*}$-equivalences; Wood and Anderson spectra, Math. J. Okayama Univ., 32 (1990), 165-185.

Department of Intelligence and Computer Science, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-0061, Japan e-mail : yosimura@math.kyy.nitech.ac.jp

