# 3-DIMENSIONAL HOMOLOGY HANDLES AND MINIMAL SECOND BETTI NUMBERS OF 4-MANIFOLDS 

Yoshinisa SATO

(Received March 25, 1997)

## 1. Introduction

We consider the following problem:
For a given closed 3-manifold $M$, what is the minimal second Betti number of al1 compact 4-manifolds bounded by $M$ ?

If we add the condition that 4 -manifolds are simply connected, then the answer about the above problem in the topological category can be seen from the Boyer classification theorem [1],[2]. The Boyer classification theorem states that for an oriented, closed, connected 3-manifold $M$, a symmetric integral bilinear form $(E, \mathcal{L})$ and a presentation $\mathcal{P}$ of $H_{*}(M ; \mathbb{Z})$ by $(E, \mathcal{L})$, there exists an oriented, compact, simply connected, topological 4-manifold with boundary $M$ whose intersection form is isomorphic over $\mathbb{Z}$ to $(E, \mathcal{L})$ and which represents $\mathcal{P}$ geometrically. Furthermore, Boyer gave the result about the uniqueness of such 4 -manifolds up to orientation-preserving homemorphism. Here a presentation $\mathcal{P}$ of $H_{*}(M ; \mathbb{Z})$ by $(E, \mathcal{L})$ is the following short exact sequence with some algebraic data corresponding to the relationship between the linking form of $M$ and $(E, \mathcal{L})$, spin structures and the Kirby-Siebenmann obstruction;

$$
0 \longrightarrow H_{2}(M ; \mathbb{Z}) \longrightarrow E \xrightarrow{\operatorname{ad}(\mathcal{L})} E^{*} \longrightarrow H_{1}(M ; \mathbb{Z}) \longrightarrow 0
$$

Hence, in the topological category, we can calculate algebraically the minimal second Betti number of all simply connected 4 -manifolds bounded by $M$. The key to this classification theorem is the Freedman theorem [4], and in particular the fact that every homology 3 -sphere can bound a contractible compact topological 4-manifold. In the topological category, it follows from this that the minimal second Betti number of all simply connected 4 -manifolds bounded by a given homology 3 -sphere is zero. However, the Roholin theorem and the gauge theory say that in the smooth category, a homology 3 -sphere can not always bound a homology 4 -ball, and so the minimal second Betti number of all simply connected 4-manifolds bounded by a homology 3sphere is not always zero in the smooth category.

If we consider the Boyer theorem with the condition that the fundamental groups of 4-manifolds are isomorphic to the infinite cyclic group instead of simply connect-
edness, then the key seems to be orientable closed 3-manifolds $M$ with the same integral homology groups as $S^{1} \times S^{2}$, which are called homology handles [8]. Of course, the situation changes according as the homomorphisms of $\pi_{1}$ induced from inclusions are trivial or not. In this paper, we consider the case where such homomorphisms $i_{\sharp}: \pi_{1} M \rightarrow \mathbb{Z}$ are surjective, and under this condition we consider the above problem.

By $\beta^{T O P}(M)$ and $\beta^{D I F F}(M)$, we denote the minimal second Betti number of such 4-manifolds in the topological category and in the smooth category, respectively. For example, it is clear that $\beta^{T O P}\left(S^{1} \times S^{2}\right)=\beta^{D I F F}\left(S^{1} \times S^{2}\right)=0$. But it does not always hold that $\beta^{T O P}(M)=0$, since there is a homology handle which can not bound a compact topological 4-manifold homotopy equivalent to $S^{1}$ in contrast with the case of homology 3 -spheres. In this paper we show that for any positive integer $n$, there exist infinitely many distinct homology handles $\left\{M_{m}^{(n)}\right\}_{m \in \mathbb{N}}$ with $\beta^{T O P}\left(M_{m}^{(n)}\right)=\beta^{D I F F}\left(M_{m}^{(n)}\right)=n$, and furthermore that there exists a difference between $\beta^{T O P}$ and $\beta^{D I F F}$.

In $\S 2$, we introduce two operations on framed links to construct compact smooth 4 -manifolds which are bounded by given 3 -manifolds and whose fundamental groups are isomorphic to $\mathbb{Z}$. In $\S \S 3$ and 4 , we investigate $\beta^{T O P}$ and $\beta^{D I F F}$ of certain homology handles, and in particular homology handles obtained by 0 -surgery on knots. In $\S 4$, we show that $\beta^{T O P}$ and $\beta^{D I F F}$ are functions onto $\mathbb{N} \cup\{0\}$ and there is a difference between $\beta^{\text {TOP }}$ and $\beta^{\text {DIFF }}$.

Through this paper, we suppose that manifolds are connected and oriented, and we denote the closed interval $[0,1]$ by $I$. Furthermore, the symbol $b_{i}$ stands for the $i$-th Betti number.

## 2. Two kinds of 2-handle attachings

For a positive integer $p$, let $\rho: S^{3} \rightarrow S^{3}$ be the $(2 \pi / p)$-rotation around the $z$-axis and $B_{j}^{3}(j=0,1, \ldots, p-1)$ small 3-balls in $S^{3}$ with $\rho\left(B_{j}^{3}\right)=B_{j+1}^{3}(j=0,1, \ldots, p-$ 2) and $\rho\left(B_{p-1}^{3}\right)=B_{0}^{3}$. Moreover, let $D_{p}=\left(S^{3}-\bigcup_{j=0}^{p-1} \operatorname{int} B_{j}^{3}\right) \times{ }_{\rho} S^{1}$ be the mapping torus with monodromy $\rho$. The compact smooth 4 -manifold $D_{p}$ is bounded by $S^{1} \times$ $S^{2}$ and has the fundamental group $\pi_{1} D_{p}$ isomorphic to $\mathbb{Z}$. The homomorphism $i_{\sharp}$ : $\pi_{1}\left(S^{1} \times S^{2}\right) \rightarrow \pi_{1} D_{p}$ has index $p$, where $i: S^{1} \times S^{2} \rightarrow D_{p}$ is the inclusion.

Let $M$ be an oriented closed 3-manifold. If $M$ bounds an oriented compact 4manifold $V$ such that the fundamental group $\pi_{1} V$ is isomorphic to $\mathbb{Z}$ and the homomorphism of $\pi_{1}$ induced from the inclusion $i: M \rightarrow V$ is not trivial, then the first Betti number of $M$ is positive. In this section we shall show that for any given 3manifold $M$ with $b_{1}(M) \geq 1, M$ bounds an oriented compact smooth 4-manifold $V$ such that $\pi_{1} V$ is isomorphic to $\mathbb{Z}$ and $i_{\sharp}: \pi_{1} M \rightarrow \pi_{1} V \cong \mathbb{Z}$ is not trivial. To show this, we need the following two operations. Every closed 3-manifold is obtained from $S^{3}$ by an integral surgery on a link in $S^{3}$. Let $M$ be obtained by a framed link $\mathbb{L}$.

Operation 1. Let $K$ be a component of $\mathbb{L}$ with framing $n$ and $c$ a crossing on


Fig. 1.


Fig. 2.
a diagram of $K \subset \mathbb{L}$. Add a trivial knot $O$ with framing 0 to $\mathbb{L}$ at $c$ so that the linking number $l k(O, K)$ between $O$ and $K$ is zero. See Fig. 1. Let $K^{\prime}$ be a knot obtained from $K$ by crossing-change at $c$. Then, by the Kirby calculus (or handle-slide), the resultant 3 -manifold obtained by this new framed link $\mathbb{L} \cup O$ is orientation-preserving homeomorphic to the 3 -manifold obtained by a framed link $\mathbb{L}^{\prime}$ containing a new component $O$ with framing 0 and the component $K^{\prime}$ with framing $n$ instead of $K$ with framing $n$. See Fig. 2.

Operation 2. Let $K$ and $L$ be two components of $\mathbb{L}$ with framing $m$ and $n$, respectively. Let $c$ be a crossing of $K$ and $L$ on a diagram of $\mathbb{L}$. Give the framing 0 to a meridional curve $O$ of $L$. See Fig. 3. Then, by the Kirby calculus (or handleslide), the resultant 3 -manifold obtained by this new framed link $\mathbb{L} \cup O$ is orientation-


Fig. 3.


Fig. 4.
preserving homeomorphic to the 3-manifold obtained by a framed link $\mathbb{L}^{\prime}$ which contains a new component $O$ with framing 0 and which has an opposite crossing at $c$. See Fig. 4. Note that this operation leaves the knot type of $K$ invariant, since $O$ is trivial.

We use Operations 1 and 2 to make a knot trivial and to split geometrically a component of a link from other components, respectively.

Proposition 1. For any positive integer $p$ and for any given 3-manifold $M$ with $b_{1}(M) \geq 1$, there exists an oriented compact smooth 4 -manifold $V$ bounded by $M$ such that
(1) $\pi_{1} V$ is isomorphic to $\mathbb{Z}$, and
(2) the index, $\left(\pi_{1} V: \operatorname{Im} i_{\sharp}\right)$, of $\operatorname{Im}\left\{i_{\sharp}: \pi_{1} M \rightarrow \pi_{1} V\right\}$ in $\pi_{1} V$ is $p$.

Every oriented 3-manifold is obtained from $S^{3}$ by an integral surgery on a link in $S^{3}$, but this link is not always an algebraically split link. Here, we say that a link $\mathbb{L}=K_{1} \cup K_{2} \cup \cdots \cup K_{\mu}$ is an algebraically split link if for each pair of distinct components $K_{i}, K_{j}(i \neq j)$ of $\mathbb{L}$, the linking number $\operatorname{lk}\left(K_{i}, K_{j}\right)$ is zero.

We use the following lemma.
Lemma 1 ([13]). Any integral symmetric matrix is made diagonalizable over $\mathbb{Z}$ by taking block sums of some $1 \times 1$-matrices $\left(p_{j}\right)$.

We can translate Lemma 1 into geometric terms : Let $M$ be an oriented closed 3-manifold. Then, there are some lens spaces $L\left(p_{j}, 1\right)(j=1,2, \cdots, k)$ such that after taking connected sums of $L\left(p_{j}, 1\right)(j=1,2, \cdots, k)$, the 3 -manifold $M \sharp L\left(p_{1}, 1\right) \sharp L\left(p_{2}, 1\right) \sharp \cdots \sharp L\left(p_{k}, 1\right)$ has a surgery description by a framed algebraically split link.

Proof of Proposition 1. By Lemma 1, there are some lens spaces $L\left(p_{j}, 1\right)(j=$ $1,2, \cdots, k)$ such that the 3 -manifold $M^{\prime}=M \sharp L\left(p_{1}, 1\right) \sharp L\left(p_{2}, 1\right) \sharp \cdots \sharp L\left(p_{k}, 1\right)$ is obtained by an integral surgery on an algebraically split link $\mathbb{L}$. Let $r(\geq 1)$ be the first Betti number of $M$. Then, the linking matrix of $\mathbb{L}$ is an $(r+n) \times(r+n)$-matrix

$$
\left(\begin{array}{cccccc}
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & m_{1} & & \\
\vdots & \ddots & \vdots & & \ddots & \\
0 & \ldots & 0 & & & m_{n}
\end{array}\right)
$$

where $\left|m_{1} m_{2} \cdots m_{n}\right|$ is not zero and the order of the torsion part of $H_{1}\left(M^{\prime} ; \mathbb{Z}\right)$. Generators of $H_{1}\left(M^{\prime} ; \mathbb{Z}\right)$ are given by meridional curves of the components of $\mathbb{L}$. Let $K_{i}$ ( $i=1,2, \cdots, r$ ) be the components of $\mathbb{L}$ with framing 0 and $L_{j}(j=1,2, \cdots, n)$ the other components of $\mathbb{L}$. The 3 -manifold $L\left(p_{1}, 1\right) \sharp L\left(p_{2}, 1\right) \sharp \cdots \sharp L\left(p_{k}, 1\right)$ bounds an oriented simply connected compact smooth 4 -manifold $W$, for example the $k$-sum of $k D^{2}$-bundles over $S^{2}$. Then the smooth 4-manifold $(M \times I) \natural(-W)$ is bounded by $M \amalg\left(-M^{\prime}\right)$. We shall make $K_{1}$ a trivial knot which is split geometrically from the other components of $\mathbb{L}$.


Schema 1.

Step 1. If $K_{1}$ is not trivial, then we can make $K_{1}$ a trivial knot $K_{1}^{\prime}$ by a finite sequence of Operation 1 at some crossings of $K_{1}$. Then the framed link $\mathbb{L}$ changes into another framed link $\mathbb{L}^{\prime}$, which is algebraically split. The trivial knot $K_{1}^{\prime}$ has framing 0.

In general, $K_{1}^{\prime}$ is not split geometrically from the other components of $\mathbb{L}^{\prime}$.
Step 2. By a finite sequence of Operation 2, we can split geometrically $K_{1}^{\prime}$ from the other components of $\mathbb{L}^{\prime}$ keeping $K_{1}^{\prime}$ trivial and without changing the framing of $K_{1}^{\prime}$. By $\mathbb{L}^{\prime \prime}$ we denote the framed link obtained by the operations as above. Let $\mathbb{L}_{2}^{\prime \prime}$ be the link consisting of the other components of $\mathbb{L}^{\prime \prime}$ except $K_{1}^{\prime}$, that is, $\mathbb{L}^{\prime \prime}=K_{1}^{\prime} \cup \mathbb{L}_{2}^{\prime \prime}$. Then the 3-manifold given by the framed link $\mathbb{L}^{\prime \prime}$ is $S^{1} \times S^{2} \sharp N$, where $N$ is the 3manifold given by $\mathbb{L}_{2}^{\prime \prime}$.

Hence it follows that by attaching 2-handles to $M^{\prime} \times\{1\} \subset M^{\prime} \times I$ in ways corresponding to Steps 1 and 2, we get an oriented compact smooth 4-manifold $X$ whose boundary is $M^{\prime} \amalg\left(-\left(S^{1} \times S^{2} \sharp N\right)\right)$. Set $Y=((M \times I) \mathfrak{h}(-W)) \bigcup_{M^{\prime}} X$. Let $W^{\prime}$ be an oriented simply connected compact smooth 4-manifold bounded by $N$, for example, the 4 -manifold consisting of one 0 -handle and some 2 -handles given by the


Fig. 5.
framed link $\mathbb{L}_{2}^{\prime \prime}$. Then $Z=Y \bigcup\left(\left(S^{1} \times S^{2}\right) \times I \nmid W^{\prime}\right)$ is an oriented compact smooth 4-manifold with boundary $\partial Z=M \amalg\left(-S^{1} \times S^{2}\right)$. See Schema 1. Now let $V$ be the 4-manifold $Z \cup_{\partial} D_{p}$, which is an oriented compact smooth 4-manifold with boundary $\partial V=M$. By van Kampen's theorem, $\pi_{1} V$ is isomorphic to $\mathbb{Z}$. If we let $t$ be a generator of $\pi_{1} D_{p}$, then a loop coming from a meridional curve of $K_{1}$ represents $t^{ \pm p}$ in $\pi_{1} D_{p}$, and so $\left(\pi_{1} V: \operatorname{Im} i_{\sharp}\right)=p$.

Example 1. Let $m$ be an integer. Let $M(m)$ be the homology handle given by the following framed link $K_{1} \cup K_{2}$ in Fig. 5. The link $K_{1} \cup K_{2}$ is an algebraically split link. Let $\tilde{M}(m)$ be the universal abelian covering of $M(m)$, that is, the infinite cyclic covering of $M(m)$ associated to the kernel of the Hurewitz homomorphis$\mathrm{m} \alpha: \pi_{1} M(m) \rightarrow H_{1}(M(m) ; \mathbb{Z}) \cong \mathbb{Z}$. Then $\tilde{M}(m)$ is obtained from the universal covering $q: \mathbb{R} \times S^{2} \rightarrow S^{1} \times S^{2}$ by 1-surgeries on the preimage of $K_{2}$ via $q$ as in Fig. 6. See [14]. By $\Lambda=\mathbb{Z}\langle t\rangle$ we denote the ring of Laurent polynomials with integer coffecients. Thus $H_{1}(\tilde{M}(m) ; \mathbb{Z})$ has a $\Lambda$-module structure by the group of deck transformations and is isomorphic to $\Lambda /\left(m t^{-1}-(2 m-1)+m t\right)$ as $\Lambda$-modules. Here $(f(t))$ stands for the principal ideal generated by $f(t) \in \Lambda$. Now attach one 2handle $h^{(2)}$ to $M(m) \times I$ so that the attaching circle of $h^{(2)}$ is a meridional curve of $K_{2}$ and the framing of $h^{(2)}$ is zero. Let $W$ be the resultant 4-manifold. By Op-


Fig. 6.
eration 1, it is seen that $W$ is bounded by $M(m) \amalg\left(-S^{1} \times S^{2}\right)$. See Fig. 7. Thus $V=W \cup_{S^{1} \times S^{2}} D_{p}$ is an oriented compact smooth 4-manifold bounded by $M(m)$ with $\pi_{1} V \cong \mathbb{Z},\left(\pi_{1} V: \operatorname{Im} i_{\sharp}\right)=p$, and $H_{2}(V ; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_{p}$. In $\S \S 3$ and 4 we show that in the case of $p=1$ this 4 -manifold $V$ gives the minimal second Betti number of all oriented compact topological 4-manifolds $X$ bounded by $M(m)$ with $\pi_{1} X \cong \mathbb{Z}$ and $\left(\pi_{1} X: \operatorname{Im} i_{\sharp}\right)=1$.

We have the following proposition for a 3-manifold $M$ such that $H_{1}(M ; \mathbb{Z})$ has a torsion subgroup.

Proposition 2. Let $p$ be any positive integer and $\mathbb{L}=K_{1} \cup K_{2}$ a 2-component


Fig. 7.

## framed link such that

(1) $K_{1}$ is a trivial knot,
(2) the linking number $l k\left(K_{1}, K_{2}\right)$ is zero, and
(3) the framings of $K_{1}$ and $K_{2}$ is 0 and $n$, respectively.

Let $M$ be the resultant 3 -manifold obtained by surgery on the framed link $\mathbb{L}$. If $|n|>1$, then the smooth 4 -manifold $V$ constructed in the manner of Example 1 gives the minimal second Betti number of all oriented compact topological 4-manifolds $X$ bounded by $M$ with $\pi_{1} X \cong \mathbb{Z}$ and $\left(\pi_{1} X: \operatorname{Im} i_{\sharp}\right)=p$. Note that $H_{2}(V ; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_{p}$.

Proof. Suppose that $b_{2}(V)=1$ is not minimal. Namely, there is an oriented compact topological 4-manifold $X$ as above with $b_{2}(X)=0$. By considering the homology exact sequence of the pair $(X, M)$, we have the following short exact se-
quence;

$$
0 \rightarrow \mathbb{Z} \rightarrow H_{2}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}_{p} \rightarrow 0 \xrightarrow{\partial} H_{1}(M ; \mathbb{Z}) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{p} \rightarrow 0
$$

Because of $|n|>1, H_{1}(M ; \mathbb{Z})$ has a torsion subgroup. This contradicts that $H_{1}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}$ is injective.

## 3. Minimal second Betti numbers for homology handles

Through $\S \S 3$ and 4 , we consider the case of $p=1$, namely, the case where the homomorphisms on $\pi_{1}$ induced from inclusions are surjective. If $M$ is an oriented closed 3-manifold with $H_{*}(M ; \mathbb{Z}) \cong H_{*}\left(S^{1} \times S^{2} ; \mathbb{Z}\right)$, then we call $M$ a homology handle. See [8]. Since a homology handle $M$ has $H^{1}\left(M ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}, M$ admits two spin structures $\tau_{0}$ and $\tau_{1}$. By $\mu(M, \tau)$ we denote the Roholin invariant of $M$ with respect to a spin structure $\tau$.

Proposition 3. Let $M$ be a homology handle with spin structures $\tau_{0}$ and $\tau_{1}$. Suppose that $\mu\left(M, \tau_{0}\right)=0$ and $\mu\left(M, \tau_{1}\right)=1$. Then, there is no orientable compact topological spin 4-manifold $V$ bounded by $M$ such that $\pi_{1} V \cong \mathbb{Z}$ and the homomorphism $i_{\sharp}: \pi_{1} M \rightarrow \pi_{1} V \cong \mathbb{Z}$ is surjective.

Proof. Suppose that there would be such a 4-manifold $V$. Because of $\pi_{1} V \cong \mathbb{Z}$, $V$ admits two spin structures $\sigma_{0}$ and $\sigma_{1}$. Since $i_{\sharp}: \pi_{1} M \rightarrow \pi_{1} V \cong \mathbb{Z}$ is surjective, $\pi_{1}(V, M)=0$ and so $H^{1}\left(E\left(\tau_{V}\right), E\left(\tau_{M}\right) ; \mathbb{Z}_{2}\right)=0$. Here $E\left(\tau_{M}\right)$ and $E\left(\tau_{V}\right)$ are the total spaces of the principal STop(3)-bundle and the principal STop(4)-bundle associated with stable topological tangent bundles over $M$ and $V$, respectively. From the following cohomology exact sequence of the pair $\left(E\left(\tau_{V}\right), E\left(\tau_{M}\right)\right)$,

$$
0=H^{1}\left(E\left(\tau_{V}\right), E\left(\tau_{M}\right) ; \mathbb{Z}_{2}\right) \rightarrow H^{1}\left(E\left(\tau_{V}\right) ; \mathbb{Z}_{2}\right) \rightarrow H^{1}\left(E\left(\tau_{M}\right) ; \mathbb{Z}_{2}\right) \xrightarrow{\delta},
$$

if follows that the restrictions of $\sigma_{0}$ and $\sigma_{1}$ to $M$ are $\tau_{0}$ and $\tau_{1}$, say $\left.\sigma_{0}\right|_{M}=\tau_{0}$ and $\left.\sigma_{1}\right|_{M}=\tau_{1}$. By [5, Chapter 10], we can calculate the Kirby-Siebenmann obstruction $k s(V) \in H^{4}\left(V, M ; \mathbb{Z}_{2}\right)$ of $V$ from $\left(V, \sigma_{0}\right)$ and we have that

$$
\begin{aligned}
8 k s(V) & \equiv \operatorname{signature}(V)+\mu\left(M, \tau_{0}\right) & (\bmod 16) \\
& \equiv \operatorname{signature}(V) & (\bmod 16) .
\end{aligned}
$$

From $\left(V, \sigma_{1}\right)$ it follows that

$$
8 k s(V) \equiv \operatorname{signature}(V)+1 \quad(\bmod 16)
$$

and this equation contradicts that one.

For any given homology handle $M$, we would like to investigate the minimal second Betti number of 4 -manifolds bounded by $M$.

Let $M$ be a homology handle. By $\beta^{T O P}(M)$ we denote the minimal second Betti number of all oriented compact topological 4-manifolds $V$ bounded by $M$ such that $\pi_{1} V$ is isomorphic to $\mathbb{Z}$ and the homomorphism $i_{\sharp}: \pi_{1} M \rightarrow \pi_{1} V$ is surjective. Furthermore, we denote by $\beta^{\text {DIFF }}(M)$ the minimal second Betti number of all oriented compact smooth 4-manifolds as above. Then it is clear that $\beta^{D I F F}(M) \geq \beta^{T O P}(M) \geq$ 0 .

Remark. If we define $\beta^{\text {TOP }}(M)$ and $\beta^{D I F F}(M)$ for a general 3-manifold $M$ in the same manner, then it follows from the homology exact sequence of the pair $(V, M)$ that $\beta^{D I F F}(M) \geq \beta^{T O P}(M) \geq \operatorname{rank}_{\mathbb{Z}} H_{1}(M ; \mathbb{Z})-1$.

Corollary 1. Let $M$ be a homology handle as in Proposition 3. Then, $\beta^{T O P}(M)$ $\geq 1$.

Corollary 2. Let $\mathbb{L}=K_{1} \cup K_{2}$ be a 2-component framed link such that
(1) $K_{1}$ is a trivial knot,
(2) the linking number $l k\left(K_{1}, K_{2}\right)$ is 0 , and
(3) the framings of $K_{1}$ and $K_{2}$ is 0 and $\pm 1$, respectively.

Let $M$ be the homology handle obtained by surgery on $\mathbb{L}$. If $M$ admits two spin structures $\tau_{0}$ and $\tau_{1}$ with $\mu\left(M, \tau_{0}\right)=0$ and $\mu\left(M, \tau_{1}\right)=1$, then $\beta^{\operatorname{DIFF}}(M)=\beta^{\text {TOP }}(M)=$ 1.

Proof. We can construct a smooth 4-manifold $V$ bounded by $M$ with $H_{2}(V ; \mathbb{Z})$ $\cong \mathbb{Z}$ in the same manner as Example 1. Hence, it follows from Corollary 1 that $\beta^{D I F F}(M)=\beta^{T O P}(M)=1$.

Example 2. Let $M(m)$ be the homology handle in Example 1. If $m$ is odd, then $M(m)$ admits two spin structures $\tau_{0}$ and $\tau_{1}$ with $\mu\left(M, \tau_{0}\right)=0$ and $\mu\left(M, \tau_{1}\right)=1$. If $m$ is even, then $M(m)$ admits two spin structures $\tau_{0}$ and $\tau_{1}$ with $\mu\left(M, \tau_{0}\right)=$ $\mu\left(M, \tau_{1}\right)=0$, Hence, if $m$ is odd, then $\beta^{D I F F}(M(m))=\beta^{T O P}(M(m))=1$.

For what homology handle $M$ does it hold that $\beta^{\text {TOP }}(M)=0$ or $\beta^{D I F F}(M)=0$ ? Note that $\beta^{T O P}(M)=0$ if and only if $M$ bounds an oriented compact topological 4manifold homotopy equivalent to $S^{1}$. Freedman and Quinn give a necessary and sufficient condition to hold that $\beta^{T O P}(M)=0$ in [5, Proposition 11.6A and 11.6C].

Theorem 2 ([5]). Let $M$ be a homology handle. Let $C=\left[\pi_{1} M, \pi_{1} M\right]$ be the commutator subgroup of $\pi_{1} M$. Then, $\beta^{T O P}(M)=0$ if and only if $C$ is perfect.

Since the universal abelian convering $\widetilde{M}$ of a homology handle $M$ is the infinite cyclic covering associated to the kernel of the Hurewicz homomorphism $\pi_{1} M \rightarrow$ $H_{1}(M ; \mathbb{Z}) \cong \mathbb{Z}, H_{1}(\widetilde{M} ; \mathbb{Z})$ is isomorphic to $C /[C, C]$. Theorem 2 implies that $\beta^{T O P}(M)=0$ if and only if $H_{1}(\widetilde{M} ; \mathbb{Z})=0$. Furthermore, the group of deck transformation of $\widetilde{M}$ gives a $\Lambda$-modules structure to $H_{1}(\widetilde{M} ; \mathbb{Z})$, which is isomorphic to $H_{1}(M ; \Lambda)$ as $\Lambda$-modules. So, one can define the Alexander polynomials $\Delta_{M}(t) \in \Lambda$ for homology handles $M$ as well as for knots. Kawauchi gave in [8, 9] a characterization of the Alexander polynomials of homology handles and how to calculate the Alexander polynomials. Thus $H_{1}(\widetilde{M} ; \mathbb{Z})=0$, that is, $\beta^{T O P}(M)=0$ if and only if the Alexander polynomial $\Delta_{M}(t)$ of $M$ is trivial, that is, a unit of $\Lambda$.

## 4. Minimal second Betti numbers for homology handles obtained by 0surgery on knots

Consider a homology handle $M$ obtained by 0 -surgery on a knot $K$ in $S^{3}$. Note that the class $\ell \in \pi_{1}\left(S^{3}-K\right)$ represented by the preferred longitude for $K$ belongs to the commutator subgroup $\left[\pi_{1}\left(S^{3}-K\right), \pi_{1}\left(S^{3}-K\right)\right]$ of $\pi_{1}\left(S^{3}-K\right)$ and that $\pi_{1} M$ is isomorphic to $\pi_{1}\left(S^{3}-K\right) /\langle\ell\rangle$, where $\langle\ell\rangle$ is the smallest normal subgroup generated by $\ell$. Thus we have the following.

Lemma 2. Let $K$ be a knot with exterior $E(K)$, and $\widetilde{E(K)}$ the universal abelian covering of $E(K)$. Let $M$ be the homology handle obtained by 0 -surgery on $K$. Then, $H_{1}(\widetilde{M} ; \mathbb{Z})$ is isomorphic to $H_{1}(\widetilde{E(K)} ; \mathbb{Z})$ as $\Lambda$-modules. In particular, the Alexander polynomial $\Delta_{M}(t)$ of $M$ is equal to the Alexander polynomial $\Delta_{K}(t)$ of $K$ (See Lemma 2.6-(III) in [8].).

Hence, we have the following.
Corollary 3. Let $M$ be the homology handle obtained by 0 -surgery on a knot $K$. The minimal second Betti number $\beta^{T O P}(M)=0$ if and only if the Alexander polynomial $\Delta_{K}(t)$ of $K$ is trivial.

Example 3. Let $M(m)$ be the homology handle in Example 1. In Example 1 we see that $H_{1}(\widetilde{M(m)} ; \mathbb{Z})$ is isomorphic to $\Lambda /\left(m t^{-1}-(2 m-1)+m t\right)$ as $\Lambda$-modules. In fact, it follows from the Kirby calculus that $M(m)$ is also obtained by 0 -surgery on the following knot in Fig. 8. Thus the Alexander polynomial for $M(m)$ is $m t^{-1}-$ $(2 m-1)+m t$ and $\beta^{T O P}(M(m)) \neq 0$. Therefore, in the case when $m$ is even, it also holds that $\beta^{T O P}(M(m))=\beta^{D I F F}(M(m))=1$, since we can construct a required 4-manifold in the same manner as Example 1. See Example 2.

We can estimate $\beta^{\operatorname{DIFF}}(M)$ by the unknotting number $u(K)$ of a knot $K$.


Fig. 8.


Fig. 9.

Proposition 4. Let $M$ be the homology handle obtained by 0-surgery on a knot $K$ with unknotting number $u(K)$. Then, $u(K) \geq \beta^{\text {DIFF }}(M)$.


Fig. 10.

Proof. Note that by the Kirby calculus the 3-manifolds in Fig. 9. are homeomorphic. Let $u$ be the unknotting number of $K$. Then after taking cross-changing at certain $u$ crossings of a diagram of $K, K$ becomes a trivial knot $L_{0}$. Hence, $M$ has a surgery description by a framed link $\mathbb{L}=L_{0} \cup L_{1} \cup \cdots \cup L_{u}$ such that alI $L_{j}(j=0,1, \cdots, u)$ are trivial knots, the framing of $L_{0}$ is zero and the framings of $L_{j}(j=1,2, \cdots, u)$ are $\pm 1$. See Fig. 10. If we apply Operation 2 to each $L_{j}(j=1,2, \cdots, u)$, then we get a new framed link $\mathbb{L}^{\prime}$. See Fig. 11. The 3-manifold given by $\mathbb{L}^{\prime}$ is $S^{1} \times S^{2}$. By attaching $u$ 2-handles $h_{j}^{(2)}(j=1,2, \cdots, u)$ as above to $M \times I$ and identifying one component of the boundary of the resultant smooth 4manifold with the boundary of $S^{1} \times B^{3}$, we get a 4 -manifold $V$ with second Betti number $u$ and with boundary $M$ such that $\pi_{1} V$ is isomorphic to $\mathbb{Z}$ and the homomor-


Fig. 11.
phism $i_{\sharp}: \pi_{1} M \rightarrow \pi_{1} V$ is surjective. Hence, $\beta^{D I F F}(M) \leq u$.
For example, the knots $K_{m}$ in Fig. 8 are unknotting number 1 knots. Hence, $1=u\left(K_{m}\right) \geq \beta^{D I F F}(M(m)) \geq \beta^{T O P}(M(m)) \geq 1$, and so $\beta^{T O P}(M(m))=$ $\beta^{\text {DIFF }}(M(m))=1$.

We generalize Examples 2 and 3 as follows.
Theorem 3. For any positive integer $n$, there exist infinitely many distinct homology handles $\left\{M_{m}^{(n)}\right\}_{m \geq 1}$ with $\beta^{\text {TOP }}\left(M_{m}^{(n)}\right)=\beta^{\text {DIFF }}\left(M_{m}^{(n)}\right)=n$.

To show Theorem 3, we use the local signatures of homology handles, which are introduced by Kawauchi [8] and defined by generalizing local signatures of knots. See also [12]. In [9], Kawauchi considered the embedding problem of 3-manifolds into 4manifolds. In particular, he gave an estimation of second Betti numbers and signatures of 4-manifolds by local signatures of their boundaries : Let $M$ be a homology handle
and $X$ a compact topological 4 -manifold bounded by $M$. Then, he showed that for any $a \in[-1,1]$,

$$
\begin{equation*}
\left|\Sigma_{x \in(a, 1]} \sigma_{x}(M)\right| \leq b_{2}(X)+\mid \text { signature }(X) \mid \tag{4.1}
\end{equation*}
$$

Here $\sigma_{x}(M)$ is a local signature of $M$. Since $b_{2}(X)+\mid$ signature $(X) \mid \leq 2 b_{2}(X)$, we have

$$
\begin{equation*}
\left|\Sigma_{x \in(a, 1]} \sigma_{x}(M)\right| \leq 2 b_{2}(X) \text { for any } a \in[-1,1] \tag{4.2}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|\Sigma_{x \in(a, 1]} \sigma_{x}(M)\right| \leq 2 \beta^{T O P}(M) \quad \text { for any } a \in[-1,1] \tag{4.3}
\end{equation*}
$$

Proof of Theorem 3. For each positive integer $m$, let $K_{m}$ be a knot in Fig. 8. Then, the Alexander polynomial $\Delta_{K_{m}}(t)$ of $K_{m}$ is $m t^{2}-(2 m-1) t+m$ up to units in $\Lambda$ and the unknotting number $u\left(K_{m}\right)$ of $K_{m}$ is 1 . Because of $\Delta_{K_{m}}(t) / m=t^{2}-$ $2\{(2 m-1) /(2 m)\} t+1$, it follows from Assertion 11 in [12] that the signature $\sigma\left(K_{m}\right)$ of $K_{m}$ is $\pm 2$. Hence, it folds that for the local signature $\sigma_{x}\left(K_{m}\right)(x \in[-1,1])$,

$$
\sigma_{x}\left(K_{m}\right)=\left\{\begin{array}{lll} 
\pm 2, & \text { if } & x=(2 m-1) /(2 m) \\
0 & \text { if } & x \neq(2 m-1) /(2 m)
\end{array}\right.
$$

Let $K_{m}^{(n)}$ be the connected sum of $n$ copies of $K_{m}$, that is, $K_{m}^{(n)}=K_{m} \sharp K_{m} \sharp \cdots$ $\sharp K_{m}$. Let $M_{m}^{(n)}$ be the homology handle obtained by 0 -surgery on $K_{m}^{(n)}$. Since $\Delta_{K_{m}^{(n)}}(t)=\left(\Delta_{K_{m}}(t)\right)^{n} \neq\left(\Delta_{K_{m^{\prime}}}(t)\right)^{n}=\Delta_{K_{m^{\prime}}^{(n)}}(t)\left(m \neq m^{\prime}\right), M_{m}^{(n)}$ and $M_{m^{\prime}}^{(n)}$ ( $m \neq m^{\prime}$ ) are not homeomorphic. Noting that the quadratic form of the universal abelian covering $\widetilde{M_{m}^{(n)}}$ is the orthogonal sum of $n$ copies of the quadratic form of $K_{m}$, it follows that for the local signature $\sigma_{x}\left(M_{m}^{(n)}\right)(x \in[-1,1])$,

$$
\sigma_{x}\left(M_{m}^{(n)}\right)= \begin{cases} \pm 2 n, & \text { if } \quad x=(2 m-1) /(2 m) \\ 0 & \text { if } \quad x \neq(2 m-1) /(2 m)\end{cases}
$$

Hence, we have

$$
\left|\Sigma_{x \in(0,1]} \sigma_{x}\left(M_{m}^{(n)}\right)\right|=\left|\sigma_{(2 m-1) /(2 m)}\left(M_{m}^{(n)}\right)\right|=2 n
$$

Thus, by the inequality (4.3) we have

$$
n=\frac{1}{2}\left|\Sigma_{x \in(0,1]} \sigma_{x}\left(M_{m}^{(n)}\right)\right| \leq \beta^{T O P}\left(M_{m}^{(n)}\right)
$$

By noting that $u\left(K_{m}^{(n)}\right) \leq n$ because of $u\left(K_{m}\right)=1$, it follows from Proposition 4 that $\beta^{\text {DIFF }}\left(M_{m}^{(n)}\right) \leq u\left(K_{m}^{(n)}\right) \leq n$. Therefore, $n \leq \beta^{\text {TOP }}\left(M_{m}^{(n)}\right) \leq \beta^{D I F F}\left(M_{m}^{(n)}\right) \leq n$, and so $\beta^{T O P}\left(M_{m}^{(n)}\right)=\beta^{D I F F}\left(M_{m}^{(n)}\right)=n$.

Remark. (1) The unknotting number $u\left(K_{m}^{(n)}\right)$ is $n$ because of $n=\left|\sigma\left(K_{m}^{(n)}\right)\right| / 2$ $\leq u\left(K_{m}^{(n)}\right) \leq n$.
(2) Consider a short exact sequence of $\Lambda$-modules

$$
0 \rightarrow E \rightarrow F \rightarrow \Lambda /\left(f_{1}\right) \oplus \Lambda /\left(f_{2}\right) \oplus \cdots \oplus \Lambda /\left(f_{n}\right) \rightarrow 0
$$

where $E$ and $F$ are free $\Lambda$-modules of the same rank. If each $f_{i+1}$ can be divided by $f_{i}$, then $\operatorname{rank}_{\Lambda} E \geq n$. Let $V$ be an oriented compact 4 -manifold bounded by $M_{m}^{(n)}$ such that $\pi_{1} V \cong \mathbb{Z}$ and the homomorphism $i_{\sharp}: \pi_{1} M_{m}^{(n)} \rightarrow \pi_{1} V$ is surjective. Then we have the following homology exact sequence with local coefficient $\Lambda$,

$$
0 \rightarrow H_{2}(V ; \Lambda) \rightarrow H_{2}\left(V, M_{m}^{(n)} ; \Lambda\right) \rightarrow H_{1}\left(M_{m}^{(n)} ; \Lambda\right) \rightarrow 0
$$

The homology groups $H_{2}(V ; \Lambda)$ and $H_{2}\left(V, M_{m}^{(n)} ; \Lambda\right)$ are free $\Lambda$-modules of the same rank. Since $H_{1}\left(M_{m}^{(n)} ; \Lambda\right) \cong \bigoplus_{i=1}^{n}\left(\Lambda /\left(m t-(2 m-1)+m t^{-1}\right)\right)_{i}=\Lambda /(m t-(2 m-1)+$ $\left.m t^{-1}\right) \oplus \cdots \oplus \Lambda /\left(m t-(2 m-1)+m t^{-1}\right), \operatorname{rank}_{\Lambda} H_{2}(V ; \Lambda)=\operatorname{rank}_{\Lambda} H_{2}\left(V, M_{m}^{(n)} ; \Lambda\right) \geq n$. Hence it follows that $\beta^{T O P}\left(M_{m}^{(n)}\right) \geq n$.

Next we give two definitions on sliceness of knots.
Definition 1. If a knot $K$ bounds a smooth disk $D$ in the 4 -ball $B^{4}$ such that $\left(B^{4}, D\right) \times I$ is a trivial ball pair, then $K$ is a super slice knot. See [7].

For example, untwisted doubles of slice knots are super slice [7].
Definition 2. A knot $K$ is pseudo-slice, if there exists a pair $(W, D)$ for $K$ such that $W$ is a smooth 4-manifold homemorphic to $B^{4}$ and $D$ is a smooth disk in $W$ bounded by $K$.

Proposition 5. Let $K$ be a super slice knot, and $M$ the homology handle obtained by 0 -surgery on $K$. Then, $\beta^{T O P}(M)=\beta^{D I F F}(M)=0$.

Proof. Let $D$ be a slice disk for $K$ such that $\left(B^{4}, D\right) \times I$ is a trivial ball pair. Let $N(D)$ be a closed tubular neighborhood of $D$ in $B^{4}$. Then, $M$ is the boundary of the smooth 4-manifold $V=B^{4}-\operatorname{int} N(D)$. The 4-manifold $V$ is homotopy equivalent to $V \times I=B^{4} \times I-\operatorname{int} N(D) \times I$. Since $\left(B^{4}, D\right) \times I$ is trivial, $V$ is homotopy equivalent to $S^{1}$. Thus $V$ is a required 4-manifold.

Is there a difference between $\beta^{T O P}$ and $\beta^{D I F F}$ ? Now we answer this question.

Theorem 4. Let $K$ be a knot which is not pseudo-slice and whose Alexander polynomial $\Delta_{K}$ is trivial. Let $M$ be the homology handle obtained by 0 -surgery on $K$. Then, $0=\beta^{\text {TOP }}(M)<\beta^{D I F F}(M)$.

Proof. Since $\Delta_{K}$ is trivial, it follows from Corollary 3 that $\beta^{T O P}(M)=0$. Suppose that $\beta^{D I F F}(M)=0$. Then $M$ bounds a smooth 4-manifold $V$ homotopy equivalent to $S^{1}$. By attaching to $M \times I$ one 2 -handle $h^{(2)}$ whose attaching circle is a meridian of $K$ and whose framing is zero, we get the 4 -manifold $(M \times I) \cup h^{(2)}$ whose boundary is $M \amalg\left(-S^{3}\right)$. See Operation 1. Furthermore, by identifying $\partial V$ with one component $M$ of the boundary of $(M \times I) \cup h^{(2)}$, we get a compact smooth 4-manifold $W$ bounded by $S^{3}$. Then, since $W$ is simply-connected and $H_{*}(W ; \mathbb{Z}) \cong H_{*}\left(B^{4} ; \mathbb{Z}\right)$, $W$ is homeomorphic to $B^{4}$. The co-core of the above 2-handle $h^{(2)}$ gives a smooth disk $D$ in $W$ with $\partial(W, D)=\left(S^{3}, K\right)$. Since $K$ is not pseudo-slice, this is a contradiction.

Example 4. In [3], Cochran and Gompf showed that there are untwisted doubles which are not pseudo-slice. For example, the untwisted double $K$ of the trefoil knot is such a knot. Note that the Alexander polynomials of nontrivial untwisted doubles are trivial and their unknotting numbers are 1 . Thus, for the homology handle $M$ obtained by 0 -surgery on $K, 1=u(K) \geq \beta^{D I F F}(M)>\beta^{T O P}(M)=0$, and so $1=\beta^{D I F F}(M)>\beta^{T O P}(M)=0$.

Example 5. Let $K(-3,5,7)$ be the pretzel knot of type $(-3,5,7)$. Then $K(-3,5,7)$ has a trivial Alexander polynomial. Furthermore, in [6] Fintushel and Stern showed that $K(-3,5,7)$ is not pseudo-slice. Thus, for the homology handle $M$ obtained by 0 -surgery on $K(-3,5,7), \beta^{D I F F}(M)>\beta^{T O P}(M)=0$.

It follows from [11] that $K(-3,5,7)$ is not an unknotting number 1 knot. One can make $K(-3,5,7)$ a trivial knot by crossing-change at certain 3 crossings. Hence, $2 \leq u(K(-3,5,7)) \leq 3$. Thus it follows that $1 \leq \beta^{D I F F}(M) \leq 3$. What is $\beta^{D I F F}(M)$ ?

## References

[1] S. Boyer: Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc. 298 (1986), 331-357.
[2] S. Boyer: Realization of simply-connected 4-manifolds with a given boundary, Comment. Math. Helvetici, 68 (1993), 20-47.
[3] T.D. Cochran and R.E. Gompf: Applications of Donaldson's theorem to classical knot concordance, homology 3-spheres and property P, Topology, 27 (1988), 495-512.
[4] M.H. Freedman: The topology of 4-manifolds, J. Differential Geom. 17 (1982), 357-453.
[5] M.H. Freedman and F. Quinn: Topology of 4-manifolds, Purinceton University Press, 1990.
[6] R. Fintushel and R. Stern: Pseudo free orbifolds, Ann. Math. 122 (1985), 335-364.
[7] C.McA. Gordon and D.W. Sumners: Knotted ball pairs whose product with an interval is unknotted, Math. Ann. 217 (1975), 47-52.
[8] A. Kawauchi: Three dimensional homology handles and circles, Osaka J. Math. 12 (1975), 565-581.
[9] A. Kawauchi: The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.
[10] T. Kayashima: Construction of compact 4-manifolds with infinite cyclic fundamental groups, Kyushu J. of Math. 50 (1996), 241-248.
[11] T. Kobayashi: Minimal genus Seifert surfaces for unknotting number 1knots, Kobe J. Math. 6 (1989), 53-62.
[12] J.W. Milnor: Infinite cyclic coverings, In : Conf. Topology of Manifolds (1968), Prindle, Weber and Schmdit, Boston-London-Sydney, 115-133.
[13] H. Murakami: Quantam SO (3) -invariants dominate the $S U$ (2)-invariant of Casson and Walker, Math. Proc. Camb. Phil. Soc. 117 (1995), 237-249.
[14] D. Rolfsen: Knots and Links, Math. Lecture Series 7, Publish or Perish Inc., 1976.

Department of Mathematics, Faculty of Educations,
Yamaguchi University
Yoshida Yamaguchi, 753 Japan

