ON REGULAR RINGS WHOSE CYCLIC FAITHFUL MODULES CONTAIN GENERATORS

Hiroshi YOSHIMURA

(Received February 24, 1995)

1. Introduction

The present paper may be considered as a continuation of [6], in which we studied nonsingular rings R satisfying the condition $\left(C^{*}\right)$ that every cyclic faithful right R-module is a generator for the category Mod- R of all right R-modules. We proved in [6] that a (von Neumann) regular ring satisfies (C^{*}) if and only if it is isomorphic to a finite direct product of an abelian regular ring and full matrix rings over self-injective abelian regular rings (c.f. [4]). Concerning this, we note that there exists a regular ring R over which, although R fails to satisfy the condition (C^{*}), yet every cyclic faithful right R-module "contains" a submodule which is a generator for Mod- R. For instance, choose a division ring D_{n} containing a division subring E_{n} for $n=1,2, \ldots$, let $k(\geq 2)$ be an integer, and let S_{n} and T_{n} be the rings of all $k \times k$ matrices over D_{n} and E_{n}, respectively, for $n=1,2, \ldots$. Now, consider the regular ring R which consists of all sequences $\left(x_{n}\right) \in \prod_{n=1}^{\infty} S_{n}$ such that $x_{n} \in T_{n}$ for all but finitely many n. Then, R satisfies (C^{*}) only when $D_{n}=E_{n}$ for all but finitely many n (see [4], or [6]), whence in case E_{n} is properly contained in D_{n} for infinitely many n, the ring R does not satisfy $\left(C^{*}\right)$. However, it is shown that every cyclic (finitely generated) faithful right module over the ring R actually contains a generator. In fact, as will be noted in Example 3(2) of $\S 3$, the full matrix rings over any continuous abelian non-self-injective regular rings do not satisfy (C^{*}), but every cyclic (finitely generated) faithful module over the rings does contain a generator. This shows that the condition $\left(C^{*}\right)$ is not equivalent to the one (C) that every cyclic faithful right module contains a submodule which is a generator.

In this paper, we shall consistently investigate regular rings satisfying the condition (C) above, and determine their structure. Section 2 is devoted to preliminary results on regular rings R satisfying (C), part of which would be derived from their more general property that every cyclic faithful right R-module is co-faithful. In Section 3 we shall present our main result (Theorem A) which asserts that the regular rings satisfying the condition (C) are precisely the finite direct products of abelian regular rings and full matrix rings over abelian regular rings S such that every finitely generated faithful right S-submodule of the maximal quotient ring
$Q(S)$ of S contains a unit in $Q(S)$. Furthermore, we show that the regular rings over which every finitely generated faithful right module contains a generator are just the finite direct products of full matrix rings over such abelian regular rings S (Theorem B). As corollaries, we obtain a structure theorem for regular rings satisfying the condition $\left(C^{*}\right)$ as in [6] and the well-known structure theorem for FPF rings in [5](Corollary A, B). Also, we shall present some examples to illustrate these results.

Notation and Terminology. All rings considered in this paper are associative with identity and all modules are unitary.

Let R be a ring, M an R-module, and x and X an element and a subset of M. We denote by $Z(M)$ the (right) singular submodule of M, by $(X: x)$ the set $\{r \in R \mid x r \in X\}$, and by $r_{R}(X)$ (respectively, $l_{R}(X)$) the right (resp. left) annihilator of X in R. The notation $N \leq M$ (resp. $N \leq_{e} M$) means that N is a submodule (resp. an essential submodule) of M, while the notation $N \lesssim M$ means that N is isomorphic to a submodule of M. In particular, the notation $A \leq R_{R}$ signifies that A is a right ideal of R. Given a positive integer n, we denote by $M^{(n)}$ the direct sum of n copies of M, and by $M_{n}(R)$ the ring of all $n \times n$ matrices over R. The set of all central idempotents in R and the maximal (right) quotient ring of R are denoted by $B(R)$ and $Q(R)$, respectively. A complement for N in M is any submodule L of M which is maximal with respect to the property $N \cap L=0$. A right R-module M is co-faithful modulo its annihilator if $R / r_{R}(M) \lesssim M^{(n)}$ for some integer n. In particular, if $r_{R}(M)=0$, i.e., $R \lesssim M^{(n)}$, then we call M simply co-faithful.

In what follows we shall be concerned with rings R satisfying the condition:
(C) Every cyclic faithful right R-module contains a submodule which is a generator for Mod- R.

For brevity we referred to them as rings with (C).

2. Preliminaries

It is obvious that any ring R with (C) satisfies the condition:
$\left(C_{1}\right) \quad$ Every cyclic faithful right R-module is co-faithful.
Thus, for a while we shall examine the property of rings with $\left(C_{1}\right)$.
The following remark is immediate.
Remark 1. For any ring R, the following conditions are equivalent:
(a) $\quad R$ satisfies the condition $\left(C_{1}\right)$;
(b) Every finitely generated faithful right R-module is co-faithful;
(c) For every finitely generated faithful right R-module M and for every finitely generated projective right R-module P, there exists a positive integer n such that $P \lesssim M^{(n)}$.

In particular, the property $\left(C_{1}\right)$ of rings is Morita-invariant.
A ring R is right (essentially) bounded provided that every essential right ideal of R contains a two-sided ideal which is essential as a right ideal.

Lemma 1. For a semiprime ring R, the following conditions are equivalent:
(a) R satisfies $\left(C_{1}\right)$;
(b) $\quad R$ is right bounded, and for every two-sided ideal I such that $(R / I)_{R}$ is nonsingular, the ring R / I satisfies $\left(C_{1}\right)$;
(c) $\quad R$ is right bounded, and every cyclic faithful nonsingular right R-module is co-faithful.

Proof. (a) \Rightarrow (b). Let $E \leq_{e} R_{R}$, and choose a complement A for $r_{R}(R / E)$ in E_{R}. Then, R / A is faithful, whence by (a) there exist $a_{1}, \ldots, a_{n} \in R$ such that $\bigcap_{i=1}^{n}\left(A: a_{i}\right)=0$. Set $X=\bigcap_{i=1}^{n}\left(A \oplus r_{R}(R / E): a_{i}\right)$. Observing that $a_{i} X A \leq A$ for all i, we have $X A=0$, so that $A=0$, because R is semiprime and $X \leq_{e} R_{R}$. Thus, $r_{R}(R / E)$ is essential in R_{R}, which shows that R is right bounded.

For the second condition of (b), let I be a two-sided ideal such that $(R / I)_{R}$ is nonsingular, and set $J=l_{R}(I)$. Since $I \oplus J \leq_{e} R_{R}$ and since $(R / I)_{R}$ is nonsingular, it follows that $I=l_{R}(J)$. Now, let $B \leq R_{R}$ for which $r_{R}(R / B)=I$. Then, $r_{R}(R / B J)=0$, whence by (a) there exist $b_{1}, \ldots, b_{m} \in R$ such that $\bigcap_{j=1}^{m}(B J$: $\left.b_{j}\right)=0$, from which we obtain $\bigcap_{j=1}^{m}\left(B: b_{j}\right)=I$. Thus, the ring R / I satisfies the condition (C_{1}).
(b) \Rightarrow (c). Obvious.
(c) \Rightarrow (a). Note that R is right nonsingular, because R is a semiprime and right bounded ring. For (a), let C be a cyclic faithful right R-module. It then follows from [3, Lemma 2] that $C / Z(C)$ is also faithful. Thus, the second condition of (c) implies that $C / Z(C)$, and hence C, is co-faithful.

A ring R is said to be biregular provided that for each $a \in R$, there exists $e \in B(R)$ such that $R a R=e R$. Also, recall that a two-sided ideal I of R has bounded index (of nilpotence) if there exists a positive integer n such that $a^{n}=0$ for all nilpotent elements a of I; the least such positive integer is said to be the index (of nilpotence) of I. If there exist no such positive integers, then I has index ∞, or the index of I is ∞. In particular, the regular rings of index 1 are said to be abelian. They are precisely the regular rings in which all idempotents are central (see [1, Theorem 3.2]).

Next we shall show that any regular ring with $\left(C_{1}\right)$ is a biregular ring of bounded
index, for which we need the following lemmas.

Lemma 2 (c.f. [1, Proposition 2.10]). Let R be a regular ring and n a positive integer. Let P be a projective right R-module and A a finitely generated submodule of $P^{(n)}$. Then, there exist submodules P_{1}, \ldots, P_{k} of P and nonnegative integers n_{1}, \ldots, n_{k} such that $P=P_{1} \oplus \cdots \oplus P_{k}$ and $A \cong P_{1}^{\left(n_{1}\right)} \oplus \cdots \oplus P_{k}^{\left(n_{k}\right)}$.

Proof. By virtue of [1, Lemma 2.7], there exist decompositions $P=U_{i} \oplus V_{i}$ $(i=1, \ldots, n)$ such that $A \cong U_{1} \oplus \cdots \oplus U_{n}$. Applying [1, Theorem 2.8] $n-1$ times in succession, we actually obtain a desired decomposition $P=P_{1} \oplus \cdots \oplus P_{k}$, where $k=2^{n}$ (see the proof of [1, Proposition 2.10]).

Recall that an R-module M is directly finite if M is not isomorphic to any proper direct summand of itself, or equivalently, for $x, y \in \operatorname{End}_{R}(M), x y=1$ implies $y x=1$ (see [1, Lemma 5.1]).

Lemma 3. For a regular ring R, the following conditions are equivalent:
(a) $\quad R$ is a biregular ring of bounded index;
(b) R is right bounded, and there exists a positive integer n such that $R / r_{R}(e R) \lesssim(e R)^{(n)}$ for every idempotent e of R;
(c) R is right bounded, and for idempotents e_{1}, e_{2}, \ldots of R such that $\left\{R_{n} R \mid\right.$ $n=1,2, \ldots\}$ is independent, there exists $f \in B\left(R^{\aleph_{0}}\right)$ such that $R^{\aleph_{0}}\left(e_{n}\right) R^{\aleph_{0}}=f R^{\aleph_{0}}$, where $R^{\aleph_{0}}$ is the direct product of \aleph_{0} copies of R.

Proof. $\quad(\mathrm{a}) \Rightarrow(\mathrm{b})$. Assume that R is a biregular ring of bounded index n. Then, by [1, Lemma 6.20 and Corollary 7.10], R is right bounded.

For the second condition of (b), let e be an idempotent of R. Then, biregularity of R implies that there exists $f \in B(R)$ such that $R e R=f R$, so that $f R \lesssim$ $(e R)^{(m)}$ for some positive integer m. Thus, according to Lemma 2, there exist $P_{1}, \ldots, P_{k} \leq e R_{R}$ and nonnegative integers n_{1}, \ldots, n_{k} such that $e R=P_{1} \oplus \cdots \oplus P_{k}$ and $f R \cong P_{1}^{\left(n_{1}\right)} \oplus \cdots \oplus P_{k}^{\left(n_{k}\right)}$. Since R has bounded index n, it follows from [1, Theorem 7.2] that each $n_{i} \leq n$. Therefore, we obtain $R / r_{R}(e R) \cong f R \lesssim(e R)^{(n)}$, as desired.
(b) \Rightarrow (c). Assuming that (b) holds, we may generally show that any direct product R^{Λ} of Λ copies of R is biregular, which will obviously imply the second condition of (c). So, let $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ be an idempotent of R^{Λ}. Then, by the second condition of (b), $R / r_{R}\left(e_{\lambda} R\right) \lesssim\left(e_{\lambda} R\right)^{(n)}$ for all $\lambda \in \Lambda$; hence by [1, Theorem 1.11], for each $\lambda \in \Lambda$, there exists $f_{\lambda} \in B(R)$ such that $R=r_{R}\left(e_{\lambda} R\right) \oplus f_{\lambda} R$, and $f_{\lambda} R$ is isomorphic to a direct summand of $\left(e_{\lambda} R\right)^{(n)}$. The existence of an epimorphism from $\left(e_{\lambda} R\right)^{(n)}$ onto $f_{\lambda} R$ shows that for each $\lambda \in \Lambda$, there exist $a_{\lambda 1}, \ldots, a_{\lambda n}, b_{\lambda 1}, \ldots, b_{\lambda n} \in$ R such that $f_{\lambda}=\sum_{i=1}^{n} a_{\lambda i} e_{\lambda} b_{\lambda i}$, and $f_{\lambda} R=R e_{\lambda} R$. Thus, in R^{Λ}, we have $\left(f_{\lambda}\right)=$
$\sum_{i=1}^{n}\left(a_{\lambda i}\right)\left(e_{\lambda}\right)\left(b_{\lambda i}\right)$, so that $R^{\Lambda}\left(e_{\lambda}\right) R^{\Lambda}=\left(f_{\lambda}\right) R^{\Lambda}$. Therefore, R^{Λ} is biregular.
(c) \Rightarrow (a). Assume that (c) holds. Then, the second condition of (c) obviously implies that R is biregular.

To prove that R has bounded index, we first claim the following.
Claim. $\quad R$ has no infinite independent set $\left\{I_{n} \mid n=1,2, \ldots\right\}$ of nonzero two-sided ideals such that the index of each I_{n} is at least n.

Suppose, to the contrary, that R does have such an infinite independent set $\left\{I_{n} \mid n=1,2, \ldots\right\}$. It then follows from [1, Theorem 7.2] that each I_{n} contains a nonzero idempotent e_{n} such that $\left(e_{n} R\right)^{(n)} \lesssim I_{n}$. Obviously, $\left\{R e_{n} R \mid n=1,2, \ldots\right\}$ is independent, whence according to (c), we obtain $\left(f_{n}\right) \in B\left(R^{\aleph_{0}}\right)$ such that $R^{\aleph_{0}}\left(e_{n}\right) R^{\aleph_{0}}=\left(f_{n}\right) R^{\aleph_{0}}$. Thus, there exists a positive integer k such that $\left(f_{n}\right) R^{\aleph_{0}} \lesssim$ $\left(\left(e_{n}\right) R^{\aleph_{0}}\right)_{R^{\aleph_{0}}}^{(k)}$, and so $f_{n} R \lesssim\left(e_{n} R\right)_{R}^{(k)}$ for all n. In particular, by [1, Theorem 1.11] the embedding $f_{k+1} R \lesssim\left(e_{k+1} R\right)^{(k)}$ implies that $\left(e_{k+1} R\right)^{(k)} \cong f_{k+1} R \oplus X$ for some right R-module X. On the other hand, by the choice of e_{n} 's, we have $\left(e_{k+1} R\right)^{(k+1)} \lesssim R e_{k+1} R=f_{k+1} R$, and so $f_{k+1} R \cong\left(e_{k+1} R\right)^{(k+1)} \oplus Y$ for some right R-module Y. Thus, we obtain $f_{k+1} R \cong f_{k+1} R \oplus e_{k+1} R \oplus X \oplus Y$, that is, $f_{k+1} R$, and hence R, is not directly finite. But, this will imply a contradiction (by modifying the proof of [5, Proposition 7]) as follows. Since R is not directly finite, it follows from [1, Proposition 5.5] that R contains an infinite set $\left\{g_{n} \mid n=1,2, \ldots\right\}$ of nonzero pairwise orthogonal idempotents such that $g_{m} R \cong g_{n} R$ for all m, n. Now, let A be a complement for $\bigoplus_{n=1}^{\infty} g_{n} R$ in R_{R}. Since R is right bounded, the essential right ideal $A \oplus\left(\bigoplus_{n=1}^{\infty} g_{n} R\right)$ contains a two-sided ideal I which is essential in R_{R}. If we take a to be an arbitrary element of I, then by biregularity of R there exists $e \in B(R)$ such that $R a R=e R$. Note that $e \in A \oplus g_{1} R \oplus \cdots \oplus g_{l} R$ for some l, and so $e g_{l+1}=0$. But then, $g_{n} R \cong g_{l+1} R$, so that $e g_{n}=0$ for all n, from which e, and hence a, belongs to A. Since $a(\in I)$ is arbitrary, it follows that $I \leq A$, whence A is essential in R_{R}. This shows that $\bigoplus_{n=1}^{\infty} g_{n} R=0$, which is a contradiction. Therefore, the claim must hold.

Now, set $I=\sum\left\{I^{\prime} \mid I^{\prime}\right.$ is a two-sided ideal of R with bounded index $\}$. We shall show by using this claim first that I is essential in R_{R}. To this end, set $J / I=Z\left((R / I)_{R}\right)$, and note that J is a two-sided ideal of R. Then, the ring R / J has no infinite independent set of nonzero two-sided ideal of R. Indeed, suppose not, and take an infinite independent set $\left\{J_{n} / J \mid n=1,2, \ldots\right\}$ of nonzero two-sided ideals of R / J. Then, observing that $r_{R} l_{R}(J)=J$ because R is a semiprime ring and $(R / J)_{R}$ is nonsingular, we see that $\left\{l_{R}(J) \cap J_{n} \mid n=1,2, \ldots\right\}$ is an infinite independent set of nonzero two-sided ideals of R. In particular, since each $l_{R}(J) \cap J_{n}$ is not contained in I, the choice of I implies that each $l_{R}(J) \cap J_{n}$ has index ∞. But, this contradicts the claim above. Thus, the ring R / J has no infinite independent set of nonzero two-sided ideals, which means that R / J has a finite independent
set $\left\{H_{1} / J, \ldots, H_{n} / J\right\}$ of nonzero two-sided ideals such that as two-sided ideals, $\bigoplus_{k=1}^{n}\left(H_{k} / J\right)$ is essential in R / J, and each H_{k} / J is uniform. Furthermore, note by biregularity of the ring R / J that each H_{k} / J must be simple as a two-sided ideal and $R / J=\left(H_{1} / J\right) \oplus \cdots \oplus\left(H_{n} / J\right)$. In addition, by right boundedness of R and by nonsingularity of $(R / J)_{R}$ it is easy to see that the ring R / J, and hence each the ring H_{k} / J, is also right bounded. Since any right bounded and simple ring is artinian, it follows that R / J is a semisimple artinian ring, so that R / J, and hence $l_{R}(J)(\lesssim R / J)$, obviously has bounded index. Consequently, $l_{R}(J) \leq I \leq J$, that is, $l_{R}(J)=0$, while $I \leq_{e} J_{R}$ and $J \oplus l_{R}(J) \leq_{e} R_{R}$. Therefore, I is indeed essential in R_{R}, as desired.

To conclude, we shall show that the ideal I has bounded index so that by virtue of [1 , Corollary 7.5] the ring R may have bounded index, which will complete the proof of the lemma. If I does not have bounded index, then by [1, Corollary 7.8] there exists an infinite set $\left\{K_{n} \mid n=1,2, \ldots\right\}$ of nonzero two-sided ideals of R such that for each $n, K_{n} \supsetneqq K_{n+1}$ and the index of K_{n+1} is greater than that of K_{n}. Observing that $\left(l_{R}\left(K_{n}\right) \cap K_{n+1}\right) \oplus K_{n} \leq_{e}\left(K_{n+1}\right)_{R}$ for all n, we see by [1, Corollary 7.5 and Proposition 7.7] that $\left\{l_{R}\left(K_{n}\right) \cap K_{n+1} \mid n=1,2, \ldots\right\}$ is an infinite independent set of nonzero two-sided ideals of R such that the index of each $l_{R}\left(K_{n+1}\right) \cap K_{n+2}$ is greater than that of $l_{R}\left(K_{n}\right) \cap K_{n+1}$, which contradicts again the claim above. Therefore, the ideal I has bounded index, as desired. This completes the proof of the lemma.

Note that both the classes of right bounded rings and of directly finite rings are closed under direct summands, and direct products, and also that in any regular ring R of index ∞, for each $n=1,2, \ldots$, there exists nonzero idempotent $e_{n} \in R$ such that $\left(e_{n} R\right)^{(n)} \lesssim R$. Then, observing the proofs of (b) \Rightarrow (c) and (c) \Rightarrow (a) in the lemma above, we see the following.

Remark 2. For a regular ring R, the conditions (a), (b), (c) in Lemma 3 are also equivalent to the following conditions:
(d) $R^{\aleph_{0}}$ is a biregular and right bounded ring;
(e) Any direct product of copies of R is a biregular and right bounded ring;
(f) $R^{\aleph_{0}}$ is a biregular and directly finite ring;
(g) Any direct product of copies of R is a biregular and directly finite ring.

Here we shall show that any regular ring satisfying $\left(C_{1}\right)$ is a biregular ring of bounded index.

Corollary 4. Let R be a regular ring. If R is right bounded, and if for idempotents e_{1}, e_{2}, \ldots of R such that $\left\{R e_{n} R \mid n=1,2, \ldots\right\}$ is independent, the R-module $R /\left(\bigcap_{n=1}^{\infty} r_{R}\left(e_{n}\right)\right)$ is co-faithful modulo its annihilator, then R is a biregular ring of bounded index.

In particular, if R satisfies $\left(C_{1}\right)$, then R is a biregular ring of bounded index.
Proof. By the second hypothesis we see, as in the proof of (b) \Rightarrow (c) in Lemma 3, that R is biregular.

Let e_{1}, e_{2}, \ldots be idempotents of R such that $\left\{R e_{n} R \mid n=1,2, \ldots\right\}$ is independent. To prove the corollary, it suffices by Lemma 3 to obtain $f \in B\left(R^{\aleph_{0}}\right)$ such that $R^{\aleph_{0}}\left(e_{n}\right) R^{\aleph_{0}}=f R^{\aleph_{0}}$. By hypothesis, there exists a positive integer k and a monomorphism $\varphi: R /\left(\bigcap_{n=1}^{\infty} r_{R}\left(e_{n} R\right)\right) \rightarrow\left(R /\left(\bigcap_{n=1}^{\infty} r_{R}\left(e_{n}\right)\right)\right)^{(k)}$. For each $m=1,2, \ldots$, let $\pi_{m}:\left(R /\left(\bigcap_{n=1}^{\infty} r_{R}\left(e_{n}\right)\right)\right)^{(k)} \rightarrow\left(R / r_{R}\left(e_{m}\right)\right)^{(k)}$ be the natural epimorphism. Since R is biregular, for each m there exists $f_{m} \in B(R)$ such that $f_{m} R=R e_{m} R$ and $\left(1-f_{m}\right) R=r_{R}\left(e_{m} R\right)$. Noting that $\left\{R e_{n} R \mid n=1,2, \ldots\right\}$ is independent, we obtain $\operatorname{Ker} \pi_{m} \varphi=\left(1-f_{m}\right) R /\left(\bigcap_{n=1}^{\infty} r_{R}\left(e_{n} R\right)\right)$; hence $f_{m} R \lesssim\left(e_{m} R\right)^{(k)}$ for all m. Consequently, it follows from the same argument as in the proof of (b) \Rightarrow (c) in Lemma 3 that $R^{\aleph_{0}}\left(e_{n}\right) R^{\aleph_{0}}=\left(f_{n}\right) R^{\aleph_{0}}$, as desired.

The second assertion now follows from Lemma 1.

Concerning Lemma 3, we observe the following well known examples.
Example 1. (1) There exists a regular ring R which is right bounded and biregular, but R does not have bounded index.

For each $n=1,2, \ldots$, choose a division ring D_{n}, and set $Q=\prod_{n=1}^{\infty} M_{n}\left(D_{n}\right)$. Let R be the subring of Q consisting of all elements $\left(x_{n}\right) \in Q$ such that for all but finitely many n, the matrix x_{n} is of the form $\left(\begin{array}{cccc}a_{n} & & & \\ & \cdot & & 0 \\ & & & \\ & 0 & & \\ & & & \\ & & & a_{n}\end{array}\right)\left(\in M_{n}\left(D_{n}\right)\right)$ for some $a_{n} \in D_{n}$. Then, R is a regular ring with Q the maximal quotient ring. Also, it is easy to see that R is as desired.
(2) There exists a regular ring R satisfying the second condition of (b) (and hence, of (c)) in Lemma 3, but R does not have bounded index.

Let V_{D} be an infinite dimensional vector space over a division ring D, and set $Q=\operatorname{End}_{D}(V)$ and $I=\left\{x \in Q \mid \operatorname{dim}_{D} x V<\operatorname{dim}_{D} V\right\}$. Then, I is the unique maximal two-sided ideal of Q. We consider $R=Q / I$. Let $\bar{x}(=x+I)$ be an arbitrary nonzero element of R where $x \in Q$. Then, $x V \cong V_{D}$, and so there exists a Q-isomorphism $\varphi: x Q \rightarrow Q$. Since Q is right self-injective, there exist $y, z \in Q$ such that $y x z=1$, from which we obtain $R \lesssim \bar{x} R$. Thus, R satisfies the second condition of (b).

But, since R is a simple non-artinian ring, it is not right bounded, and hence does not have bounded index.

According to [1, Theorem 3.4], a regular ring R is abelian if and only if for right ideals A, B of R such that $A \cap B=0$, there exist no nonzero homomorphisms from one to the other. We thus call an R-module M abelian if M has the same property for its submodules. Obviously, any submodule of an abelian module is also abelian.

Sublemma. Let M be a right R-module over a right nonsingular ring R.
(1) If M is abelian, then so is $M / Z(M)$.
(2) If M is nonsingular and abelian, then so is $E(M)$, the injective hull of M_{R}.

Proof. Observe that if X and Y are right R-modules with $X^{\prime} \leq_{e} X_{R}$ and $Y^{\prime} \leq_{e} Y_{R}$ such that Y is nonsingular and such that $\operatorname{Hom}_{R}\left(X^{\prime \prime}, Y^{\prime}\right)=0$ for all $X^{\prime \prime} \leq X_{R}^{\prime}$, then $\operatorname{Hom}_{R}(X, Y)=0$. This immediately implies the assertion (2).

For (1), set $Z=Z(M)$, and let W be a complement for Z in M. Let $N_{1}, N_{2} \leq$ M_{R} such that $N_{1} \cap N_{2}=Z$. Noting that $N_{i} \cap W \cong\left(\left(N_{i} \cap W\right) \oplus Z\right) / Z \leq_{e} N_{i} / Z$ for $i=1,2$, we see by the observation above that $\operatorname{Hom}_{R}\left(N_{1} / Z, N_{2} / Z\right)=0$. Thus, M / Z is abelian.

To decompose regular rings with (C) into finite direct products of full matrix rings over abelian regular rings, we need the following lemma (c.f. [4, Lemma 2]).

Lemma 5. For a regular ring R, the following conditions are equivalent:
(a) $\quad R$ has an abelian right R-module which is a generator for Mod- R;
(b) $\quad R$ is isomorphic to a finite direct product of full matrix rings over abelian regular rings.

Proof. (b) \Rightarrow (a). Assume that $R=\prod_{i=1}^{k} M_{n(i)}\left(S_{i}\right)$, where each S_{i} is an abelian regular ring. For each $i=1, \ldots, k$, let e_{i} be the matrix unit in $M_{n(i)}\left(S_{i}\right)$ which has a $1_{S_{i}}$ in $(1,1)$ position as its only nonzero entry, and set $e=e_{1}+\cdots+e_{k}$. Then, $e R$ is actually an abelian R-module which is a generator for Mod- R.
(a) \Rightarrow (b). The condition (a), a matter of fact, means that R has an abelian right R-module which is a finitely generated projective generator for Mod- R, as shown in the following claim, which will be often used in the next section as well.

Claim. Every abelian right R-module which is a generator for $\operatorname{Mod}-R$ is finitely generated projective.

To show this, let M be an abelian right R-module which is a generator for Mod- R. Then, $M_{R}^{(n)} \cong R \oplus X$ for some integer n and for some module X_{R}; hence $(M / Z(M))_{R}^{(n)} \cong R \oplus(X / Z(X))$, i.e., $M / Z(M)$ is also a generator. If $M / Z(M)$
is finitely generated projective, then $M=Z(M) \oplus Y$ for some module Y_{R}, whence $Z(M)=0$ (and hence, actually, M is finitely generated projective), because $\operatorname{Hom}_{R}(Y, Z(M))=0$ and $Y \cong M / Z(M)$ generates $Z(M)$. Thus, to prove that M is finitely generated projective, we may assume by Sublemma that M is nonsingular.

Since M is a generator, there exist homomorphisms $\varphi_{1}, \ldots, \varphi_{n}$ from M to R and $x_{1}, \ldots, x_{n} \in M$ such that $\sum_{i=1}^{n} \varphi_{i}\left(x_{i}\right)=1$. Now, consider a homomorphism $\varphi: M \rightarrow R^{(n)}$ defined by $x \mapsto\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)$. Then, φ is monic. To see this, set $K=\operatorname{Ker} \varphi$, let N be a complement for K in M, and set $A=\bigcap_{i=1}^{n}\left(K \oplus N: x_{i}\right)$. Indeed, let x be an arbitrary element of K, and let B be a complement for $r_{R}(x)$ in R_{R}. If $N B \neq 0$, then we have a nonzero homomorphism $B \rightarrow N$, which induces a nonzero homomorphism $x R(\leq K) \rightarrow E(N)$, the injective hull of N_{R}. But, this contradicts the assumption that M, and hence $E(M)$, is abelian (by Sublemma). Thus, $N B=0$, from which we have $(A \cap B)^{2} \leq \sum_{i=1}^{n} \varphi_{i}\left(x_{i}(A \cap B)\right)(A \cap B) \leq$ $\sum_{i=1}^{n} \varphi_{i}(N)(A \cap B)=0$, so that $A \cap B=0$. The essentiality of A in R_{R} then implies that $B=0$, and so $x=0$. Consequently, φ is monic. Thus, M can be embedded in $R_{R}^{(n)}$, whence by [1, Theorem 1.11] every finitely generated submodule of M is projective and a direct summand of M. As a result, if F is a finitely generated submodule of $M^{(l)}$ for some positive integer l, then induction on l shows that F is isomorphic to a finite direct sum of l submodules of M. Since $R_{R} \lesssim M^{(n)}$, it then follows that $R \cong M_{1} \oplus \cdots \oplus M_{n}$ for some submodules M_{1}, \ldots, M_{n} of M. Set $P=\sum_{i=1}^{n} M_{i}$. Then, by the observation above, P is finitely generated projective and a direct summand of M, while $R \lesssim P_{R}^{(n)}$ and hence by [1, Theorem 1.11], P is a generator for Mod- R. Now, noting that M is abelian, we obtain $M=P$, whence M must be finitely generated projective, which completes the proof of Claim.

Thus, we have an abelian finitely generated projective generator P for $\operatorname{Mod}-R$. Since R_{R} can be embedded in a finite direct sum of copies of P, it follows from Lemma 2 that there exist submodules P_{1}, \ldots, P_{k} of P and nonnegative integers n_{1}, \ldots, n_{k} such that $P=P_{1} \oplus \cdots \oplus P_{k}$ and $R \cong P_{1}^{\left(n_{1}\right)} \oplus \cdots \oplus P_{k}^{\left(n_{k}\right)}$. We then see by [1, Theorem 3.4] that each ring $\operatorname{End}_{R}\left(P_{i}\right)$ is abelian, and $\operatorname{Hom}_{R}\left(P_{i}, P_{j}\right)=0$ for $i \neq j$. Therefore, R has a desired decomposition $R \cong M_{n_{1}}\left(\operatorname{End}_{R}\left(P_{1}\right)\right) \times \cdots \times$ $M_{n_{k}}\left(\operatorname{End}_{R}\left(P_{k}\right)\right)$, which completes the proof of the lemma.

We observe the following two examples concerning the condition $\left(C_{1}\right)$.

Example 2. (1) There exists a regular ring R such that every factor ring of R satisfies (C_{1}), but R is not isomorphic to a finite direct product of full matrix rings over abelian regular rings.

Choose a subfield F in the field of real numbers, and set $F_{n}=F$ for $n=1,2, \ldots$, and $Q=\prod_{n=1}^{\infty} M_{2}\left(F_{n}\right)$, and let $a=\left(a_{n}\right)(\in Q)$, where each $a_{n}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Now,
set

$$
R=\bigoplus_{n=1}^{\infty} M_{2}\left(F_{n}\right)+1_{Q} F+a F,
$$

i.e., R is the subring of Q consisting of all elements $\left(x_{n}\right) \in Q$ for which there exist $a, b \in F$ such that $x_{n}=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ for all but finitely many n. Then, R is a regular ring with Q the maximal quotient ring.

First we shall show that R satisfies (C_{1}). To this end, according to Lemma 1, let C be a cyclic faithful nonsingular right R-module. Then, there exists an idempotent $e=\left(e_{n}\right) \in Q$ such that $C \cong e R$. Noting that each $e_{n} \neq 0$ because $e R_{R}$ is faithful, we can easily show that $r_{R}(\{e, e a\})=0$, so that $e R$ is co-faithful. Thus, R satisfies $\left(C_{1}\right)$. Now, let I be a two-sided ideal of R and consider the ring $\bar{R}=R / I$. Set $J=l_{R}(I)$, and $S=\bigoplus_{n=1}^{\infty} M_{2}\left(F_{n}\right)$. Since $I \oplus J \leq_{e} R_{R}$ and since S is the socle of R_{R} which is also a maximal two-sided ideal of R, it follows that either $I \oplus J=R$, or $I \oplus J=S$. If $I \oplus J=R$, then Lemma 1 implies that \bar{R} satisfies (C_{1}). So, assume that $I \oplus J=S$. Then, there exists a subset N_{1} of \mathbf{N}, the set of positive integers, such that $I=\bigoplus_{n \in N_{1}} M_{2}\left(\underline{F_{n}}\right)$. If $\mathbf{N}-N_{1}$ is infinite, then $I=r_{R}\left(\bigoplus_{n \in \mathbf{N}-N_{1}} M_{2}\left(F_{n}\right)\right)$; hence by Lemma 1 again, \bar{R} satisfies (C_{1}). On the other hand, if otherwise, then \bar{R} is isomorphic to a semisimple artinian ring $\prod_{n \in \mathbf{N}-N_{1}} M_{2}\left(F_{n}\right) \times\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in F\right\}$, which obviously satisfies $\left(C_{1}\right)$. Therefore, in any case, \bar{R} does satisfy $\left(C_{1}\right)$.

Next, suppose that R is isomorphic to a finite direct product of full matrix rings over abelian regular rings. Then, R contains an idempotent $f=\left(f_{n}\right)$ such that $f R_{R}$ is faithful and the ring $f R f$ is abelian. Since each $f_{n}=f_{n}^{2} \neq 0$, there exists $k \geq 1$ such that $f_{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ for all $n \geq k$. If we take $c=\left(c_{n}\right) \in R$ such that $c_{k}=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right) ; c_{n}=0$ otherwise, then $c=f c f$ is a nonzero nilpotent element of $f R f$, which is a contradiction. Therefore, R is as desired.
(2) There exists a regular ring R which is a biregular ring of bounded index, but R does not satisfy (C_{1}).

For each $n=1,2, \ldots$, choose a division ring D_{n}, and an integer $k \geq 2$, and set $Q=\prod_{n=1}^{\infty} M_{k}\left(D_{n}\right)$. Let R be the subring of Q consisting of all elements $\left(x_{n}\right) \in Q$ such that for all but finitely many n, the matrix x_{n} is of the form $\left(\begin{array}{cccc}a_{n} & & & \\ & \cdot & 0 & \\ & & \cdot & \\ & 0 & & \\ & & & a_{n}\end{array}\right)\left(\in M_{k}\left(D_{n}\right)\right)$ for some $a_{n} \in D_{n}$. Then, R is a biregular regular ring of bounded index with Q the maximal quotient ring.

Set $A_{R}=\bigoplus_{n=1}^{\infty}\left(\begin{array}{cccc}D_{n} & \cdot & \cdot & D_{n} \\ 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & 0\end{array}\right)$, and consider the cyclic right R-module $C=R / A$. Then, it is easy to see that C is faithful, and also that for any finitely many elements $c_{1}, \ldots, c_{n} \in C$, there exists a nonzero element of $\bigcap_{i=1}^{n} r_{R}\left(c_{i}\right)$. Therefore, R does not satisfy (C_{1}).

Here we digress from our subject and consider the conditions (C) and $\left(C_{1}\right)$ on regular rings R along with two conditions below.
$\left(C_{0}\right) \quad R$ is isomorphic to a finite direct product of full matrix rings over abelian regular rings.
$\left(C_{2}\right) \quad R$ is a biregular ring of bounded index.
By Remark 1, Corollary 4 and Example 2 combined with Theorem A and Example 3(1) which will be shown in the next section, we see the following.

Remark 3. For regular rings, the following proper implications hold:

$$
(C) \quad \Longrightarrow \quad\left(C_{0}\right) \quad \Longrightarrow \quad\left(C_{1}\right) \quad \Longrightarrow \quad\left(C_{2}\right)
$$

We need a few more lemmas below.
Lemma 6. (1) Let $R=\prod_{i=1}^{n} R_{i}$ be a ring decomposition. Then, R satisfies the condition that every cyclic faithful right R-module contains a (cyclic projective) submodule which is a generator if and only if so does each R_{i}.

Furthermore, even if we replace "cyclic" by "finitely generated" in the condition above, the assertion also holds.
(2) Let R be a semiprime ring with (C). If I is a two-sided ideal such that $(R / I)_{R}$ is nonsingular, then R / I is also a ring with (C).

Proof. (1) Immediate.
(2) Set $J=l_{R}(I)$, and let $A \leq R_{R}$ such that $r_{R}(R / A)=I$. Then, $R / A J$ is faithful, whence it contains a generator $B / A J$ for Mod- R. Since $I=l_{R}(J)$, it is easy to see that $(B+A) / A(\leq R / A)$ is a generator for Mod- R / I. Thus, the ring R / I satisfies (C).

Lemma 7 (c.f. [6, Lemma 2.5]). Let R be a right nonsingular and semiprime ring with Q the maximal right quotient ring. For every two-sided ideal I of R, there exists $e \in B(Q)$ such that $I \leq_{e} e Q_{R}$.

Lemma 8. For a right nonsingular and semiprime ring R with Q the maximal
right quotient ring, the following conditions are equivalent:
(a) Q is directly finite, and every right R-submodule M of Q generated by at most two elements contains an element x such that $r_{R}(x)=r_{R}(M)$;
(b) Every finitely generated faithful right R-submodule of Q contains a unit in Q.

Proof. (a) \Rightarrow (b). Let M be a faithful right R-submodule of Q generated by x_{1}, \ldots, x_{n}. For the module $\sum_{i=1}^{2} x_{i} R$, the second condition of (a) implies that $r_{R}\left(\sum_{i=1}^{2} x_{i} R\right)=r_{R}\left(y_{2}\right)$ for some $y_{2} \in \sum_{i=1}^{2} x_{i} R$. Next, apply the condition again for the module $y_{2} R+x_{3} R$ to obtain $y_{3} \in y_{2} R+x_{3} R$ such that $r_{R}\left(\sum_{i=1}^{3} x_{i} R\right)=$ $r_{R}\left(y_{2} R+x_{3} R\right)=r_{R}\left(y_{3}\right)$. Continuing in this manner, we obtain $y_{n} \in \sum_{i=1}^{n} x_{i} R=$ M such that $r_{R}\left(y_{n}\right)=r_{R}(M)=0$. Since Q is directly finite, the element y_{n} must be a unit in Q.
(b) \Rightarrow (a). To prove that Q is directly finite, let e be an idempotent of Q such that $e Q \cong Q$. Since $e Q_{Q}$ is faithful, we see by using Lemma 7 that $e R_{R}$ is faithful, and hence by (b) that $e Q=Q$. Thus, Q is directly finite.

For the second condition of (a), let M be a right R-submodule of Q generated by at most two elements. By Lemma 7, there exists $f \in B(Q)$ such that $r_{R}(M)=$ $f Q \cap R$. Noting that $M \oplus f R$ is a finitely generated faithful R-submodule of Q, by (b) we obtain $x \in M$ and $y \in f R$ such that $r_{R}(x+y)=0$, which implies that $r_{R}(x)=r_{R}(M)$, as desired.

3. Results

By using the results in the preceding section, we shall prove the following our main theorem.

Theorem A. For a regular ring R, the following conditions are equivalent:
(a) Every cyclic faithful right R-module contains a submodule which is a generator for Mod-R;
(b) Every cyclic faithful right R-module contains a cyclic projective submodule which is a generator for Mod- R;
(c) For every right ideal A of R such that R / A is faithful, there exists $a \in R$ such that $a R \cap A=0$ and $R a R=R$;
(d) $R \cong \prod_{i=1}^{k} M_{n(i)}\left(S_{i}\right)$, where $n(1)=1$, and $n(i) \geq 2$ for $i=2,3, \ldots, k$, and where each S_{i} is an abelian regular ring such that for $i=2,3, \ldots, k$, every finitely generated faithful right S_{i}-submodule of $Q\left(S_{i}\right)$ contains a unit in $Q\left(S_{i}\right)$.

$$
\text { Proof. } \quad \text { (b) } \Leftrightarrow \text { (c) and (b) } \Rightarrow \text { (a). Immediate. }
$$

(a) \Rightarrow (d). According to Corollary 4 and [1, Corollary 7.4], the ring R, and hence $Q(R)$, has bounded index, whence $Q(R)$ contains an idempotent e such that $e Q(R)_{Q(R)}$ is faithful and abelian. Observe that $e R_{R}$ is an abelian module which
is also faithful by Lemma 7. It then follows from the condition (a) and Lemma 5 that R has a decomposition $R=S_{1} \times \prod_{i=2}^{k} M_{n(i)}\left(S_{i}\right)$, where each $n(i) \geq 2$, and where each S_{i} is an abelian regular ring. To show that for each $i=2, \ldots, k$, the ring S_{i} has the desired property in (d), it suffices by Lemmas 6 and 8 to show that in case $R=M_{n}(S)$ satisfies (a) where $n \geq 2$ and where S is an abelian regular ring, every right S-submodule X of $Q(S)$ generated by at most two elements contains an element whose annihilator coincides with that of X.

If X is cyclic, then it obviously contains such an element, because S is abelian. So, assume that $X=x S+y S$, where $x, y \in Q(S)$. Take a (central) idempotent e of $Q(S)$ to satisfy $r_{S}(X)=(1-e) Q(S) \cap S$. Let A and B be right $M_{n}(e S)$-submodules
 tively. Observing that $r_{e S}(e x S+e y S)=0$, we see that A is a cyclic faithful abelian $M_{n}(e S)$-submodule of $M_{n}(e Q(S))$. Since by Lemma 6 the ring $M_{n}(e S)$ also satisfies the condition (a), it follows from Claim in the proof of Lemma 5 that A contains a finitely generated projective generator P for $\operatorname{Mod}-M_{n}(e S)$. In particular, $B \lesssim P^{(l)} \leq A^{(l)}$ for some integer l, while B is an abelian $M_{n}(e S)$-module, whence by Lemma 2 we may take $l=1$, and so $e S \lesssim e x S+e y S$. Thus, there exist $s, t \in S$ such that $r_{e S}(e x s+e y t)=0$, which implies that $r_{S}(x s+y t)=r_{S}(X)$, as desired.
(d) \Rightarrow (b). Assume that (d) holds. Since any abelian regular ring obviously satisfies the condition (b), it suffices by Lemma 6 to show that in case $R=M_{n}(S)$ where $n \geq 2$ and where S is an abelian regular ring such that every finitely generated faithful right S-submodule of $Q(S)$ contains a unit in $Q(S)$, the ring R actually satisfies the condition (b).

Indeed, let C be a cyclic faithful right R-module, and set $Q=Q(R)=M_{n}(Q(S))$. Then, there exists an idempotent $e \in Q$ such that $C / Z(C) \cong e R$. Note from Lemma 1 and [3, Lemma 2] that $e R_{R}$, and hence $e Q_{Q}$, is faithful. Also, let f be the matrix unit in R which has a 1_{S} in $(1,1)$ position as its only nonzero entry. Since Lemma 3 implies that $f Q \leq Q \lesssim(e Q)^{(k)}$ for some integer k and since $f Q_{Q}$ is abelian, it follows from Lemma 2 that $f Q \lesssim e Q$. Thus, by virtue of [1, Corollary 7.11 and Theorem 4.1], there exist two decompositions $Q_{Q}=A_{1} \oplus A_{2} \oplus A_{3}=B_{1} \oplus B_{2} \oplus B_{3}$ such that $A_{1} \oplus A_{2}=e Q, A_{3}=(1-e) Q, B_{1}=f Q$, and $B_{2} \oplus B_{3}=(1-f) Q$ along with Q-isomorphisms $\varphi_{i}: B_{i} \rightarrow A_{i}$ for $i=1,2,3$. Set $\varphi=\bigoplus_{i=1}^{3} \varphi_{i}: Q_{Q} \rightarrow Q_{Q}$, the direct sum of φ_{i} 's, and set $v=\varphi(1)$ and $\varphi(u)=1$ (for some $u \in Q$). Then, $v u=1$, and hence $u v=1$, i.e., $v=u^{-1}$, because Q is directly finite. Expressing $1-f=x+y$, where $x \in B_{2}, y \in B_{3}$, and noting that $e+(1-e)=1=u^{-1} f u+u^{-1} x u+u^{-1} y u=$ $\left(\varphi_{1}(f) u+\varphi_{2}(x) u\right)+\varphi_{3}(y) u$, we obtain $e=u^{-1} f u+u^{-1} x u$, and so $u e=(f+x) u$. By the choices of f and x and by the unity of u, the element $u e$ may be expressed
as $u e=\left(\begin{array}{ccc}u_{1} \cdot & \cdot & u_{n} \\ & * & \\ & \end{array}\right) \in M_{n}(Q(S))$, where $\sum_{i=1}^{n} u_{i} Q(S)=Q(S)$, and hence, in particular, $\sum_{i=1}^{n} u_{i} S_{S}$ is faithful. It then follows from the hypothesis of S that there exist $s_{1}, \ldots, s_{n} \in S$ such that $\sum_{i=1}^{n} u_{i} s_{i}$ is a unit in $Q(S)$. This induces a monomorphism $f R \rightarrow u e R$ defined by
which implies that $f R \lesssim u e R \cong e R \cong C / Z(C)$. Since $f R$ is obviously a cyclic projective generator for Mod- R, we conclude that $C / Z(C)$, and hence C, actually contains a cyclic projective generator, which completes the proof of the theorem.

We may replace "cyclic" by "finitely generated" in the equivalent conditions of the theorem above, as shown in the following theorem.

Theorem B. For a regular ring R, the following conditions are equivalent:
(a) Every finitely generated faithful right R-module contains a submodule which is a generator for Mod- R;
(b) Every finitely generated faithful right R-module contains a finitely generated projective submodule which is a generator for Mod-R;
(c) For every positive integer n and for every right ideal X of $M_{n}(R)$ such that $M_{n}(R) / X$ is faithful, there exists $\theta \in M_{n}(R)$ such that $\theta M_{n}(R) \cap X=0$ and $M_{n}(R) \theta M_{n}(R)=M_{n}(R)$;
(d) $R \cong \prod_{i=1}^{k} M_{n(i)}\left(S_{i}\right)$, where each S_{i} is an abelian regular ring such that every finitely generated faithful right S_{i}-submodule of $Q\left(S_{i}\right)$ contains a unit in $Q\left(S_{i}\right)$.

To prove Theorem B, we provide the following lemma by using Theorem A.
Lemma 9. For an abelian regular ring S, the following conditions are equivalent:
(a) Every finitely generated faithful right S-module contains a submodule which is a generator for Mod-S;
(b) Every finitely generated faithful right S-module contains a finitely generated projective submodule which is a generator for Mod-S;
(c) Every finitely generated faithful right S-submodule of $Q(S)$ contains a
unit in $Q(S)$.
Proof. $\quad(\mathrm{b}) \Rightarrow(\mathrm{a})$. Obvious.
(a) \Rightarrow (c). Let M be a finitely generated faithful right S-submodule of $Q(S)$. Then, the condition (a) implies that M contains a generator G_{S}. Since $Q(S)$, and hence G, is abelian, it follows from Claim in the proof of Lemma 5 that G must be finitely generated projective. Thus, there exist $x_{1}, \ldots, x_{n} \in G$ such that $G=x_{1} S \oplus \cdots \oplus x_{n} S$, and then $r_{S}\left(\sum_{i=1}^{n} x_{i}\right)=0$. Therefore, $\sum_{i=1}^{n} x_{i}(\in M)$ is a unit in $Q(S)$.
(c) \Rightarrow (b). Let M be a finitely generated faithful right S-module. Then, there exists a positive integer n and an epimorphism $\varphi: S^{(n)} \rightarrow M$. Set $P=S^{(n)}$, and $T=M_{n}(S)$. Also, let F denote the functor $\operatorname{Hom}_{S}\left({ }_{T} P_{S},-\right): \operatorname{Mod}-S \rightarrow \operatorname{Mod}-T$, and note that the functor F is a category equivalence. Then, we obtain an exact sequence in Mod-T:

$$
0 \rightarrow F(\operatorname{Ker} \varphi) \rightarrow F(P) \rightarrow F(M) \rightarrow 0
$$

and $F(P) \cong T_{T}$. Thus, $F(M)$ is a cyclic faithful right T-module. Since by the condition (c) and Theorem A, every cyclic faithful right T-module contains a cyclic projective generator, we conclude that $F(M)$, and hence M, contains a finitely generated projective generator, as desired.

Proof of Theorem B. As in the proof of (c) $\Rightarrow(\mathrm{b})$ in the lemma above, we see that the conditions (b) and (c) are equivalent. In addition, note that the conditions (a) and (b) on rings are Morita-invariant. Then, the theorem is immediate from the lemma above, Theorem A and Lemma 6.

Remark 4. By Theorems A, B and their proofs, we see that for a regular ring R, the following conditions are equivalent:
(a) $\quad R$ satisfies the equivalent conditions of Theorem B;
(b) Every faithful right R-module generated by at most two elements contains a submodule which is a generator for Mod-R;
(c) For every positive integer n, the matrix ring $M_{n}(R)$ satisfies the equivalent conditions of Theorem A;
(d) The matrix ring $M_{2}(R)$ satisfies the equivalent conditions of Theorem A.

Recall that a regular ring is (right) continuous if it contains all the idempotents of the maximal (right) quotient ring (see [1, Theorem 13.13]).

REMARK 5. The matrix rings over any continuous abelian regular rings satisfy the equivalent conditions of Theorem B.

Indeed, let S be an abelian regular ring which is continuous. We must show that
every finitely generated faithful S-submodule of $Q(S)$ contains a unit in $Q(S)$. So, let $X_{S}=x_{1} S+\cdots+x_{n} S$ be a finitely generated faithful right S-submodule of $Q(S)$. For each $i=1, \ldots, n$, take an idempotent $e_{i}($ of $S)$ to satisfy $x_{1} Q(S)+\cdots+x_{i} Q(S)=$ $e_{i} Q(S)$. Then, we have $Q(S)=\sum_{i=1}^{n} x_{i} Q(S)=\bigoplus_{i=1}^{n}\left(x_{i}\left(1-e_{i-1}\right) Q(S)\right)=$ $\left(\sum_{i=1}^{n} x_{i}\left(1-e_{i-1}\right)\right) Q(S)\left(\right.$ where $\left.e_{0}=0\right)$, which shows that $\sum_{i=1}^{n} x_{i}\left(1-e_{i-1}\right)(\in X)$ is a unit in $Q(S)$, as desired.

Let S be an abelian regular ring, and $k(\geq 2)$ an integer, and set $R=M_{k}(S)$. Let x be an arbitrary element of $Q(S)$, and consider the right R-submodule C of $Q(R)$ generated by $\left(\begin{array}{ccccc}1 & 0 & \cdots & 0 & x \\ 0 & \cdots & \cdots & & 0 \\ \cdots & \cdots & \cdots & \cdot \\ 0 & \cdots & \cdots & 0\end{array}\right)$. Then, C is a cyclic faithful abelian R-module. Now, assume that C is a generator for Mod- R. It then follows from Claim in the proof of Lemma 5 that C_{R} is projective, so that $S+x S$ is a projective S-module, from which we have $x \in S$. As a result, if every cyclic faithful right R-module is a generator for Mod- R, then $S=Q(S)$, i.e., S is self-injective.

Therefore, Theorems A and B combined with the argument above immediately imply the following two corollaries, respectively.

Corollary A ([6, Theorem 4.3]). For a regular ring R, the following conditions are equivalent:
(a) R is right GFC, i.e., every cyclic faithful right R-module is a generator for Mod-R;
(b) R is isomorphic to a finite direct product of an abelian regular ring and full matrix rings over self-injective abelian regular rings.

Corollary B ([5, Theorem 9]). For a regular ring R, the following conditions are equivalent:
(a) $\quad R$ is right FPF, i.e., every finitely generated faithful right R-module is a generator for Mod- R;
(b) R is isomorphic to a finite direct product of full matrix rings over selfinjective abelian regular rings.

We conclude with two examples to illustrate Theorems A and B.
Example 3. (1) There exists a regular ring R which is a full matrix ring over an abelian regular ring, but R does not satisfy the equivalent conditions of Theorem A.

Choose an at most countable division ring D with $D-\{0\}=\left\{a_{n} \mid n=1,2, \ldots\right\}$ and $a_{0}=0$. For each $n=1,2, \ldots$, set $D_{n}=D$, and set $Q=\prod_{n=1}^{\infty} D_{n}$, and
$S=\bigoplus_{n=1}^{\infty} D_{n}+1_{Q} D(\subset Q)$. Then, S is an abelian regular ring with Q the maximal quotient ring. Let $k(\geq 2)$ be an integer, and set $R=M_{k}(S)$.

Now, partition \mathbf{N}, the set of positive integers, into countably many pairwise disjoint countable sets $N_{i}=\left\{n_{i}(0), n_{i}(1), n_{i}(2), \ldots\right\}(i=1,2, \ldots)$, and take $x=$ $\left(x_{n}\right), y=\left(y_{n}\right) \in Q$ as follows:

$$
\begin{aligned}
& x_{n}=a_{j} \text { if } n=n_{i}(j) \text { for some } i, j, \\
& y_{n}= \begin{cases}1 & \text { if } n=n_{i}(j) \text { for some } i, j \text { with } j \leq i, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Then, $x S+y S$ is a faithful S-submodule of Q. But, it is easy to see that for every $s, t \in S$, some entry of $x s+y t$ must be zero; hence $x S+y S$ contains no units in Q.
Thus, the cyclic faithful right R-module generated by $\left(\begin{array}{ccccc}x & 0 & \cdot & \cdot & \cdot\end{array}\right)$ contain a generator for Mod- R.
(2) There exists a regular ring R which satisfies the equivalent conditions of Theorem B, but not all cyclic faithful right R-modules are generators for Mod- R.

In fact, as can be seen from Remark 5 combined with the argument following the remark, the matrix rings $M_{n}(S)(n \geq 2)$ over any continuous abelian non-selfinjective regular ring S (e.g. [1, Example 13.8]) is one example with which the above may be illustrated. The following is such "another" example.

For each $n=1,2, \ldots$, choose a field F_{n} which contains \mathbf{R}, the field of real numbers, and set $Q=\prod_{n=1}^{\infty} F_{n}$, and $S=\bigoplus_{n=1}^{\infty} F_{n}+1_{Q} \mathbf{R}(\subset Q)$. Then, S is an abelian regular ring with Q the maximal quotient ring. Let $k(\geq 2)$ be an integer, and set $R=M_{k}(S)$.

Then, R has the desired property. To this end, according to Lemma 8, we must first show that every right S-submodule X of Q generated by at most two elements contains an element whose annihilator coincides with that of X. So, let $X=x S+y S$, where $x=\left(x_{n}\right), y=\left(y_{n}\right) \in Q$, and let N_{1} denote the set $\left\{n \in \mathbf{N} \mid x_{n} \neq 0\right.$ or $\left.y_{n} \neq 0\right\}$. Since for each $n \in N_{1}$, the set $H_{n}=\{(a, b) \in$ $\left.\mathbf{R} \times \mathbf{R} \mid x_{n} a+y_{n} b=0, a^{2}+b^{2}=1\right\}$ is finite, we have $\bigcup_{n \in N_{1}} H_{n} \varsubsetneqq\{(a, b) \in \mathbf{R} \times \mathbf{R} \mid$ $\left.a^{2}+b^{2}=1\right\}$; hence there exist $a, b \in \mathbf{R}$ such that $x_{n} a+y_{n} b \neq 0$ for all $n \in N_{1}$. Now, taking $s=\left(s_{n}\right), t=\left(t_{n}\right) \in S$ such that $s_{n}=a, t_{n}=b$ for all $n=1,2, \ldots$, we see that $r_{S}(X)=r_{S}(x s+y t)$, as desired. Thus, every finitely generated faithful right R-module contains a finitely generated projective generator for Mod- R.

Now, choose $z \in Q-S$. Then, as seen in the argument following Remark 5, the cyclic faithful right R-module generated by $\left(\begin{array}{ccccc}1 & 0 & \cdots & 0 & z \\ 0 & \cdots & \cdots & & 0 \\ \cdots & \cdots & \cdots & . \\ 0 & \cdots & \cdots & 0\end{array}\right)$ can not be a generator
for Mod- R.

References

[1] K.R. Goodearl: Von Neumann Regular Rings, Pitman Press, London, 1979.
[2] K.R. Goodearl and J. Moncasi: Cancellation of finitely generated modules over regular rings, Osaka J. Math. 26 (1989), 679-685.
[3] S. Kobayashi: On non-singular FPF-rings I, Osaka J. Math. 22 (1985), 787-795.
[4] S. Kobayashi: On regular rings whose cyclic faithful modules are generator, Math. J. Okayama Univ. 30 (1988), 45-52.
[5] S. Page: Regular FPF rings, Pacific J. Math. 79 (1978), 169-176; Correction: Pacific J. Math. 97 (1981), 488-490.
[6] H. Yoshimura: On rings whose cyclic faithful modules are generators, Osaka J. Math. 32 (1995), 591-611.

Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi 753, Japan

