
Yoshimura, H.
Osaka J. Math.
34 (1997), 363-380

ON REGULAR RINGS
WHOSE CYCLIC FAITHFUL MODULES

CONTAIN GENERATORS

HIROSHI YOSHIMURA

(Received February 24, 1995)

1. Introduction

The present paper may be considered as a continuation of [6], in which we
studied nonsingular rings R satisfying the condition (C*) that every cyclic faithful
right i?-module is a generator for the category Moά-R of all right i?-modules. We
proved in [6] that a (von Neumann) regular ring satisfies (C*) if and only if it is
isomorphic to a finite direct product of an abelian regular ring and full matrix rings
over self-injective abelian regular rings (c.f. [4]). Concerning this, we note that there
exists a regular ring R over which, although R fails to satisfy the condition (C*), yet
every cyclic faithful right ^-module "contains" a submodule which is a generator
for Moά-R. For instance, choose a division ring Dn containing a division subring
En for n = 1,2,... , let k (> 2) be an integer, and let Sn and Tn be the rings of
all k x k matrices over Dn and En, respectively, for n — 1,2,.... Now, consider the
regular ring R which consists of all sequences (xn) e Π^Li $n such that xn G Tn

for all but finitely many n. Then, R satisfies (C*) only when Dn = En for all but
finitely many n (see [4], or [6]), whence in case En is properly contained in Dn for
infinitely many n, the ring R does not satisfy (C*). However, it is shown that every
cyclic (finitely generated) faithful right module over the ring R actually contains a
generator. In fact, as will be noted in Example 3(2) of §3, the full matrix rings over
any continuous abelian non-self-injective regular rings do not satisfy (C*), but every
cyclic (finitely generated) faithful module over the rings does contain a generator.
This shows that the condition (C*) is not equivalent to the one (C) that every cyclic
faithful right module contains a submodule which is a generator.

In this paper, we shall consistently investigate regular rings satisfying the con-
dition (C) above, and determine their structure. Section 2 is devoted to preliminary
results on regular rings R satisfying (C), part of which would be derived from their
more general property that every cyclic faithful right i?-module is co-faithful. In
Section 3 we shall present our main result (Theorem A) which asserts that the reg-
ular rings satisfying the condition (C) are precisely the finite direct products of
abelian regular rings and full matrix rings over abelian regular rings 5 such that
every finitely generated faithful right S-submodule of the maximal quotient ring
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Q(S) of S contains a unit in Q(S). Furthermore, we show that the regular rings
over which every finitely generated faithful right module contains a generator are
just the finite direct products of full matrix rings over such abelian regular rings S
(Theorem B). As corollaries, we obtain a structure theorem for regular rings satis-
fying the condition (C*) as in [6] and the well-known structure theorem for FPF
rings in [5](Corollary A, B). Also, we shall present some examples to illustrate these
results.

NOTATION AND TERMINOLOGY. All rings considered in this paper are associa-
tive with identity and all modules are unitary.

Let R be a ring, M an i?-module, and x and X an element and a subset of
M. We denote by Z{M) the (right) singular submodule of M, by (X : x) the
set {r e R I XT e X}, and by rR(X) (respectively, IR(X)) the right (resp. left)
annihilator of X in R. The notation N < M (resp. TV < e M) means that N is a
submodule (resp. an essential submodule) of M, while the notation N < M means
that TV is isomorphic to a submodule of M. In particular, the notation A < RR
signifies that A is a right ideal of R. Given a positive integer n, we denote by M^
the direct sum of n copies of M, and by Mn(R) the ring of all n x n matrices over
R. The set of all central idempotents in R and the maximal (right) quotient ring
of R are denoted by B(R) and Q(R), respectively. A complement for N in M is
any submodule L of M which is maximal with respect to the property N Π L = 0.
A right i?-module M is co-faithful modulo its annihilator if R/TR{M) < M^ for
some integer n. In particular, if TR{M) = 0, i.e., R < M^n\ then we call M simply
co-faithful

In what follows we shall be concerned with rings R satisfying the condition:

(C) Every cyclic faithful right i?-module contains a submodule which is a
generator for Mod-it!.

For brevity we referred to them as rings with (C).

2. Preliminaries

It is obvious that any ring R with (C) satisfies the condition:

(Ci) Every cyclic faithful right ^-module is co-faithful.

Thus, for a while we shall examine the property of rings with (CΊ).
The following remark is immediate.

REMARK 1. For any ring R, the following conditions are equivalent:
(a) R satisfies the condition (CΊ);
(b) Every finitely generated faithful right i?-module is co-faithful;
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(c) For every finitely generated faithful right i?-module M and for every
finitely generated projective right i?-module P, there exists a positive integer n such
that P<M^n\

In particular, the property (CΊ) of rings is Morita-invariant.

A ring R is right (essentially) bounded provided that every essential right ideal
of R contains a two-sided ideal which is essential as a right ideal.

Lemma 1. For a semiprime ring R, the following conditions are equivalent:
(a) R satisfies (CΊ);
(b) R is right bounded, and for every two-sided ideal I such that (R/I)R is

nonsingular, the ring R/I satisfies (CΊ);
(c) R is right bounded, and every cyclic faithful nonsingular right R-module

is co-faithful

Proof. (a) => (b). Let E <e RR, and choose a complement A for rR(R/E)
in ER. Then, R/A is faithful, whence by (a) there exist αi , . . . ,α n G R such that
(X=1(A : di) = 0. Set X = f|Γ=i (AθrR(R/E) : a{). Observing that a{XA < A for
all i, we have XA = 0, so that A = 0, because R is semiprime and X <e RR. Thus,
rR(R/E) is essential in ##, which shows that R is right bounded.

For the second condition of (b), let / be a two-sided ideal such that (R/I)R is
nonsingular, and set J = lR(I). Since IφJ <e RR and since (R/I)R is nonsingular,
it follows that I = lR(J). Now, let B < RR for which rR(R/B) = /. Then,
rR(R/BJ) = 0, whence by (a) there exist 6i,.. .,6m G i? such that f|JLi (BJ :

6j) = 0, from which we obtain Πj=i {β : fy) = -̂  Thus, the ring R/I satisfies the
condition (CΊ).

(b) => (c). Obvious.
(c) => (a). Note that R is right nonsingular, because R is a semiprime and right

bounded ring. For (a), let C be a cyclic faithful right .R-module. It then follows
from [3, Lemma 2] that C/Z(C) is also faithful. Thus, the second condition of (c)
implies that C/Z(C), and hence C, is co-faithful. D

A ring R is said to be biregular provided that for each a £ R, there exists
e G B{R) such that RaR = eR. Also, recall that a two-sided ideal I of R has
bounded index (of nilpotence) if there exists a positive integer n such that αn = 0 for
all nilpotent elements a of /; the least such positive integer is said to be the index
(of nilpotence) of /. If there exist no such positive integers, then / has index oo,
or the index of / is oo. In particular, the regular rings of index 1 are said to be
abelian. They are precisely the regular rings in which all idempotents are central
(see [1, Theorem 3.2]).

Next we shall show that any regular ring with (CΊ) is a biregular ring of bounded
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index, for which we need the following lemmas.

Lemma 2 (c.f. [1, Proposition 2.10]). Let R be a regular ring and n a positive
integer. Let P be a projective right R-module and A a finitely generated submodule
of p(n). Then, there exist submodules P 1 ? . . . , Pk of P and nonnegative integers
n1, . . . , nk such that P = Pλ 0 θ Pk and A =- p[ni) θ θ Pk

nk)

Proof. By virtue of [1, Lemma 2.7], there exist decompositions P = Uι 0 Vi
(i = 1,..., n) such that A = U\ 0 θ Un. Applying [1, Theorem 2.8] n - 1 times
in succession, we actually obtain a desired decomposition P — Pi 0 0 Pk, where
k = 2n (see the proof of [1, Proposition 2.10]). D

Recall that an i?-module M is directly finite if M is not isomorphic to any
proper direct summand of itself, or equivalently, for x,y G End^(M), xy = 1
implies yx — \ (see [1, Lemma 5.1]).

Lemma 3. For a regular ring R, the following conditions are equivalent:
(a) R is a biregular ring of bounded index \
(b) R is right bounded, and there exists a positive integer n such that

R/rR(eR) < (e#) ( n ) for every idempotent e ofR;
(c) R is right bounded, and for idempotents e±, e 2 , . . . of R such that {RenR

n = l,2,...} is independent, there exists f G B(R*°) such that RHo(en)R*° = fR*°,
where RH° is the direct product of Ko copies of R.

Proof. (a) => (b). Assume that R is a biregular ring of bounded index n.
Then, by [1, Lemma 6.20 and Corollary 7.10], R is right bounded.

For the second condition of (b), let e be an idempotent of R. Then, biregularity
of R implies that there exists f e B(R) such that ReR = fR, so that fR <
(ej?)(m) for some positive integer m. Thus, according to Lemma 2, there exist
Pi, , Pk < CRR and nonnegative integers n\,..., nk such that eR = P\ 0 θ Pk

and fR ^ P[ni) 0 0 P^nfc). Since R has bounded index n, it follows from [1,
Theorem 7.2] that each n{ < n. Therefore, we obtain R/rR(eR) = fR< (eR)(n\
as desired.

(b) => (c). Assuming that (b) holds, we may generally show that any direct
product RA of Λ copies of R is biregular, which will obviously imply the second
condition of (c). So, let (eλ)λ<EΛ be an idempotent of RA. Then, by the second
condition of (b), R/rR(eλR) < ( e λ # ) ( n ) for all λ G Λ; hence by [1, Theorem 1.11],
for each λ G Λ, there exists fx G B(R) such that R = rR(e\R) 0 f\R, and f\R is
isomorphic to a direct summand of (e\R)(n\ The existence of an epimorphism from
(e\R)(n"> onto f\R shows that for each λ G Λ, there exist a\χ,..., aχn, b\ι,..., b\n G
R such that / λ = ΣΓ=i aλίe\bχi, and f\R = ReλR. Thus, in RA, we have (/λ) =
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ΣΓ=i (aχi)(eχ)(bχi)9 so that RA(eλ)RA = (fλ)RA. Therefore, RA is biregular.
(c) =Φ- (a). Assume that (c) holds. Then, the second condition of (c) obviously

implies that R is biregular.
To prove that R has bounded index, we first claim the following.

CLAIM. R has no infinite independent set {In | n = 1,2,...} of nonzero
two-sided ideals such that the index of each In is at least n.

Suppose, to the contrary, that R does have such an infinite independent set
{/n I n = 1,2,...}. It then follows from [1, Theorem 7.2] that each In contains a
nonzero idempotent en such that (enR)^ < In. Obviously, {RenR \ n = 1,2,...}
is independent, whence according to (c), we obtain (fn) G B(RHo) such that
R*°(en)R*° = (fn)R*°. Thus, there exists a positive integer k such that (fn)R*° <
((e n )i2 K o )^ o , and so fnR < (enR)^ for all n. In particular, by [1, Theorem
1.11] the embedding fk+1R < (ek+1R)^ implies that (ek+1R)^ ^ fk+1R 0 X
for some right iϋ-module X. On the other hand, by the choice of en's, we have
(e fc+1#)( fc+1) < Rek+1R = fk+1R, and so fk+1R <* ( e f c + 1 i ? ) M θ 7 for some
right ^-module Y. Thus, we obtain fk+iR = fk+±R 0 ek+ιR Θ l θ 7 , that is,
fk+iR, and hence R, is not directly finite. But, this will imply a contradiction (by
modifying the proof of [5, Proposition 7]) as follows. Since R is not directly finite, it
follows from [1, Proposition 5.5] that R contains an infinite set {gn \ n = 1,2,...}
of nonzero pairwise orthogonal idempotents such that g^R = 9nR for all m, n.
Now, let A be a complement for 0^LX gnR in RR. Since R is right bounded, the
essential right ideal A 0 ( 0 ^ ! gnR) contains a two-sided ideal / which is essential
in RR. If we take a to be an arbitrary element of /, then by biregularity of R there
exists e e B(R) such that RaR = eR. Note that e G A 0 gii? 0 0 giR for some /,
and so egι+ι = 0. But then, gnR = gι+χR, so that egn = 0 for all n, from which e,
and hence α, belongs to A. Since a(E I) is arbitrary, it follows that I < A, whence
A is essential in RR. This shows that 0^LX g n ^ = 0, which is a contradiction.
Therefore, the claim must hold.

Now, set / = Σ{I' I /' is a two-sided ideal of R with bounded index }. We
shall show by using this claim first that / is essential in RR. To this end, set
J/I — Z((R/I)R), and note that J is a two-sided ideal of R. Then, the ring R/J
has no infinite independent set of nonzero two-sided ideal of R. Indeed, suppose
not, and take an infinite independent set {Jn/J \ n = 1,2,...} of nonzero two-sided
ideals of R/J. Then, observing that rRlR(J) = J because R is a semiprime ring
and (R/J)R is nonsingular, we see that {IR(J) Π Jn | n = 1,2,...} is an infinite
independent set of nonzero two-sided ideals of R. In particular, since each IR(J)ΠJU

is not contained in /, the choice of / implies that each IR(J) Π Jn has index oo. But,
this contradicts the claim above. Thus, the ring R/J has no infinite independent
set of nonzero two-sided ideals, which means that R/J has a finite independent
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set {Hι/J,...,Hn/J} of nonzero two-sided ideals such that as two-sided ideals,
0 ^ = 1 (Hk/J) is essential in R/J, and each Hk/J is uniform. Furthermore, note
by biregularity of the ring R/J that each Hk/J must be simple as a two-sided ideal
and R/J = (ίfi/J) θ Θ (Hn/J). In addition, by right boundedness of R and
by nonsingularity of (R/J)R it is easy to see that the ring R/J, and hence each
the ring Hk/J, is also right bounded. Since any right bounded and simple ring is
artinian, it follows that R/J is a semisimple artinian ring, so that R/J, and hence
IR(J)(ΪS R/J), obviously has bounded index. Consequently, IR(J) < I < J, that
is, IR(J) = 0, while / < e JR and J Θ IR{J) <e RR Therefore, I is indeed essential
in RR, as desired.

To conclude, we shall show that the ideal / has bounded index so that by virtue
of [1, Corollary 7.5] the ring R may have bounded index, which will complete the
proof of the lemma. If / does not have bounded index, then by [1, Corollary
7.8] there exists an infinite set {Kn | n = 1,2,...} of nonzero two-sided ideals of
R such that for each n, Kn ^ Kn+ι and the index of Kn+1 is greater than that
of Kn. Observing that (lR(Kn) Π ifn+i) θ Kn <e {Kn+1)R for all n, we see by
[1, Corollary 7.5 and Proposition 7.7] that {lR{Kn) Π Kn+λ \ n = 1,2,...} is an
infinite independent set of nonzero two-sided ideals of R such that the index of each
lR(Kn+ι)C\Kn+2 is greater than that oflR(Kn)nKn+ι, which contradicts again the
claim above. Therefore, the ideal / has bounded index, as desired. This completes
the proof of the lemma. D

Note that both the classes of right bounded rings and of directly finite rings are
closed under direct summands, and direct products, and also that in any regular
ring R of index oo, for each n — 1,2,..., there exists nonzero idempotent en G R
such that (eni?)(n) < R. Then, observing the proofs of (b) => (c) and (c) =>• (a) in
the lemma above, we see the following.

REMARK 2. For a regular ring R, the conditions (a), (b), (c) in Lemma 3 are
also equivalent to the following conditions:

(d) R*° is a biregular and right bounded ring;
(e) Any direct product of copies ofR is a biregular and right bounded ring;
(f) R*° is a biregular and directly finite ring;
(g) Any direct product of copies ofR is a biregular and directly finite ring.

Here we shall show that any regular ring satisfying (CΊ) is a biregular ring of
bounded index.

Corollary 4. Let R be a regular ring. If R is right bounded, and if for idempo-
tents ei, e 2 , . . . of R such that {RenR \ n = 1,2,...} is independent, the R-module
^/(Π^Li r #( e n)) is co-faithful modulo its annihilator, then R is a biregular ring of
bounded index.
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In particular, if R satisfies (CΊ), then R is a bίregular ring of bounded index.

Proof. By the second hypothesis we see, as in the proof of (b) => (c) in

Lemma 3, that R is biregular.

Let ei, β2,... be idempotents of R such that {RenR | n = 1,2,...} is indepen-

dent. To prove the corollary, it suffices by Lemma 3 to obtain / G B(R*°) such that

-R**°(en)jR
N° = fR*°. By hypothesis, there exists a positive integer k and a monomor-

phism φ : i?/(fTLi M ^ ) ) -> ( « / ( n ~ = i ^ ( e n ) ) ) ( f c ) . For each m = 1,2,..., let

τrm : ( JR/(Π^Li^(en))) ( / ί : ) -> {R/rR{em)){k) be the natural epimorphism. Since

R is biregular, for each m there exists / m G B(R) such that / m i? = RemR and

(1 — fm)R = rR(emR) Noting that {RenR \ n = 1,2,...} is independent, we

obtain Keτπmtp = (1 - / m )f l/(Γ£Li Π?(e n #)); hence / m Λ < (emΛ)<*> for all m.

Consequently, it follows from the same argument as in the proof of (b) =>• (c) in

Lemma 3 that R*°(en)R*° = (fn)R*°, as desired.

The second assertion now follows from Lemma 1. D

Concerning Lemma 3, we observe the following well known examples.

EXAMPLE 1. (1) There exists a regular ring R which is right bounded and

biregular, but R does not have bounded index.

For each n = 1,2,... , choose a division ring Dn, and set Q = Π^Li Mn{Dn).

Let R be the subring of Q consisting of all elements (xn) G Q such that for all but

/On \

0
finitely many n, the matrix xn is of the form (G Mn(Dn)) for

0

\ an

some an G Dn. Then, R is a regular ring with Q the maximal quotient ring. Also,

it is easy to see that R is as desired.

(2) There exists a regular ring R satisfying the second condition of (b) (and

hence, of (c)) in Lemma 3, but R does not have bounded index.

Let VD be an infinite dimensional vector space over a division ring D, and set

Q = End£)(F) and / = {x G Q | dirno xV < dim/) V}. Then, / is the unique

maximal two-sided ideal of Q. We consider R = Q/I. Let x (= x + /) be an

arbitrary nonzero element of R where x G Q. Then, xV = VD, and so there exists

a Q-isomorphism φ : xQ —> Q. Since Q is right self-injective, there exist y,z G Q

such that yxz = 1, from which we obtain R < xR. Thus, R satisfies the second

condition of (b).

But, since R is a simple non-artinian ring, it is not right bounded, and hence

does not have bounded index.
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According to [1, Theorem 3.4], a regular ring R is abelian if and only if for
right ideals A,B of R such that AΠB = 0, there exist no nonzero homomorphisms
from one to the other. We thus call an ^-module M abelian if M has the same
property for its submodules. Obviously, any submodule of an abelian module is
also abelian.

Sublemma. Let M be a right R-module over a right nonsingular ring R.
(1) If M is abelian, then so is M/Z(M).
(2) If M is nonsingular and abelian, then so is E(M), the injective hull of

MR.

Proof. Observe that if X and Y are right .R-modules with X' < e XR and
Y' <e YR such that Y is nonsingular and such that HomR(X",Yf) = 0 for all
X" < XR, then Hom Λ (I , Y) = 0. This immediately implies the assertion (2).

For (1), set Z = Z(M), and let W be a complement for Z in Λf. Let Nλ,N2 <
MR such that Nλ Π N2 = Z. Noting that N{ Π W 9* ((iV* Π W) θ Z)/Z <e N{/Z
for i = 1,2, we see by the observation above that HomR(Nι/Z, N2/Z) = 0. Thus,
M/Z is abelian. •

To decompose regular rings with (C) into finite direct products of full matrix
rings over abelian regular rings, we need the following lemma (c.f. [4, Lemma 2]).

Lemma 5. For a regular ring R, the following conditions are equivalent:
(a) R has an abelian right R-module which is a generator for Mod-i2;
(b) R is isomorphic to a finite direct product of full matrix rings over abelian

regular rings.

Proof. (b) => (a). Assume that R = Πi=i Mn^)(Si), where each Si is an

abelian regular ring. For each i = 1,..., k, let ê  be the matrix unit in M
which has a 15̂  in (1,1) position as its only nonzero entry, and set e = e\ H
Then, eR is actually an abelian ^-module which is a generator for Mod-i?.

(a) =Φ- (b). The condition (a), a matter of fact, means that R has an abelian
right i2-module which is a finitely generated projective generator for Moά-R, as
shown in the following claim, which will be often used in the next section as well.

CLAIM. Every abelian right .R-module which is a generator for Mod-it! is
finitely generated projective.

To show this, let M be an abelian right .R-module which is a generator for

-R. Then, M^ = R θ X for some integer n and for some module XR\ hence

£° ^ Rθ (X/Z(X)), i.e., M/Z(M) is also a generator. If M/Z(M)
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is finitely generated projective, then M = Z(M) 0 Y for some module YR, whence
Z(M) = 0 (and hence, actually, M is finitely generated projective), because
Homβ(Ύ, Z(M)) = 0 and Y 9* M/Z(M) generates Z(M). Thus, to prove that M is
finitely generated projective, we may assume by Sublemma that M is nonsingular.

Since M is a generator, there exist homomorphisms φι,... ,φn from M to R
and xι,... ,xn G M such that Σ™=1 ψi(xi) = 1. Now, consider a homomorphism
φ : M ^ R(nϊ defined by x ι-> (y?i(x),..., <pn(x)). Then, <p is monic. To see this,
set K = Ker φ, let N be a complement for K in M, and set A = ΠΓ=i ( ^ Φ ^ : χ i)
Indeed, let a; be an arbitrary element of X, and let B be a complement for 7\R(X) in
# # . If NB Φ 0, then we have a nonzero homomorphism B —• A/", which induces
a nonzero homomorphism xi? (< if) —> E(N), the injective hull of iV#. But, this
contradicts the assumption that M, and hence E(M), is abelian (by Sublemma).
Thus, NB = 0, from which we have (A Π B)2 < Σ"=1 ψi(xi(A Π B))(A Π B) <
ΣΓ=i ^(^0(^4 Π B ) = 0 , so that i n B = 0. The essentiality of A in RR then
implies that J5 = 0, and so x = 0. Consequently, <p is monic. Thus, M can be
embedded in RR\ whence by [1, Theorem 1.11] every finitely generated submodule
of M is projective and a direct summand of M. As a result, if F is a finitely
generated submodule of M^ for some positive integer /, then induction on I shows
that F is isomorphic to a finite direct sum of/ submodules of M. Since RR < M^n\
it then follows that R = M1 θ θ Mn for some submodules Mi, . . . , Mn of M. Set
P = ΣΓ=i ^ * Then, by the observation above, P is finitely generated projective
and a direct summand of M, while R < P# and hence by [1, Theorem 1.11], P is
a generator for Mod-R. Now, noting that M is abelian, we obtain M = P, whence
M must be finitely generated projective, which completes the proof of Claim.

Thus, we have an abelian finitely generated projective generator P for Mod-P.
Since RR can be embedded in a finite direct sum of copies of P, it follows from
Lemma 2 that there exist submodules P i , . . . ,P^ of P and nonnegative integers
7ii,...,nk such that P = Pλ θ θ Pk and R = P[ni) 0 θ P^k)'. We then see
by [1, Theorem 3.4] that each ring Endβ(P ) is abelian, and Homjβ(Pi,P7) = 0
for i φ j . Therefore, R has a desired decomposition R = Mni(EndJκ(Pi)) x x
Mnk (Endfl(Pfc)), which completes the proof of the lemma. •

We observe the following two examples concerning the condition (CΊ).

EXAMPLE 2. (1) There exists a regular ring R such that every factor ring of
R satisfies (CΊ), but R is not isomorphic to a finite direct product of full matrix
rings over abelian regular rings.

Choose a subfield F in the field of real numbers, and set Fn = F for n = 1,2,...,

and Q = ΠΓ=i M2(Fn), and let α = (αn) (e Q), where each αn = ί j . Now,



372 H. YOSHIMURA

set

n=l

i.e., R is the subring of Q consisting of all elements (xn) G Q for which there exist

a,b e F such that xn = ( ) for all but finitely many n. Then, R is a regular
\ -b a J

ring with Q the maximal quotient ring.
First we shall show that R satisfies (Ci). To this end, according to Lemma 1, let

C be a cyclic faithful nonsingular right iί-module. Then, there exists an idempotent
e = (en) G Q such that C = eR. Noting that each en φ 0 because eRR is faithful,
we can easily show that 7\R({e,eα}) = 0, so that eR is co-faithful. Thus, R satisfies
(Ci). Now, let 7 be a two-sided ideal of R and consider the ring R = R/I. Set
J = IR(I), and 5 = 0^LX M2{Fn). Since I θ J <e RR and since 5 is the socle of
RR which is also a maximal two-sided ideal of R, it follows that either 7 0 J = R, or
70 J = 5. If 70 J = R, then Lemma 1 implies that R satisfies (Ci). So, assume that
7 0 J = 5. Then, there exists a subset JVΊ of N, the set of positive integers, such that
1 = θneN, M2(K) If N-7VΊ is infinite, then 7 = rR(φneN_Ni M ^ F J ) ; hence by
Lemma 1 again, R satisfies (Ci). On the other hand, if otherwise, then R is isomor-
phic to a semisimple artinian ring Πn<=N-/v M2(Fn) x < ( ) | α, 6 G F >,

1 _ l V ~b a J J
which obviously satisfies (CΊ). Therefore, in any case, R does satisfy (CΊ).

Next, suppose that R is isomorphic to a finite direct product of full matrix
rings over abelian regular rings. Then, R contains an idempotent / = (/n) such
that fRR is faithful and the ring fRf is abelian. Since each fn = f% φ 0, there

exists k > 1 such that fn — I j for all n > k. If we take c = (cn) G R such

that Cfc = ί J cn = 0 otherwise, then c = fcf is a nonzero nilpotent element

of fRf, which is a contradiction. Therefore, i? is as desired.

(2) There exists a regular ring R which is a biregular ring of bounded index,
but R does not satisfy (Ci).

For each n = 1,2,..., choose a division ring Dn, and an integer k > 2, and
set <2 = Π^li^fc(^n) Let i? be the subring of Q consisting of all elements
(xn) G Q such that for all but finitely many n, the matrix xn is of the form
ί an \

0
(G Mk(Dn)) for some αn G T)n. Then, i? is a biregular

0
\ On /

regular ring of bounded index with Q the maximal quotient ring.
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/Dn Dn\

Set AR = φ^L x , and consider the cyclic right jR-module

\ 0 0 /

C = R/A. Then, it is easy to see that C is faithful, and also that for any finitely many
elements ci,. . . ,cn £ C, there exists a nonzero element of ΠΓ=i rR(ci)- Therefore,
R does not satisfy (Ci).

Here we digress from our subject and consider the conditions (C) and (Ci) on
regular rings R along with two conditions below.

(Co) R is isomorphic to a finite direct product of full matrix rings over abelian
regular rings.

(C2) R is a biregular ring of bounded index.

By Remark 1, Corollary 4 and Example 2 combined with Theorem A and Example
3(1) which will be shown in the next section, we see the following.

REMARK 3. For regular rings, the following proper implications hold:

(C) => (Co) = > (CO =s> (C2).

We need a few more lemmas below.

Lemma 6. (1) Let R = ΠΓ=i ^ be a ring decomposition. Then, R satisfies
the condition that every cyclic faithful right R-module contains a {cyclic projective)
submodule which is a generator if and only if so does each Ri.

Furthermore, even if we replace "cyclic" by "finitely generated" in the condition
above, the assertion also holds.

(2) Let R be a semiprime ring with (C). If I is a two-sided ideal such that
(R/I)R is nonsingular, then R/I is also a ring with (C).

Proof. (1) Immediate.
(2) Set J = IR(I), and let A < RR such that rR(R/A) = I. Then, R/AJ is

faithful, whence it contains a generator B/AJ for Mod-β. Since / = IR(J), it is
easy to see that (B + A)/A {< R/A) is a generator for Moά-R/I. Thus, the ring
R/I satisfies (C). D

Lemma 7 (c.f. [6, Lemma 2.5]). Let R be a right nonsingular and semiprime
ring with Q the maximal right quotient ring. For every two-sided ideal I of R, there
exists e G B(Q) such that I <e eQR.

Lemma 8. For a right nonsingular and semiprime ring R with Q the maximal
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right quotient ring, the following conditions are equivalent:
(a) Q is directly finite, and every right R-submodule MofQ generated by at

most two elements contains an element x such that rR(x) = rR(M);
(b) Every finitely generated faithful right R-submodule of Q contains a unit

inQ.

Proof. (a) => (b). Let M be a faithful right .R-submodule of Q generated
by # i , . . . ,xn. For the module Y^=1 x%R, the second condition of (a) implies that
r # ( Σ i = i XiR) = rR(y2) for some y2 G Σΐ=i χi^ Next, apply the condition again
for the module y2R -f X3R to obtain y3 G y2R + X3R such that rR(J2^=1 XiR) =
rR(y2R + X3R) = rR(ys). Continuing in this manner, we obtain yn G ΣΓ=i Xi^ =

M such that rR(yn) = rR(M) = 0. Since Q is directly finite, the element yn must
be a unit in Q.

(b) => (a). To prove that Q is directly finite, let e be an idempotent of Q such
that eQ = Q. Since eQQ is faithful, we see by using Lemma 7 that eRR is faithful,
and hence by (b) that eQ = Q. Thus, Q is directly finite.

For the second condition of (a), let M be a right .R-submodule of Q generated
by at most two elements. By Lemma 7, there exists / G B(Q) such that rR(M) =
fQ Π R. Noting that M Θ fR is a finitely generated faithful Ή-submodule of Q,
by (b) we obtain x G M and y G /-R such that rR{x + y) = 0, which implies that
rR(x) = rR(M), as desired. D

3. Results

By using the results in the preceding section, we shall prove the following our
main theorem.

Theorem A. For a regular ring R, the following conditions are equivalent:
(a) Every cyclic faithful right R-module contains a submodule which is a gen-

erator for Mod-R',
(b) Every cyclic faithful right R-module contains a cyclic projective submodule

which is a generator for Mod-R;
(c) For every right ideal A of R such that R/A is faithful, there exists a G R

such that aRΓ)A = 0 and RaR — R\

(d) R ^ Πί=i Mn(i)(Si)i where n(l) = 1, and n(i) > 2 for i = 2,3,..., fc,
and where each Si is an abelian regular ring such that for i = 2,3,..., fc, every
finitely generated faithful right Si-submodule of Q{Si) contains a unit in Q(Si).

Proof. (b) 4Φ (c) and (b) => (a). Immediate.
(a) =Φ- (d). According to Corollary 4 and [1, Corollary 7.4], the ring R, and

hence Q(R), has bounded index, whence Q(R) contains an idempotent e such that
is faithful and abelian. Observe that eRR is an abelian module which
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is also faithful by Lemma 7. It then follows from the condition (a) and Lemma 5

that R has a decomposition R = Si x Y\^=2Mn^(Si), where each n(i) > 2, and

where each Si is an abelian regular ring. To show that for each i = 2,..., fc, the

ring Si has the desired property in (d), it suffices by Lemmas 6 and 8 to show that

in case R = Mn(S) satisfies (a) where n > 2 and where S is an abelian regular ring,

every right S'-submodule X of Q(S) generated by at most two elements contains an

element whose annihilator coincides with that of X.

If X is cyclic, then it obviously contains such an element, because S is abelian.

So, assume that X = xS + yS, where x, y e Q(S). Take a (central) idempotent e of

Q(S) to satisfy rs(X) = (1 -e)Q(S) nS. Let A and B be right Mn(eS)-submodules

/ex 0 - 0 e y \ / e 0 • 0'

0 0
of Mn(eQ(S)) generated by and , respec-

V 0 0/ \ 0 • 0,

tively. Observing that res(exS + e?/S) = 0, we see that A is a cyclic faithful abelian

Mn(e5)-submodule of Mn(eQ{S)). Since by Lemma 6 the ring Mn(eS) also sat-

isfies the condition (a), it follows from Claim in the proof of Lemma 5 that A

contains a finitely generated projective generator P for Mod-Mn(e5'). In particular,

B < P^ < A^ for some integer /, while B is an abelian Mn(eS)-module, whence

by Lemma 2 we may take I = 1, and so eS < exS-f eyS. Thus, there exist s,t e S

such that reS(exs + eyt) — 0, which implies that rs(xs + yt) = rs(X), as desired.

(d) =Φ- (b). Assume that (d) holds. Since any abelian regular ring obviously

satisfies the condition (b), it suffices by Lemma 6 to show that in case R = Mn(S)

where n > 2 and where S is an abelian regular ring such that every finitely generated

faithful right 5-submodule of Q(S) contains a unit in Q(S), the ring R actually

satisfies the condition (b).

Indeed, let C be a cyclic faithful right ^-module, and set Q = Q(R) = Mn(Q(S)).

Then, there exists an idempotent e e Q such that C/Z(C) = eR. Note from Lemma

1 and [3, Lemma 2] that eRR, and hence CQQ, is faithful. Also, let / be the matrix

unit in R which has a I5 in (1,1) position as its only nonzero entry. Since Lemma

3 implies that fQ < Q < {eQ)^ for some integer k and since /QQ is abelian, it

follows from Lemma 2 that fQ < eQ. Thus, by virtue of [1, Corollary 7.11 and

Theorem 4.1], there exist two decompositions QQ = A\ θ A<ι θ A3 — B\ 0 B2 θ B%

such that AλΘA2 = eQ, A3 = (1 - e)Q, β x = /Q, and B2 Θ B3 = (1 - f)Q along

with Q-isomorphisms ψi : Bi -+ A4 for i = 1, 2,3. Set φ = 0 ^ = 1 φ% : QQ -* QQ, the

direct sum of </?i's, and set v = y?(l) and φ(u) = 1 (for some u e Q). Then, υu = 1,

and hence m; = 1, i.e., i; = u~λ, because Q is directly finite. Expressing 1—/ = x+y,

where x G ̂ 2, V £ -03» and noting that e + (1 — e) = 1 = u~x fu + w " 1 ^ + u~xyu =

(ψi(f)u + Ψ2{χ)u) + Ψ3{y)uτ w e obtain e = u~ιfu + u~1xu, and so we = (/ -f #)?/.
By the choices of / and a: and by the unity of w, the element ue may be expressed
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( Ui U

I € Afn(Q(S)), where Σ"=1UiQ(S) = Q(S), and hence,

in particular, Σ™=1 UiSs is faithful. It then follows from the hypothesis of S that
there exist s i , . . . ,s n e 5 such that Σ™=1

 uisi *s a u m t *n Q(S)- This induces a
monomorphism fR —• wei? denned by

a>i ' α n \

0 0

0 0 /

which implies that fR < ueR = eR = C/Z(C). Since fR is obviously a cyclic
projective generator for Mod-R9 we conclude that C/Z(C), and hence C, actually
contains a cyclic projective generator, which completes the proof of the theorem.

D

We may replace "cyclic" by "finitely generated" in the equivalent conditions of
the theorem above, as shown in the following theorem.

Theorem B. For a regular ring R, the following conditions are equivalent:
(a) Every finitely generated faithful right R-module contains a submodule

which is a generator for Mod-R]
(b) Every finitely generated faithful right R-module contains a finitely gener-

ated projective submodule which is a generator for Mod-i?;
(c) For every positive integer n and for every right ideal X of Mn{R) such

that Mn(R)/X is faithful, there exists θ e Mn(R) such that ΘMn(R) Π l = O and
Mn(R)ΘMn(R) = Afn(Λ);

(d) R = ΠiLi Mn(ή(Si), where each Si is an abelian regular ring such that
every finitely generated faithful right Si-submodule of Q(Si) contains a unit in

To prove Theorem B, we provide the following lemma by using Theorem A.

Lemma 9. For an abelian regular ring 5, the following conditions are equiv-
alent:

(a) Every finitely generated faithful right S-module contains a submodule
which is a generator for Mod-5;

(b) Every finitely generated faithful right S-module contains a finitely gener-
ated projective submodule which is a generator for Mod-S;

(c) Every finitely generated faithful right S-submodule of Q(S) contains a
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unit in Q(S).

Proof. (b) => (a). Obvious.
(a) => (c). Let M be a finitely generated faithful right 5-submodule of Q(S).

Then, the condition (a) implies that M contains a generator Gs Since Q(5),
and hence G, is abelian, it follows from Claim in the proof of Lemma 5 that G
must be finitely generated projective. Thus, there exist # ! , . . . ,x n G G such that
G = xiS Θ Θ xnS, and then rs(Σ™=1 x%) = 0. Therefore, ^ ? = 1 z; (G M) is a
unit in Q(S).

(c) => (b). Let M be a finitely generated faithful right 5-module. Then, there
exists a positive integer n and an epimorphism φ : S^ —> M. Set P = 5^n\ and
Γ = Mn(S). Also, let F denote the functor Horns(ΓPS,__) : Mod-5 -> Mod-Γ,
and note that the functor F is a category equivalence. Then, we obtain an exact
sequence in Mod-Γ:

0 -+ F{Kevφ) -* F{P) -> F{M) -* 0

and F(P) = Tτ. Thus, F(M) is a cyclic faithful right T-module. Since by the
condition (c) and Theorem A, every cyclic faithful right T-module contains a cyclic
projective generator, we conclude that F(M), and hence M, contains a finitely
generated projective generator, as desired. D

Proof of Theorem B. As in the proof of (c) => (b) in the lemma above, we see
that the conditions (b) and (c) are equivalent. In addition, note that the conditions
(a) and (b) on rings are Morita-invariant. Then, the theorem is immediate from the
lemma above, Theorem A and Lemma 6. •

REMARK 4. By Theorems A, B and their proofs, we see that for a regular ring
R, the following conditions are equivalent:

(a) R satisfies the equivalent conditions of Theorem B;
(b) Every faithful right R-module generated by at most two elements contains

a submodule which is a generator for Moά-R]
(c) For every positive integer n, the matrix ring Mn(R) satisfies the equivalent

conditions of Theorem A;
(d) The matrix ring M2(R) satisfies the equivalent conditions of Theorem A.

Recall that a regular ring is (right) continuous if it contains all the idempotents
of the maximal (right) quotient ring (see [1, Theorem 13.13]).

REMARK 5. The matrix rings over any continuous abelian regular rings satisfy
the equivalent conditions of Theorem B.

Indeed, let 5 be an abelian regular ring which is continuous. We must show that
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every finitely generated faithful 5-submodule of Q(S) contains a unit in Q(S). So,

let Xs = xiS-\ \-xnS be a finitely generated faithful right S'-submodule of Q(S).

For each i = 1,..., n, take an idempotent e» (of S) to satisfy x1Q(S)-\ \-XiQ(S) =

βiQ(S). Then, we have Q(S) = ΣΓ=i χiQ(s) = ΘΓ=i(*i(l " ei-i)Q(S)) =
(ΣΓ=i ^ ί 1 -e<-i))Q(S) (where e0 = 0), which shows that Σ ? = 1 *i(l ~ e*-i) (e * )
is a unit in Q(S), as desired.

Let 5 be an abelian regular ring, and k (> 2) an integer, and set R = Mk(S).

Let x be an arbitrary element of Q(S), and consider the right i^-submodule C of

( 1 0 0 x\

. Then, C is a cyclic faithful abelian .R-module.

0 0/

Now, assume that C is a generator for Moά-R. It then follows from Claim in the

proof of Lemma 5 that CR is projective, so that S + xS is a projective »S-module,

from which we have x G 5. As a result, if every cyclic faithful right iί-module is a

generator for Mod-i?, then 5 = Q(S), i.e., 5 is self-injective.

Therefore, Theorems A and B combined with the argument above immediately

imply the following two corollaries, respectively.

Corollary A ([6, Theorem 4.3]). For a regular ring R, the following conditions

are equivalent:

(a) R is right GFC, i.e., every cyclic faithful right R-module is a generator for

Moά-R\

(b) R is isomorphic to a finite direct product of an abelian regular ring and

full matrix rings over self-injective abelian regular rings.

Corollary B ([5, Theorem 9]). For a regular ring R, the following conditions

are equivalent:

(a) R is right FPF, i.e., every finitely generated faithful right R-module is a

generator for Moά~R;

(b) R is isomorphic to a finite direct product of full matrix rings over self-

injective abelian regular rings.

We conclude with two examples to illustrate Theorems A and B.

EXAMPLE 3. (1) There exists a regular ring R which is a full matrix ring over

an abelian regular ring, but R does not satisfy the equivalent conditions of Theorem

A.

Choose an at most countable division ring D with D — {0} = {an \ n — 1,2,...}

and α0 = 0. For each n = 1,2,..., set Dn = D, and set Q = Π^Li Aι» and
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5 = 0£L X Dn + 1QD(C Q). Then, 5 is an abelian regular ring with Q the maximal

quotient ring. Let k (> 2) be an integer, and set R = Mk(S).

Now, partition N, the set of positive integers, into countably many pairwise

disjoint countable sets Ni = {rii(0),n i(l),n ΐ(2),...} (i — 1,2,...), and take x =

(xn), y = (yn) G Q as follows:

xn = dj if n = rii(j) for some z, j ,

!

1 if n = τii(j) for some i, j with j < i,

0 otherwise.

Then, xS -f yS is a faithful 5-submodule of Q. But, it is easy to see that for every

s,t G 5, some entry of xs + ?/£ must be zero; hence xS + y5' contains no units in Q.

( x 0 0 y\

can not

o o/
contain a generator for Moά-R.

(2) There exists a regular ring i? which satisfies the equivalent conditions of

Theorem B, but not all cyclic faithful right i?-modules are generators for Moά-R.

In fact, as can be seen from Remark 5 combined with the argument following

the remark, the matrix rings Mn(S) (n > 2) over any continuous abelian non-self-

injective regular ring 5 (e.g. [1, Example 13.8]) is one example with which the

above may be illustrated. The following is such "another" example.

For each n = 1,2,..., choose a field Fn which contains R, the field of real

numbers, and set Q = Π^=i Fn, and 5 = 0 ^ Fn + 1QR (c Q). Then, S is an

abelian regular ring with Q the maximal quotient ring. Let k (> 2) be an integer,

and set R = Mk(S).
Then, R has the desired property. To this end, according to Lemma 8, we

must first show that every right S-submodule X of Q generated by at most two

elements contains an element whose annihilator coincides with that of X. So,

let X = xS + yS, where x = (xn), y = (yn) G Q, and let Nι denote the set

{n e N I xn φ 0 or yn φ 0}. Since for each n e Nu the set Hn = {(α, b) e

R x R I xna + ynb = 0, a2 + b2 = 1} is finite, we have \JneNl Hn^{(a, b) e R x R |

a2 + b2 = 1}; hence there exist α, b G R such that xna + ynb φ 0 for all n G N\.

Now, taking s = (sn), t = (tn) G 5 such that sn = a, tn = b for all n = 1,2,...,

we see that rs(X) = rs(xs + yt), as desired. Thus, every finitely generated faithful

right iϋ-module contains a finitely generated projective generator for Moά-R.

Now, choose z G Q — S. Then, as seen in the argument following Remark 5, the

( 1 0 0 z\

can not be a generator

0 0/
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for Moά-R.

References

[1] K.R. Goodearl: Von Neumann Regular Rings, Pitman Press, London, 1979.
[2] K.R. Goodearl and J. Moncasi: Cancellation of finitely generated modules over regular

rings, Osaka J. Math. 26 (1989), 679-685.
[3] S. Kobayashi: On non-singular FPF-rings I, Osaka J. Math. 22 (1985), 787-795.
[4] S. Kobayashi: On regular rings whose cyclic faithful modules are generator, Math.

J. Okayama Univ. 30 (1988), 45-52.
[5] S. Page: Regular FPF rings, Pacific J. Math. 79 (1978), 169-176; Correction: Pacific

J. Math. 97 (1981), 488-490.
[6] H. Yoshimura: On rings whose cyclic faithful modules are generators, Osaka J. Math. 32

(1995), 591-611.

Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi 753, Japan




