SELF DUAL GROUPS OF ORDER p^{5} (p AN ODD PRIME)

Akihide HANAKI

(Received December 14, 1995)

1. Introduction

Let G be a finite group, $\operatorname{Irr}(G)=\left\{\chi_{1}, \cdots, \chi_{k}\right\}$ be the set of all irreducible characters, $\mathrm{Cl}(G)=\left\{C_{1}, \cdots, C_{k}\right\}$ be the conjugacy classes of G, and x_{i} be a representative of C_{i}. We call G self dual if (by renumbering indices)
(*) $\left|C_{j}\right| \chi_{i}\left(x_{j}\right) / \chi_{i}(1)=\chi_{j}(1) \chi_{j}\left(x_{i}\right)$, for all i, j.
This condition is found in E. Bannai [1]. T. Okuyama [4] proved that self dual groups are nilpotent, and that a nilpotent group is self dual if and only if its all Sylow subgroups are self dual. So if we consider self dual groups we may deal with only p-groups. Obviously abelian groups are self dual. Some examples of self dual groups are discussed in [2].

If G is self dual it is easy to check that $\left|C_{i}\right|=\chi_{i}(1)^{2}$ for all i. It is easy to see that non abelian p-groups of order at most p^{4} cannot satisfy this condition, and so they are not self dual. By the classification of groups of order 2^{5}, there is no group of order 2^{5} satisfying this condition. For odd p, in classification table of groups of order p^{5} [3], we can see that one isoclinism family Φ_{6} satisfies this condition. We will show that all of groups in Φ_{6} are self dual.

2. Definition of groups

We fix an odd prime p. Let G be a p-group of order p^{5} which belongs to Φ_{6} defined in [3], namely
$G=\left\langle a_{1}, a_{2}, b, c_{1}, c_{2} \mid\left[a_{1}, a_{2}\right]=b,\left[a_{i}, b\right]=c_{i}, a_{i}^{p}=\zeta_{i}, b^{p}=c_{i}^{p}=1(i=1,2)\right\rangle$,
where $\left(\zeta_{1}, \zeta_{2}\right)$ is one of the followings:
(1) $\left(c_{1}, c_{2}\right)$,
(2) $\left(c_{1}^{k}, c_{2}\right)$, where $k=g^{r}, r=1,2, \cdots,(p-1) / 2$,
(3) $\left(c_{2}^{-r / 4}, c_{1}^{r} c_{2}^{r}\right)$, where $r=1$ or ν,
(4) $\left(c_{2}, c_{1}^{\nu}\right)$,
(5) $\left(c_{2}^{k}, c_{1} c_{2}\right)$, where $4 k=g^{2 r+1}-1, r=1,2, \cdots,(p-1) / 2$,
(6) $\left(c_{1}, 1\right), p>3$,
(7) $\left(1, c_{1}^{r}\right)$, where $r=1$ or ν, and $p>3$,
(8) $(1,1)$,
where g denotes the smallest positive integer which is a primitive root $(\bmod p)$, and ν denotes the smallest positive integer which is a non-quadratic residue $(\bmod p)$.

In this paper, we shall show that
Theorem 2.1. G is self dual.
We treat cases (1)-(8) above simultaneously. In any case, $\mathrm{Z}(G)$, the center of G, is $\left\langle c_{1}, c_{2}\right\rangle$ and $\mathrm{D}(G)$, the derived subgroup of G, is $\left\langle b, c_{1}, c_{2}\right\rangle$.

3. Irreducible characters and conjugacy classes

First, we consider irreducible characters of G. It is easy to see that $G / \mathrm{Z}(G)$ is isomorphic to the extraspecial group of order p^{3} and exponent p. So we know all characters of $G / \mathrm{Z}(G)$. We put

$$
\begin{aligned}
& \operatorname{Irr}^{0}(G)=\{\chi \in \operatorname{Irr}(G) \mid \operatorname{ker} \chi \geq \mathrm{D}(G)\} \\
& \operatorname{Irr}^{1}(G)=\{\chi \in \operatorname{Irr}(G) \mid \operatorname{ker} \chi \geq \mathrm{Z}(G) \text { and ker } \chi \nsupseteq \mathrm{D}(G)\} .
\end{aligned}
$$

Let χ be an irreducible character of G whose kernel does not contain $\mathrm{Z}(G)$. Then ker χ contains some subgroup K of $\mathrm{Z}(G)$ of order p since $\mathrm{Z}(G)$ is not cyclic. So we consider characters of G / K for a fixed K. We put

$$
\operatorname{Irr}^{2}(G \mid K)=\{\chi \in \operatorname{Irr}(G) \mid \operatorname{ker} \chi \nsupseteq \mathrm{Z}(G) \text { and } \operatorname{ker} \chi \geq K\}
$$

and

$$
\operatorname{Irr}^{2}(G)=\bigcup_{K} \operatorname{Irr}^{2}(G \mid K)
$$

where K runs over subgroups of $\mathrm{Z}(G)$ of order p. Observe that this is a disjoint union. Then obviously

$$
\operatorname{Irr}(G)=\operatorname{Irr}^{0}(G) \cup \operatorname{Irr}^{1}(G) \cup \operatorname{Irr}^{2}(G)
$$

Let V be a two-dimensional $\mathrm{GF}(p)$-vector space with a nondegenerate skew symmetric form $f: V \times V \rightarrow \mathrm{GF}(p)$. That is f is bilinear, $f(u, v)=-f(v, u)$ for all $u, v \in V$, and if $f(u, v)=0$ for all $u \in V$, then $v=0$. Note that $f(v, v)=0$ for all $v \in V$. Let $\alpha: \mathrm{Z}(G) \rightarrow V$ be an isomorphism of abelian groups. We define $\gamma: G / \mathrm{D}(G) \longrightarrow \mathrm{Z}(G)$ by $\gamma(\bar{g})=[g, b]$. Since $[\mathrm{D}(G), b]=1$, this map is well-defined and γ is an isomorphism as abelian groups by the definition of G. Put $\beta=\alpha \gamma$. Then β is an isomorphism from $G / \mathrm{D}(G)$ to V. For K, choose $x \in G$ such that $\gamma(\langle\bar{x}\rangle)=K$, and define $H=\langle x, \mathrm{D}(G)\rangle$. Then H / K is abelian by the definition. Every character in $\operatorname{Irr}^{2}(G \mid K)$ is induced from a linear character of H whose kernel contains K but does not contain $\mathrm{Z}(G)$, and so the character has degree p.

Let ω be a primitive p-th root of unity. For x, we define $\eta_{x} \in \operatorname{Irr}(\mathrm{Z}(G))$ by $\eta_{x}(z)=\omega^{f(\alpha(z), \beta(\bar{x}))}$. We fix $\chi \in \operatorname{Irr}(G)$ such that $\left(\chi, \eta_{x}^{G}\right) \neq 0$. Then $\chi \in \operatorname{Irr}^{2}(G \mid K)$ since f is nondegenerate skew symmetric. We define $\chi^{(i)}$ by

$$
\chi^{(i)}(g)=\chi\left(g^{i}\right)
$$

Then $\chi^{(i)}, 1 \leq i \leq p-1$, is also in $\operatorname{Irr}^{2}(G \mid K)$, since it is an algebraic conjugate of χ.

Lemma 3.1. $\chi^{(i)}(y)=0$ for $y \notin H$ or $y \in \mathrm{D}(G) \backslash \mathrm{Z}(G)$, and $\chi^{(i)}(y) \neq 0$ for $y \in H \backslash \mathrm{D}(G)$.

Proof. The first statement holds since $\chi^{(i)}$ is induced from H by the action of G on b. The second assertion holds by the first assertion and the consideration of the inner product with itself.

Choose $\xi \in \operatorname{Irr}^{0}(G)$ such that $\operatorname{ker} \xi \nsupseteq H$. Then
Lemma 3.2. For $1 \leq i, k \leq p-1$ and $0 \leq j, l \leq p-1, \chi^{(i)} \xi^{j}=\chi^{(k)} \xi^{l}$ if and only if $i=k$ and $j=l$.

Proof. Assume $\chi^{(i)} \xi^{j}=\chi^{(k)} \xi^{l}$. Clearly $i=k$ by considering the restriction to $\mathrm{Z}(G)$. Then $j=l$ holds by $\chi^{(i)}(x) \neq 0$ and $x \notin \operatorname{ker} \xi$.

Proposition 3.3. With the above notation,

$$
\operatorname{Irr}^{2}(G \mid K)=\left\{\chi^{(i)} \xi^{j} \mid 1 \leq i \leq p-1,0 \leq j \leq p-1\right\}
$$

Proof. The result follows by Lemma 3.2, and since $\sum_{\phi \in \operatorname{Irr}(G)} \phi(1)^{2}=|G|$.

Now we are going to consider conjugacy classes of G. Put

$$
\begin{aligned}
\mathrm{Cl}^{0}(G) & =\{C \in \mathrm{Cl}(G) \mid C \subset \mathrm{Z}(G)\} \\
\mathrm{Cl}^{1}(G) & =\{C \in \mathrm{Cl}(G) \mid C \subset \mathrm{D}(G) \backslash \mathrm{Z}(G)\}
\end{aligned}
$$

Then $\left\{c_{1}^{i} c_{2}^{j} \mid 0 \leq i, j \leq p-1\right\}$ is a representative set of $\mathrm{Cl}^{0}(G)$, and $\left\{b^{i} \mid 1 \leq i \leq p-1\right\}$ is a representative set of $\mathrm{Cl}^{1}(G)$.

As before, we define H, K, and x. Put

$$
\mathrm{Cl}^{2}(G \mid H)=\{C \in \mathrm{Cl}(G) \mid C \subset H \backslash \mathrm{D}(G)\}
$$

$$
\mathrm{Cl}^{2}(G)=\bigcup_{H} \mathrm{Cl}^{2}(G \mid H) .
$$

Then the union is disjoint and

$$
\mathrm{Cl}(G)=\mathrm{Cl}^{0}(G) \cup \mathrm{Cl}^{1}(G) \cup \mathrm{Cl}^{2}(G) .
$$

Choose $z \in \mathrm{Z}(G) \backslash K$. Then
Proposition 3.4. $\left\{x^{i} z^{j} \mid 1 \leq i \leq p-1,0 \leq j \leq p-1\right\}$ is a representative set of $\mathrm{Cl}^{2}(G \mid H)$.

Proof. Assume $x^{i} z^{j}$ is conjugate to $x^{k} z^{l}$. Clearly $i=k$ by considering $G / \mathrm{D}(G)$. For $\chi \in \operatorname{Irr}^{2}(G \mid K), \chi\left(x^{i}\right) \neq 0$ and $\chi(z) \neq \chi(1)$. So $\chi\left(x^{i} z^{j}\right)=\chi\left(x^{i} z^{l}\right)$ implies $j=l$. Now the result follows.

4. Self duality for G

In this section, we will define Ψ a correspondence between conjugacy classes and irreducible characters of G and give a proof for Theorem 2.1.

We denote by $C(y)$ the conjugacy class of G containing y. Fix $x \in G \backslash \mathrm{D}(G)$, and put $H=\langle x, \mathrm{D}(G)\rangle, K=\gamma(\bar{H})$. Let χ be in $\operatorname{Irr}^{2}(G \mid K)$, let z be in $\mathrm{Z}(G) \backslash K$ such that $\chi(z)=\omega \chi(1)$, and let ξ be in $\operatorname{Irr}^{0}(G)$ such that $\xi(x)=\omega$ (obviously such z and ξ exist). We define $\Psi\left(C\left(x^{i} z^{j}\right)\right)=\chi^{(i)} \xi^{j}$. By Proposition 3.3, 3.4, this is well-defined. Now we shall show that $\chi^{(i)} \xi^{j}\left(x^{k} z^{l}\right)=\chi^{(k)} \xi^{l}\left(x^{i} z^{j}\right)$. We have

$$
\begin{aligned}
\chi^{(i)} \xi^{j}\left(x^{k} z^{l}\right) & =\chi^{(i)}\left(x^{k}\right) \chi^{(i)}\left(z^{l}\right) \xi^{j}\left(x^{k}\right) / \chi^{(i)}(1) \\
& =\chi\left(x^{i k}\right) \chi\left(z^{i l}\right) \xi\left(x^{j k}\right) / \chi(1) \\
& =\chi\left(x^{i k}\right) \omega^{i l+j k} .
\end{aligned}
$$

Similarly $\chi^{(k)} \xi^{l}\left(x^{i} z^{j}\right)=\chi\left(x^{i k}\right) \omega^{i l+j k}$. Thus $\chi^{(i)} \xi^{j}\left(x^{k} z^{l}\right)=\chi^{(k)} \xi^{l}\left(x^{i} z^{j}\right)$.
We extend Ψ to the correspondence between $\mathrm{Cl}^{2}(G)$ to $\operatorname{Irr}^{2}(G)$ naturally. If $\chi_{1} \in \operatorname{Irr}^{2}\left(G \mid K_{1}\right)$ for $K_{1} \neq K$, then $\chi_{1}(x)=0$. Thus

$$
\Psi\left(C\left(x_{1}\right)\right)\left(x_{2}\right)=\Psi\left(C\left(x_{2}\right)\right)\left(x_{1}\right)
$$

for all $C\left(x_{1}\right), C\left(x_{2}\right) \in \mathrm{Cl}^{2}(G)$ and $(*)$, denoted in section 1 , holds for them.
Now we consider $\mathrm{Cl}^{1}(G)$ and $\operatorname{Irr}^{1}(G)$. We know $\left\{b^{i} \mid 1 \leq i \leq p-1\right\}$ is a representative set of $\mathrm{Cl}^{1}(G)$. Fix $\phi \in \operatorname{Irr}^{1}(G)$ and define $\phi^{(i)}$ similarly as $\chi^{(i)}$. We define $\Psi\left(C\left(b^{i}\right)\right)=\phi^{(i)}$. Then obviously $\Psi\left(C\left(b^{i}\right)\right)\left(b^{j}\right)=\Psi\left(C\left(b^{j}\right)\right)\left(b^{i}\right)$. It is also clear that $\chi\left(b^{i}\right)=0$ for $\chi \in \operatorname{Irr}^{2}(G), \xi\left(b^{i}\right)=1$ for $\xi \in \operatorname{Irr}^{0}(G), \phi^{(i)}(x)=0$ for $x \in G \backslash \mathrm{D}(G)$, and $\phi^{(i)}(z)=p$ for $z \in \mathrm{Z}(G)$. Thus (*) holds for $C\left(x_{1}\right) \in \mathrm{Cl}^{1}(G)$ and $C\left(x_{2}\right) \in \mathrm{Cl}(G)$.

Finally, we consider $\mathrm{Cl}^{0}(G)$ and $\operatorname{Irr}^{0}(G)$. If $z \in \mathrm{Z}(G)$ and $\xi \in \operatorname{Irr}^{0}(G)$ then $\xi(z)=1$ and (*) holds. It remains to consider the cases $C(x) \in \mathrm{Cl}^{2}(G)$ and $C(z) \in \mathrm{Cl}^{0}(G)$. We define $\Psi(C(z)) \in \operatorname{Irr}^{0}(G)$ by

$$
\Psi(C(z))(x)=\omega^{f(\alpha(z), \beta(\bar{x}))} .
$$

Then Ψ defines a one-to one correspondence between $\mathrm{Cl}^{0}(G)$ and $\operatorname{Irr}^{0}(G)$ since f is nondegenerate. Now

$$
\Psi(C(x))(z)=p \omega^{f(\alpha(z), \beta(\bar{x}))}
$$

and so (*) holds.
Now Ψ defines a one-to-one correspondence between $\mathrm{Cl}(G)$ and $\operatorname{Irr}(G)$ and (*) holds for all cases. The proof of Theorem 2.1 is complete.

References

[1] E. Bannai: Association schemes and fusion algebras (an introduction), J. Alg. Comb. 2 (1993), 327-344.
[2] A. Hanaki and T. Okuyama: Groups with some combinatorial properties, Osaka J. Math. 34, to appear.
[3] R. James: The groups of order p^{6} (p an odd prime), Math. Computation 43 (1980), 613-637.
[4] T. Okuyama: Self dual groups are nilpotent, preprint.

