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1. Introduction

Let A: be a triangulation of compact 3-manifold M with V(K), E(K\ F(K)

and T(K) the numbers of vertices, edges, faces, and tetrahedra in K,

respectively. Note that we distinguish a triangulation from a cell decomposition

into a union of 3-simplices, that is, such a cell decomposition is a triangulation

when the intersection of any two simplices is actually a face of each of them. The

order of an edge in K is the number of triangles incident to that edge. The

average edge order of K is then 3F(K) / E(K), which we will denote μ(K). Feng

Luo and Richard Stong showed in [2] that for a closed 3-manifold M, μ(K) being

small implies that the topology of M is fairly simple and restricts the triangulation

K. This is the following theorem.

Theorem 1 [2]. Let K be any triangulation of a closed connected 3-manifold

M without boundary. Then

(a) 3<μ(K)<6, equality holds if and only if K is the triangulation of the

boundary of a 4-simplex.

(b) For any ε>0, there are triangulations Kγ and K2 of M such that

μ(Kί)<4.5 + ε and μ(K2)>6-ε.

(c) If μ(K)<4.5, then K is a triangulation of S3. There are an infinite number

of distinct such triangulations, but for any constant c<4.5 there are only finitely

many triangulations K with μ(K)<c.

(d) // μ(K) = 4.5, then K is a triangulation of S3, S2xS\ or S2xS1.

Furthermore, in the last two cases, the triangulations can be described.

The purpose of this note is to establish similar results for compact 3-manifolds

with non-empty boundary. In fact we get the following theorem.

Theorem 2. Let K be any triangulation of a compact connected 3-manifold M

with non-empty boundary. Then

(a) 2<μ(K)<6, equality holds if and only if K is the triangulation of one

3-simplex.
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(b) For any rational number r with 3 < r < 6 , there is a triangulation K' of

M such that μ(K') = r.

(c) If μ(K) < 3, then K is a triangulation of B3. There are an infinite number

of distinct such triangulations, but for any constant c < 3 there are only finitely many

triangulations K with μ(K)<c.

(d) If μ(K) = 3, then K is a triangulation of B3, D2xS\ or D2xSK

Furthermore, in the last two cases, the triangulations can be described.

We note that a result similar to Theorem 2(b) also holds for closed 3-manifolds.

Proposition 3 (A refinement of Theorem l(b)). For any closed 3-manifold M

and for any rational number r satisfying 4 .5<r<6, there is a triangulation K' of

M such that μ{K') = r.

2. Proof of Theorem 2 (a)

This proof is similar to that of Theorem 1 (a) in [2]. Since each edge has

order at least 2, we have μ(K)>2. Let N=MκjdMM be the canonical double of

M and KN (resp. Kδ) denote the cell decomposition of N (resp. dM) induced by

K. Though KN may not be a triangulation, the upper bound in Theorem 1 (a)

is valid for any cell decomposition of a closed 3-manifold consisting of

3-simplices. Hence we have

) = 3{2F{K)-F{Kδ)}/{2E(K)-E(Kd)}<69

and therefore

3F(K) < 6E(K) - 3E(Kd) + (3 / 2)F{Kδ).

As dM is a closed 2-manifold, 3F[Kd) = 2E{Kd). Thus

μ{K) = 3F{K) I E(K) < 6 - 2E(Kd) / E(K) < 6.

Finally, suppose μ(K) = 2. Then every edge of K has order 2, and hence we see

K consists of only one 3-simplex. This completes the proof of Theorem 2 (a).

3. Proof of Theorem 2 (b)

Let r = q/p be a rational number with 3 < r < 6 , where p and q are relatively

prime integers. Choose an integer α such that 3 < α and q/p<6oc/(oc + l). Then

we can easily see that there is a triangulation K of M with three edges eί9 e2,

and e3 which satisfy the following conditions:

(1) the order of eγ is 2, thus ex lies on dM,

(2) the orders of e2 and e3 are α and α + 1, respectively, and

(3) st(e^ ( l < / < 3 ) have mutually disjoint interiors, where st(e) is the star
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neighborhood of e in K.

Put a = E(K) and b = F\K). Let K' be the steller subdivision of K obtained

by adding /, m, and n vertices in the interior of ev e2, and e3, respectively. Then

we have the following (see Figure 1).

(1=2) , m=1)

(a) ( b )

Fig. 1.

The proof is completed if we show the following lemma.

Lemma 4. There exists a non-negative integers /, m, and n satisfying μ{K') = q //?,

that is,

(1)

Proof. Let Δ be the greatest common divisor Δ of 3(3p — q\ βocp — (α4- \)q.

Since p and q are relatively prime, we have

Δ = (3(3/>-<7), 6α/7-(α+l)^ 6(α+ l)p-(a + 2)q) = (3p,q) = (Xq).

This shows that Δ divides aq — 3bp, because aq — 3bp is a multiple of 3 when

(3,q) = 3. Hence we have an integral solution Uumunι] °f Equation (1). Put

I2 = {6<xp-(aί+l)q} + {6(α+l)/?-(α + 2)#} and m2=n2= -3{3p-q). By the defini-

tion of p, q, and α, all of /2, m2, and n2 are positive. Therefore, for a sufficiently

large positive integer k, the triple \lx +kl2,mί+krn2,nί+kn2] is a solution of (1)

consisting of non-negative integers. •

REMARK 5. Proposition 3 can be proved similarly by taking three edges el9 e2,

and e3 with the orders 3, α, and α + 1 , respectively.

4. Proof of Theorem 2 (c) and (d)

Let AT be a triangulation of a compact 3-manifold M with non-empty boundary

and Sf the 1-skeleton of the dual cell complex of K. For each vertex v (resp.
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edge e) of «9*, let A(v) (resp. f(e)) be the 3-simplex (resp. face) of K dual to v (resp.
e). For each subcomplex <€ of 5^, let D^€) be the cell complex obtained from
the disjoint union of the 3-simplices {Δ(υ)} veii{<€) by identifying their faces along
{/(*)}«:*<*)• H e r e ^ ( ^ ) a n d < W denote the vertex set and the edge set of # ,
respectively. Then we see K=D(£f). Though D(^) may not be a triangulation,
we can define the average edge order of D{%) by μ(D(^)) = 3F\D(^))/E(D{^)). Put

) = F{D(<g))-E(D(%)). Then the following is obvious:

REMARK 6. μ(D(^)) is greater than (resp. equal to) 3, if and only if ξ(D(^)) is

positive (resp. 0).

In the following we choose an increasing sequence of the subcomplexes of £f,

and estimate ξ(D(<ίβι)) successively. To do this we need the following notation. Let

<€ and «" be subcomplexes of 9> such that g{<«) n <f (*') = 0 and r\$) = τT(«"). Then

D^β^jψ) is obtained from /)(^) by identifying their faces along {f(e)}ee^{^Ί. So

we say that D^6yj(€r) is obtained from /)(^) by gluing operations corresponding

to the edges of «", and we denote D(V) -> D(% u «"). Suppose further that <f («") = {β}

where e = [vί9V2] is an edge of y . For /= 1,2, let/(e,^) be the face of the 3-simplex

A(Vi) of D{^) which projects to the face f(e) of D(^u^f). Let rf be the number

of the common edges oif(e,vx) and/(e,t;2) in D^€\ Then ί/=0,l,2, or 3, and we

say that the edge e is of type d with respect to ^ . It should be noted that the

intersection oί f(euυ^) &ndf(e2,v2) in D(^) may contain isolated vertices beside d

edges when d=0 or 1.

Lemma 7. Let <β be a subcomplex ofΊ? ande an edge ofϊf such that %>ne = de.

(1) If e is of type d with respect to Ή, then

In particular, ξ(D(W u {e})) < ξ(D(W)) if and only if e is of type 3.

(2) / / * is a tree, then ξ{D(W))= - 2 .

Proof. (1) This follows from the facts that each gluing operation decreases

the number of faces by 1 and that the type d gluing operation decreases the

number of edges by 3 — d.

(2) Put T= T{D{%)). Then D(^) is obtained from LI Γ Δ 3 by gluing operations

of type 0 corresponding to the edges of ^ . Since ^ has (T—ϊ) edges,

ξ(D(%))= -2T+2(T-1)= -2 by using (1) of this lemma. •
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For an edge [_ab~] in /)(#), let N{[ab],D(<$)) (or simply N\_ab]) be the star

neighborhood of [ab~\ in D(^), and let L([«fe],^) (or simply L[ab~]) be the 1-skeleton

of the dual cell complex of N[ab~], i.e., L\ab~\ is the subcomplex of # consisting

of those cells whose duals contain \ab\ By the construction of ^ and the fact

that AT is a triangulation of a 3-manifold, we see L[ab~\ is either a simple cycle

or a simple edge path in ίf. In the former case, we call L[ab~\ an edge cycle (see

Figure 2).

L[ab]

(b)

Fig. 2.

Lemma 8. For two distinct edges [ab~] and \_db'] of £>(#), L[ab]nL[a'b'~\ is

an empty set, a vertex, or an edge.

Proof. Suppose L[ab~\ n L[a'b'~\ is neither an empty set nor a vertex. Then

it contains two vertices, say υγ and t>2, °f &* a n d both Δ ^ ) and Δ(ι?2) contain

both edges \ab~] and [a'b'~\. If [ab'] n \db'^\ = φ, then we must have Δ(v1)=[aba'b'~]

= Δ(i;2) since K is a triangulation, a contradiction. So we may assume a' = a and

b'Φb. Then Δ(ι;1)nΔ(ι;2) is the 2 simplex [α£6'], and hence v1 and t;2 span an

edge [>!tf2] in L[ab]r\L[a'b'~\. Suppose L[μb~\nL\a'b''] has another vertex v3,

then the corresponding 3-simplex Δ(t;3) also has [abb'~\ as a face. This contradicts

the fact that AT is a triangulation of a 3-manifold. Thus L[αέ] n L[α'ft'] is an

edge [ y ^ 2 ] . D

Let e be an edge of * , and put [αέc] =/(e). Then ^f(^,^) (or simply &{e))

denotes the subcomplex L[αi]uL[6c]uL[cf l ] of ^ (see Figure 3). Note that

the intersection of any two of the three summands of 5£(e) is equal to e

by Lemma 8.
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Fig. 3.

Lemma 9. If ee^ is an edge of type d with respect to Ή — e, then

Proof. Let Ji be a maximal tree of D{&{e,<$)). Since D(&(e)) consists of d

edge cycles and 3—d edge paths, &(e)l Jί is the set of d edges of type 1 with

respect to M (see Figure 4). Therefore by Lemma 7, we have

D

(a) ( b )

Fig. 4.

Now we choose an ordering eί9 ~,en of the edges of 5^, and let ^ 0 , ,^ π be

the increasing sequence of the subcomplexes of ^ defined by c€^ = ir{9?\ and
<g\ = <β{ _ γ u {ef} (1 </<«). Then we obtain the following sequence of cell complexes:

Ko = ) = K.

Here Ko is the disjoint union of the 3-simplices of K. The edge et is said to be

of type d in this sequence if e( is of type d with respect to ^i-γ.



THE AVERAGE EDGE ORDER 767

The following is the key observation for the proof of Theorem 2 (c) and (d).

CLAIM 10. (a) If μ(K)<3, then there are no edges of type 3.
(b) If μ(K) < 3, then there are no edges of type 2 nor those of type 3.

We will postpone the proof of Claim 10 until the end of this section.
Now we prove Theorem 2 (c) by assuming Clain 10. Suppose μ(K)<3, and

put T— T(K). Let J b e a maximal tree of £f. Then K is obtained as the final
term of the sequence

Jt se\M

By Lemma 7, ξ{D{Jί))= -2 . By Clain 10, any edge of ^\Jί is of type 0 or
1. Since we have ζ(K)<0 by Remark 6, we see, by Lemma 7, either Sf\M is
empty or consists of only one edge of type 1. If Sf\M is empty, then K=D(Jί\
i.e., it is a boundary connected sum tqτΔ3 of T 3-simplices along their faces; in
particular, M—B3. If £f\J( consists of only one edge of type 1, then K is obtained
from D{Ji) = tirΔ3 by applying a type 1 gluing operation exactly once. Since D(M) is
a triangulation of B3, two fases in D(Jί) which will be identified by the next
type 1 gluing operation hold only one edge in common: so we see D(^) is a
triangulation of B3. Thus we have obtained the first half of Theorem 2 (c). To
see the latter half, note that μ(K) = 3{3T+ 1 -/}/{3Γ+3-2/}, where y is the number
of the edges in £f\J(. Since y = 0 or 1, we see μ(K)<3 for any T. Hence there
are infinitely many K with μ(K) < 3. Let c be a constant less than 3 and suppose
μ(K) = 3{3T+l-j}/{3T+3-2j}<c. Then we get T<{3(c-1) +(3-2c)/}/{3(3
— c)}. Thus the number of K with μ(K)<c is finite. This completes the proof of
Theorem 2 (c).

Next we prove Theorem 2(d) by assuming Claim 10. Suppose μ(K) = 3, and
put T=T(K).

Case 1. None of et (l<i<n) is of type 2. Consider the sequence in the
proof of Theorem 2(c);

Then by Lemma 7, ξ{D{Jί))= -2. By Lemma 7 and the assumption,
consists of either two edges of type 1 or only one edge of type 0.

In the former case, K can be obtained from t]τΔ3 by applying type 1 gluing
operations twice. Let {eue2} be the set of two edge of type 1 in Sf\Jt and put
\Jύ\\^υ\ϊ\—e\ a n d \^2uv2i\ = e2' As w e mentioned before, since D(M) is a
triangulation of B3,f{euvίl)r\f(euvί2) consists of only one edge. Thus D(Jtκj{eί})
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is a cell-decomposition of B3. If f(e2,v2ί)nf(e2iv22) consists of an edge and an

isolated vertex v, then the point v in D(Jtv{eue2}) cannot have an Euclidean

neighborhood, a contradiction. Therefore f(e2,v21)nf(e2,v22) consists of only one

edge. Hence D{¥) = D{Jf'uD{eue2}) is a triangulation of B3.

In the latter case, K can be obtained from t;ΓΔ3 by applying a type 0 gluing

operation once. Since M=D(<?) is a 3-manifold, the faces in dD{M) to be identified

by the last type 0 gluing operation are disjoint. Thus M is D2xSι or D2xSι

according to whether the operation is compatible with the orientation or not.

Case 2. Some et is of type 2. Then we reorder the edge of £f so that

{eί,-'9eι} = Jέ?(ei). We call a subcomplex f of y an extended maximal tree

containing <& if $C is the inverse image in 5^ of a maximal tree of the graph ^ / ^

where £f !<€ denotes the graph obtained from Sf by collapsing each connected
component of ^ to a point. Let ΘC be an extended maximal tree containing

and consider the following sequence;

where * , = Jίf(^ u ^ 0 Put ί = Γ(/^) - T\&ie$, then

By Lemma 9, we have ξ(D(£>(eι))) = 0. Therefore

ξ(D(%)) = «Z)(JS?(^)) + /{(Δ3) = - It.

Since 9£\<£{e^ consists of t edges of type 0, we have

Since ξ(D(^)) = 0 by the assumption and Remark 6, we see, by Lemma 7 and

Claim 10, that Sf\X is empty or consists of only edges of type 2. Let m be the

number of edges of £f\3C.

If/w = 0, ι.έ?. y\ar = 9, then ^ = Z ) ( ^ ) = Z)(^(^))ti(tiΔ3) and M = 5 3 .

Suppose m = l , choose an edge e' of £f\9C, and put [αb'c]=f(eι) and

[α'b'c'~\ =f(ef). Since ef is of type 2, we may assume L\αb~\ and L[α<:] are edge

cycles and L[bc] is an edge path. Similarly, we may assume L[α'b'~\ and L[α'c'~\

are edge cycles and L[b'c'~\ is an edge path. It should be noted that L[αb] and

L[αc] are considered in ΘC, whereas L[α'b'2 and L[tf'c'] are considered in

3Cκj{e'}. Let if0 be the union of these four edge cycles. Then we have the

following sublemma which is proved later.

Sublemma 11. J£fo is as illustrated in Figure 5.
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Fig. 5.

By this sublemma, we have K=D(^0)^A3) and M is B*.
Suppose m>2, i.e., y\9£ has another edge e" of type 2. Then e" has its

endpoints in J^o and e"φ^0. But this contradicts Sublemma 11 and the fact
that AT is a triangulation. Thus m < 1 and we have proved the part (d) of Theorem 2.

D

Proof of Sublemma 11. Put J={L[_a'b'~\\j L[a'c'])\{e'}. Then / is a simple
cycle in ΘC by Lemma 8. By the construction of #", the cycle / is contained in
S£(e^). So / is contained in L\ab\\jL[ac]. Hence the endpoints of e' lie in
L[ab~]κjL[ac]. Suppose de' lies in L[ab~\. Let de' be the sub-edge path in
L[μb~]\{e} cut off by de' as in Figure 6.

Fig. 6.

Then one of L\dV\ and L{_άc'\ say L\dV\ is W. Since δ?
de' consists of one edge by Lemma 8. So it follows that e' — de' since K is a
triangulation; this contradicts the fact that e' is not contained in SC. Hence de'
does not lie in L[ab~\. Similarly de' does not lie in L[ac]. Hence e' has its
endpoints in each of L[ab~\ and L[ac]. By Lemma 8, any two of the edge cycles
L\ab\ L[ac], L\db'\ and L[a'c'~\ intersects in an edge. Therefore, we see that
the union if0 of these four cycles is as illustrated in Figure 5. •

Proof of Claim 10 (a). Suppose μ(K)<3 and some edge et is of type 3. Put
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j / = ^f(^ , ^ r _ 1 ) . Then we reorder the edge of

consider the following sequence;

so that {eί9 ~,eι} = s/9 and

We need the following sublemma which is proved later.

Sublemma 12. By further reordering &?\stf = {eι+u-'9en}, we may assume no

et(l+1 <i<ri) is of type 3.

Put / = T(K) - 7\D(s/)) Then D{%) = D{^) U (U rΔ3). By Lemma 9,

3) = 1 - 2 / .

By Lemma 7 and Sublemma 12, the sequence {(^(Z)(^I))}ί<ι<w is not decreasing. Since

Z)(^) has (t +1) components, there are / edges of type 0 among {eι+ί9 -9en}. Hence,

by using Lemma 7, we see

ξ(K)>ξ(Dι) + 2t=\>0.

Then μ(K)>3 by Remark 6, contradiction. Thus Clain 10 (a) is proved. •

D(A) in D(CI)

(a)

A U θ' D (A) in D (Cm)

(b)

Fig. 7.
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Proof of Sublemma 12. Suppose there are edge of type 3, say em coming
first, in the subsequences Sf\si and put & = {eι+i9- ;em}. Here we regard &
as an ordered set. In the following, we show that we can reorder & so that
there are no edges of type 3 in the new ordered set @.

Let intD(srf) be D{srf)\dD(srf) in /)(#,), and we can regard this subcomplex in
D^ϊ) as that of in D(^m). In D(<gJ, we define dD{d) by D(^)\inίD(^). Note
that D{d) in D(^m) may be different from D{srf) in £>(#,) (see Figure 7). Thus
dD(s/) in D(<£ J may be different from dD(s/) in £>(#,), but it satisfies the following
property:

(*) for any two faces/and/', there is a sequence of faces / = / 0 , / i , 'Jt

=f
of the complex such that/ a n d / + 1 are adjacent.

Let D be the connected component of D(^m) containing f(em). Let / and / '
be any faces in D\intD{^\ there is sequence of faces/=/0,/ l5 •••,/=/' of D such
that/ a n d / + 1 are adjacent. Suppose there is a subsequence/,/+1, •••,/) whose
elements are in intD{srf\ Since dD(jrf) satisfies the property (*), there is a

Fig. 8.
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subsequence flj;+l9 •••,/; in dD{srf) such that any oϊ{fi_ιJ!\ (/;,/;+1) {i<s<r-\\

and (fkJj+\) is a pair of adjacent faces. Thus D\intD{stf) satisfies property (*). So

we can take a sequence of faces fo=f{eJJw-Jt *n D\intD(sf) satisfying the

following conditions:

(1) fi and/ ί + 1 are adjacent, and

(2) ft lies on dD.

Let/fc be the first face in this sequence which has edges in d2f. These conditions

are illustrated in Figure 8.

Now we define # ( 0 = {eft i, •••,*£?} (0<*<fc-l) inductively as follows. We

regard @ as ^ ( 0 ) = {^>1,...9^)} and suppose we have constructed # ( i ) . Let e%i + ι

be the dual of fi+u i.e. f(e%i + 1)=fi+ι. Note that eJ?l+1eΛ because f(mi + ί)

eD\intD(<rf). To make a new sequence J ^ + 1 ) , we shift e%i + ι to the last of

that is, if

then we set

d»(i+ 1) _ fe(i) ... x(i) ... e(i) (i) )

Strictly speaking, we deifne e j i + 1 ) as following:

Now we prove the following by induction of /: ef (l+l<j<m—\) is not of type

3 (1 </<&). Since ef (l+l<j<m-l) is not of type 3 in j / u ^ ( ί ) , <?Ji+1)

(/+1 <j<m-2) is not of type 3 in ja^u J t ( ι + 1 ) . By the condition (1), eg? and e$i + l

belong to the same edge cycle. Thus we see e^t^ is not of type 3 in j ^ u ^ ( ί + 1 ) . By

the condition (2), ̂ £(e{^,s^\j0S) does not consist of three edge cycles containing

em. Thus e^ is not of type 3 in j / u ^ ( f c ) . Therefore we get a subsequence

S4KJ @{k) without edges of type 3 in # ( Λ ) .

If there are edges of type 3 in em + u--,en, we proceed in a similar fashion,

changing the orders again. After making finitely many changes, we can get a

sequence without edges of type 3 in eι + u--,en. •

Proof of Claim 10 (b). Suppose μ(K)<3 and some edge et is of type 2. As

we observed before in the proof of Theorem 2(d),

By Claim 10 (a) and Lemma 7, we have
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This contradicts μ(K)<3. •

5. Concluding Remark

Prof. S. Kojima kindly suggested to the author that the more natural
generalization of the average edge order of closed manifolds to that of manifolds
with boundary is to count simplices on the boundary with weight 1/2, i.e.
E(K) = Ei(K) + Ed(K)/2 and F\K) = Fi{K) + Fd(K)/2, where E{ (resp. F() is the number
of edges (resp. faces) in K\dK, and Ed (resp. Fe) is the number of edges (resp. faces)
on dK. This suggestion is based upon the fact that the average edge order is a
geometric interpretation in terms of a global average of the curvature. The author
conjectures a result similar to Theorem 2 also holds in this case.
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