# SELF $\Delta$-EQUIVALENCE OF RIBBON LINKS 

Tetsuo SHIBUYA

(Received June 8, 1995)

## 1. Introduction

Throughout this paper, knots and links mean tame and oriented ones in an oriented 3-space $R^{3}$.

Several properties of local moves of links were studied in many papers, for example, homotopy of cobordant links in [3], [4] and boundary links in [1], [5], $\Delta$-equivalence of links in [6], [7] and self \#-equivalences of links in [8], [9] and [10].

In this paper, we investigate the self $\Delta$-equivalence of ribbon links.
For a link $\ell$, let $B^{3}$ be a 3 -ball such that $\ell \cap B^{3}$ is a tangle illustrated in Fig. 1(a). The local move from Fig. 1(a) to (b) is called a $\Delta$-move. Especially if these arcs are contained in the same component of $\ell$, this move is called a self $\Delta$ -move. For two links $\ell$ and $\ell^{\prime}$, if $\ell$ can be deformed into $\ell^{\prime}$ by a finite se-


Fig. 1
quence of self $\Delta$-moves, we say that $\ell$ and $\ell^{\prime}$ are self $\Delta$-equivalent or that $\ell$ is self $\Delta$-equivalent to $\ell^{\prime}$.

An $n$-component link $\ell=k_{1} \cup \cdots \cup k_{n}$ is called a ribbon link if there are $n$ disks $\mathscr{C}=C_{1} \cup \cdots \cup C_{n}$ in $R^{3}$ with $\partial \mathscr{C}=\ell, \partial C_{i}=k_{i}$, such that the singularity of $\mathscr{C}$, denoted by $\mathscr{S}(\mathscr{C})$, consists of mutually disjoint simple arcs of ribbon type, Fig. 2(b). For an arc $\beta$ of $\mathscr{P}(\mathscr{C})$ in Fig. 2(b), the pre-images $\beta^{*}$ and $\beta^{*}$ of $\beta$ in Fig. 2(a) are called the $i$-line and the $b$-line respectively.

In this paper, we shall prove the following.
Theorem. Any ribbon link is self $\Delta$-equivalent to a trivial link.

The author would like to thank the referee whose helpful comments greatly improved the presentations.


Fig. 2.

## 2. Deformations of links by self $\Delta$-moves

The deformations of the following local moves from Fig. 3(a) to 3(d) accomplish by a $\Delta$-move and an ambient isotopy. Therefore if 3 arcs of Fig. 3(a) are contained in the same component of a link, the move from Fig. 3(b) to 3(c) is a self $\Delta$-move and so the links in Fig. 3(a) and 3(d) are self $\Delta$-equivalent.


Fig. 3.
To prove Theorem, we consider some deformations of ribbon links by self $\Delta$-moves in this section.

Suppose that $\ell=k_{1} \cup \cdots \cup k_{n}$ is a ribbon link. Then $\ell$ can be obtained by a
fusion of a trivial link, [2]. Hence there are mutully disjoint disks $\mathscr{D}=\bigcup_{i=1}^{n} \mathscr{D}_{i}$, $\mathscr{D}_{i}=\bigcup_{j=0}^{p_{i}} D_{i j}$ and bands $\mathscr{B}=\bigcup_{i=1}^{n} \mathscr{B}_{i}, \mathscr{B}_{i}=\bigcup_{j=1}^{p_{i}} B_{i j}$ such that $\partial(\mathscr{D} \cup \mathscr{B})=\ell, \partial\left(\mathscr{D}_{i} \cup \mathscr{B}_{i}\right)=k_{i}$ and $\mathscr{S}(\mathscr{D} \cap \mathscr{B})$ consists of arcs of ribbon type. By deforming $\mathscr{D} \cup \mathscr{B}$ suitably, we may choose that $\mathscr{D}_{i} \subset R^{2}[i]$ and $\partial B_{i j} \cap \partial \mathscr{D}_{i}=\partial B_{i j} \cap \partial\left(D_{i 0} \cup D_{i j}\right)$ for $i=1, \cdots, n$ and $j=1, \cdots, p_{i}$, see Fig. 4.


Fig. 4.
Lemma 1. If there is a band $B_{i j}$ such that $\mathscr{S}\left(B_{i j} \cap D_{i 0}\right)\left(\right.$ or $\mathscr{S}\left(B_{i j} \cap D_{i j}\right)$ is empty, then $\mathscr{S}\left(B_{r s} \cap D_{i 0}\right)$ (resp. $\left.\mathscr{S}\left(B_{r s} \cap D_{i j}\right)\right)$ for $r \neq i$, if not empty, can be deformed into $D_{i j}\left(\right.$ resp. $\left.D_{i 0}\right)$ by an ambient isotopy without increasing $\# \mathscr{S}\left(\mathscr{B}_{i} \cap \mathscr{D}_{i}\right)$, where $\# \mathscr{S}(x)$ means the number of arcs of $\mathscr{P}(x)$.

Proof. If $\mathscr{S}\left(B_{i j} \cap D_{i 0}\right)$ (or $\mathscr{S}\left(B_{i j} \cap D_{i j}\right)$ ) is empty, $B_{i j} \cup D_{i 0}$ (resp. $B_{i j} \cup D_{i j}$ ) is a non-singular disk. Hence we can perform the following deformation which does not increase $\# \mathscr{P}\left(\mathscr{B}_{i} \cap \mathscr{D}_{i}\right)$, Fig. 5.


Fig. 5.
Let $b_{1}, b_{2}$ be two arcs of $\mathscr{S}\left(B_{i j} \cap \mathscr{D}_{i}\right)$ and $B$ the connected component of $B_{i j}-b_{1}-b_{2}$ such that $\partial B \supset b_{1} \cup b_{2}$. Then $b_{1}$ and $b_{2}$ are said to be adjacent on
$B_{i j}$ with respect to $\mathscr{D}_{i}$ if $B \cap \mathscr{D}_{i}=\phi$.

Lemma 2. The order of two arcs $b_{1}, b_{2}$ of $\mathscr{S}\left(B_{i j} \cap \mathscr{D}_{i}\right)$ which are adjacent on $B_{i j}$ with respect to $\mathscr{D}_{i}$ can be exchanged without increasing $\# \mathscr{S}\left(\mathscr{B}_{i} \cap \mathscr{D}_{i}\right)$ by a finite sequence of self $\Delta$-moves.

Proof. Let $D_{i p}$ be the disk of $\mathscr{D}_{i}$ which contains $b_{1}$ and $\alpha$ an arc on $D_{i p}$ which connects a point of $\partial b_{1}$ and one of $\partial D_{i p}-\partial \mathscr{B}$ with $\alpha \cap \mathscr{B}=\alpha \cap \partial b_{1}$, Fig. 6(a). We deform $N\left(\alpha \cup b_{1}: D_{i p}\right)$, the regular neighborhood of $\alpha \cup b_{1}$ on $D_{i p}$, towards $b_{2}$ along $B$, Fig. 6(a), (b) and perform twice self $\Delta$-moves, Fig. 6(c) and obtain Lemma 2.


Fig. 6.
Let $D_{i p}^{\prime \prime}$ be the disk obtained from $D_{i p}$ by the deformations of Lemma 2, Fig. 6(c). Then we easily see that the followings by the above deformations: $D_{i p}^{\prime \prime}$ is non-singular and $D_{i p}^{\prime \prime} \cap\left(\mathscr{D}_{i}-D_{i p}\right)=\phi$, namely $\mathscr{D}_{i}^{\prime}=\left(\mathscr{D}_{i}-D_{i p}\right) \cup D_{i p}^{\prime \prime}$ is a union of mutually disjoint non-singular disks and, if $B \cap D_{j r} \neq \phi$ for $j \neq i$, Fig. 6(a), $D_{i p}^{\prime \prime} \cap D_{j r}$ contains arcs of ribbon type whose $b$-lines and $i$-lines of pre-images of $D_{i p}^{\prime \prime} \cap D_{j r}$ are contained in those of $D_{i p}^{\prime \prime}$ and $D_{j r}$ respectively.

Let $b$ be an arc of $\mathscr{L}\left(B_{i j} \cap \mathscr{D}_{i}\right)$ which is nearest to $B_{i j} \cap \partial D_{i j}$.
Lemma 3. If $b \subset \mathscr{D}_{i}-D_{i j}$, b can be removed without increasing $\# \mathscr{S}\left(\mathscr{B}_{i} \cap \mathscr{D}_{i}\right)$ by a finite sequence of self $\Delta$-moves.

Proof. First we consider the case that $\left(\mathscr{B}-\mathscr{B}_{i}\right) \cap D_{i j}=\phi$.
Let $B$ be the connected component of $B_{i j}-b$ which contains $\partial B_{i j} \cap \partial D_{i j}$ and
$D$ the disk of $\mathscr{D}_{i}-D_{i j}$ which contains $b$ and $\alpha$ an arc on $D$ which connects a point of $\partial b$ and one of $\partial D$ such that $\alpha \cap \mathscr{B}=\partial \alpha \cap \partial b$.

Since $b$ is contained in $D\left(\subset \mathscr{D}_{i}-D_{i j}\right), B \cup D_{i j}$ is non-singular. Therefore we can deform $N(\alpha \cup b: D)$ along $B \cup D_{i j}$ from Fig. 7(a) to 7(f) whose deformations


Fig. 7.
can be accomplished by a finite sequence of self $\Delta$-moves, for $\left(\mathscr{B}-\mathscr{B}_{i}\right) \cap D_{i j}=\phi$, and an ambient isotopy of $R^{3}$. Although Fig. 7(a) is the figure such that $\mathscr{S}\left(B \cap\left(\mathscr{D}-\mathscr{D}_{i}\right)\right)=\phi$, we can perform the above deformations even if $\mathscr{S}\left(B \cap\left(\mathscr{D}-\mathscr{D}_{i}\right)\right)$ $\neq \phi$, because $B \cup D_{i j}$ is non-singular.

Next we consider the case that $\left(\mathscr{B}-\mathscr{B}_{i}\right) \cap D_{i j} \neq \phi$, namely there is a band $B_{u v}$ ( $u \neq i$ ) such that $B_{u v} \cap D_{i j} \neq \phi$. Let $\gamma$ be an arc on $B \cup D_{i j}$ which connects a point of $\partial\left(B_{u v} \cap D_{i j}\right)$ and one of the interior of $b$, Fig. 8(a), such that $\gamma \cap \mathscr{S}\left(\mathscr{B} \cap D_{i j}\right)$ $=\partial \gamma \cap \partial B_{u v}$. We deform $B_{u v}$ along $\gamma$ from Fig. 8(a) to 8(b) and obtain $B_{u v}^{\prime}$. Now we perform the above deformations for each such a band $B_{u v}, u \neq i$, and apply the deformations of Fig. 7 to Fig. 8(b) and obtain 8(c) and deform $B_{u v}^{\prime}$ from Fig. 8(c) to $8(\mathrm{~d})$ and obtain a band $B_{u v}^{\prime \prime}$.


Fig. 8.
By the deformations of Fig. 7 and 8, we can eliminate $b$ without increasing $\# \mathscr{S}\left(\mathscr{B}_{i} \cap \mathscr{D}_{i}\right)$.

Lemma 4. If there are two arcs $b_{1}, b_{2}$ of $\mathscr{S}\left(B_{i j} \cap \mathscr{D}_{i}\right)$ which are adjacent on $B_{i j}$ with respect to $\mathscr{D}_{i}$ such that $b_{1} \subset D_{i j}, b_{2} \subset \mathscr{D}_{i}-D_{i j}$ and $b_{2}, \partial B_{i j} \cap \partial D_{i j}$ are contained in the different connected components of $B_{i j}-b_{1}$, see Fig. 9(a). Then $b_{2}$ can be removed without increasing $\# \mathscr{S}\left(\mathscr{B}_{i} \cap \mathscr{D}_{i}\right)$ by a finite sequence of self $\Delta$-moves.

Proof. Let $b_{1}, b_{2}$ be the pair nearest to $\beta\left(=\partial B_{i j} \cap \partial D_{i j}\right)$ on $B_{i j}$ satisfying the conditions of Lemma 4 and $B, B_{1}$ the connected components of $B_{i j}-b_{1}-b_{2}$, $B_{i j}-b_{2}$ with $\partial B \supset b_{1} \cup b_{2}, \partial B_{1} \supset \beta$ respectively.

First we consider the case that $\mathscr{S}\left(B_{1} \cap D_{i j}\right)=b_{1}$. Let $\alpha$ be an arc on $D_{i j}$ such that $\alpha$ connects a point of $\partial b_{1}$ and one of $\partial D_{i j}-\partial B_{i j}$ with $\alpha \cap \mathscr{B}=\partial \alpha \cap \partial b_{1}$. Deform $N\left(\alpha \cup b_{1}: D_{i j}\right)$ along $B$ towards $b_{2}$, Fig. 9 (a), (b), and perform twice self $\Delta$-moves and obtain a disk $D_{i j}^{\prime}$ from $D_{i j}$, Fig. 9(c). Hence we can remove $b_{2}$


Fig. 9.
by applying Lemma 3 , because $B_{1} \cup D_{i j}^{\prime}$ is non-singular. Moreover we easily see that $D_{i j}^{\prime} \cap\left(\mathscr{D}_{i}-D_{i j}\right)=\phi$ and that, if $\mathscr{S}\left(D_{i j}^{\prime} \cap D_{p q}\right) \neq \phi$ for $p \neq i$, Fig. 9(c), it consists of arcs of ribbon type whose $b$-lines and $i$-lines of pre-images of $\mathscr{S}\left(D_{i j}^{\prime} \cap D_{p q}\right)$ are contained in those of $D_{i j}^{\prime}$ and $D_{p q}$ respectively.

Next we consider the case that $\mathscr{S}\left(B_{1} \cap D_{i j}\right)-b_{1} \neq \phi$. In this case, we apply the above deformations to each of $\mathscr{S}\left(B_{1} \cap D_{i j}\right)$ in turn such that we obtain a disk $D_{i j}^{\prime \prime}$ from $D_{i j}$ which satisfies that $B_{1} \cup D_{i j}^{\prime \prime}$ is non-singular and so we can remove $b_{2}$ by applying Lemma 3.

Hence we obtain Lemma 4.

## 3. Proof of Theorem

Now we are ready to prove Theorem.
Proof of Theorem. Suppose that $\ell$ is a ribbon link and let $\mathscr{B}_{i}, \mathscr{D}_{i}\left(\subset R^{2}[i]\right)$ be mutually disjoint bands, disks respectively such that $\mathscr{B}_{i} \cup \mathscr{D}_{i}$ are situated in Fig. 4.

First we consider the case that $\mathscr{S}\left(\mathscr{B}_{1} \cap \mathscr{D}_{1}\right)=\phi$, namely $\mathscr{B}_{1} \cup \mathscr{D}_{1}$ is non-singular. Hence if there is a band $B_{r s}(r \neq 1)$ such that $B_{r s} \cap D_{1 j} \neq \phi$ for $j \neq 0$, we can deform $B_{r s} \cap D_{1 j}$ into $D_{10}$ by Lemma 1. Therefore we may assume that $B_{r s} \cap D_{1 j}=\phi$ for each $r \neq 1, j \neq 0$ and so we may deform $\mathscr{B}_{1} \cup \mathscr{D}_{1}$ into $R^{2}[1]$ by an ambient isotopy of $R^{3}$ with $D_{10} \cup\left(\mathscr{D}-\mathscr{D}_{1}\right)$ fixed for $\mathscr{D}=\mathscr{D}_{1} \cup \cdots \cup \mathscr{D}_{n}$.

Next we consider the case that $\mathscr{S}\left(\mathscr{B}_{1} \cap \mathscr{D}_{1}\right) \neq \phi$. If there is a band $B_{1 i}$ such that $\mathscr{S}\left(B_{1 i} \cap \mathscr{D}_{1}\right)=\phi$, we may deform $B_{1 i} \cup D_{1 i}$ into $R^{2}$ [1] by the similar deformation as above with $\mathscr{D}-D_{1 i}$ fixed. Hence we may assume that $\mathscr{S}\left(B_{1 i} \cap \mathscr{D}_{1}\right) \neq \phi$ for each $i=1, \cdots, n$. In this case, let us apply Lemmas 2,3 and 4 to $\mathscr{B}_{1} \cup \mathscr{D}_{1}$ in the following way.

Suppose that $B_{1 u} \cap \mathscr{D}_{1 v}$ contains an arc $b$ of ribbon type for some $u \neq v$. Let $b$ be nearest to $\beta\left(=\partial B_{1 u} \cap \partial D_{1 u}\right)$ among $B_{1 u} \cap\left(\mathscr{D}_{1}-D_{1 u}\right)$ and $B$ a connected component of $B_{1 u}-b$ which contains $\beta$. If $\mathscr{S}\left(B \cap D_{1 u}\right)=\phi, b$ can be removed by Lemma 3 and if $\mathscr{S}\left(B \cap D_{1 u}\right) \neq \phi, b$ can be removed by Lemma 4 because of the choice of $b$.

We perform the above discussion in turn as far as possible. By the deformations of Lemmas 2,3 and $4, \mathscr{D}_{j}$ are fixed for $j \geqq 2$, hence $\mathscr{D}_{j} \subset R^{2}[j]$, on the other hand, $\mathscr{D}_{1}=D_{10} \cup \cdots \cup D_{1 p_{1}}$ and $\mathscr{B}\left(=\mathscr{B}_{1} \cup \cdots \cup \mathscr{B}_{n}\right)$ may be deformed. Now we write these deformed $\mathscr{D}_{1}$ and $\mathscr{B}$ by $\mathscr{D}_{1}^{\prime}\left(=D_{10}^{\prime} \cup \cdots \cup D_{1 p_{1}}^{\prime}\right)$ and $\mathscr{B}^{\prime}\left(=\mathscr{B}_{1}^{\prime} \cup \cdots \cup \mathscr{B}_{n}^{\prime}\right)$ respectively. Although $\mathscr{D}_{1}^{\prime}$ may not be contained in $R^{2}[1]$, each disk $D_{1 i}^{\prime}$ of $\mathscr{D}_{1}^{\prime}$ is non-singular and any two of $\mathscr{D}_{1}^{\prime}$ are mutually disjoint and $\mathscr{S}\left(\mathscr{D}_{1}^{\prime} \cap \mathscr{D}_{j}\right)$, if not empty for $j \geqq 2$, consists of arcs of ribbon type whose $b$-lines and $i$-lines of pre-images of $\mathscr{S}\left(\mathscr{D}_{1}^{\prime} \cap \mathscr{D}_{j}\right)$ are contained in pre-images of $\mathscr{D}_{1}^{\prime}$ and $\mathscr{D}_{j}$ respectively.

By the above discussions, we may assume that $\mathscr{S}\left(B_{1 i}^{\prime} \cap \mathscr{D}_{1}^{\prime}\right)=\mathscr{S}\left(B_{1 i}^{\prime} \cap D_{1 i}^{\prime}\right)$ for $i=1, \cdots, p_{1}$ and that each of $\mathscr{S}\left(B_{1 i}^{\prime} \cap D_{1 i}^{\prime}\right) \neq \phi$.

By sliding $\partial B_{1 i}^{\prime} \cap \partial D_{10}^{\prime}$ along an arc of $\partial B_{1 i-1}^{\prime}$ such that $B_{1 i}^{\prime}$ connects an arc of $\partial D_{1 i-1}^{\prime}$ and one of $\partial D_{1 i}^{\prime}$ for $i=1, \cdots, p_{1}-1$ and $\mathscr{B}_{1}^{\prime}=\bigcup_{i} B_{1 i}^{\prime}$, Fig. 10 (b). We denote the bands obtained by the above deformations of $\mathscr{B}_{1}^{\prime}$ by $\overline{\mathscr{B}}_{1}=\bigcup_{i} \bar{B}_{1 i}$, where $B_{1 p_{1}}^{\prime}$ does not be deformed and so $\bar{B}_{1 p_{1}}=B_{1 p_{1}}^{\prime}$.

After the above deformations, $\# \mathscr{S}\left(\overline{\mathscr{B}}_{1} \cap \mathscr{D}_{1}^{\prime}\right)$ may increase, see Fig. $10(\mathrm{~b})$.


Sublemma. We can deform $\mathscr{S}\left(\overline{\mathscr{B}}_{1} \cap\left(\mathscr{D}_{1}^{\prime}-D_{1 p_{1}}^{\prime}\right)\right)$ into $D_{1_{1}}^{\prime}$ by a finite sequence of self $\Delta$-moves.

Proof. Suppose that there is a band $B_{u v}^{\prime}(u \neq 1)$ of $\mathscr{B}_{u}^{\prime}$ such that $B_{u v}^{\prime} \cap D_{10}^{\prime} \neq \phi . \quad$ As $\mathscr{S}\left(B_{1 i}^{\prime} \cap \mathscr{D}_{1}^{\prime}\right)=\mathscr{S}\left(B_{1 i}^{\prime} \cap D_{1 i}^{\prime}\right), B_{1 p_{1}}^{\prime} \cup D_{10}^{\prime}$ is non-singular and so we can deform $B_{u v}^{\prime} \cap D_{10}^{\prime}$ along $B_{1 p_{1}}^{\prime}$ into $D_{1 p_{1}}^{\prime}$, Fig. 10 (b), (c) by the deformation of Lemma 1. As a result, $\mathscr{S}\left(\overline{\mathscr{B}} \cap D_{10}^{\prime}\right)=\phi$ for $\overline{\mathscr{B}}=\left(\mathscr{B}^{\prime}-\mathscr{B}_{1}^{\prime}\right) \cup \overline{\mathcal{B}}_{1}$ and $\bar{B}_{11} \cup B_{1 p_{1}}^{\prime} \cup D_{10}^{\prime}$ ( $=E_{11}$ ) is non-singular and so we may exchange the order of $\mathscr{S}\left(B_{1 p_{1}}^{\prime} \cap \mathscr{D}_{1}^{\prime}\right)$ and $\mathscr{P}\left(\bar{B}_{11} \cap \mathscr{D}_{1}^{\prime}\right)$ on $E_{11}$ by Lemma 2, see Fig. $10(\mathrm{~b})$, (c). Then we can remove the arcs " 1 " of ribbon type by Lemma 3, Fig. 10(d). By repeating the above deformation if necessary, we obtain the disks, denoted by $D_{11}^{\prime}, E_{11}$ again, such that $D_{11}^{\prime} \cup E_{11}$ is non-singular and so the arcs " 1 "" of $\mathscr{P}\left(B_{11} \cap D_{11}^{\prime}\right)$ on $D_{11}^{\prime}$ can be deformed into $D_{1_{1}}^{\prime}$ by an ambient isotopy, Fig. 10(d), (e). (By this deformation, $\# \mathscr{S}\left(\overline{\mathscr{B}}_{1} \cap \mathscr{D}_{1}^{\prime}\right)$ may increase.) If $D_{11}^{\prime} \cap\left(\mathscr{B}^{\prime}-\mathscr{B}_{1}^{\prime}\right) \neq \phi$ in Fig. 10 (e), we perform the same deformation as Fig. $10(\mathrm{~b})$, (c) and transfer it into $D_{1 p_{1}}^{\prime}$. After the above, $E_{11} \cup \bar{B}_{12} \cup D_{11}^{\prime}\left(=E_{12}\right)$ is non-singular and so we can exchange the arcs of " 2 " and " 1 ", " 3 ", " 4 ", " 4 "" by Lemma 2, Fig. 10(f), and we may remove " 2 " by Lemma 3, Fig. 10(g).

By repeating the above process successively, each arc of $\mathscr{S}\left(\mathscr{\mathscr { B }}_{1} \cap \mathscr{D}_{1}^{\prime}\right)$ on $\mathscr{D}_{1}^{\prime}$ can be deformed into $D_{1 p_{1}}^{\prime}$. Now we obtain Sublemma.

Therefore $E_{1 p_{1}}\left(=\bar{B}_{11} \cup \cdots \cup \bar{B}_{1 p_{1}-1} \cup B_{1 p_{1}}^{\prime} \cup D_{10}^{\prime} \cup \cdots \cup D_{1 p_{1}-1}^{\prime}\right)$ is non-singular and so we can deform $E_{1 p_{1}} \cup D_{1 p_{1}}^{\prime}\left(=C_{1}\right)$ into $R^{2}[1]$ by an ambient isotopy with $\mathscr{D}_{i}$ fixed for $i \geqq 2$ because each $b$-line of pre-image of $C_{1} \cap \mathscr{D}_{i}(i \geqq 2)$ is contained in pre-image of $C_{1}$.

By the above deformations, we obtain $\tilde{\mathscr{B}}_{1} \cup \widetilde{\mathscr{D}}_{1}\left(\subset R^{2}[1]\right)$ from $\mathscr{B}_{1}^{\prime} \cup \mathscr{D}_{1}^{\prime}$.
We can perform the above deformations with $\mathscr{D}-\mathscr{D}_{1}$ fixed. Hence $\mathscr{D}_{i}$ are contained in $R^{2}[i]$ respectively and so $\left(\tilde{\mathscr{B}}_{1} \cup \tilde{\mathscr{D}}_{1}\right) \cap \mathscr{D}_{i}=\phi$ for $i \geqq 2$.

Next we perform the same deformations to $\mathscr{B}_{2}^{\prime} \cup \mathscr{D}_{2}$. As $\mathscr{\mathscr { B }}_{1} \cap \mathscr{D}_{2}$ is empty, we can perform the deformations of Lemmas $1,2,3$ and 4 with $\mathscr{B}_{1} \cup \mathscr{D}_{1}$ fixed. As a result, we obtain mutually disjoint non-singular disks $\widetilde{\mathscr{B}}_{2}, \mathscr{\mathscr { D }}_{2}$ from $\mathscr{B}_{2}, \mathscr{D}_{2}$ such that $\tilde{\mathscr{B}}_{2} \cup \tilde{\mathscr{D}}_{2} \subset R^{2}[2]$ and $\tilde{\mathscr{B}}_{1} \cup \tilde{\mathscr{D}}_{1} \subset R^{2}[1]$.

By repeating the above discussion successively, we see that $\ell$ can be deformed into a trivial link by a finite sequence of self $\Delta$-moves, namely $\ell$ is self $\Delta$-equivalent to a trivial link.

Now the proof is complete.
Conjecture. Suppose that two links $\ell$ and $\ell^{\prime}$ are cobordant, [3], [4], in $R^{3}$. Then they are self $\Delta$-equivalent.

## References

[1] L. Cervantes and R.A. Fenn: Boundary links are homotopy trivial, Quart. J. Math. Oxford, 39 (1988), 151-158.
[2] A. Kawauchi, T. Shibuya and S. Suzuki: Descriptions on surfaces in four space, I, Math. Sem. Notes, Kobe Univ., 10 (1982), 75-125.
[3] C.H. Giffen: Link concordance implies link homotopy, Math. Scand., 45 (1979), 243-254.
[4] D.L. Goldsmith: Concordance implies homotopy for classical links in $M^{3}$, Comm. Math. Helv., 54 (1979), 347-355.
[5] J.W. Milnor: Link group, Ann. of Math., 50 (1954), 177-195.
[6] H. Murakami and Y. Nakanishi: On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
[7] Y. Ohyama: Twisting and unknotting operations, pre-print.
[8] T. Shibuya: Self \#-unknotting operation of links, Memo. Osaka Insti. Tech., 34 (1989), 9-17.
[9] T. Shibuya: Self \#-equvalences of homology boundary links, Kobe J. Math., 9 (1992), 159-162.
[10] T. Shibuya: Mutation and self \#-equivalences of links, Kobe J. Math., 10 (1993), 23-37.

Department of Mathematics
Osaka Institute of Technology Asahi, Osaka 535
Japan

