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0. Introduction

In this paper, we work in the differential category. Unless otherwise stated,
a surface is an oriented closed, possibly disconnected, surface, and an automorphism
is an orientation preserving self-homeomorphism. An automorphism of a surface
(/%/) is said to be null-cobordant if there is a compact oriented 3-manifold M
equipped with an automorphism (M,/), such that d{M,f) = {dM,f\dM) is equal to
{F,f). We call this 3-manifold M the null-cobordism for {F,f). Two auto-
morphisms of surfaces {Fufx) and {F2,f2) are cobordant if {F^f^ { — F2,f2) is
null-cobordant. The cobordism classes form a group Δ2+ whose group law is
induced by disjoint sum II . Bonahon [B], Edmonds and Eving [EE] proved
that Δ 2 + is isomorphic to Z z φ(Z/2Z) z . Bonahon asked the following question
in his paper [B section 9]

Given an automorphism of a surface {for instance presented as a product of

Dehn twists), decide whether it is null-cobordant or not.

For the sake of characterizing null-cobordant automorphisms, we want to
know, for arbitrary null-cobordant automorphism, what kind of 3-manifold can
be constructed as its null-cobordism, and we want to get an explicitly constructed
family of 3-manifolds in which, for any null-cobordant automorphism, we can find
a null-cobordism of this automorphism. For example, if an automorphism of a
2-torus is null-cobordant then it bounds an automorphism of a solid torus ([B]). In
this paper, we show that the same kind of things are true for other surfaces:

Theorem 1. If an automorphism over a surface is null-cobordant, then this

automorphism bounds an automorphism of a 3-manifold obtained by glueing 1-handles

over disjoint union of orientable I-bundles over closed, possibly non orientable, surfaces,

handlebodies, and trivalent manifolds {defined in section 3).

Contents are as follows: in section 1, we review some results and terminologies
in [B]. In section 2, we review some results on periodic maps, show that any
periodic map compresses to a trivalent map, and introduce a graph which corresponds
to a null-cobordant trivalent map. In section 3, we introduce a trivalent manifold
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which is a null-cobordism of a null-cobordant trivalent map, and construct hyperbolic
structures on these manifolds. In section 4, we give a proof of Theorem 1. In
section 5, we apply trivalent maps and trivalent graphs for another problem. Let
Δ£+(«) denote the group of periodic cobordism classes of automorphisms (F,/) with
period n. Bonahon [B; Proposition 8.3] proved that Δf+(n)^Z ί(n~l)/2] (here, [ ]
means "integer part"). We show this fact explicitly with giving the basis of this
abelian group in terms of trivalent maps.
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1. Preliminaries

In this section, we review some results and terminologies in [B]. The following
was shown:

Lemma [B; Lemma 5.2]. If{F,f) is null-cobordant, it bounds an automorphism
(M,/) with M irreducible.

For an irreducible 3-manifold M, its boundary may be compressible. Hence,
we want to extract compressing discs of boundaries from this 3-manifold. A
terminology was defined:

DEFINITION. A 3-manifold V is a compression body for a surface F if V is an
irreducible 3-manifold formed from Fxl by adding 2- and 3-handles to Fx{l},
i.e. V is obtained by adding 2-handles along thin regular neighborhoods of disjoint
simple closed curves in Fx {1} and capping off any 2-sphere boundary components
this creates with 3-balls. There exists a partition dV=deVUdiV, where
deV=Fx{0}, diV=dV-deV. We call deV the exterior boundary and dtV the
interior boundary.

We construct compression bodies for dM embedded in M. There exist a
great variety of compression bodies, but there is a "maximal" one. Namely,Bonahon
showed:

Theorem [B; Theorem 2.1]. Let M be an irreducible, three manifold. There
exsts a compression body V <= M for dM,unique up to isotopy, such that M—V is
δ-irreducible (and irreducible).

We call the compression body V given in this Theorem the characteristic
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compression body of M. For an irreducible and 3-irreducible manifold M',

Johannson [Jo], Jaco and Shalen [JS] showed:

Theorem [Jo], [JS]. By a family of essential tori and annuli properly embedded

in M', which are not parallel pair by pair. M' is decomposed into two factors,

1) a Seifert factor, this factor consists of Seifert fibered manifolds and I-bundles

over surfaces

2) a simple factor, this factor is atoroidal and anannular, but does not have Seifert

fiber structure or I-bundle structure and this decomposition is unique up to isotopy.

Hence, an irreducible 3-manifold M is decomposed into three factors, a

characteristic compression body, a Seifert part, and a simple factor, unique up to

isotopy. Bonahon deeply investigated this decomposition, and showed:

Proposition A ([B Proposition 5.1]). If (F,f) is null-cobordant, it bounds an

automorphism (M 3 ,/) where M split into three pieces V, Mγ and MP, preserved by

f, such that:

(1) V is a compression body for dM and M— V=MIvMP.

(2) Mj is an or ien table I-bundle over a closed, possibly non-orient able, surface.

(3) The restriction off to MP is periodic.

In this paper, we study MP, that is, for a given periodic null-cobordant

automorphism (FP,fP), we construct, explicitly, a 3-manifold M such that there is

a periodic automorphism (M,f) whose restriction to the boundary (dM9f\dβ) is

(FP,fP). In section 3, we will show that this M can be decomposed into hyperbolic

3-manifolds by essential tori. Hence, Theorem 1 is restated as follows:

Theorem Γ. If (F,f) is null-cobordant, it bounds an automorphism of an

irreducible 3-manifold whose Seifert factor consists of an orientable I-bundle over

a surface and whose simple factor is a trivalent manifold (defined in section 3).

2. Periodic automorphisms

An automorphism of a surface {F,f) is periodic, if there is positive integers

n such that f" = idF. The period of (F,f) is the smallest positive integer which

satisfies the above condition. Let n be the period of (F,f). Denote Fix+f= {xeF\

there exists a positive integer m<n such that fm(x) = x}. For any periodic map

(F,f), its orbit space F/f is defined by identifying x in F with f(x), let πf:F-* F/f

be the quotient map. For any component Ft of F, the period off in Ft is the

period of the map f\ρ., where F — π ^ 1 ^ / / ^ ) ) . If all the components of F have

the same period n, then (F,f) is the periodic map with the total period n. For

any periodic map (F,f) with the total period n, denote πf(Fix+f) by Sf and called
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singular set of F/f and its elements are called singular points. Let 0, be any

connected component of F/f and its elements are called singular points. Let O{

be any connected component of F/f—Sf, xt be any point of O( and xt be any

point in F such that n^x^x^ Define the homomorphism Rf from @iti(Oi9Xi)
i

to Zn as follows: Let λ be an element of πx{Ohx^ and let / be a loop representing

λ. Let T be a path which begins at Jc£ and πf(ί) = /, where πf\j is injective. There

exists a positive integer r smaller than or equal to n such that f(xt) is the terminal

point of I We define Rf(λ) = r. We note that this definition does not depend

on the choice of the base points xf and the loops / and their lifts T on F. Since

Zn is abelian, we can naturally define a homomorphism pf from Hγ{F/f—Sf\Z)

to Zn induced by Rf. For any point Sj of Sf, let Z>f be a disk in F//, which

include s in its interior and is sufficiently small such that no other points Sj {i^j)

is included in D^ Define If{s^) = ρf{[dD[\). We note that 7/^) is independent of

the choice of Dt.

Fig. l.

Let Σg be a connected surface of genus g, S a set of finite points in Σg. Denote

by ^n(Σg9S) the set of the periodic map (F9f) with total period n such that

Sf = S. A periodic map (/%/) with total period n is (n,g,k)-periodic map, if (/%/)

is the element of ^JΣg,S) where the number of the points of S is k. Two elements

(F^/i) and (F2,/2) of 0>n(Σg,S) are equivalent if there exists an orientation preserving

diffeomorphism h:Fί-+F2 such that h ofγ =f2 o A. Denote the set of equivalent

classes in ^n(Σg9S) by Pn(Σg9S). We take a model for Σ^ in the 3-dimensional

Euclidean space as shown in Figure 1. Let Honι(Hί(Σg — S),Zn)* be the set of

homomorphisms ω from H^Σg — S) to Zn such that ω ( ^ ) / 0 for every st. We

say that two elements ωx and ω 2 of Hom(H\(Σg — 5),ZM)* are jrf-equivalent, if there

exists a homeomorphism Λ on (Σ^S) such that ωγ °Λ* = ω 2 where Λ^ is the

automorphism of Hγ(Σg — S) induced by h\Σg_s. We denote by Qn(Σg9S) the set

of the ^-equivalent class of Hom(H^g — S)9Zn)*. Yokoyama [Y] showed the

following theorem.

Theorem B
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I) The map that associates with each (F,f) in Pn(ΣgiS) the homomorphism

pf\Hι(Σg — S)-j>Zn defines a one-to-one correspondence between Pn(Σg9S) and

QnVβ,S).

II) Any element of Qn(Σg,S) can be represented by homomorphism p:

H^g-S) -+ Zn such that ρ(ax) = m, p(bt) = O9 p{a^ = p{b^ = Q (ι>2) and, for θj = p{Sj)9

l<θi<θ2<- <Θk<n, θ1 + '~ + θkΞ=ι0 (mod/i).

Corollary 2 [B; Lemma 8.2]. If Sf = φ9 then (F9f) bounds a periodic

automorphism of a disjoint union of handlebodies.

Proof. Following from Theorem B, we can see that such a map is a composition

of a transitive cyclic permutation of components of F and a rotation around the

axis as in Figure 2. Since this map bounds an automorphism of a disjoint union

of handlebodies, we get the result.

Fig. 2.

DEFINITION. A periodic map (/%/) is trivalent map, if it is a disjoint union

of («,0,3)-periodic maps, i.e. the orbit space F/f is a disjoint union of 2-spheres

and each components have three singular points.

The genus of a trivalent map (F9f) is the sum of genera of all components of

F. By Theorem B, there exists a unique element of Pn{S2,{x^x2,x^}) represented

by a trivalent map (F9f) under the condition that 0; = / ^ ) (/= 1,2,3). Represent

this map (/%/) by {θuθ2>θ3;n}. This map {θuθ2,θ3;n} is independent of the
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choice of the order of θuθ2,θ3, as an element of Pn{S2

9{xί9x29x3})9 we may assume

O<0 t <θ2<θ3<n. Define ni=g.c.d.{θi9n) (/= 1,2,3), N=g.cA(ni9n2,n3). Then N is

the number of the components of F. The genus G of the trivalent map {θί9θ29θ3

m

9n}

is given by the following formula

Here, we will give some examples of trivalent maps.

EXAMPLE. Using the above formula, we classify all trivalent maps on surfaces

with genera 0,1,2 up to equivalence.

0) Trivalent maps on 2-sphere.

There is no trivalent map on disjoint union of 2-spheres.

1) Trivalent maps on 2-tori.

There are 6 types of trivalent maps on a 2-torus; (1) {1,1,1 3}, (1') {2,2,2; 3},

(2) {1,1,2;4}, (2') {2,3,3;4}, (3) {1,2,3;6}, (3') {3,4,5;6}. Here, (1') is the same as

(1) but the orientation reversed, and (2'), (3') are also. These maps are represented

by 2 x 2 matrices; (1) ( I (2) ( I (3) I I. This is proved as follows:

For these maps, N=l and {n — (nt +n2 + n3)}/2 = 0 in the above formula for

G. Therefore n=nx+n2+n3. Divide this equation by n and replace n/nt by mh

then 1/m^ + l /m2+l/m3 = 0. To satisfy this condition, (ml9m29m3) is one of

(3,3,3), (2,3,6),(2,4,4). By the definition of N9 n must be l.c.m.(mί9m29m3). For

each (mί9m29m3)9 we can reconstruct trivalent maps and get the result. On the

disjoint union of 2-tori, trivalent maps whose orbit spaces are connected are

constructed by combining the trivalent maps on one 2-torus with the cyclic transitive

permutation of the components. For example there are 6 types of trivalent maps

on a disjoint union of two 2-tori; (1) {2,2,2; 6}, (1') {4,4,4; 6}, (2) {2,2,4; 8}, (2')

{4,6,6;8}, (3) {2,4,6; 12}, (3') {6,8,10; 12}.

2) Trivalent maps on a genus 2 closed surface Σ 2 .

Trivalent map on Σ 2 is one of the following; (1) {1,2,2; 5}, (1') {3,3,4; 5}, (2)

{1,1,3;5}, (2') {2,4,4;5}, (3) {2,5,5;6}, (3') {1,1,4;6}, (4) {4,5,7;8}, (4') {1,3,4;8}, (5)

{1,4,5; 10}, (5') {5,6,9; 10}, (6) {2,3,5; 10}, (6') {5,7,8; 10}. This is proved by the

two facts, (a) if a positive prime integer n is a period of a periodic map on a

connected surface of genus g (g>2), then n<2g+\ (it is a corollary of

Riemann-Hurwitz Relation (see [FK])), (b) the greatest number of the period of

the periodic map over a connected surface of genus g (g>2) is 2(2g+l) (see [H;

Theorem 6]).

DEFINITION. An automorphism of surface (Fl9fx) compresses to (F2j2\ if there

exists an automorphism of a compression body (V9f) such that CFi,/i) = (<
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The following Theorem shows that trivalent maps are the essential parts of
periodic maps.

Theorem 3. Any periodic map compresses to a trivalent map.

Proof. Let (F,f) be a periodic automorphism. For a simple closed curve /
in F/f—Sf, let N be a thin regular neighborhood of / in F/f—Sf9 and let

UNj = πJι(N) be the decomposition into connected components. Cut the surface
j

F along njι(l\ and denote FC = F— U Nj9 then (Fc,/|Fc) is a periodic map. A
j

restriction of this map to the boundary, (dFc,f\δFC\ bounds a periodic map
(( LI Dj) II ( LI Dj), g)9 where dD} II dD) = dNj and g\Dj, g\D) are rotations. We denote

by sp s'j the centers of these rotations. Let F=FC u ((UDj) U (UD))) where dFc

δFc

and (LI dDj) U (LI δD'j) are identified naturally. On this surface, we can
obtain a periodic map (PJ) such that (FCJ\FC) =(FCJ\FC) and ((UDj) U (UD]),

ΛII^)U(IID;.)) = ((UDj)U (UD'^g). We say that (F,f) is obtained from (F,f) by an
equivariant 2-surgery along /. If pf(l)^09 then Sf = Sfv{sj9Sj} and IJ(SJ)= —IJ(SJ)

= ±pf(l). If p/(/) = 0then Sj = Sf.

Sk-1
Λ

S 4

lk-3

Fig. 3.

We can divide automorphism into parts which have total period n and «'s are
different each other, and discuss each parts. Therefore, we assume the periodic
map (/%/) has the total period n. For each component O of F/f9 let / be a simple
closed curve as in Figure 1. Perform an equivariant 2-surgery along / and obtain
a periodic automorphism (F'9f). This periodic automorphism (F'9f) is a disjoint
union of (n,0,k^periodic maps and (w,g,0)-periodic maps. Thus, by Corollary 2,
(/%/) compresses to a disjoint union of («,0,/:)-periodic maps. For an
(«,0,A:)-periodic map (F'9f')9 perform equivariant 2-surgeries along mutually disjoint
simple closed curves /1, ,/k_3 as in Figure 3 and obtain a periodic map {F"9f")
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which is a disjoint union of («,0,3)- and («,0,2)-periodic maps. Remark that, for

each component of F" If", the number of singular points is either two or three,

depending on the value pΓ(li). An (w,0,2)-periodic map is a composition of a

transitive cyclic permutation of components and rotations of 2-spheres whose axes

are the lines through north poles to south poles. These maps bound periodic

maps on 3-balls. This shows that an (w,0,A:)-periodic map compresses to a disjoint

union of («,0,3)-periodic mapsj.e. trivalent maps, and finishes the proof.

A periodic map (F,/) is periodic null-cobordant, if there exists a periodic map

(M,f) of a 3-manifold M such that d(M,f) = (F,f) and periodic maps {Fufx\ (F2J2) are

periodic cobordant, if ( F ^ / J u (—F2,/2) is periodic null-cobordant. Remark that,

for any periodic null-cobordant map (F,/), periods of/in each component of Fmay be

different. Let (M,/) be the null-conbordism of (F,/), for each component M{ of M,

as is easy to see, the periods of/in each component of Fn dMt are the same. Hence,

for the sake of our investigation, it is sufficient to work on periodic maps with

some total period. For any point x in F, let m be the smallest positive integer

with fm(x) — χ. Then there exists an element p of Q/Z such that fm is locally

conjugate to a rotation of angle 2πρ around x where the conjugation is given by

the orientation preserving local automorphism. Denote this p by r(fx).

Bonahon [B; Proposition 8.1] showed the following proposition.

Proposition C. If (F,/) is a periodic map, (F,/) is periodic null-cobordant if

and only if Fix+f admits a partition into pairs {xbx'^ such that

(1) r(/,xi) + > t « ) = 0.
(2) For every i, J{{χi9χ'i}) = {xβx'j} for some j.

The following lemma shows some relationship between r(fx) and If(πf(x)):

Lemma 4. Let (F,/) be a periodic map with the total period n. For two

points x and x' in Fix+f r(f,x) + r(fx') = 0 if and only if If(πf(x)) + If(πf(x')) = 0.

Proof. If the total period n is fixed, r(fx) and If(πf(x)) are determined by

each other, and this does not depend on the map / Hence, it suffices to show

the claim for («,0,2)-periodic maps, in which case the statement is trivial.

We can restate Proposition C in terms of //*) :

Lemma 5. A periodic map (F,/) with the total period n is periodic

null-cobordant if and only if Sf admits a partition into pairs {shs'i} such that

Proof. First, we see the sufficiency. Let {xi9x'i} be the lift of
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r(f,xd + r(f,xd = O by Lemma 4. By the definition of r(/, *), r(f,x) = r(fj(x)) for
all x in Fix+f, therefore r(f,f(xt)) + r{fj(x'$) = 0. We can see that a partition into
pairs of Sy naturally induces a partition into pairs of Fix+f which satisfies the
condition mentioned in Proposition C.

Next, we see the necessity. Let Fix+ +/= {x e Fix+f\ r(f, x) Φ1 / 2}. Then this
set admits a partition into pairs {xhx'i} following from Proposition C. The subset
Sf+ =πf(Fix+ +/) of Sf admits a partition into pairs {shs[} such that If{s) 4- //^) = 0
following from Lemma 4. For each element s of Sf — Sf+, since any lift x of s
satisfies r(/,x)=l/2, If(f,x) is equal to n/2eZn. For each element st of Sf+, let
Dt be a small 2-disk in F/f around st such that they do not intersect each

other. By the definition of //*), we can see p/(Σ[δZ>ι ]) = 0. For each element

s'jGSf — Sf+, let Dj be a small 2-disk in F/f around s'j as sbove. Then

Σ[dD'j]= -ΣldDi'] and it follows that pf(Σ[dD'j]) = 0. By the definition of //*),

j) = ΣIf(s'j). Since If(sfj)=n/2, Sf-Sf+ consists of even number of
j j

points. The set Sf — Sf+ can admit a partition into pairs {s^} such that
sd = Q' Hence, Sf admits a partition into pairs which we need.

DEFINITION. For any periodic null-cobordant map (i%/) with total period
n, define the set

u{shs'i} = Sf, {shs'i} n {spSj} = φ for any i Φj,

( i )
Fig. 4.

A graph Γ is a 1-dimensional finite CW-complex. A vertex of Γ is a 0-cell
of Γ, an edge of Γ is an 1-cell of Γ. We call a graph Γ trivalent if, for each
vertex, the number of edges which terminate at this vertex is three (here, remark
that edges are not oriented). Clearly, the number of vertices of a trivalent graph
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is even. A graph Γ' is a subgraph of a graph Γ, if Γ' is the subcomplex of Γ. In
Figure 4, we give two simple examples of trivalent graphs, which play central roles
in this paper. A subgraph C of Γ is circuit over Γ if C is homeomorphic to S1,
and if the number of edges of C is / we call C & l-circuit. If the number of
components of Γ is k and there exists an edge eu --,em such that Γ — eιv-- vem

have k + \ connected components, then Γ is said to be m-splittable, and the set
{el9- ,em} is called a splitting edge set. Let (F,f) be a periodic null-cobordant
trivalent map, andpeP f . We can make a trivalent graph ΓftP which corresponds
to this map (/%/) and an element p of Pf9 by identifying each component of FIf
with the vertex of Tfp and each pair {si9sty ep with the edge of ΓftP which connect
two vertices identified with two components of F/f including st and s[. Give an
arbitrary orientation on each edge, if a terminal vertex of an oriented edge e
corresponds to the component of F//including s'i9 then give a weight If(sβ e Zn on this
oriented edge. The weights on the graph Tfp depend on the orientation of edges, but
we do not tell one from the others, that is, we regard the graphs in Figure 5 as
the same weighted graphs.

Fig. 5.

REMARK. Let Tfp be connected, {el9 --9em} be splitting edge set, and Γ l 9 Γ2

be the components of ΓftP — eίv-~vem. Give an orientation of each et such that
whose terminal vertex is in Γ2, then the summation of weights given to ei9--9em

is 0 (we can prove this fact by the induction of the number of vertices). From
this fact, we can see that if ΓftP has two vertices then Γ/ f P is as in Figure 4(i).

3. Trivalent manifolds and their geometry

Regard S3 as a 1-point compactification of R3. Let R3 be the Euclidean
3-space. Let Γ be the set which consists of vertices and edges of a tetrahedra in
R3 c S3. This CW-complex Γ is the trivalent graph as in Figure 4(ii). Let
Γ=5r3-regular neighborhood of vertices of Γ, and (Γ,f) = (Γ,ΓnΓ). f is four arcs
properly embedded in T. Let {{ThΓf)}f be the arbitrary number of copies of (Γ,f),

be the pairing of connected components of udTt such that
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{Sk9S'k}n{ShS'ι} = φ for any kφl and there may be some components of

which are not included in u(Sk,Sk). T can be regarded as a 3-ball removed three
k

3-balls. For a pair {ShS'k}, let Tik, Tjk be the two of Γ ŝ which include Sk, S'k
as their boundary component. Put a mirror between Tik, Tjk as in Figure
6. (TikκjSk= -skTjk, f i f cuf jk) is a pair of a 3-manifold and arcs properly embedded
in this 3-manifold which given as a result of identification of Sk, S'k given by using
this mirror. Do the same thing for other pairs, then we have a pair (Γ,!) of a
3-manifold and arcs properly embedded in this 3-manifold. Construct a cyclic
branched covering f of this 3-manifold t whose branch point set is Γ. We call
this 3-manifold T given as a result of this process a trivalent manifold.

/<-mirror

Fig. 6.

m
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on

REMARK. The homeomorphism type of Γis depend not only on (Γ,f) but also
the type of cyclic branched covering.

EXAMPLE. Let (F,/) be a trivalent map of period 4, and embed a graph
ΓftP with weight into S3 as indicated in Figure 7. Γis a 3-manifold constructed from
a 3-sphere with removing neighborhood of each vertices. Define f j p = Γy p nΓ.
The fundamental group of a space T—tfp is generated by the loops rnum2i'-mβ

given in Figure 7. (As a system of generators of this fundamental group, four of
them is enough.) We define a homomorphism p from nγ(T— ff, *) to Z 4 by
p(mί)=\, p(m2)=l, p(ra3) = 2, p(ra4) = l, p(m5) = 3, p(m6) = 2, we can easily check
the well-definedness of this homomorphism. Let Γo be the covering space of T— ff

whose fundamental group is kerp. Let π:T->T be the branched covering
associated to the covering To-+ T-+ ff. The covering transformation group of
π: Γ-> T is Z 4. The manifold Γ is a trivalent manifold, and a generator of this
group f:f-+f satisfies d(f,j) = (F,f).

Any 3-manifold M which is a cyclic branched covering space of Γ whose
branch point set is Γ (denote this cyclic branched covering by π: M -• Γ), has a
hyperbolic structure with geodesic boundaries or cusps. This structure can be
constructed as follows:
For a connected component / of Γ, let x be a point in /, and D be the regular
neighborhood of x in Γ sufficiently small such that D does not include points in
t-l. Let ί be a component of π~1(D). Then, n\^:D^D is a w-fold cyclic
branched covering. This number does not depend on the choice of the point x
in /, and the choice of D. We call this number n a branching index of /. For a
periodic automorphism / on a surface F, by the same manner, we can define a
branching index of seSf. Here, we review the definition of a truncated tetrahedra
[K]. Let Lu L2, L3 and L4 be geodesic planes in the 3-dimensional hyperbolic
space //3, every two of which intersect each other, and every three of which
intersect at infinity or do not intersect. For each three of them, say L2, L2 and L3,
which do not intersect, there is unique geodesic plane Pί23 which intersects with
them perpendiculary [K; Lemma 2.1]. The domain D in H3 bounded by these
Vs and P's are called a truncated tetrahedra. The face of D which is a part of
P's is called a truncation face. For a truncated tetrahedra, label the internal edges
as in Figure 8 and denote the dihedral angle along the edges j by ψj. The sufficient
and necessary condition of φ/s to the existence of a truncated tetrahedra whose
dihedral angles are these numbers is
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[K; Lemma 2.3].

Fig. 8.

REMARK. In [K], the definition of a truncated tetrahedra is slightly different,
namely the case which some three of Ll9 L2, L3 and L4 intersect at infinity is
excludeed, but, here, to avoid complexity, we do not exclude this case. Of course,
the above sufficient and necessary condition is a little different, however, we can
prove this in the same manner as [K].

Fig. 9.

Label each component of Γ as in Figure 9. Let A2f be a branching index of
lt of the cyclic branched covering π:M-*> T. Define φf = π/«f, then φfs satisfy the
above condition, because each boundary of T is an orbit space of a trivalent map
which acts on the surface with genus more than 1. Therefore, we have a truncated
tetrahedra whose dihedral angles are φf's. Make a double of this truncated
tetrahedra along a surface which is not truncation face, then this define a hyperbolic
orbifold structure on T whose singular locus is f. Lift this hyperbolic orbifold
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structure to M. Since, for each component / of f, the total of the dihedral angle
around π~ι(l)is (π / niX2)xni — 2n, this define a hyperbolic structure on M.

Any trivalent manifold is constructed from a disjoint union of the above M's
with identifying some components of boundaries in a way compatible with the
structure of the branched covering. This identification is given as an isometry
on the hyperbolic structure constructed above. Therefore, we can give a hyperbolic
structure to any trivalent manifold. We showed the following:

Proposition 6. Any trivalent manifold is a compact, irreducible sufficiently-large

3-manifold, by essential tori, decomposed into hyperbolic 3-manifolds with geodesic

boundaries or cusps.

As a corollary of this Proposition and a relative version of Gromov's Theorem
[T; 6.5.4], we can see the following:

Corollary. Any trivalent manifold is not a Seifert fibered space.

EXAMPLE. We will give a hyperbolic structure to a trivalent manifold f
of the last example. Let //3 = {(x,j>,z)e/?3 |z>0} be the upper half space with
the hyperbolic metric. The domain D1/2 = {(x,y,z)eH3\0<x<\, 0<>^<x, z

>y/(x—l/2)2 + (y—l/2)2} is a truncated tetrahedra. Make a double of Dί/2i then
we get hyperbolic orbifold whose underlying space is T and whose singular locus
is f. Let G be the Kleinean group generated by

1 2\ Λ 2i\ , ( \ 0\ , ( 1 0
g2=Vo i> A l = ( - / - i J "2=

The fundamental domain of G is

Z) = {(x,^z)6^ 3 | 0<x<l,

•1/2)2}

u{(x,j,z)etf3|-l<x<0, - :

u{(x,y,z)eH3\-l<x<0,

H3/G is a hyperbolic 3-manifold with four cusps given from £) by identifying
{(jc,j\z)eZ>|je = l} with {(x,y,z)eD\x=-ί}, {(x,y,z)eD\y= 1} with {(JC,J\Γ)eZ>17

= 1}, {(x,y,z)eD\0<x<l, 0<y<l, Z>J{X-\I2)2 + {y-\/2)2} with {(x,j

7 l, -\<y
<0, z > x / ( x - l / 2 ) 2 + (y+l/2)2} with {(x,y,z)eD | - 1 ^ x <0, 0 < y < 1, z

> y ( x + l/2) 2 +(y-l/2) 2 } . The interior of f is homeomorphic to H3/G. An
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element of isometry of H3 given by

A/4 0

0 e~iπ'

induce an isomorphism / on H3 /G. This map / is a periodic map with
period 4 and (H3 j G9f) is periodic null-cobordism of (F9f) in the last example.

4. Proof of Theorem 1

In this section, we prove Theorem 1.

DEFINITION. The trivalent map (F9f) and pePf is simple piece if Tfp is one
of the two types of trivalent graph given in Figure 4. If Tfp is Figure 4(i)(resp. Figure
4(ii)), (F9f) and p is called a simple piece of type I (resp. type II).

Fig. 10.

From here to the end of this paper, we write Γf instead of Tfp for the sake
of avoiding complications of notation. But, remark that Γf is depend also on
pePf. Let (F,/) be a periodic null-cobordant trivalent map which corresponds
to a graph Γf as in the left hand of Figure 10. We can modify the graph Γf to
the disjoint union of two trivalent graphs Γf.9 Tf.. by adding two vertices, where
® = -Q=(F9J). Let (F'J'l (F"J") be trivalent maps corresponding to ΓΓ, Tr

and let (M',/'), (M",/") be periodic automorphisms which are periodic

null-cobordisums of (F'9f')9 (F"9f"). Then the periodic automorphism (M'uM",
F

f'vf") gives a periodic null-cobordism of (F9f). Therefore, the periodic
null-cobordism can be constructed by gluing periodic null-cobordisms of simple
pieces of type II. The same holds for any periodic null-cobordant trivalent map

Proposition 7. Let (F9f) be any periodic null-cobordant trivalent map, then there
is a disjoint union of trivalent manifolds and surface x / which is a periodic
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null-cobordism of (F,f).

Proof. We prove this by induction on the number c of components of F/f If
c = 2, this proposition follows from Remark at the end of section 1. If c>4, let C
be the circuit of Γf which has the minimal number of edges, say m (see Figure
11). If m is 2, then Γf can be modified into a disjoint union of Γ} with c — 2 vertices
and simple piece of type I (see Remark at the end of section 1). If m is more than
or equal to 3, then we can modify Γ^ in the dotted circle so as to be the disjoint

f

Fig. 11.

• O e-^e—e
- 3 m - 2
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r

ιf

Fig. 13.

• r

h - 1

Γ w ,

Fig. 14.
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union of YΓ, and Γr, by adding vertices with φ . = - θ , and edges eh e\
(z = l, ,ra-2) as in Figure 12. Let (F'J'\ (F"J") be trivalent maps correspond
to fy, Γj". There may be edges whose end points have indices 0. Denote these
edges by eh,--,elk,e'h,'-,e'lk. Periodic maps ©Zf, θ/ f, θ/. + i, θ/f + i, ( ι=l, ,fc) are
(rt,0,2)-periodic maps and bound periodic maps on 3-balls. Therefore, we cna
remove these maps and get two graphs Γ r , TΓ (see Figure 13). Let trivalent
maps {F'J") and (/"',/") correspond to Γ r , Γr, These trivalent maps {FrJ"\
(F",f") are periodic null-cobordant, and in a similar fashion as a discussion before
the claim of this proposition, a periodic null-cobordism of (F,/) is constructed
from periodic null-cobordisms of (F\f") and (F'\f"\ The trivalent graph Y Γ has
fewer vertices than Yf, that is F' If has fewer components than F/f. By the
assumption of induction, the periodic null-cobordism of (F\f) can be constructed
from periodic null-cobordisms of simple pieces. For the periodic map (/*"',/"), by
changing the pairing of Sf», we can alter Yf» to the disjoint union of trivalent
graphs Yf.,. as in Figure 14. Let the periodic null-cobordant trivalent map (F"\f")
correspond to Yf>>. The trivalent graph Tf,,, is gotten from Yf,.. with adding 2h
vertices ®u -,®h> ΘW ΘH where ©,= - © / (i=l,••-,*). The periodic null-
cobordant trivalent map corresponding to Yf... is a disjoint union of simple pieces
of type II and a periodic null-cobordism of (F"\f") is constructed from its periodic
null-cobordism.

By Proposition A, Theorem 3, and Proposition 7, we can prove Theorem 1,
and by Theorem 1 and Corollary of Proposition 6, we can prove Theorem Γ.

5. Periodic cobordism groups

Let Δ2+(«) denote the subgroup of periodic cobordism classes of automorphisms
(/%/) with the total period n. Bonahon [B; Proposition 8.3] proved that
Δ2+(«) = Z l ( w ~ 1 ) / 2 ] (here [ ] means "integer part"). In this section, we give an
explicit generator of this group by trivalent maps.

Theorem 8. Let JC| = {1,/,/f — 1 —/ /i} ( ι=l, ,[(/i-l)/2]). Then

Proof. Following from Theorem 3, any periodic map is periodic cobordant
to a trivalent map. Therefore, trivalent maps generate Δf+(n) with the relations
represented by trivalent graphs Yf.

Claim 1. xu~ ,x[(w_1)/2] generate
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Fig. 15.

For any trivalent map {θuθ2,θ3;n} (θ1 is the least among 0/s and 0,

{θuθ29θ3;n} = {θί-lθ29Θ3Λ-\;n} + {l,θ39n-θ3-\;n}-{l,θί-Un-θί;n} as ele-
ments of A2+(n) (see Figure 15). By this formula, this claim is shown by induction

on θί.

Claim 2. There is no relation among x?s.

Let 3Fv+iyί) denote the set of oriented conjugacy classes of automorphisms

(/%/), where f preserves the orientation of F and is periodic with the total period

n. This set J^+M is the abelian group where the group law is induced by disjoint

sum II . Let the integer vc(/) be the number of points xeSf such that If(x) — c. If

the period n is an odd integer, we can define the homomorphism φ from

to Z t ( " - 1 ) / 2 ] by:

Using Lemma 5, the homomorphism φ from Ap

+(ή) to z[(n~1)/2] is naturally induced

from φ, and it is injective. Let φ be the natural surjective homomorphism from

Zxx® ®Zx{{n-l)l2] t o # * ( / i ) . T h e n ψoφ(Xl) = (2,-1,0, ,0), ψoφ(Xi) = (lβ9.,0,
( i ) ( » + l )

1,-1,0,. ,0) ( I # 1 , [ ( / I - 1 ) / 2 ] ) and ψoφ(X[{n_ί)/2]) = (lfl9...,0,2). If K e r ^ o φ and

y = m1xι+m2X2 + -'+m[(n_1)/2]x[(n-l)/2], then \j/oφ(y) = (2mι +m2+ •••+"%„_ 1 ) / 2 ],

m 2 - m 1 , m 3 - m 2 , ,m [ ( M _ 1 ) / 2 ] -m [ ( w _ 1 ) / 2 ] _ 1 ) = (0, ,0). Therefore ,y = 0 and xj/oφ is

injective. So, (/> is an isomorphism. If the period n is an even integer, we can

define the homomorphism φ from J ^ ^ t o Z [ ( W " 1 ) / 2 ] © Z 2 by:

which induces the injective homomorphism φ from Δ+(«) to Z [ ( M ~ 1 ) / 2 ] 0 Z 2 . Let
(0(i+D

φ be as above, then ψoφ(Xί)=:(29-1,0, ,0), ^o(/>(x.) = (l,0,--,0,l,-l,0, ,0)

( I # 1 , [ ( Λ —l)/2]) and ^oφ(χ [ ( π _ 2 ) / 2 ] ) = (l ί0, ,0,l,l). We can see ^ ° φ is injective

as above. Therefore, φ is an isomorphism.

REMARK. The homomorphism φ is originally given by Bonahon [B] in the
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proof of Proposition 8.3.
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