ON p-RADICAL GROUPS G AND THE NILPOTENCY INDICES OF $\boldsymbol{J}(\boldsymbol{k} G)$ II

Hiroshi FUKUSHIMA

(Received May 10, 1995)

1. Introduction

Let G be a finite p-solvable group with a Sylow p-subgroup of order p^{a}, k an algebraically closed field of characteristic $p>0, k G$ the group algebra of G over $k, t(G)$ the nilpotency index of the radical $J(k G)$ of $k G$ and $l(M)$ the Loewy length of (right) $k G$-modules M.
S. Koshitani [4] and D.A.R. Wallace [14] proved that $a(p-1)+1 \leq t(G) \leq p^{a} . \quad$ Y. Tsushima [12] proved that the second equality $t(G)=p^{a}$ holds if and only if a Sylow p-subgroup of G is cyclic. Here we shall study the structure of G with $t(G)=a(p-1)+1$. If G has p-length 1 , then by K. Motose and Y. Ninomiya [9] $t(G)=a(p-1)+1$ if and only if a Sylow p-subgroup of G is elementary abelian. Therefore we shall be interested in the structure of G of p-length 2 with $t(G)=a(p-1)+1$. As such examples, we know the followings.

Let $F=G F\left(p^{n}\right)$ be a finite field of p^{n} elements for some integer n with $p \mid n, \lambda$ a generater of the multiplicative group F^{*} of $F, v=\lambda^{p / p-1}$ and V be the additive group of F. Let $T\left(p^{n}\right)$ be the set of semilinear transformations on V of the form $v \mapsto \alpha v^{\sigma}, \alpha \in F^{*}, \sigma$ a field automorphism of F (see [11, p.229]). Then we can consider semidirect product $V \rtimes T\left(p^{n}\right)$ of V by $T\left(p^{n}\right)$. Let $T_{0}=\left\{v \rightarrow \alpha v^{\sigma} \mid \alpha \in\langle v\rangle\right.$, $\left.\sigma \in \operatorname{Gal}\left(F / G F\left(p^{n / p}\right)\right)\right\} \subseteq T\left(p^{n}\right)$. Then we define $A_{p, n, p}=V \rtimes T_{0} \subseteq V \rtimes T\left(p^{n}\right)$ (see [3]). A Sylow p-subgroup of $A_{p, n, p}$ is of order p^{n+1}. In [7] K. Motose proved $t\left(A_{p, n, p}\right)=(n+1)(p-1)+1$.

Now, following K. Motose and Y. Ninomiya [8] we call G p-radical if $J(k G) \subseteq(k P) k G$, where P is a Sylow p-subgroup of G. Then $A_{p, n, p}$ is p-radical (see [13]). So we consider the structure of p-radical group G with $t(G)=a(p-1)+1$. In [3] we proved that such groups G satisfy $G=0_{p, p^{\prime}, p, p^{\prime}}(G)$. In this paper, we shall prove the following result.

Theorem. For a p-radical group G the following conditions are equivalent.
(1) $t(G)=a(p-1)+1$.
(2) $l\left(P_{G}(k)\right)=a(p-1)+1$, where $P_{G}(k)$ is the projective cover of the 1-dimentional trivial $k G$-module k_{G}.
(3) The following conditions hold.
(i) $O^{p^{\prime}}(G)=N \rtimes H$ for some elementary abelian p-group N and a (p-radical) group H, where $O^{p^{\prime}}(G)$ is the minimal normal subgroup of G of index prime to p.
(ii) $\quad H=M \rtimes P$, where M is a p^{\prime}-group and P is an elementary abelian p-group.
(iii) $P \subseteq{ }_{M} C_{H}(x)$ for all $x \in N$.
(4) The following conditions hold.
(i) $O^{p^{\prime}}\left(G / O_{p^{\prime}}(G)\right)=G_{0} \times N_{0}$, where N_{0} is an elementary abelian p-group and G_{0} is isomorphic to a normal subgroup of $\Pi_{i} A_{p, n_{i}, p}$ with p-power index for some n_{i} 's.
(ii) $O_{p^{\prime}, p}\left(G_{1}\right)=O_{p^{\prime}}(G) \times O_{p}\left(G_{1}\right)$, where G_{1} is an inverse image of G_{0} in G.

2. Preliminaries

In this section we shall prepare some lemmas and propositions which will be used to show the theorem.

Throughout this section, except in the last four lemmas we shall treat a group G of the form $G=N \rtimes H$, a semidirect product of a p-group N by a group H. Under the conjugation action, $k N$ can be viewed as a $k H$-module.

Clearly $J(k N)^{l}$ is a $k H$-submodule of $k N$ for all integer $l \geq 0$. We put

$$
g r k N:=\underset{l \geq 0}{\otimes} J(k N)^{l} / J(k N)^{l+1}
$$

where $J(k N)^{0}$ means $k N$.
Lemma 1.1. Assume $N=N_{1} \times N_{2}$. Then the map $J\left(k N_{1}\right) \otimes J\left(k N_{2}\right) \mapsto J(k N)$ $(a \otimes b \mapsto a b)$ induces a k-isomorphism

$$
\underset{\substack{l_{1}+l_{2}=l}}{\oplus} J\left(k N_{1}\right)^{l_{1}} / J\left(k N_{1}\right)^{l_{1}+1} \otimes_{k} J\left(k N_{2}\right)^{l_{2}} / J\left(k N_{2}\right)^{l_{2}+1} \simeq J(k N)^{l} / J(k N)^{l+1} .
$$

This isomorphism is a kH -isomorphism if each N_{i} is H -invariant.
Proof. For simplicity, put $J:=J(k N), J_{1}:=J\left(k N_{1}\right)$ and $J_{2}:=J\left(k N_{2}\right)$. Notice that the canonical map $J_{1} \otimes_{k} J_{2} \rightarrow J(a \otimes b \mapsto a b)$ induces an epimorphism

$$
\underset{l_{1}+l_{2}=l}{\oplus} J_{1}^{l_{1}} / J_{1}^{l_{1}+1} \otimes_{k} J_{2}^{l_{2}} / J_{2}^{l_{2}+1} \rightarrow J^{l} / J^{l+1}
$$

Since $\underset{l \geq 0}{\Sigma} \sum_{l \geq 0} \operatorname{dim}_{k}\left(J_{1}^{l_{1}} / J_{1}^{l_{1}+1} \otimes_{k} J_{2}^{l_{2}} / J_{2}^{l_{2}+1}\right)=\operatorname{dim}_{k} k N=\sum_{l \geq 0} \operatorname{dim}_{k} J^{l} / J^{l+1}$, the above map must be an isomorphism. From the construction, the last statement is clear.

Lemma 1.2. Let $H=\langle s\rangle$ be a cyclic group of order p and $N=\left\langle x_{1}\right\rangle \times \cdots \times\left\langle x_{p}\right\rangle$ be an elementary aberian p-group of rank p. Assume that the action of H on N is given by $x_{i}^{s}=x_{i+1}(1 \leq i \leq p-1)$ and $x_{p}^{s}=x_{1}$. Then,

$$
J(k N)^{l} / J(k N)^{l+1} \simeq \begin{cases}\text { a projective } k H-\text {-module } & \text { if } l \equiv \equiv(\bmod p) \\ K_{H} \oplus(\text { a projective } k H-m o d u l e) & \text { if } l \equiv 0(\bmod p)\end{cases}
$$

for $0 \leq l \leq p(p-1)$.
In particular, $g r k N \simeq p k_{H} \oplus$ (a projective $k H$-module)

Proof. For simplicity, put $J:=J(k N)$. By the assumption on N and Lemma 1.1, we have a k-isomorphism $J^{l} / J^{l+1} \simeq \underset{l_{1}+\cdots+l_{p}=l}{\oplus} k\left(x_{1}-1\right)^{l_{1}} \otimes \cdots \otimes\left(x_{p}-1\right)^{l_{p}}$. We shall examine the action of H on J^{l} / J^{l+1}.

Let $\alpha_{\left(l_{1}, \cdots, l_{p}\right)}$ be element in J^{l} / J^{l+1} which corresponds to $\left(x_{1}-1\right)^{l_{1}} \otimes \cdots \otimes$ $\left(x_{p}-1\right)^{l_{p}}$. Then $\left\{\alpha_{\left(l_{1}, \cdots, l_{p}\right)} ; l_{1}+\cdots+l_{p}=l\right\}$ forms a k-basis of J^{l} / J^{l+1}. $\left(\alpha_{\left(l_{1}, \cdots, l_{p}\right)}\right)^{s}$ $=\alpha_{\left(l_{p}, l_{1}, \cdots, l_{p-1}\right)}$, so s permutes the above k-basis and we see that $\alpha_{\left(l_{1}, \cdots, l_{p}\right)}$ is stabilized by s if and only if $l_{1}=l_{2}=\cdots=l_{p}(=l / p)$. Thus the assertion follows.

Lemma 1.3. Let N be an elementary abelian p-group and H be an abelian p^{\prime}-group with $C_{H}(N)=1$. Then there exists an element $x \in N$ such that $C_{H}(x)=1$.

Proof. If H acts on N irreducibly, then H is cyclic and $C_{H}(x)=1$ for all $1 \neq x \in N$.
Since H is a p^{\prime}-group, we have a decomposition where $N=N_{1} \times N_{2}$, where N_{1} is H-irreducible and N_{2} is H-invariant. Assume $N_{2} \neq 1$ and we shall use induction on $|N|$.

Since $H / C_{H}\left(N_{1}\right)$ acts on N_{1} irreducibly and faithfuly, there exists $x_{1} \in N_{1}$ such that $C_{H}\left(x_{1}\right)=C_{H}\left(N_{1}\right)$. Since the action of $C_{H}\left(N_{1}\right)$ on N_{2} is faithful, there exists $x_{2} \in N_{2}$ such that $C_{H}\left(x_{2}\right) \cap C_{H}\left(N_{1}\right)=1$ by induction. For $x=x_{1} x_{2} \in N, C_{H}(x)=1$ as desired.

Proposition 1.4. Let $H=M \rtimes\langle s\rangle$ be a Frobenius group with p^{\prime}-group M and $|s|=p$. Assume N is an elementary abelian p-group. If grkN is a semisimple $k H$-module, then $s \in_{M} C_{H}(x)$ for all $x \in N$.

Proof. Let n be the number of M-conjugacy classes on N. We shall show $\left|C_{N}(s)\right|=n$. First we shall prove that $\operatorname{grkN} \simeq n\left(k_{H}\right) \oplus$ (a projective $k H$-module). Since $k M$ is semisimple, we have $\operatorname{Inv}_{M}(g r k N) \simeq \operatorname{Inv}_{M}(k N)$ and $\operatorname{dim}_{k} \operatorname{Inv}{ }_{M}(k N)=n$. As $M \triangleleft H, \operatorname{Inv}_{M}(\operatorname{grkN})$ is a $k H$-submodule of $g r k N$ and is semisimple. Thus, $\operatorname{Inv}_{M}(g r k N)=\operatorname{Inv}_{H}(g r k N) . \quad H$ is Frobenius and p-nilpotent, so its simple modules are trivial or projective ones. Hence we have $\operatorname{grkN} \simeq \operatorname{Inv}_{H}(g r k N) \oplus$ (a projective $k H$-module $) \simeq n\left(k_{H}\right) \oplus$ (a projective $k H$-module) as desired.

Secondly, we shall give another decomposition of grkN. Notice that $N=[N, M] \times C_{N}(M)$ and put $N_{0}:=C_{N}(M)$. By Lemma 1.1, $\operatorname{grk} N_{0}$ is a semisimple $k H$-module and therefore has a trivial $\langle s\rangle$-action. So, $g r k N_{0}=\left|N_{0}\right|\left(k_{\langle s\rangle}\right)$ as
$k\langle s\rangle$-modules. Furthermore, $t\left(N_{0}\langle s\rangle\right)=t\left(N_{0}\right)+t(\langle s\rangle)-1$ by Theorem 2.7 of [6]. Hence $N_{0}\langle s\rangle$ is elementary abelian, and so $\langle s\rangle$ centralizes N_{0}.

Assume that $[N, M]=1$. Then $N=N_{0}$, and so $\operatorname{grkN}=|N|\left(k_{\langle s\rangle}\right)$ as $k_{\langle s\rangle}{ }^{-}$ modules. Hence $n=|N|=\left|C_{N}(s)\right|$.

Next assume that $[N, M] \neq 1$. Since H acts on $[N, M]$ by conjugation, we can regard [N, M] as an H-module. Every H-constituent of [N, M] doesn't contain M in its kernel, and so is projective by the assumption on H. Hence [N, M] is a projective H-module. Hence we have an $\langle s\rangle$-invariant decomposition [N, M] $=N^{(1)} \times \cdots \times N^{(m)}$, where each $N^{(i)}$ has the same expression as that of " N in Lemma 1.2". So, by Lemma 1.1 and Lemma 1.2, $\operatorname{grk}[N, M] \simeq p^{m}\left(k_{\langle s\rangle}\right) \oplus$ (a projective $k\langle s\rangle$-module) as $k\langle s\rangle$-modules. Therefore, by Lemma 1.1 , we have $g r k N$ $\simeq p^{m}\left|N_{0}\right|\left(k_{\langle s\rangle}\right) \oplus$ (a projective $k\langle s\rangle$-module) as $k\langle s\rangle$-modules.

The above two decompositions of grkN imply $n=p^{m}\left|N_{0}\right|$. Notice that $p^{m}\left|N_{0}\right|=\left|C_{N}(s)\right|$ since $\left|C_{N^{(i)}}(s)\right|=p$ for all i. Consequently we have $\left|C_{N}(s)\right|=n$.

Now, two distinct elements of $C_{N}(s)$ are not M-conjugate each other: otherwise they are $C_{M}(s)$-conjugate but this does not happen since $C_{M}(s)=1$. Therefore $C_{N}(s)$ is a set of representive of M-conjugacy classes of N as $\left|C_{N}(s)\right|=n$ and we get the result.

Proposition 1.5. Let H, M and s be as in Proposition 1.4. If N is elementary abelian and $s \epsilon_{M} C_{H}(x)$ for all $x \in N$, then $M / C_{M}(N)$ is abelian.

Proof. We imitate the proof of Theorem 3.3 in [15] and shall use induction on $|H|$. We may assume that $C_{M}(N)=1$. And we may also assume that p is odd as H is a Frobenius group. Notice that M is nilpotent.

Step 1. N and N_{M} are irreducible.
Proof. Let N_{0} be an irreducible M-submodule of N and $N_{0}=\left\langle x^{M}\right\rangle$. Then by our assumption $N_{0}=\left\langle x^{H}\right\rangle$ and is H-invariant. This implies that N is completely reducible as an H-module and the result follows by induction.

Step 2. N_{K} is homogeneous for all $K \triangleleft H$.
Proof. Suppose not and choose $K \triangleleft H$ maximal such that N_{K} is not homogeneous. Let $N_{K}=N_{1} \times \cdots \times N_{l}$, where N_{i} 's are the homogeneous components of N_{K}. By Step $1 K \subsetneq M$ as H is Frobenius. Let $L \triangleleft H$ with $1 \neq L / K \subseteq Z(M / K)$. By the maximality of K, N_{L} is homogeneous and therefore L acts on N_{i} transitively. In particular, $H=N_{H}\left(N_{1}\right) L$. Thus $N_{M}\left(N_{1}\right) \triangleleft H$ as $K \subseteq N_{M}\left(N_{1}\right)$ $\triangleleft N_{H}\left(N_{1}\right)$ and $L / K \subseteq Z(M / K) . \quad N$ is not a homogeneous $N_{M}\left(N_{1}\right)$-module since $N_{M}\left(N_{1}\right)$ can not act on $\left\{N_{i}\right\}$ transitively and $N_{M}\left(N_{1}\right)=K$ by the maximality of K. So $L=M$ and $N_{M}\left(N_{i}\right)=K$ for all i. We may assume that $s \in N_{H}\left(N_{1}\right)$. We claim that $N_{H}\left(N_{1}\right) \cap N_{H}\left(N_{2}\right)=K$. Suppose $N_{H}\left(N_{1}\right)=N_{H}\left(N_{2}\right)$. Then $s \in N_{H}\left(N_{2}\right) . \quad$ On
the other hand, $N_{2}=N^{t}$ for some t in $M \backslash K$ and therfore $s, s^{t^{-1}} \in N_{H}\left(N_{1}\right)$. So $[s, t] \in N_{H}\left(N_{1}\right) \cap M=K$ and this contradicts to the hypothesis that H is Frobenius. Now take $1 \neq x \in N_{1}$ and $1 \neq y \in N_{2}$. For $h \in C_{H}(x y), h^{2} \in C_{H}(x) \cap C_{H}(y)$ as h permutes $\left\{N_{i}\right\}$ and $x^{h}=x, y^{h}=y$ or $x^{h}=y, y^{h}=x$. Thus $h^{2} \in N_{H}\left(N_{1}\right)$ $\cap N_{H}\left(N_{2}\right)=K \subseteq M$. Because we are assuming that p is odd, $h \in M$ and $C_{H}(x y) \subseteq M$. This contradicts to our assumption and Step 2 follows.

Step 3. If $A \triangleleft H$ is abelian, then $A \subseteq Z(M)$. Furthermore, $Z(M)$ is cyclic.
Proof. By Step $2 A$ is cyclic. Thus Aut A is abelian and $M \subseteq C_{\boldsymbol{H}}(A)$ as H is a Frobenius group with kernel M.

Step 4. (Conclusion) $M=Z(M)$.
Proof. Notice that the prime factors of $|M|$ and $|Z(M)|$ coincide as M is nilpotent. Suppose $M \neq Z(M)$ and let $A / Z(M)$ be a chief factor of H in $Z(M / Z(M))$. Then $A / Z(M)$ is an elementary abelian q-group for some prime q. $\quad p \mid(q-1)$ since $\langle s\rangle$ acts on $Z(M)$ regularly and $q \| Z(M) \mid$. Hence $G F(q)$ is a splitting field for $\langle s\rangle$. Thus an $\langle s\rangle$-invariant minimal subgroup of $A / Z(M)$ is of order q and it is M-invariant as $A / Z(M) \subseteq Z(M / Z(M))$. Thus $|A / Z(M)|=q$ and A is abelian. By Step 3 this is a contradiction.

We close this section with the following four lemmas.

Lemma 1.6. Let P be an abelian group and P act on a group M with $(|P|,|M|)=1$. If $[M, x]$ is abelian for all $x \in P$, then $[M, P]$ is abelian.

Proof. It suffices to show that $M_{0}:=[M, x][M, y]$ is abelian for all $x, y \in P$. Notice that $M_{0}=[M,\langle x\rangle\langle y\rangle]$ as P is abelian. $\quad[M, y]$ is an $\langle x\rangle$-invariant normal subgroup of M_{0}. Let $\bar{M}_{0}=M /[M, y]$, then $\bar{M}_{0}=\overline{[M, x]}=\overline{\left[M_{0}, x\right]}$. Since \bar{M}_{0} is abelian, $C_{\bar{M}_{0}}(x)=1$. This implies $C_{M_{0}}(x) \subseteq[M, y]$. Similarly, we can show $C_{M_{o}}(x) \subseteq[M, x y]$. Hence, $C_{M_{o}}(x) \subseteq[M, y] \cap[M, x y]$. Since $M_{0}=[M, y][M, x y]$ and $[M, y],[M, x y]$ are abelian, $C_{M_{0}}(x) \subseteq Z\left(M_{0}\right)$. Therefore, $M_{0}=C_{M_{o}}(x)\left[M_{0}, x\right]$ is abelian.

Lemma 1.7. Let M be a p^{\prime}-group, P a p-group and $H=M \gg P$ a semidirect product of M by P. If H is p-radical, then $J(k H)=\Sigma_{Q \subseteq P} J(k Q)[\widehat{M, Q}] k H$, where $[\widehat{M, Q}]$ is the sum of all elements of $[M, Q]$ in $k H$.

Moreover, if P is abelian, then $J(k H)^{n}=\Sigma_{Q \subseteq P} J(k Q)^{n}[\widehat{M, Q}] k H$ for all $n \in N$.
Proof. If P is abelian, then for a subgroup Q of P. $[\widehat{M, Q}] \in Z(k H)$ and $[M, Q] Q \triangleleft H$. Thus for $Q, R \subseteq P, J(k Q)^{\lambda}[\widehat{M, Q}] J(k R)^{\mu}[\widehat{M, R}] \subseteq J(k Q R)^{\lambda+\mu}[\widehat{M, Q R}]$
for all $\lambda, \mu \in \boldsymbol{N}$. So it suffices to show the first statement.
(\supseteq) Let Q be any subgroup of P. Since $(1-x)[\widehat{M, Q}]=[\widehat{M, Q}](1-x)$ for all $x \in Q$ and Q is a p-group, $J(k Q)[M, Q] \subseteq J(k[M, Q] Q)$. Now $J(k[M, Q] Q) k H$ $\subseteq J(k H)$ as $[M, Q] Q \triangleleft \triangleleft H$. Thus $J(k H) \supseteq \Sigma_{Q \subseteq P} J(k Q)[M, Q] k H$.
(\subseteq) Let $\Sigma_{i=1}^{l} e_{i}=1$ be a decomposition of 1 into the orthogonal sum of primitive idempotents of $k M, T_{i}$ denote the inertial group of $e_{i} k M$ in H and Q_{i} be a Sylow p-subgroup of T_{i} in P. So Q_{i} is a defect group of the unique block of $k T_{i}$ which covers $e_{i} k M$. Clifford's theorem says that $J(k H)=\Sigma_{i=1}^{l}\left(e_{i} k H\right) J(k H)$ $=\Sigma_{i=1}^{l} e_{i} J\left(k T_{i}\right) k H$ as H is p-nilpotent. Now $T_{i}=M \rtimes Q_{i}$ is p-radical and p-nilpotent as H is p-radical and p-nilpotent. Thus, [$\left.M, Q_{i}\right] \subseteq \operatorname{Ker}\left(e_{i} k M\right)$ by [13, Lemma 7] and $\bar{T}_{i}:=T_{i} /\left[M, Q_{i}\right] \simeq Q_{i} \times C_{M}\left(Q_{i}\right)$ by [13, Theorem 2]. Then $J\left(k \bar{T}_{i}\right)=J\left(k \bar{Q}_{i}\right) k \bar{T}_{i}$. Therefore, $\quad e_{i} J\left(k T_{i}\right) k H=e_{i}\left[M, Q_{i}\right] J\left(k \bar{T}_{i}\right) k H=e_{i}\left[M, Q_{i}\right] J\left(k Q_{i}\right) k H \subseteq\left[M, Q_{i}\right] J\left(k Q_{i}\right) k H$, so $J(k H) \subseteq \Sigma_{Q \subseteq P} J(k Q)[M, Q] k H$.

Let \mathscr{F}_{o} be the family of all finite group G such that $l\left(P_{G}(k)\right)=a(p-1)+1$, where p^{a} is the order of a Sylow p-subgroup of G.

Lemma 1.8. Let G be a p-solvable group and $N \triangleleft G$. If $G \in \mathscr{F}_{0}$, then G / N, $N \in \mathscr{F}_{0}$.

Proof. Let p^{a}, p^{b} be the orders of Sylow p-subgroups of G and N, respectively. By [15, Corollary 3.6] and [6, Lemma 1.1], $b(p-1)+1$ $+(a-b)(p-1)+1-1 \leq l\left(P_{N}(k)\right)+l\left(P_{G / N}(k)\right)-1 \leq l\left(P_{G}(k)\right)=a(p-1)+1$. Hence $l\left(P_{G / N}(k)\right)=(a-b)(p-1)+1$ and $l\left(P_{N}(k)\right)=b(p-1)+1$, and so $G / N, N \in \mathscr{F}_{0}$.

Lemma 1.9. Let G be a p-group with $G \in \mathscr{F}_{0}$. Then G is elementary abelian.

Proof. Since $P_{G}(k)=k G, G$ is elementary abelian by [9, Theorem 1].

3. Proof of theorem

In this section we shall prove the theorem stated in the introduction. By [15, Corollary 3.6], the condition (1) implies the condition (2) in the theorem. Now we shall prove the condition (2) implies (3).

In the proof of [3, Theorem 3], if we reset \mathscr{F}_{0} instead of \mathscr{F} and reset Lemma 1.8 (respectively, Lemma 1.8, 1.9) instead of Lemma 2.6, 2.7(respectively, Theorem 3.1 of [14]), then we have the following result.

If G is a p-radical group with $G / O_{p^{\prime}}(G) \in \mathscr{F}_{0}$, then $G=O_{p, p^{\prime}, p, p^{\prime}}(G)$. Therefore, if $l\left(P_{G}(k)\right)=a(p-1)+1$ and G is a p-radical group with $O^{p^{\prime}}(G)=G$, then $G=O_{p, p^{\prime}, p}(G)$. Let M be a Hall p^{\prime}-subgroup of G and let $H=N_{G}(M)$. By the Frattini argument, $G=O_{p}(G) H$. By [13, Theorem 2], $\left[O_{p}(G), M\right] \cap C_{O_{p}(G)}(M)=1$. Since $C_{O_{p}(G)}(M)=O_{p}(G) \cap H, G=\left[O_{p}(G), M\right] \rtimes H$. Let P be a Sylow p-subgroup
of H and let $N=\left[O_{p}(G), M\right]$. By Lemma 1.8, 1.9, G has the following form.
(*) $\quad G=N \rtimes>H$ and $H=M \rtimes P$, where N and P are elementary abelian p-groups, M is a p^{\prime}-group and H is p-radical with $[M, P]=M$.

Theorem A. In the above notations if $l\left(P_{G}(k)\right)=a(p-1)+1$, then $P \subseteq{ }_{M} C_{H}(x)$ for all $x \in N$.

Proof. $g r k N$ is semisimple as a $k H$-module by [6, Lemma 1.4]. For $1 \neq s \in P$, [$M, s]\langle s\rangle$ is a normal subgroup of H and Frobenius by [13, Theorerm 2]. As $[M, s]\langle s\rangle \triangleleft H, \operatorname{grkN}$ is also semisimple as a $k([M, s]\langle s\rangle)$-module. Thus $s \in_{M} C_{H}(x)$ for all $x \in N$ by Proposition 1.4. Hence $s \in C_{H}(x) M$ and $P \subseteq C_{H}(x) M$, so $P \subseteq{ }_{M} C_{H}(x)$.

Next we consider the condition (3) and (4) in the theorem.
Theorem B. The following conditions are equivalent.
(1) G satisfies (*) and $P \subseteq{ }_{M} C_{H}(x)$ for all $x \in N$.
(2) The following conditions hold.
(i) G is p-radical with $O^{p^{\prime}}(G)=G$.
(ii) $G / O_{p^{\prime}}(G)$ is a direct product of an elementary abelian p-group and G_{0}, which is isomorphic to a normal subgroup of \tilde{G} containing $O^{p}(\tilde{G})$, where $\tilde{G} \simeq A_{p, n_{1}, p} \times \cdots \times A_{p, n_{m}, p}$ for some n_{1}, \cdots, n_{m} and $O_{p^{\prime}, p}\left(G_{1}\right)=O_{p^{\prime}}(G) \times O_{p}\left(G_{1}\right)$, where G_{1} is the inverse image of G_{0} in G.

Proof. First we prove that the condition (1) implies (2). Assume that the condition (1) is sastisfied. Then G is p-radical and $O^{p^{\prime}}(G)=G . \quad C_{P}(M)$ is a direct factor of G and therefore we may assume $C_{P}(M)=1$. Then $O_{p^{\prime}}(G)=C_{M}(N)$, $O_{p}(G)=N$. We shall prove that the condition (2)(ii) is satisfied for G in the following steps.

Step 1. We may assume $C_{M}(N)=1$.
Proof. If $O_{p^{\prime}}(G)=C_{M}(N) \neq 1$, then by using induction on $|G|$ for $\bar{G}:=G / O_{p^{\prime}}(G)$, $\bar{G}=G_{0} \times N_{0}$, where G_{0} is isomorphic to a normal subgroup of $\Pi_{i} A_{p, n_{i}, p}$ containing $O^{p}\left(\Pi_{i} A_{p, n_{i}, p}\right)$ for some n_{i} 's and N_{0} is an elementary abelian p-group. Let G_{1} be the inverse image of G_{0} in G. So, $O_{p^{\prime}, p}\left(G_{1}\right)=O_{p^{\prime}}(G) P_{1}$ for some p-group P_{1}. In the definition of $A_{p, n, p},[V, v]=V$. Hence $\left[\bar{P}_{1}, \bar{M}\right]=\bar{P}_{1}$, so $P_{1} \subseteq O_{p^{\prime}}(G)\left[P_{1}, M\right]$. On the other hand, $\left[P_{1}, M\right] \subseteq M N$, so $P_{1} \subseteq M N$ and $P_{1} \subseteq N$. Therefore, $O_{p^{\prime}, p}\left(G_{1}\right)$ $=O_{p^{\prime}}(G) \times O_{p}\left(G_{1}\right)$, so we may assume $C_{M}(N)=1$.

Step 2. For any $Q \subseteq P, N \rtimes([M, Q] \rtimes Q)$ is normal in G and satisfies the condition (1).

Proof. As H is p-radical and p-nilpotent, $[M, Q] \bowtie<Q$ is so and [$[M, Q], Q]$

Step 3. M is abelian.

Proof. Let $1 \neq \mathrm{s} \in P$ and consider the subgroup $N \bowtie([M, s] \bowtie\langle s\rangle)$. This satisfies the condition (1) by Step 2 and $[M, s] \bowtie\langle s\rangle$ is Frobenius by [13, Theorem 2]. Thus $[M, s]$ is abelian by Proposition 1.5 and the result follows from Lemma 1.6.

Step 4. The following conditions hold.
(1) An M-invariant subgroup of N is H-invariant.
(2) Suppose $N=N_{1} \times N_{2}$, where N_{i} are M-invariant. Then $M=C_{M}\left(N_{1}\right) \times C_{M}\left(N_{2}\right)$.

Proof. Let $N_{0} \subseteq N$ be M-invariant. To show that N_{0} is H-invariant we may assume that N_{0} is M-irreducible as M is a p^{\prime}-group. Then $N_{0}=\left\langle x^{M}\right\rangle$ for some $x \in N_{0}$. By our assumption $P \subseteq{ }_{M} C_{H}(x)$ and therefore $N_{0}=\left\langle x^{H}\right\rangle$ is H-invariant. Thus (1) follows. Suppose $N=N_{1} \times N_{2}$ for M-invariant subgroups N_{i}. By Lemma $1.3 C_{M}\left(N_{i}\right)=C_{M}\left(x_{i}\right)$ for some $x_{i} \in N_{i}$. Because N_{i} are M-invariant we may take x_{i} with $P \subseteq C_{H}\left(x_{i}\right)$. Let $a \in M$ and apply our assumption on $x_{1}^{a} x_{2}$. There exists an element $b \in M$ such that $P^{b} \subseteq C_{H}\left(x_{1}^{a} x_{2}\right)=C_{H}\left(x_{1}\right)^{a} \cap C_{H}\left(x_{2}\right)$, here we used the fact that N_{i} are H-invariant. Thus $P^{b}=P^{c}$ for some element $c \in C_{M}\left(x_{2}\right)=C_{M}\left(N_{2}\right)$. Therefore $b c^{-1} \in N_{M}(P)=C_{M}(P)$. By [13, Theorem 2] $C_{M}(P)$ $=1$ and it follows that $b=c \in C_{M}\left(N_{2}\right)$. We also have that $P^{b}=P^{a c^{\prime}}$ for some $c^{\prime} \in C_{M}\left(x_{1}\right)^{a}=C_{M}\left(N_{1}\right)^{a}=C_{M}\left(N_{1}\right)$ and $b a^{-1} \in C_{M}\left(N_{1}\right)$ by the similar argument in the above. Thus $a=\left(a b^{-1}\right) b \in C_{M}\left(N_{1}\right) C_{M}\left(N_{2}\right)$ and the result follows.

Step 5. We may assume $C_{N}(M)=1$.
Proof. For all $x \in C_{N}(M), P \subseteq C_{H}(x)$. Thus $C_{N}(M) \subseteq Z(G)$ and $G=C_{N}(M)$ $\times([N, M] \ltimes H)$.

Let $N=N_{1} \times \cdots \times N_{m}$, where N_{i} 's are M-irreducible and put $M_{i}:=C_{M}\left(\Pi_{j \neq i} N_{j}\right)$.
Step 6. $M=M_{1} \times \cdots \times M_{m}$ and $N \bowtie M=\left(N_{1} \bowtie M_{1}\right) \times \cdots \times\left(N_{m} \bowtie M_{m}\right)$ and M_{i} 's are P-invariant.

Proof. Since $M=C_{M}\left(N_{2}\right) \times M_{2}$ by Step 4, $C_{M}\left(N_{1}\right)=M_{2} \times C_{M}\left(N_{1} \times N_{2}\right)$. Hence $M=M_{1} \times M_{2} \times C_{M}\left(N_{1} \times N_{2}\right)$. Similarly we have $C_{M}\left(N_{1} \times N_{2}\right)=M_{3} \times C_{N}\left(N_{1} \times N_{2}\right.$ $\left.\times N_{3}\right)$, and hence $M=M_{1} \times M_{2} \times M_{3} \times C_{M}\left(N_{1} \times N_{2} \times N_{3}\right)$. By the similar argument, $M=M_{1} \times \cdots \times M_{m}$ since $C_{M}(N)=1$.

Step 7. $N_{i} \bowtie M_{i} P / C_{P}\left(N_{i}\right) \simeq A_{p, n_{i}, p}$ for some n_{i}.

Proof. $\quad N_{i}$ is M_{i}-irreducible and therefore M_{i} is cyclic as M_{i} is abelian. Also [$\left.M_{i}, P\right]=M_{i}$ and $P \subseteq{ }_{M_{i}} C_{M_{i} P}(x)$ for all $x \in N_{i}$. Thus [11, Proposition 19.8] implies $N_{i} \bowtie M_{i} P / C_{P}\left(N_{i}\right) \simeq A_{p, n_{i}, p}$ for some n_{i}. (see [2, Theorem])

Step 8. (Conclusion.)

Proof. $\quad N_{i} \triangle H / C_{H}\left(N_{i}\right) \simeq N_{i} \bowtie M_{i} P / C_{P}\left(N_{i}\right), N \triangle P$ is isomorphic to a subgroup of $\Pi_{i} N_{i} \bowtie<H / C_{H}\left(N_{i}\right)$ containing $\Pi_{i} N_{i} \bowtie M_{i} C_{H}\left(N_{i}\right) / C_{H}\left(N_{i}\right)=\Pi_{i} N_{i} \bowtie<M_{i}$ by Step 7. Now the result follows from Step 7.

The group $A_{p, n, p}$ satisfies (*) and the condition (1) in Theorem B. Thus it follows easily that the condition (2) implies (1) and Theorem B is proved.

By Theorem B the conditions (3) and (4) in our main theorem are equivalent. Theorem C in the following says that the condition (3)(and (4)) implies (1). Let \mathscr{F} be the family of all finite group G such that $t(G)=a(p-1)+1$, where p^{a} is the order of a Sylow p-subgorup of G.

Theorem C. If G satisfies the condition (3) in the theorem, then $G \in \mathscr{F}$.

Proof. Put $|N|:=p^{b},|p|:=p^{c}$ and $a=b+c$. It suffices to show $t(G) \leq a(p-1)+1$ by [4] and [14]. Notice that $N, H \in \mathscr{F}$.

Step 1. We may assume $C_{M}(N)=1$.

Proof. Let M_{0} denote $C_{M}(N), B$ be a block of $k G$ and b a block of $k M_{0}$ covered by B. Then b has the unique irreducible character, say φ and let Q be a Sylow p-subgroup of $I_{\boldsymbol{H}}(\varphi)$. Notice that Q is a defect group of the block of $I_{\boldsymbol{H}}(\varphi)$, which covers b. It suffices to prove that $t(B) \leq a(p-1)+1$ as $t(G)=\max _{B \in B l_{p}(G)} t(B)$. Now, $[M, Q] \cap M_{0}=\left[M_{0}, Q\right]\left([M, Q] \cap C_{M_{0}}(Q)\right)=\left[M_{0}, Q\right] \subseteq \operatorname{Ker} \varphi$ by [13, Lemma 7 and Theorem 2]. In particular, $\left[M_{0}, Q\right] \triangleleft H$, and so $\left[M_{0}, Q\right] \triangleleft G$. Therefore, we may assume $\left[M_{0}, Q\right]=1$ since φ is regarded as an irreducible character of $k\left(M_{0} /\left[M_{0}, Q\right]\right)$ and B can be considered as a block of $k\left(G /\left[M_{0}, Q\right]\right)$. In this case $\left[[M, Q], M_{0}\right]=1$, so $I_{H}(\varphi) \triangleright\left([M, Q] M_{0} \triangleright<Q\right)$ as $I_{H}(\varphi) \supseteq[M, Q] Q$. Therefore, N $\bowtie\left([M, Q] M_{0} \bowtie<Q\right)$ is normal in $I_{G}(\varphi)=N \bowtie I_{H}(\varphi)$ and of p^{\prime}-index. Now let \tilde{b} denote the Fong correspondent of B w.r.t. $\left(G, I_{G}(\varphi)\right)$, i.e., \tilde{b} is the unique block of $k\left(I_{G}(\varphi)\right)$ such that $\tilde{b}^{G}=B$. Then it suffices to show $I_{G}(\varphi) \in \mathscr{F}$ as $t(B)=t(\tilde{b})$ (see [5]). Now $\left.I_{G}(\varphi) \in \mathscr{F} \Leftrightarrow N \bowtie<[M, Q] M_{0} Q \in \mathscr{F} \Leftrightarrow N \bowtie[M, Q] Q\right) \in \mathscr{F}$, since $N \bowtie<[M, Q] M_{0} Q$ $=(N \triangleright<[M, Q] Q) \times M_{0} . \quad N \bowtie<[M, Q] Q$ satisfies the assumption in Theorem C (see Step 2 in the proof of Theorem B) and $C_{[M, Q]}(N)=1$. So we may assume $M_{0}=C_{M}(N)=1$.

Step 2. We may assume $C_{N}(M)=1$.
Proof. Since $N=[N, M] \times C_{N}(M)$ the assumption in Theorem C implies that $G=([N, M] \gg H) \times C_{N}(M)$ (see Step 5 in the proof of Theorem B). Then $t(G)=t([N, M] \rtimes H)+t\left(C_{N}(M)\right)-1$. Therefore, we may assume $C_{N}(M)=1$.

Step 3. $J(k H)^{\lambda} J(k N)^{\mu} J(k H)^{\nu} \subseteq \Sigma_{\mu_{1}+\mu_{2}=\mu} J(k N)^{\mu_{1}} J(k H)^{\lambda+\mu} J(k N)^{\mu_{2}}$.
Proof. We may use the same notations as in Step 6 in the proof of Theorem B. So, by Theorem B for all $Q \subseteq P$ and all $i,\left[M_{i}, Q\right]=\left\{\begin{array}{cl}M_{i} & \text { if } Q \nsubseteq C_{P}\left(N_{i}\right) \\ 1 & \text { if } Q \subseteq C_{P}\left(N_{i}\right)\end{array}\right.$. Therefore, $[M, Q]=\prod_{i=1}^{m}\left[M_{i}, Q\right]=\prod_{Q \nsubseteq C_{P}\left(N_{i}\right)} M_{i}$.

For subgroups Q, R of P, set $\pi_{Q}=\left\{i \mid Q \nsubseteq C_{P}\left(N_{i}\right)\right\}$ and $\pi_{R}=\left\{i \mid R \nsubseteq C_{P}\left(N_{i}\right)\right\}$. Let $N=N_{Q} \times N_{0} \times N_{R}$ be a decomposition of N, where $N_{Q}=\prod_{i \notin \pi_{Q}} N_{i}, N_{0}=\prod_{i \in \pi_{Q} \cap \pi_{R}} N_{i}$ and $N_{R}=\prod_{i \in \pi_{Q}-\left(\pi_{R} \cap \pi_{Q}\right)} N_{i}$.

Then $[M, Q] Q$ (resp. $[M, R] R$) acts on N_{Q} (resp. N_{R}) trivially. Now put $M_{0}:=[M, Q] \cap[M, R]$, then $P \subseteq{ }_{M_{0}} C_{H}(x)$ for all $x \in N_{0}$. For all $\alpha \in J(k Q)^{\lambda}$ and $\beta \in J(k R)^{v}$,

$$
\begin{aligned}
& \alpha[\widehat{M, Q}] J(k N)^{\mu} \beta[\widehat{M, R}] \\
& =\alpha[\widehat{M, Q}]\left(\Sigma_{\mu_{1}+\mu_{2}+\mu_{3}=\mu} J\left(k N_{Q}\right)^{\mu_{1}} J\left(k N_{0}\right)^{\mu_{2}} J\left(k N_{R}\right)^{\mu_{3}}\right) \beta[\widehat{M, R}] \\
& =\Sigma_{\mu_{1}+\mu_{2}+\mu_{3}=\mu} \alpha[M, Q] J\left(k N_{Q}\right)^{\mu_{1}} J\left(k N_{0}\right)^{\mu_{2}} J\left(k N_{R}\right)^{\mu_{3}} \beta[\widehat{M, R}] \\
& =\Sigma_{\mu_{1}+\mu_{2}+\mu_{3}=\mu} J\left(k N_{Q}\right)^{\mu_{1}} \alpha\left[\widehat{M, Q]} J\left(k N_{0}\right)^{\mu_{2}} \beta[\widehat{M, R}] J\left(k N_{R}\right)^{\mu_{3}} .\right.
\end{aligned}
$$

Let $\gamma \in J\left(k N_{0}\right)^{\mu_{2}}$. Since $M_{0}=\prod_{i \in \pi_{Q} \cap \pi_{R}} M_{i}, M=M_{0} \times L$, where $L=\prod_{i \notin \pi_{\Omega} \cap \pi_{R}} M_{i}$.
 where $c_{x} \in k$. Then $\Sigma \gamma^{a}=\Sigma \Sigma c_{x} x^{a}=\Sigma c_{x} \Sigma x^{a}$. Since $P \subseteq C_{H}(x)$ for all $x \in N_{0}$, $\begin{array}{lllll}a \in M_{0} & a \in M_{0} & x \in N_{0} & x \in N_{0} & a \in M_{0}\end{array} M_{0}$ $\underset{a \in M_{0}}{\left(\sum_{a} x^{a}\right)^{y}}=\underset{a \in M_{0}}{\sum} x^{a}$, and so $\underset{a \in M_{0}}{\left(\sum \gamma^{a}\right)^{y}}=\underset{a \in M_{0}}{\sum \gamma^{a}}$ for all $y \in P$. Thus $\underset{a \in M_{0}}{\sum \gamma^{a} \in Z(k G) \text {. Therefore }}$ $\hat{M}_{0} \gamma \hat{M}_{0}=M_{0} \Sigma \gamma_{a \in M_{0}} \in M_{0}\left(J\left(k N_{0}\right)^{\mu_{2}} \cap Z(k G)\right)$ for all $\gamma \in J\left(k N_{0}\right)^{\mu_{2}}$.
Then,

$$
\begin{aligned}
& \alpha[\widehat{M, Q}] J\left(k N_{0}\right)^{\mu_{2}} \beta[\widehat{M, R}] \\
& =\alpha[\widehat{M, Q}] \hat{M}_{0} J\left(k N_{0}\right)^{\mu_{2}} \hat{M}_{0} \beta[\widehat{M, R}]
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq \alpha[\widehat{M, Q}] \beta[\widehat{M, R}] \hat{M}_{0} J\left(k N_{0}\right)^{\mu_{2}} \\
& =\alpha[\widehat{M}, Q] \beta[M, R] J\left(k N_{0}\right)^{\mu_{2}}=\alpha \beta[M, Q][\widehat{M, R}] J\left(k N_{0}\right)^{\mu_{2}} \\
& \subseteq J(k(Q R))^{\lambda+\mu}[\widehat{M, Q R}] J\left(k N_{0}\right)^{\mu_{2}} \\
& \subseteq J(k H)^{\lambda+\mu} J\left(k N_{0}\right)^{\mu_{2}} \text { by Lemma 1.7. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \alpha\left[\widehat{M, Q] J(k N)^{\mu} \beta[\widehat{M}, R]}\right. \\
& =\Sigma_{\mu_{1}+\mu_{2}+\mu_{3}=\mu} J\left(k N_{Q}\right)^{\mu_{1}} \alpha[\widehat{M, Q}] J\left(k N_{0}\right)^{\mu_{2}} \beta[\widehat{M, R}] J\left(k N_{R}\right)^{\mu_{3}} \\
& \subseteq \Sigma_{\mu_{1}+\mu_{2}+\mu_{3}=\mu} J\left(k N_{Q}\right)^{\mu_{1}} J(k H)^{\lambda+\mu} J\left(k N_{0}\right)^{\mu_{2}} J\left(k N_{R}\right)^{\mu_{3}} \\
& \subseteq \Sigma_{\mu_{1}+\left(\mu_{2}+\mu_{3}\right)=\mu} J(k N)^{\mu_{1}} J(k H)^{\lambda+\mu} J(k N)^{\mu_{2}+\mu_{3}} .
\end{aligned}
$$

Therefore, by Lemma 1.7,

$$
J(k H)^{\lambda} J(k N)^{\mu} J(k H)^{\nu} \subseteq \Sigma_{\mu_{1}+\mu_{2}=\mu} J(k N)^{\mu_{1}} J(k H)^{\lambda+\mu} J(k N)^{\mu_{2}} .
$$

Step 4. (Conclusion.) $t(G) \leq a(p-1)+1$.
Proof. Now $J(k G)=J(k H)+J(k N) k H$. So, we can easily show that $J(k G)^{n}$ $=\Sigma_{\lambda+\mu+v=n} J(k N)^{\lambda} J(k H)^{\mu} J(k N)^{v}$, using Step 3 and induction on n. Let $\lambda+\mu+v$ $=a(p-1)+1$. If $\mu \geq c(p-1)+1$, then $J(k N)^{\lambda} J(k H)^{\mu} J(k N)^{v}=0$ as $H \in \mathscr{F}$. If μ $\leq c(p-1)$, then $\lambda+\mu \geq a(p-1)+1-c(p-1)=b(p-1)+1 . \quad$ So, $J(k N)^{\lambda} J(k H)^{\mu} J(k N)^{v}$ $\subseteq J(k N)^{\lambda+\mu} k G=0$ as $N \triangleleft G$ and $N \in \mathscr{F}$.

Acknowledgement

The author thanks Professor Tetsuro Okuyama and Yukio Tsushima for their many helpful suggestions, especially Professor Tetsuro Okuyama showed him the proof of Proposition 1.4, 1.5. The author also thanks Yoshimasa Hieda who was very helpful while he was preparing the manuscript for this paper.

References

[1] W. Feit: The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
[2] H. Fukushima: On groups G of p-length 2 whose nilpotency indices of $J(k G)$ are $a(p-1)+1$, Hokkaido Math. J. 20 No3 (1991), 523-530.
[3] H. Fukushima: On p-radical group G and the nilpotency indices of $J(k G)$, Osaka J. Math. 31 (1994), 773-785.
[4] S. Koshitani: On the nilpotency indices of the radicals of group algebras of p-solvable groups, Proc. Japan Acad. 53, Ser. A, No1, 13-16.
[5] B. Külshammer: On p-blocks of p-solvable groups, Comm. Algebra 9(17) (1981), 1763-1785.
[6] M. Lorenz: On Loewy lengths of projective modules for p-solvable groups, Comm. Algebra 13
(1985), 1193-1212.
[7] K. Motose: On the nilpotency index of the radical of a group algebra III, J. London Math. Soc. 25(2) (1982), 39-42.
[8] K. Motose and Y. Ninomiya: On the subgroups H of a group G such that $J(K H) K G \supset J(K G)$, Math J. Okayama Univ. 17(1975), 171-176.
[9] K. Motose and Y. Ninomiya: On the nilpotency index of the radical of a group algebra, Hokkaido Math. J. 4(1975), 261-264.
[10] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press., 1989.
[11] D.S. Passman: Permutation Groups, Benjamin, New York, 1968.
[12] Y. Tsushima: Some notes on the radical of a finite group ring, Osaka J. Math. 15(1978), 647-653.
[13] Y. Tsushima: On p-radical groups, J. Algebra. 103(1986), 80-86.
[14] D.A.R. Wallace: Lower bounds for the radical of the group algebra of a finite p-souble group, Proc. Edinburgh Math. Soc. 16 (1968/69), 127-134.
[15] W. Willems: On the projectives of a group algebra, Math. Z. 171 (1980), 163-174.
[16] T.R. Wolf: Defect groups and character heights in blocks of solvable groups, J. Algebra. 72 (1981), 183-209.

Department of Mathematics Faculty of Education Gunma University
Maebashi 371, Japan

