NORMAL SUBGROUPS AND MULTIPLICITIES OF INDECOMPOSABLE MODULES

ATUMI WATANABE

(Received September 4, 1995)

Introduction

Let G be a finite group and (K,o,F) be a p-modular system, where p is a prime number. We assume that K contains the |G|-th roots of unity and F is algebraically closed and we put R=o or F. For an R-free finitely generated indecomposable RG-module M and a normal subgroup N of G, let V be an indecomposable component of M_N , where M_N is the restriction of M to N. In this paper we give some results on the multiplicity of V as a component of M_N and from them we obtain properties of heights of indecomposable modules and irreducible characters. This study is inspired by Murai [8, 9].

Throughout this paper N is a fixed normal subgroup of G and v is the p-adic valuation such that v(p) = 1. All RG-modules are assumed to be R-free of finite rank. For an indecomposable RG-module M, let vx(M) denote a vertex of M. As is well known $v(\operatorname{rank}_R M) \ge v(|G: vx(M|))$. We refer to Feit[1, Chap.3] and Nagao-Tsushima [10, Chap.4] for the vertex-source theory in modular representations of finite groups.

1. p-parts of multiplicities

In this section we study the p-parts of multiplicities of indecomposable RN-modules in an indecomposable decomposition of M_N . The following is a key result of this paper.

Theorem 1. Let V be a G-invariant indecomposable RN-module. Let M be an indecomposable RG-module with vertex Q and n be the multiplicity of V in an indecomposable decomposition of M_N . Then we have $v(n) \ge v(|G:QN|)$.

Proof. Let L be a subgroup of G such that L/N is a Sylow p-subgroup of G/N and let

$$M_L = M_1 \oplus M_2 \oplus \cdots \oplus M_s$$
,

where each M_i is an indecomposable RL-module. By Mackey decomposition

 M_i is $(Q^{x_i} \cap L)$ -projective for some $x_i \in G$. We have

$$\nu(|L:(Q^{x_i} \cap L)N|) = \nu(|G:(Q^{x_i} \cap L)N|) \ge \nu(|G:Q^{x_i}N|) = \nu(|G:QN|).$$

Let n_i be the multiplicity of V as an indecomposable component of M_{i_N} and Q_i be a vertex of M_i . We have $n = \sum_{i=1}^{s} n_i$. If Theorem holds for each M_i , then we have

$$v(n_i) \ge v(|L:Q_iN|) \ge v(|L:(Q^{x_i} \cap L)N|) \ge v(|G:QN|)$$

and hence $v(n) \ge v(|G:QN|)$. So we may assume that G = L. Then by a theorem of Green, there exists an indecomposable R(QN)-module M_0 such that M is isomorphic to M_0^G . Then we have $M_N = \sum_x M_0 \otimes x$, where x ranges over a set of representatives for the QN-cosets (QN)x of G. Since $M_0 \otimes x$ is an RN-module which is G-conjugate to M_{0N} , n is divisible by |G:QN|. This completes the proof.

Proposition 1. Let M be an indecomposable RG-module such that $v(\operatorname{rank}_R M) = v(|G: \operatorname{vx}(M)|)$, then there exists an indecomposable component V of M_N which satisfies the following.

- (i) $v(\operatorname{rank}_R V) = v(|N: \operatorname{vx}(V)|),$
- (ii) Let n be the multiplicity of V in an indecomposable decomposition of M_N . There exists a vertex P of M such that $P \cap N$ is a vertex of V, $T(V) \supset P$ and v(n) = v(|T(V):PN|), where T(V) is the inertial group of V in G.

Proof. Let $\{V_1, V_2, \dots, V_t\}$ be a set of representatives (up to isomorphism) for the G-conjugacy classes of indecomposable components of M_N and \tilde{V}_i be the direct sum of all RN-modules which is G-conjugate to V_i . We can set

$$M_N \cong \sum_{i=1}^s \oplus n_i \tilde{V}_i,$$

where n_i is the multiplicity of V_i . Here we fix some i for a while and let T_i be the inertial group of V_i . We put

$$M_{T_i} = M_1 \oplus M_2 \oplus \cdots \oplus M_t \oplus L_1 \oplus L_2 \oplus \cdots \oplus L_u$$

where M_j is an indecomposable RT_i -module such that V_i is a component of M_{j_N} , and L_j is an indecomposable RT_i -module such that V_i is not a component of L_{j_N} . Let Q be a vertex of M. By Mackey decomposition, M_j is $(Q^{y_j} \cap T_i)$ -projective for some $y_j \in G$. By Theorem 1 we have

$$v(n_i) \ge \min_{1 \le j \le t} \{v(|T_i: \operatorname{vx}(M_j)N|)\} \ge \min_{1 \le j \le t} \{v(|T_i: (Q^{\nu_j} \cap T_i)N|)\}.$$

Hence we have

(1)
$$v(n_i \operatorname{rank}_R \widetilde{V}_i) = v(n_i) + v(|G:T_i|) + v(\operatorname{rank}_R V_i)$$

$$\geq \min_{1 \leq j \leq i} \left\{ v(|G:(Q^{v_j} \cap T_i)N|) \right\} + v(\operatorname{rank}_R V_i)$$

$$\geq v(|G:ON|) + v(|N:\operatorname{vx}(V_i)|).$$

On the other hand V_i is $(Q^{x_i} \cap N)$ -projective for some $x_i \in G$. Therefore we have

$$\begin{aligned} v(n_i \operatorname{rank}_R \tilde{V}_i) &\geq v(|G:QN|) + v(|N:(Q^{x_i} \cap N)|) \\ &= v(|G:QN|) + v(|Q^{x_i} N:Q^{x_i}|) = v(|G:Q|). \end{aligned}$$

By the assumption we may assume that $v(n_i \operatorname{rank}_R \tilde{V}_i) = v(|G:Q|)$. Then $v(\operatorname{rank}_R V_i) = v(|N: \operatorname{vx}(V_i)|)$ and $|\operatorname{vx}(V_i)| = |Q \cap N|$. On the other hand for some M_j we have $v(n_i \operatorname{rank}_R \tilde{V}_i) - v(\operatorname{rank}_R V_i) = v(|G: \operatorname{vx}(M_j)N|) = v(|G:(Q^{y_j} \cap T_i)N|) = v(|G:Q^{y_j}N|)$. This implies $Q^{y_j} \subset T_i$, $v(n_i) = v(|T_i:Q^{y_j}N|)$ and $PN = Q^{y_j}N$, where P is a vertex of M_j which is contained in Q^{y_j} . Since V_i is a component of M_{j_N} , we have $|Q \cap N| = |\operatorname{vx}(V_i)| \le |P \cap N|$. Hence we have $Q^{y_j} \cap N = P \cap N$, so $Q^{y_j} = P$ and $P \cap N$ is a vertex of V_i . This completes the proof.

As a corollary of the proposition we have the following for N-projective indecomposable modules (see Karpilovsky [3, Chapter 12]).

Corollary 1. Let M be an N-projective indecomposable RG-module and V be an indecomposable component of M_N with multiplicity n. Then vx(V) is a vertex of M and $v(\operatorname{rank}_R M) \ge v(|G:N|) + v(\operatorname{rank}_R V)$. Moreover if $v(\operatorname{rank}_R M) = v(|G:vx(M)|)$ then v(n) = v(|T(V):N|) and $v(\operatorname{rank}_R V) = v(|N:vx(V)|)$.

Proof. Let \tilde{V} be the direct sum of the G-conjugates of V. By the assumption vx(V) is a vertex of M and $M_N \cong \bigoplus n\tilde{V}$. Hence from the arguments in the proof of the above proposition we have $v(\operatorname{rank}_R M) \geq v(|G:vx(M)N|) + v(\operatorname{rank}_R V) = v(|G:N|) + v(\operatorname{rank}_R V)$. The latter also follows from it.

From the above corollary we have the following, which is shown implicitly in Knörr [6].

Corollary 2. Let M be an indecomposable RG-module with source S. If $v(\operatorname{rank}_R M) = v(|G: v(M)|)$, then $p \nmid \operatorname{rank}_R S$.

Proof. Let Q be a vertex of M. By Green correspondence we may assume that Q is normal and S is an RQ-module. Here we can put N = Q and V = S in

A. Watanabe

Corollary 1. By the assumption and since Q = vx(V) we have $p \nmid rank_R S$.

Y. Tsushima and M. Murai pointed out independently that if G is p-solvable the converse of Corollary 2 is true. This follows from Green correspondence and the fact that if G is p-solvable then the equality v(n) = v(|T(V):N|) holds in Corollary 1.

Moreover if G is p-solvable then for an irreducible FG-module M, $v(\dim_F M) = v(|G: vx(M)|)$ by Hemernik-Michler [2, Theorem 2.1]. Hence Proposition 1 and Corollary 2 combined with Clifford's theorem imply the following.

Corollary 3. Suppose that G is p-solvable. Let M be an irreducible FG-module and V be an irreducible constituent of M_N with multiplicity n. Then V has $P \cap N$ as a vertex and v(n) = v(|T(V):PN|), where P is a vertex of M. Moreover if S is a source of M, then $p \mid \dim_F S$.

Let B be a p-block of G with defect group D. In [8] Murai extends the heights of characters to RG-modules. For an RG-module U in B the height $\operatorname{ht}(U)$ is defined by $\operatorname{ht}(U) = v(\operatorname{rank}_R U) - v(|G:D|)$. In particular when U is indecomposable, U is of height 0 if and only if $v(\operatorname{rank}_R U) = v(|G:\operatorname{vx}(U)|)$ and $\operatorname{vx}(U)$ is G-conjugate to D. Let b be a p-block of N covered by B. Since by Knörr [5, Prop.4.2], a defect group of b is G-conjugate to $D \cap N$, we see by Proposition 1 that if an indecomposable RG-module U lying in B is of height 0 then an indecomposable component V of U_N lying in b is of height 0 (see [8, Theorem 4.11]). We can also get this fact from the following, which Murai proved by using the arguments of the proof of Proposition 1.

Proposition 2. Let B and b be as in the above, and M be an indecomposable RG-module lying in B. Let

$$M_N \cong \sum_{i=1}^t \oplus n_i V_i$$

be a decomposition of M_N to the sum of indecomposable RN-submodules. Then we have $ht(M) \ge \min\{ht(V_i) | 1 \le i \le t\}$

Proof. We may assume that $\{V_1, V_2, \dots, V_s\}$ $(s \le t)$ is a set of representatives for the G-conjugacy classes of indecomposable components of M_N and that V_i $(1 \le i \le s)$ belongs to b. Let D be a defect group of B such that $D \cap N$ is a defect group of b. Using the notations in the proof of Proposition 1, from (1) we have

$$v(n_i \operatorname{rank}_R \widetilde{V}_i) \ge v(|G:QN|) + v(\operatorname{rank}_R V_i)$$

$$\ge v(|G:DN|) + v(|N:D \cap N|) + \operatorname{ht}(V_i)$$

$$= v(|G:D|) + ht(V_i)$$

where $1 \le i \le s$. This implies the inequality in the proposition.

2. Heights of irreducible characters

Let χ be an irreducible character in B and ζ be an irreducible constituent of χ_N in b, where B and b are as in §1. Let X be an indecomposable oG-lattice affording χ and let Z be an indecomposable component of X_N which lies in b and $\operatorname{ht}(X) \geq \operatorname{ht}(Z)$ (Z exists by Proposition 2). Then $\operatorname{rank}_o Z$ is a multiple of $\zeta(1)$, and hence $\operatorname{ht}(Z) \geq \operatorname{ht}(\zeta)$. Since $\operatorname{ht}(\chi) = \operatorname{ht}(X)$, we have $\operatorname{ht}(\chi) \geq \operatorname{ht}(\zeta)$ as in [9, Lemma 2.2]. On the other hand, by Proposition 2, for an irreducible FG-module M in B and an irreducible constituent V of M_N in b, we have $\operatorname{ht}(M) \geq \operatorname{ht}(V)$ ([9, Lemma 3.2]). We shall show that $\operatorname{ht}(\chi) = \operatorname{ht}(\zeta)$ and $\operatorname{ht}(M) = \operatorname{ht}(V)$ when a defect group D of B is contained in N.

The following is shown from the results of Külshammer-Robinson [7], and the converse is proved in Robinson [11, Lemma 4.4].

Lemma 1 (Külshammer-Robinson). Let χ be an irreducible character of G and ζ be an irreducible constituent of χ_N with multiplicity n. If χ is afforded by an N-projective σG -lattice M then we have $v(n) = v(|T(\zeta):N|)$.

Proof. Suppose that χ is afforded by an N-projective indecomposable oG-lattice M and let V be an indecomposable component of M_N . Then from the argument in the proof Corollary 1 we have $\operatorname{rank}_o M = m \operatorname{rank}_o V$, where m is a natural number with $v(m) \geq v(|G:N|)$. Since $v(\chi(1)/\zeta(1)) \geq v(m) \geq v(|G:N|)$ because m divides $\chi(1)/\zeta(1)$, we see $v(n) \geq v(|T(\zeta):N|)$. On the other hand, as is well known n divides $|T(\zeta):N|$. Therefore we have $v(n) = v(|T(\zeta):N|)$.

Lemma 2. Let M be an N-projective irreducible FG-module and V be an irreducible component of M_N with multiplicity n. Then we have v(n) = v(|T(V):N|). Moreover n is equal to the multiplicity m of M as an indecomposable component of V^G .

Proof. We may assume that V is G-invariant. We put $E = \operatorname{End}_{FG}(V^G)$ and let e be a primitive idempotent of E corresponding to M, i.e., $M = eV^G = (eE)V$. Then as is well known E is isomorphic to a twisted group algebra $F(\bar{G}, \varphi)$ over F with factor set φ , where $\bar{G} = G/N$. Moreover $\dim_F M = (\dim_F (eE))(\dim_F V)$ and hence $n = \dim_F (eE)$. By Humphreys [3], there exists a central p'-extension \hat{G} of \bar{G} such that $F(\bar{G}, \varphi)$ is isomorphic to a direct sum of some block ideals of $F\hat{G}$. Now as M is irreducible, eE is irreducible. Hence n is equal to the dimension of an irreducible and projective $F\hat{G}$ -module, so we have $v(n) = v(|\hat{G}|) = v(|G|N)$.

By the way m is equal to the dimension of the irreducible E-module corresponding to eE. But eE is irreducible, hence m is equal to $\dim_F(eE)$. This completes the proof.

Proposition 3. Let B be a p-block of G with defect group D and b be a p-block of N covered by B. Assume that D is contained in N. Then for an irreducible character χ in B and for an irreducible constituent ζ of χ_N in b, we have $\operatorname{ht}(\chi) = \operatorname{ht}(\zeta)$. We also have $\operatorname{ht}(M) = \operatorname{ht}(V)$ for an irreducible FG-module M in B and an irreducible constituent V of M_N in b.

Proof. We may assume D is a defect group of b. By the assumption and Lemma 1 we have $v(\chi(1)) = v(|G:N|) + v(\zeta(1)) = v(|G:D|) + ht(\zeta)$. This implies $ht(\chi) = ht(\xi)$. By the former of Lemma 2 we also have $v(\dim_F M) = v(|G:N|) + v(\dim_F V) = v(|G:D|) + ht(V)$. Hence ht(M) = ht(V). This completes the proof.

For a p-block B of G let Ker(B) be the kernel of B and let mod-Ker(B) = \cap Ker M, where M runs over the irreducible FG-modules in B. After [8], let Irr⁰(B) be the set of irreducible characters of height 0 in B and let Ker⁰(B) = \cap Ker χ , where χ runs through Irr⁰(B). As is well known, Ker(B) is a p'-group and mod-ker(B) is p-nilpotent. By [8, Lemma 5.1], we have Ker(B) \subset Ker⁰(B) \subset mod-Ker(B).

Theorem 2. Let B be a p-block of G with defect group D. Then we have $\operatorname{Ker}^0(B) = \bigcap_{x \in G} (\operatorname{Ker}(B)D')^x$, where D' is the commutator subgroup of D. In particular if D is abelian then $\operatorname{Ker}^0(B) = \operatorname{Ker}(B)$.

Proof. Let Q be a Sylow p-subgroup of $\operatorname{Ker}^0(B)$. Then $\operatorname{Ker}^0(B) = \operatorname{Ker}(B)Q$ by [8, Lemma 5.1]. Since Q is contained in a vertex of an oG-lattice affording $\chi \in \operatorname{Irr}^0(B)$, we may assume that $Q \subset D$. Let B_0 be the Brauer correspondent of B in $N_G(D)$. For any $\zeta \in \operatorname{Irr}^0(B_0)$ there is $\chi \in \operatorname{Irr}^0(B)$ such that ζ is a constituent of $\chi_{N_G(D)}$ (cf. [8, Prop.1.8]). Hence $\operatorname{Ker}^0(B) \cap N_G(D) \subset \operatorname{Ker}^0(B_0)$. In particular $Q \subset \operatorname{Ker}^0(B_0) \cap D$. By Proposition 3 for any $\zeta \in \operatorname{Irr}(B_0)$, ζ belongs to $\operatorname{Irr}^0(B_0)$ if and only if an irreducible constituent of ζ_D is linear. Therefore we see $\operatorname{Ker}^0(B_0) \cap D = D'$. So we have $Q \subset D'$.

Put $H = \bigcap_{x \in G} (\operatorname{Ker}(B)D')^x$ and let χ be any element of $\operatorname{Irr}^0(B)$. Then there exists $\zeta \in \operatorname{Irr}^0(B_0)$ such that ζ is a constituent of $\chi_{N_G(D)}$. By the above argument $\operatorname{Ker} \zeta \supset D'$. Hence $\chi_{\operatorname{Ker}(B)D'}$ has the trivial character of $\operatorname{Ker}(B)D'$ as an irreducible constituent, so χ_H has the trivial character of H as an irreducible constituent. Therefore $\operatorname{Ker} \chi \supset H$ and hence we have $\operatorname{Ker}^0(B) \supset H$. Since $\operatorname{Ker}^0(B) \subset H$, we have $\operatorname{Ker}^0(B) = H$.

ACKNOWLEDGEMENT. The author thanks Professor Y. Tsushima and M. Murai for their valuable suggestions.

References

- [1] W. Feit: The representation theory of finite groups, North-Holland, Amsterdam, 1982.
- [2] W. Hamernik-G. Michler: On vertices of simple modules in p-solvable groups, Math. Sem. Giessen, 121 (1976), 147-162.
- [3] J.F. Humphreys: Projective modular representations of finite groups, J. London Math. Soc. (2), 16 (1977), 51-66.
- [4] G. Karpilovsky: Group Representations Volume 3, North-Holland, 1994.
- [5] R. Knörr: Blocks, vertices and normal subgroups, Math. Z., 148 (1976), 53-60.
- [6] R. Knörr: On the vertices of irreducible modules, Ann. Math., 110 (1979), 487-499.
- [7] B. Külshammer-G.R. Robinson: Characters of relative projective modules, II, J. London Math. Soc. (2), 36 (1987), 59-67.
- [8] M. Murai: Block induction, normal subgroups and characters of height zero, Osaka J. Math., 31 (1994), 9-25.
- [9] M. Murai: Normal subgroups and heights of characters.
- [10] H. Nagao-Y. Tsushima: Representations of finite groups, Academic Press, Boston, Tokyo, 1988.
- [11] G.R. Robinson: Local structure, vertices & Alperin's conjecture.

Department of Mathematics Faculty of General Education Kumamoto University Kurokami, Kumamoto City Kumamoto 860, Japan