NORMAL SUBGROUPS AND MULTIPLICITIES OF INDECOMPOSABLE MODULES

Atumi WATANABE

(Received September 4, 1995)

Introduction

Let G be a finite group and (K, o, F) be a p-modular system, where p is a prime number. We assume that K contains the $|G|$-th roots of unity and F is algebraically closed and we put $R=\boldsymbol{o}$ or F. For an R-free finitely generated indecomposable $R G$-module M and a normal subgroup N of G, let V be an indecomposable component of M_{N}, where M_{N} is the restriction of M to N. In this paper we give some results on the multiplicity of V as a component of M_{N} and from them we obtain properties of heights of indecomposable modules and irreducible characters. This study is inspired by Murai [8, 9].

Throughout this paper N is a fixed normal subgroup of G and v is the p-adic valuation such that $v(p)=1$. All $R G$-modules are assumed to be R-free of finite rank. For an indecomposable $R G$-module M, let $\mathrm{vx}(M)$ denote a vertex of M. As is well knoẃn $v\left(\operatorname{rank}_{R} M\right) \geq v(\mid G: v x(M \mid)$. We refer to Feit[1, Chap.3] and Nagao-Tsushima [10, Chap.4] for the vertex-source theory in modular representations of finite groups.

1. p-parts of multiplicities

In this section we study the p-parts of multiplicities of indecomposable $R N$-modules in an indecomposable decomposition of M_{N}. The following is a key result of this paper.

Theorem 1. Let V be a G-invariant indecomposable $R N$-module. Let M be an indecomposable $R G$-module with vertex Q and n be the multiplicity of V in an indecomposable decomposition of M_{N}. Then we have $v(n) \geq v(|G: Q N|)$.

Proof. Let L be a subgroup of G such that L / N is a Sylow p-subgroup of G / N and let

$$
M_{L}=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{s}
$$

where each M_{i} is an indecomposable $R L$-module. By Mackey decomposition
M_{i} is ($Q^{x_{i}} \cap L$)-projective for some $x_{i} \in G$. We have

$$
v\left(\left|L:\left(Q^{x_{i}} \cap L\right) N\right|\right)=v\left(\left|G:\left(Q^{x_{i}} \cap L\right) N\right|\right) \geq v\left(\left|G: Q^{x_{i}} N\right|\right)=v(|G: Q N|) .
$$

Let n_{i} be the multiplicity of V as an indecomposable component of $M_{i_{N}}$ and Q_{i} be a vertex of M_{i}. We have $n=\sum_{i=1}^{s} n_{i}$. If Theorem holds for each M_{i}, then we have

$$
v\left(n_{i}\right) \geq v\left(\left|L: Q_{i} N\right|\right) \geq v\left(\left|L:\left(Q^{x_{i}} \cap L\right) N\right|\right) \geq v(|G: Q N|)
$$

and hence $v(n) \geq v(|G: Q N|)$. So we may assume that $G=L$. Then by a theorem of Green, there exists an indecomposable $R(Q N)$-module M_{0} such that M is isomorphic to M_{0}^{G}. Then we have $M_{N}=\sum_{x} M_{0} \otimes x$, where x ranges over a set of representatives for the $Q N$-cosets $(Q N) x$ of G. Since $M_{0} \otimes x$ is an $R N$-module which is G-conjugate to $M_{0_{N}}, n$ is divisible by $|G: Q N|$. This completes the proof.

Proposition 1. Let M be an indecomposable $R G$-module such that $v\left(\operatorname{rank}_{R} M\right)$ $=v(|G: \mathrm{vx}(M)|)$, then there exists an indecomposable component V of M_{N} which satisfies the following.
(i) $v\left(\operatorname{rank}_{R} V\right)=v(|N: \mathrm{vx}(V)|)$,
(ii) Let n be the multiplicity of V in an indecomposable decomposition of M_{N}. There exists a vertex P of M such that $P \cap N$ is a vertex of $V, T(V) \supset P$ and $v(n)=v(|T(V): P N|)$, where $T(V)$ is the inertial group of V in G.

Proof. Let $\left\{V_{1}, V_{2}, \cdots, V_{t}\right\}$ be a set of representatives (up to isomorphism) for the G-conjugacy classes of indecomposable components of M_{N} and \tilde{V}_{i} be the direct sum of all $R N$-modules which is G-conjugate to V_{i}. We can set

$$
M_{N} \cong \sum_{i=1}^{s} \oplus n_{i} \tilde{V}_{i},
$$

where n_{i} is the multiplicity of V_{i}. Here we fix some i for a while and let T_{i} be the inertial group of V_{i}. We put

$$
M_{T_{i}}=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{t} \oplus L_{1} \oplus L_{2} \oplus \cdots \oplus L_{u}
$$

where M_{j} is an indecomposable $R T_{i}$-module such that V_{i} is a component of $M_{j_{N}}$, and L_{j} is an indecomposable $R T_{i}$-module such that V_{i} is not a component of $L_{j_{N}}$. Let Q be a vertex of M. By Mackey decomposition, M_{j} is $\left(Q^{y_{j}} \cap T_{i}\right)$-projective for some $y_{j} \in G$. By Theorem 1 we have

$$
v\left(n_{i}\right) \geq \min _{1 \leq j \leq t}\left\{v\left(\left|T_{i}: \operatorname{vx}\left(M_{j}\right) N\right|\right)\right\} \geq \min _{1 \leq j \leq t}\left\{v\left(\left|T_{i}:\left(Q^{y_{j}} \cap T_{i}\right) N\right|\right)\right\} .
$$

Hence we have

$$
\begin{align*}
v\left(n_{i} \operatorname{rank}_{R} \tilde{V}_{i}\right) & =v\left(n_{i}\right)+v\left(\left|G: T_{i}\right|\right)+v\left(\operatorname{rank}_{R} V_{i}\right) \tag{1}\\
& \geq \min _{1 \leq j \leq t}\left\{v\left(\left|G:\left(Q^{y_{j}} \cap T_{i}\right) N\right|\right)\right\}+v\left(\operatorname{rank}_{R} V_{i}\right) \\
& \geq v(|G: Q N|)+v\left(\left|N: \mathrm{vx}\left(V_{i}\right)\right|\right) .
\end{align*}
$$

On the other hand V_{i} is $\left(Q^{x_{i}} \cap N\right)$-projective for some $x_{i} \in G$. Therefore we have

$$
\begin{aligned}
v\left(n_{i} \operatorname{rank}_{R} \tilde{V}_{i}\right) & \geq v(|G: Q N|)+v\left(\left|N:\left(Q^{x_{i}} \cap N\right)\right|\right) \\
& =v(|G: Q N|)+v\left(\left|Q^{x_{i}} N: Q^{x_{i}}\right|\right)=v(|G: Q|) .
\end{aligned}
$$

By the assumption we may assume that $v\left(n_{i} \operatorname{rank}_{R} \tilde{V}_{i}\right)=v(|G: Q|)$. Then $v\left(\operatorname{rank}_{R} V_{i}\right)$ $=v\left(\left|N: v x\left(V_{i}\right)\right|\right)$ and $\left|v x\left(V_{i}\right)\right|=|Q \cap N|$. On the other hand for some M_{j} we have $v\left(n_{i} \operatorname{rank}_{R} \tilde{V}_{i}\right)-v\left(\operatorname{rank}_{R} V_{i}\right)=v\left(\left|G: \operatorname{vx}\left(M_{j}\right) N\right|\right)=v\left(\left|G:\left(Q^{y_{j}} \cap T_{i}\right) N\right|\right)=v\left(\left|G: Q^{y_{j}} N\right|\right)$. This implies $Q^{y_{j}} \subset T_{i}, v\left(n_{i}\right)=v\left(\left|T_{i}: Q^{y_{j}} N\right|\right)$ and $P N=Q^{y_{j} N} N$, where P is a vertex of M_{j} which is contained in $Q^{y j}$. Since V_{i} is a component of $M_{j_{N}}$, we have $|Q \cap N|=\left|\mathrm{vx}\left(V_{i}\right)\right|$ $\leq|P \cap N|$. Hence we have $Q^{y_{j}} \cap N=P \cap N$, so $Q^{y_{j}}=P$ and $P \cap N$ is a vertex of V_{i}. This completes the proof.

As a corollary of the proposition we have the following for N-projective indecomposable modules (see Karpilovsky [3, Chapter 12]).

Corollary 1. Let M be an N-projective indecomposable $R G$-module and V be an indecomposable component of M_{N} with multiplicity n. Then $\mathrm{vx}(V)$ is a vertex of M and $v\left(\operatorname{rank}_{R} M\right) \geq v(|G: N|)+v\left(\operatorname{rank}_{R} V\right)$. Moreover if $v\left(\operatorname{rank}_{R} M\right)$ $=v(|G: \mathrm{vx}(M)|)$ then $v(n)=v(|T(V): N|)$ and $v\left(\operatorname{rank}_{R} V\right)=v(|N: \mathrm{vx}(V)|)$.

Proof. Let \tilde{V} be the direct sum of the G-conjugates of V. By the assumption $\mathrm{vx}(V)$ is a vertex of M and $M_{N} \cong \oplus n \tilde{V}$. Hence from the arguments in the proof of the above proposition we have $v\left(\operatorname{rank}_{R} M\right) \geq v(|G: v x(M) N|)+v\left(\operatorname{rank}_{R} V\right)$ $=v(|G: N|)+v\left(\operatorname{rank}_{R} V\right)$. The latter also follows from it.

From the above corollary we have the following, which is shown implicitly in Knörr [6].

Corollary 2. Let M be an indecomposable $R G$-module with source S. If $v\left(\operatorname{rank}_{R} M\right)=v(|G: \mathrm{vx}(M)|)$, then $p \nmid \operatorname{rank}_{R} S$.

Proof. Let Q be a vertex of M. By Green correspondence we may assume that Q is normal and S is an $R Q$-module. Here we can put $N=Q$ and $V=S$ in

Corollary 1. By the assumption and since $Q=\mathrm{vx}(V)$ we have $p \nmid \mathrm{rank}_{R} S$.
Y. Tsushima and M. Murai pointed out independently that if G is p-solvable the converse of Corollary 2 is true. This follows from Green correspondence and the fact that if G is p-solvable then the equality $v(n)=v(|T(V): N|)$ holds in Corollary 1.

Moreover if G is p-solvable then for an irreducible $F G$-module M, $v\left(\operatorname{dim}_{F} M\right)=v(|G: \operatorname{vx}(M)|)$ by Hemernik-Michler [2, Theorem 2.1]. Hence Proposition 1 and Corollary 2 combined with Clifford's theorem imply the following.

Corollary 3. Suppose that G is p-solvable. Let M be an irreducible $F G$-module and V be an irreducible constituent of M_{N} with multiplicity n. Then V has $P \cap N$ as a vertex and $v(n)=v(|T(V): P N|)$, where P is a vertex of M. Moreover if S is a source of M, then $p \mid \operatorname{dim}_{F} S$.

Let B be a p-block of G with defect group D. In [8] Murai extends the heights of characters to $R G$-modules. For an $R G$-module U in B the height $\mathrm{ht}(U)$ is defined by $\operatorname{ht}(U)=v\left(\operatorname{rank}_{R} U\right)-v(|G: D|)$. In particular when U is indecomposable, U is of height 0 if and only if $v\left(\operatorname{rank}_{R} U\right)=v(|G: \mathrm{vx}(U)|)$ and $\mathrm{vx}(U)$ is G-conjugate to D. Let b be a p-block of N covered by B. Since by Knörr [5, Prop.4.2], a defect group of b is G-conjugate to $D \cap N$, we see by Proposition 1 that if an indecomposable $R G$-module U lying in B is of height 0 then an indecomposable component V of U_{N} lying in b is of height 0 (see [8, Theorem 4.11]). We can also get this fact from the following, which Murai proved by using the arguments of the proof of Proposition 1.

Proposition 2. Let B and b be as in the above, and M be an indecomposable $R G$-module lying in B. Let

$$
M_{N} \cong \sum_{i=1}^{t} \oplus n_{i} V_{i}
$$

be a decomposition of M_{N} to the sum of indecomposable $R N$-submodules. Then we have $\mathrm{ht}(M) \geq \min \left\{\mathrm{ht}\left(V_{i}\right) \mid 1 \leq i \leq t\right\}$

Proof. We may assume that $\left\{V_{1}, V_{2}, \cdots, V_{s}\right\}(s \leq t)$ is a set of representatives for the G-conjugacy classes of indecomposable components of M_{N} and that V_{i} ($1 \leq i \leq s$) belongs to b. Let D be a defect group of B such that $D \cap N$ is a defect group of b. Using the notations in the proof of Proposition 1, from (1) we have

$$
\begin{aligned}
v\left(n_{i} \mathrm{rank}_{R} \tilde{V}_{i}\right) & \geq v(|G: Q N|)+v\left(\mathrm{rank}_{R} V_{i}\right) \\
& \geq v(|G: D N|)+v(|N: D \cap N|)+\operatorname{ht}\left(V_{i}\right)
\end{aligned}
$$

$$
=v(|G: D|)+\mathrm{ht}\left(V_{i}\right)
$$

where $1 \leq i \leq s$. This implies the inequality in the proposition.

2. Heights of irreducible characters

Let χ be an irreducible character in B and ζ be an irreducible constituent of χ_{N} in b, where B and b are as in $\S 1$. Let X be an indecomposable $o G$-lattice affording χ and let Z be an indecomposable component of X_{N} which lies in b and $\mathrm{ht}(X) \geq \mathrm{ht}(Z)$ (Z exists by Proposition 2). Then $\operatorname{rank}_{o} Z$ is a multiple of $\zeta(1)$, and hence $\operatorname{ht}(Z) \geq \mathrm{ht}(\zeta)$. Since $\operatorname{ht}(\chi)=\operatorname{ht}(X)$, we have $\operatorname{ht}(\chi) \geq \operatorname{ht}(\zeta)$ as in [9, Lemma 2.2]. On the other hand, by Proposition 2, for an irreducible $F G$-module M in B and an irreducible constituent V of M_{N} in b, we have $\operatorname{ht}(M) \geq \mathrm{ht}(V)$ ([9, Lemma 3.2]). We shall show that $\operatorname{ht}(\chi)=\operatorname{ht}(\zeta)$ and $\operatorname{ht}(M)=\mathrm{ht}(V)$ when a defect group D of B is contained in N.

The following is shown from the results of Külshammer-Robinson [7], and the converse is proved in Robinson [11, Lemma 4.4].

Lemma 1 (Külshammer-Robinson). Let χ be an irreducible character of G and ζ be an irreducible constituent of χ_{N} with multiplicity n. If χ is afforded by an N-projective oG-lattice M then we have $v(n)=v(|T(\zeta): N|)$.

Proof. Suppose that χ is afforded by an N-projective indecomposable $\boldsymbol{\sigma} G$-lattice M and let V be an indecomposable component of M_{N}. Then from the argument in the proof Corollary 1 we have $\operatorname{rank}_{o} M=m \operatorname{rank}_{o} V$, where m is a natural number with $v(m) \geq v(|G: N|)$. Since $v(\chi(1) / \zeta(1)) \geq v(m) \geq v(|G: N|)$ because m divides $\chi(1) / \zeta(1)$, we see $v(n) \geq v(|T(\zeta): N|)$. On the other hand, as is well known n divides $|T(\zeta): N|$. Therefore we have $v(n)=v(|T(\zeta): N|)$.

Lemma 2. Let M be an N-projective irreducible $F G$-module and V be an irreducible component of M_{N} with multiplicity n. Then we have $v(n)=v(|T(V): N|)$. Moreover n is equal to the multiplicity m of M as an indecomposable component of V^{G}.

Proof. We may assume that V is G-invariant. We put $E=\operatorname{End}_{F G}\left(V^{G}\right)$ and let e be a primitive idempotent of E corresponding to M, i.e., $M=e V^{G}=(e E) V$. Then as is well known E is isomorphic to a twisted group algebra $F(\bar{G}, \varphi)$ over F with factor set φ, where $\bar{G}=G / N$. Moreover $\operatorname{dim}_{F} M=\left(\operatorname{dim}_{F}(e E)\right)\left(\operatorname{dim}_{F} V\right)$ and hence $n=\operatorname{dim}_{F}(e E)$. By Humphreys [3], there exists a central p^{\prime}-extension \hat{G} of \bar{G} such that $F(\bar{G}, \varphi)$ is isomorphic to a direct sum of some block ideals of $F \hat{G}$. Now as M is irreducible, $e E$ is irreducible. Hence n is equal to the dimension of an irreducible and projective $F \hat{G}$-module, so we have $v(n)=v(|\hat{G}|)=v(|G: N|)$.

By the way m is equal to the dimension of the irreducible E-module corresponding to $e E$. But $e E$ is irreducible, hence m is equal to $\operatorname{dim}_{F}(e E)$. This completes the proof.

Proposition 3. Let B be a p-block of G with defect group D and b be a p-block of N covered by B. Assume that D is contained in N. Then for an irreducible character χ in B and for an irreducible constituent ζ of χ_{N} in b, we have $\mathrm{ht}(\chi)=\mathrm{ht}(\zeta)$. We also have $\mathrm{ht}(M)=\mathrm{ht}(V)$ for an irreducible $F G$-module M in B and an irreducible constituent V of M_{N} in b.

Proof. We may assume D is a defect group of b. By the assumption and Lemma 1 we have $v(\chi(1))=v(|G: N|)+v(\zeta(1))=v(|G: D|)+h t(\zeta)$. This implies ht (χ) $=h t(\xi)$. By the former of Lemma 2 we also have $v\left(\operatorname{dim}_{F} M\right)=v(|G: N|)+v\left(\operatorname{dim}_{F} V\right)$ $=v(|G: D|)+h t(V)$. Hence $\mathrm{ht}(M)=\mathrm{ht}(V)$. This completes the proof.

For a p-block B of G let $\operatorname{Ker}(B)$ be the kernel of B and let $\bmod -\operatorname{Ker}(B)=\cap \operatorname{Ker} M$, where M runs over the irreducible $F G$-modules in B. After [8], let $\operatorname{Irr}^{0}(B)$ be the set of irreducible characters of height 0 in B and let $\operatorname{Ker}^{0}(B)=\cap \operatorname{Ker} \chi$, where χ runs through $\operatorname{Irr}^{0}(B)$. As is well known, $\operatorname{Ker}(B)$ is a $p^{\prime}-\operatorname{group}$ and $\bmod -\operatorname{ker}(B)$ is p-nilpotent. By [8, Lemma 5.1], we have $\operatorname{Ker}(B) \subset \operatorname{Ker}^{0}(B) \subset \bmod -\operatorname{Ker}(B)$.

Theorem 2. Let B be a p-block of G with defect group D. Then we have $\operatorname{Ker}^{0}(B)=\cap\left(\operatorname{Ker}(B) D^{\prime}\right)^{x}$, where D^{\prime} is the commutator subgroup of D. In particular if D is abelian then $\operatorname{Ker}^{0}(B)=\operatorname{Ker}(B)$.

Proof. Let Q be a Sylow p-subgroup of $\operatorname{Ker}^{0}(B)$. Then $\operatorname{Ker}^{0}(B)=\operatorname{Ker}(B) Q$ by [8, Lemma 5.1]. Since Q is contained in a vertex of an σG-lattice affording $\chi \in \operatorname{Irr}^{0}(B)$, we may assume that $Q \subset D$. Let B_{0} be the Brauer correspondent of B in $N_{G}(D)$. For any $\zeta \in \operatorname{Irr}^{0}\left(B_{0}\right)$ there is $\chi \in \operatorname{Irr}^{0}(B)$ such that ζ is a constituent of $\chi_{N_{G}(D)}$ (cf. [8, Prop.1.8]). Hence $\operatorname{Ker}^{0}(B) \cap N_{G}(D) \subset \operatorname{Ker}^{0}\left(B_{0}\right)$. In particular $Q \subset \operatorname{Ker}^{0}\left(B_{0}\right) \cap D$. By Proposition 3 for any $\zeta \in \operatorname{Irr}\left(\mathrm{B}_{0}\right)$, ζ belongs to $\operatorname{Irr}^{0}\left(B_{0}\right)$ if and only if an irreducible constituent of ζ_{D} is linear. Therefore we see $\operatorname{Ker}^{0}\left(B_{0}\right) \cap D=D^{\prime}$. So we have $Q \subset D^{\prime}$.

Put $H=\underset{x \in G}{\cap}\left(\operatorname{Ker}(B) D^{\prime}\right)^{x}$ and let χ be any element of $\operatorname{Irr}^{0}(B)$. Then there exists $\zeta \in \operatorname{Irr}^{0}\left(B_{0}\right)$ such that ζ is a constituent of $\chi_{N_{G}(D)}$. By the above argument $\operatorname{Ker} \zeta \supset D^{\prime}$. Hence $\chi_{\operatorname{Ker}(\boldsymbol{B}) D^{\prime}}$ has the trivial character of $\operatorname{Ker}(B) D^{\prime}$ as an irreducible constituent, so χ_{H} has the trivial character of H as an irreducible constituent. Therefore $\operatorname{Ker} \chi \supset H$ and hence we have $\operatorname{Ker}^{0}(B) \supset H$. Since $\operatorname{Ker}^{0}(B) \subset H$, we have $\operatorname{Ker}^{0}(B)=H$.

Acknowledgement. The author thanks Professor Y. Tsushima and M. Murai for their valuable suggestions.

References

[1] W. Feit: The representation theory of finite groups, North-Holland, Amsterdam, 1982.
[2] W. Hamernik-G. Michler: On vertices of simple modules in p-solvable groups, Math. Sem. Giessen, 121 (1976), 147-162.
[3] J.F. Humphreys: Projective modular representations of finite groups, J. London Math. Soc. (2), 16 (1977), 51-66.
[4] G. Karpilovsky: Group Representations Volume 3, North-Holland, 1994.
[5] R. Knörr: Blocks, vertices and normal subgroups, Math. Z., 148 (1976), 53-60.
[6] R. Knörr: On the vertices of irreducible modules, Ann. Math., 110 (1979), 487-499.
[7] B. Külshammer-G.R. Robinson: Characters of relative projective modules, II, J. London Math. Soc. (2), 36 (1987), 59-67.
[8] M. Murai: Block induction, normal subgroups and characters of height zero, Osaka J. Math., 31 (1994), 9-25.
[9] M. Murai: Normal subgroups and heights of characters.
[10] H. Nagao-Y. Tsushima: Representations of finite groups, Academic Press, Boston, Tokyo, 1988.
[11] G.R. Robinson: Local structure, vertices \& Alperin's conjecture.

Department of Mathematics Faculty of General Education Kumamoto University Kurokami, Kumamoto City Kumamoto 860, Japan

