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Introduction

Let G be a finite group and (K,0,F) be a p-modular system, where p is a
prime number. We assume that K contains the |G|-th roots of unity and F is
algebraically closed and we put R=0 or F. For an R-free finitely generated
indecomposable RG-module M and a normal subgroup N of G, let V be an
indecomposable component of My, where My is the restriction of M to N. In
this paper we give some results on the multiplicity of ¥ as a component of My
and from them we obtain properties of heights of indecomposable modules and
irreducible characters. This study is inspired by Murai [8, 9].

Throughout this paper N is a fixed normal subgroup of G and v is the p-adic
valuation such that v(p)=1. All RG-modules are assumed to be R-free of finite
rank. For an indecomposable RG-module M, let vx(M) denote a vertex of M. As
is well known v(rankgM)>v(|G:vx(M|). We refer to Feit[1, Chap.3] and
Nagao-Tsushima [10, Chap.4] for the vertex-source theory in modular representa-
tions of finite groups.

1. p-parts of multiplicities

In this section we study the p-parts of multiplicities of indecomposable
RN-modules in an indecomposable decomposition of M. The following is a key
result of this paper.

Theorem 1. Let V be a G-invariant indecomposable RN-module. Let M be
an indecomposable RG-module with vertex Q and n be the multiplicity of V in an
indecomposable decomposition of My. Then we have v(n)=>v(|G: ON)).

Proof. Let L be a subgroup of G such that L/N is a Sylow p-subgroup of
G/N and let

ML=M1@M2('B"'('BM55

where each M; is an indecomposable RL-module. By Mackey decomposition
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M; is (Q*' n L)-projective for some x;eG. We have
VLA DN) =G :(@*NL)N) = w(G : @¥N))=w(|G: ON)).
Let n; be the multiplicity of V' as an indecomposable component of M, and Q; be

avertex of M;, Wehaven= ) n, IfTheorem holdsforeach M, then we have
i=1

i=

vm) ZW(L: QiN) 2 WL (@~ LN) = W(|G: ON))

and hence v(n)>v(|G: QON|). So we may assume that G=L. Then by a theorem
of Green, there exists an indecomposable R(QN)-module M, such that M is

isomorphic to M§. Then we have My=) M,®x, where x ranges over a set of

X

representatives for the QN-cosets (ON)x of G.  Since M,®x is an RN-module which
is G-conjugate to M,,, n is divisible by |G: QN|. This completes the proof.

Proposition 1. Let M be an indecomposable RG-module such that v(rankgM)
=w|G: vx(M))), then there exists an indecomposable component V of My which satisfies
the following.

(i) v(rankg V)=w(N:vx(V)|),

(ii) Let n be the multiplicity of V in an indecomposable decomposition of M. There
exists a vertex P of M such that PnN is a vertex of V, T(V)> P and
v(n)=v(|T(V): PN|), where T(V) is the inertial group of V in G.

Proof. Let {V,V,,---,V,} be a set of representatives (up to isomorphism) for
the G-conjugacy classes of indecomposable components of My and ¥, be the direct
sum of all RN-modules which is G-conjugate to V;. We can set

My Y @nV,,
i=1

where n; is the multiplicity of ¥;. Here we fix some i for a while and let T; be
the inertial group of V;. We put

MT1=M1('BM2®“'@Mt@Ll@L2®”'@Lu,

where M; is an indecomposable RT;-module such that V; is a component of M,
and L; is an indecomposable RT;-module such that V; is not a component of
L;,. Let Qbeavertex of M. By Mackey decomposition, M; is (Q*/ " T,)-projective
for some y;eG. By Theorem 1 we have

W)= min ((T;:v(M)N)} = min {W(|T;:(Q@" A T)N))}.
1

1<j<t <j<t
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Hence we have

M v(nrankg ) =v(n) +v(G: T) +v(rankg V)

> min {W(|G:(Q" N T)N|)} + v(rankg V)

1<j<t
2>W(|G: ON|)+v(N:vx(V))).
On the other hand V; is (Q*' n N)-projective for some x;€ G. Therefore we have
v(n;rankg V) = w(|G: ON|)+ V(N : (0% A N)))
=W|G: ON)+W(|Q*N: Q") =w|G: Q)).

By the assumption we may assume that v(n;rankg ¥)=v(G:Q|). Then v(rankgV))
=v(N:vx(V))) and |[vx(V)|=|@NN|. On the other hand for some M; we have
v(nrank x 7,) — v(rank g V) = VW(|G:vx(M)N]) = (|G :(@*’ " T)N)) = v(G: Q*’NJ). This
implies 0”7/ < T}, v(n)=v(|T;: Q*’N|) and PN = Q* N, where P is a vertex of M; which
is contained in Q*. Since V; is a component of M; , we have |QnN|=|vx(V))|
<|PnN]. Hence we have Q’"N=PnN, so 0"’=P and PnN is a vertex of
V.. This completes the proof.

As a corollary of the proposition we have the following for N-projective
indecomposable modules (see Karpilovsky [3, Chapter 12]).

Corollary 1. Let M be an N-projective indecomposable RG-module and V
be an indecomposable component of My with multiplicity n. Then vx(V) is a
vertex of M and v(rankgM)>v(G:N|) +v(rankgV). Moreover if v(rankgzM)
=w|G:vx(M))) then v(n)=v(|T(V):N|) and v(rankgV)=v(N:vx(V))).

Proof. Let ¥ be the direct sum of the G-conjugates of ¥. By the assumption
vx(V) is a vertex of M and My =~ @nV. Hence from the arguments in the proof
of the above proposition we have v(rankgM) > v(|G:vx(M)N]) + v(rankgV)
=¥]G: N))+v(rankg V). The latter also follows from it.

From the above corollary we have the following, which is shown implicitly
in Knorr [6].

Corollary 2. Let M be an indecomposable RG-module with source S. If
vrank g M) =v(|G : vx(M))), then p } rankgsS.

Proof. Let Q be a vertex of M. By Green correspondence we may assume
that Q is normal and S is an RQ-module. Here we can put N=Q and V=S in
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Corollary 1. By the assumption and since Q=vx(V) we have p.frankgS.

Y. Tsushima and M. Murai pointed out independently that if G is p-solvable
the converse of Corollary 2 is true. This follows from Green correspondence and
the fact that if G is p-solvable then the equality v(r) = v(JT(V): N]) holds in Corollary 1.

Moreover if G is p-solvable then for an irreducible FG-module M,
v(dimgM)=v(|G:vx(M)|) by Hemernik-Michler [2, Theorem 2.1]. Hence Proposi-
tion 1 and Corollary 2 combined with Clifford’s theorem imply the following.

Corollary 3. Suppose that G is p-solvable. Let M be an irreducible FG-module
and V be an irreducible constituent of My with multiplicity n. Then V has PnN as
a vertex and v(n)=v(T(V): PN]), where P is a vertex of M. Moreover if S is a
source of M, then p | dimgS.

Let B be a p-block of G with defect group D. In [8] Murai extends the
heights of characters to RG-modules. For an RG-module U in B the height ht(U)
is defined by ht(U) =v(rankgU)—v(G: D|). In particular when U is indecomposable,
U is of height 0 if and only if v(rankzU)=v(G:vx(U)|) and vx(U) is G-conjugate
to D. Let b be a p-block of N covered by B. Since by Knorr [5, Prop.4.2], a
defect group of b is G-conjugate to DN N, we see by Proposition 1 that if an
indecomposable RG-module U lying in B is of height 0 then an indecomposable
component ¥V of Uy lying in b is of height O (see [8, Theorem 4.11]). We can
also get this fact from the following, which Murai proved by using the arguments
of the proof of Proposition 1.

Proposition 2. Let B and b be as in the above, and M be an indecomposable
RG-module lying in B. Let

t
My=x= Y @nV,
i=1

13

be a decomposition of My to the sum of indecomposable RN-submodules. Then we
have ht(M)>min{ht(V))|1<i<t}

Proof. We may assume that {V,,V,,---,V;} (s<1) is a set of representatives
for the G-conjugacy classes of indecomposable components of My and that V;
(1<i<s) belongs to b. Let D be a defect group of B such that DN N is a defect
group of b. Using the notations in the proof of Proposition 1, from (1) we have

v(nrank g ) > v(|G : ON|) + v(rankg V)
>w|G:DN))+v(N:DAN))+ht(V)
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=w|G: D)) +ht(V))

where 1<i<s. This implies the inequality in the proposition.

2. Heights of irreducible characters

Let y be an irreducible character in B and { be an irreducible constituent of
¥~ in b, where B and b are as in §1. Let X be an indecomposable oG-lattice
affording y and let Z be an indecomposable component of X, which lies in b and
ht(X)>ht(Z) (Z exists by Proposition 2). Then rank,Z is a multiple of {(1), and
hence ht(Z)>ht((). Since ht(y)=ht(X), we have ht(y)>ht({) as in [9, Lemma
2.2]. On the other hand, by Proposition 2, for an irreducible FG-module M in
B and an irreducible constituent V of My in b, we have ht(M)>ht(V) ([9, Lemma
3.2]). We shall show that ht(y)=ht({) and ht(M)=ht(}) when a defect group D
of B is contained in N.

The following is shown from the results of Kiilshammer-Robinson [7], and
the converse is proved in Robinson [11, Lemma 4.4].

Lemma 1 (Kiilshammer-Robinson). Let y be an irreducible character of G
and { be an irreducible constituent of yy with multiplicity n. If y is afforded by
an N-projective oG-lattice M then we have v(n)=v(|T({): N|).

Proof. Suppose that y is afforded by an N-projective indecomposable oG-lattice
M and let V be an indecomposable component of M. Then from the argument in
the proof Corollary 1 we have rank,M =mrank,V, where m is a natural number
with v(m)>v(|G: N|). Since v(x(1)/{(1))=v(m)=v(G: N|) because m divides x(1)/{(1),
we see v(n)=v(T({):N)). On the other hand, as is well known n divides
|T({):N]. Therefore we have v(n)=v(|T({): N|).

Lemma 2. Let M be an N-projective irreducible FG-module and V be an
irreducible component of My with multiplicity n. Then we have v(n)=v(T(V): N)).
Moreover n is equal to the multiplicity m of M as an indecomposable component of V.

Proof. We may assume that V is G-invariant. We put E=Endy(V°) and
let e be a primitive idempotent of E corresponding to M, i.e, M=eVS=(eE)V. Then
as is well known E is isomorphic to a twisted group algebra F(G,¢) over F with
factor set ¢, where G=G/N. Moreover dimyM =(dimg(eE))dim;}) and hence
n=dimg(eE). By Humphreys [3], there exists a central p'-extension G of G such
that F(G,¢) is isomorphic to a direct sum of some block ideals of FG. Now as
M is irreducible, eE is irreducible. Hence » is equal to the dimension of an
irreducible and projective FG-module, so we have v(n)=v(G|)=w|G: N]).
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By the way m is equal to the dimension of the irreducible E-module
corresponding to eE. But eFE is irreducible, hence m is equal to dimg(eE). This
completes the proof.

Proposition 3. Let B be a p-block of G with defect group D and b be a p-block
of N covered by B. Assume that D is contained in N. Then for an irreducible
character x in B and for an irreducible constituent { of yy in b, we have
ht(y)=ht({). We also have ht(M)=ht(V) for an irreducible FG-module M in B and
an irreducible constituent V of My in b.

Proof. We may assume D is a defect group of . By the assumption and
Lemma 1 we have v(x(1))=v(G: N)+v({(1))=v(G:D|)+ht({). This implies ht(y)
=ht(£). By the former of Lemma 2 we also have v(dimpM)=v(G: N])+ v(dimzV)
=w|G: D|)+ht(V). Hence ht(M)=ht(V). This completes the proof.

For a p-block B of G let Ker(B) be the kernel of B and let mod-Ker(B)=nKer M,
where M runs over the irreducible FG-modules in B. After [8], let Irr°(B) be the
set of irreducible characters of height 0 in B and let Ker®(B)=nKery, where x
runs through Irr®B). As is well known, Ker(B) is a p'-group and mod-ker(B) is
p-nilpotent. By [8, Lemma 5.1], we have Ker(B) = Ker’(B) = mod-Ker(B).

Theorem 2. Let B be a p-block of G with defect group D. Then we have

Ker®(B)= n (Ker(B)D')*, where D' is the commutator subgroup of D. In particular

xeG

if D is abelian then Ker®(B)=Ker(B).

Proof. Let Q be a Sylow p-subgroup of Ker’(B). Then Ker’(B)=Ker(B)Q
by [8, Lemma 5.1]. Since Q is contained in a vertex of an oG-lattice affording
x€lrr®(B), we may assume that Q < D. Let B, be the Brauer correspondent of
B in NgD). For any {elrt®(B,) there is yeIrr®(B) such that { is a constituent
of xnemy (cf. [8, Prop.1.8]). Hence Ker®(B)n N4(D) < Ker%(B,). In particular
Q0 < Ker®(By)nD. By Proposition 3 for any {elrr(B,), { belongs to Irr®(B,) if
and only if an irreducible constituent of {; is linear. Therefore we see
Ker®(B,)nD=D'. So we have Q < D'.

Put H= n (Ker(B)D')* and let y be any element of Irr%B). Then there exists

xeG

{elrr®B,) such that { is a constituent of yy_p) By the above argument
Ker{ > D'. Hence yg..sp has the trivial character of Ker(B)D' as an irreducible
constituent, so xy has the trivial character of H as an irreducible constituent.
Therefore Kery > H and hence we have Ker®(B)> H. Since Ker®(B) < H, we
have Ker%(B)=H.
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