ON THE WELL POSEDNESS OF THE CAUCHY PROBLEM FOR A CLASS OF HYPERBOLIC OPERATORS WITH MULTIPLE INVOLUTIVE CHARACTERISTICS

Vania SORDONI

(Received July 24, 1995)

1. Introduction

Let $X \subset \boldsymbol{R}^{n+1}=\boldsymbol{R}_{x_{0}} \times \boldsymbol{R}_{x^{\prime}}^{n}, x^{\prime}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be an open set such that $0 \in X$ and let us consider a differential operator of order m with C^{∞} coefficients:

$$
\begin{equation*}
P\left(x, D_{x}\right)=P_{m}\left(x, D_{x}\right)+P_{m-1}\left(x, D_{x}\right)+\cdots \tag{1.1}
\end{equation*}
$$

where we denote by $P_{m-j}\left(x, D_{x}\right)$ the homogeneous part of order $m-j$ of P.
Let us suppose that:
$\left(\mathrm{H}_{1}\right)$ the hyperplane $x_{0}=0$ is non-characteristics for P and the principal symbol $p_{m}(x, \xi)$ is hyperbolic with respect to ξ_{0}.

In this paper we shall study the well posedness of the Cauchy problem in C^{∞} for the operator P in some cases where $p_{m}(x, \xi)$ is not strictly hyperbolic but the set of multiple characteristics has a very special form, as we will specify further. (For a definition of correctly posed Cauchy problem in $X_{0}=\left\{x \in X ; x_{0}<0\right\}$ we refer to [5]).

We shall suppose that $p_{m}(x, \xi)$ vanishes exactly of order $m_{1} \leq m$ on a smooth manifold Σ and that p_{m} is strictly hyperbolic outside Σ.

On Σ we make the following assumptions:
$\left(\mathrm{H}_{2}\right)$ for any point $\rho \in \Sigma$, there exists a conic neighborhood Ω of ρ and $d+1$ ($d<n$) smooth functions $q_{j}, j=0, \cdots, d$, defined on $W=: \Omega \cup(-\Omega)$ and homogeous of degree one such that $\Sigma \cap W$ is given by

$$
\begin{equation*}
\left\{\rho \in W ; q_{0}(\rho)=. .=q_{d}(\rho)=0\right\} \tag{1.2}
\end{equation*}
$$

with $\left\{q_{i}, q_{j}\right\}(\rho)=0$ for any $\rho \in \Sigma \cap W$.
(Here we have set $-\Omega=:\left\{(x, \xi) \in T^{*} X \backslash 0 ;(x,-\xi) \in \Omega\right\}$).
Moreover, denoting by ω and $\sigma=d \omega$ the canonical 1 and 2 forms in $T^{*} X$ we suppose that $d q_{j}(\rho)$ and $\omega(\rho)$ are linearly independent one forms and that $H_{x_{0}}(\rho)$
is transversal to Σ, for any $\rho \in \Sigma$.
This implies that Σ is a closed conic, non radial involutive submanifold of codimension $d+1$ in $T^{*} X \backslash 0$.

Hence, if $\rho \in \Sigma$, then $T_{\rho}(\Sigma)^{\sigma} \subset T_{\rho}(\Sigma)$. Here $T_{\rho}(\Sigma)^{\sigma}$ denotes the dual with respect to the bilinear form σ.

A consequence of $\left(\mathrm{H}_{2}\right)$ is that Σ is locally foliated of dimension $d+1$ by the flow out of the Hamiltonian fields of the q_{j}.

The leaf through $\rho \in \Sigma$, whose tangent space at ρ is $T_{\rho}(\Sigma)^{\sigma}$, will be denoted by F_{ρ}.
For any $\rho \in \Sigma$, the bilinear form σ induces an isomorphism

$$
J_{\rho}: T_{\rho}\left(T^{*} X \backslash 0\right) / T_{\rho}(\Sigma) \rightarrow T_{\rho}^{*}\left(F_{\rho}\right) .
$$

Hence, for any $\rho \in \Sigma$, we can define the localization $p_{m, \rho}$ of the principal symbol p_{m} at ρ

$$
\begin{equation*}
p_{m, \rho}(v)=\lim _{t \rightarrow 0} t^{-m_{1}} p_{m}(\rho+t v) \quad v \in T_{\rho}^{*}\left(F_{\rho}\right) . \tag{1.3}
\end{equation*}
$$

Clearly, $p_{m, \rho}(v)$ is hyperbolic with respect to $\tilde{H}_{x_{0}}(\rho)=: J_{\rho}\left(H_{x_{0}}(\rho)\right)$. Let us assume that: $\left(\mathrm{H}_{3}\right) \quad p_{m, \rho}$ is strictly hyperbolic with respect to $\tilde{H}_{x_{0}}(\rho)$, for any $\rho \in \Sigma$

It is well known that, under the assumptions $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$, the Cauchy problem for P cannot be correctly posed in C^{∞} for arbitrary lower order terms.

In our case, the results of lvrii-Petkov [7] give the following necessary condition for the well posedness of the Cauchy problem: the terms p_{m-j} must vanish of order $m-2 j$ on Σ.

On the other hand, if this condition holds, it is possible to define the localization P_{ρ} of $P\left(x, D_{x}\right)$ at a point $\rho \in \Sigma$ (see: [4]).

A recent result of Nishitani [10] (see also [2]) states that, in order to have the well posedness of the Cauchy problem for P, it is necessary that $P_{\rho}=p_{m, \rho}$ but, it is clear that this kind of condition cannot be sufficient (even in the case of constant coefficients (see, for example, [3]).

Here we prove that if $P(x, D)$ satisfies $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and the Cauchy problem for P is well posed in X_{0} then the following Levi condition holds:
$\left(\mathrm{H}_{4}\right)$ in a conic neighborhood Ω of a point $\rho \in \Sigma, P$ can be written in the form

$$
P\left(x, D_{x}\right)=\sum_{|\alpha| \leq m_{1}} A_{\alpha}\left(x, D_{x}\right) Q_{0}^{\alpha_{0}}\left(x, D_{x}\right) . . Q_{d}^{\alpha_{a}}\left(x, D_{x}\right)
$$

for some $A_{\alpha} \in O P S^{m-m_{1}}(X)$ and $Q_{j} \in O P S^{1}(X)$ with principal symbol q_{j}.
More precisely, our result is the following:
Theorem 1.1. Let $P\left(x, D_{x}\right)$ be a differential operator satisfying $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$. The Cauchy Problem for P is well posed in X_{0} iff $\left(\mathrm{H}_{4}\right)$ holds.

The study of propagation of singularities for the operator P satisfying $\left(\mathrm{H}_{1}\right)--\left(\mathrm{H}_{4}\right)$ has been done by Melrose and Uhlmann [9] in the case $m_{1}=2$ and has been generalized by Bernardi [1] (see also [8] and [11]).

2. Reduction to a normal form

Let us consider the operator (1.1) satisfying $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$.
In this section we perform a canonical change of variables preserving the hyperplane $x_{0}=0$ and transforming, microlocally near the points of Σ, the manifold Σ into

$$
\tilde{\Sigma}=\left\{(x, \xi) ; \xi_{0}=\xi_{1}=\cdots=\xi_{d}\right\} .
$$

Let us fix a point $\rho_{0} \in \Sigma \cap \Omega$.
Since $H_{x_{0}}\left(\rho_{0}\right)$ is transversal to Σ, there exists $j \in\{0, \cdots, d\}$ such that

$$
\left\{q_{j}, x_{0}\right\}\left(\rho_{0}\right)=\frac{\partial q_{j}}{\partial \xi_{0}}\left(\rho_{0}\right) \neq 0
$$

Without loss of generality, we can suppose that $\frac{\partial q_{0}}{\partial \xi_{0}}\left(\rho_{0}\right) \neq 0$.
Hence, in a neighborhood of ρ_{0}, we can write

$$
q_{0}(x, \xi)=\left(\xi_{0}-\lambda\left(x, \xi^{\prime}\right)\right) r\left(x, \xi_{0}, \xi^{\prime}\right)
$$

with $r\left(\rho_{0}\right) \neq 0$.
If we set $\bar{q}_{j}\left(x, \xi^{\prime}\right)=q_{j}\left(x, \lambda\left(x, \xi^{\prime}\right), \xi^{\prime}\right), j=1=\cdots=d$, the manifold Σ is defined, in a neighborhood of ρ_{0}, by the equations:

$$
\xi_{0}-\lambda\left(x, \xi^{\prime}\right)=0, \bar{q}_{1}\left(x, \xi^{\prime}\right), \cdots, \bar{q}_{d}\left(x, \xi^{\prime}\right)=0 .
$$

Let us consider the canonical map $\chi: T^{*} X \rightarrow T^{*} R^{n+1}, \chi\left(x_{0}, x^{\prime}, \xi_{0}, \xi^{\prime}\right)$ $=\left(y_{0}, y^{\prime}, \eta_{0}, \eta^{\prime}\right)$ with $y_{0}=x_{0}$ and $\eta_{0}=\xi_{0}-\lambda\left(x, \xi^{\prime}\right)$.

In a neighborhood of $\chi\left(\rho_{0}\right)=: \bar{\rho}=\left(\bar{y}_{0}, \bar{y}^{\prime}, \bar{\eta}_{0}, \bar{y}^{\prime}\right)$, we have

$$
\chi(\Sigma)=: \bar{\Sigma}=\left\{(y, \eta) ; \eta_{0}=g_{1}\left(y, \eta^{\prime}\right)=. .=g_{d}\left(y, \eta^{\prime}\right)\right\}
$$

with $g_{j}\left(y, \eta^{\prime}\right)=\bar{q}_{j}\left(y_{0}, \chi^{-1}\left(y^{\prime}, \eta^{\prime}\right)\right), j=1, \cdots, d$.
Since $\bar{\Sigma}$ is involutive, $\left\{\eta_{0}, g_{j}\right\}\left(y, \eta^{\prime}\right)=\frac{\partial g_{j}}{\partial y_{0}}\left(y, \eta^{\prime}\right)=0$ at any point $\left(y_{0}, y, \eta^{\prime}\right) \in \bar{\Sigma}$ close to $\bar{\rho}$.

Hence, in a neighborhood of $\bar{\rho}$ there exist smooth functions $b_{i, j}, i, j=1, \cdots, d$ such that:

$$
\frac{\partial g_{j}}{\partial y_{0}}\left(y_{0}, y^{\prime}, \eta^{\prime}\right)=\sum_{j=1}^{d} b_{i, j}\left(y_{0}, y^{\prime}, \eta^{\prime}\right) g_{j}\left(y_{0}, y^{\prime}, \eta^{\prime}\right)
$$

Let $B\left(y_{0}, y^{\prime}, \eta^{\prime}\right)$ be the $d \times d$ matrix with elements $b_{i, j}$ and let $G\left(y_{0}, y^{\prime}, \eta^{\prime}\right)$ be the vector with elements g_{j}. Then G satisfies the following first order system:

$$
\begin{align*}
& \frac{d G}{d y_{0}}\left(y_{0}, y^{\prime}, \eta^{\prime}\right)=B\left(y_{0}, y^{\prime}, \eta^{\prime}\right) G\left(y_{0}, y^{\prime}, \eta^{\prime}\right) \tag{2.1}\\
& G_{\mid y_{0}=\bar{y}_{0}}=G\left(\bar{y}_{0}, y^{\prime}, \eta^{\prime}\right) .
\end{align*}
$$

If we denote by $C\left(y_{0}, y^{\prime}, \eta^{\prime}\right)$ the resolvent of the linear system (2.1), we have $G\left(y_{0}, y^{\prime}, \eta^{\prime}\right)=C\left(y_{0}, y^{\prime}, \eta^{\prime}\right) G\left(\bar{y}_{0}, y^{\prime}, \eta^{\prime}\right)$

Hence, in a neighborhood of $\bar{\rho}, \bar{\Sigma}$ is defined by the following equations:

$$
\eta_{0}=\bar{g}_{1}\left(y^{\prime}, \eta^{\prime}\right)=\cdots=\bar{g}_{d}\left(y^{\prime}, \eta^{\prime}\right)=0
$$

with $\bar{g}_{j}\left(y^{\prime}, \eta^{\prime}\right)=g_{j}\left(\bar{y}_{0}, y^{\prime}, \eta^{\prime}\right), j=1, \cdots, d$.
Let us define now the canonical map $\psi\left(y_{0}, y^{\prime}, \eta_{0}, \eta^{\prime}\right)=\left(x_{0}, x^{\prime}, \xi_{0}, \xi^{\prime}\right)$ with $x_{0}=y_{0}$ and $\xi_{0}=\eta_{0}$ such that $\bar{g}_{j}\left(\psi^{-1}(x, \xi)\right)=\xi_{j}$, for $j=1, \cdots, d$.

Hence, microlocally near $\tilde{\rho}_{0}=\psi(\bar{\rho})$, the manifold $\tilde{\Sigma}=\psi(\bar{\Sigma})$ is given, in the new coordinates, by the following equations

$$
\xi_{0}=\xi_{1}=. .=\xi_{d}=0
$$

Let us notice that since the q_{j}-s are positively homogeneous of degree one, the canonical change of variables can also be taken as positively homogeneus of degree one (see [6]).

Moreover, since the q_{j}-s are homogeneus of degree one, we can extend the positively homogeneous canonical change of coordinates $\chi: \Omega \rightarrow T^{*} \boldsymbol{R}^{n+1}, \chi(x, \xi)$ $=(y(x, \xi), \eta(x, \xi))$ to a homogeneous canonical change of coordinates $\tilde{\chi}: W \rightarrow T^{*} \boldsymbol{R}^{n+1}$ setting $\tilde{\chi}(x, \xi)=(y(x,-\xi),-\eta(x,-\xi))$ for $(x, \xi) \in(-\Omega)$.

Notice that $\tilde{\chi}(-\rho)=-\tilde{\rho}$ and that $\tilde{\chi}$ maps $\Sigma \cap W$ into

$$
\left\{(x, \xi) \in \tilde{W}=: \tilde{\Omega} \cup(-\tilde{\Omega}) ; \xi_{0}=\xi_{1}=. .=\xi_{d}=0 .\right\}
$$

where $\tilde{\Omega}$ is a conic neighborhood of $\tilde{\rho}$.

3. Necessary conditions

In this section we show that, under assumptions $\left(\mathrm{H}_{1}\right)--\left(\mathrm{H}_{3}\right)$, the Levi conditions $\left(\mathrm{H}_{4}\right)$ are necessary for the well posedness of the Cauchy problem of P in X_{0}. By using the results of Section 2, this fact will be a consequence of the following:

Proposition 3.1. Let us consider the pseudodifferential operators

$$
\tilde{P}\left(x, D_{x}\right)=\tilde{P}_{m}\left(x, D_{x}\right)+\sum_{j=1}^{m} \sum_{k=0}^{m-j-\mu_{j}} \sum_{|\alpha|=m-j-k-\mu_{j}} A_{\alpha, k}^{\left(\mu_{j}\right)}\left(x, D_{x}\right) D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k}
$$

with

$$
\tilde{P}_{m}\left(x, D_{x}\right)=\sum_{k=0}^{m} \sum_{|\alpha|=m-k} A_{\alpha, k}^{(0)}\left(x, D_{x}\right) D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k}
$$

with $A_{\alpha, k}^{\left(\mu_{j}\right)}\left(x, D_{x}\right) \in O P S^{\mu_{j}}(X), 0 \leq \mu_{j} \leq m-j$, having the principal symbol $a_{\alpha, k}^{\left(\mu_{j}\right)}(x, \xi)$ homogeneous of degree μ_{j}.

Let us suppose that $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ holds with $\Sigma=\left\{(x, \xi) ; \xi_{0}=\xi^{\prime}=0.\right\}$ and $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{d}\right)$.

If the Cauchy problem for P is well posed in X_{0}, then $a_{\alpha, k}^{\left(\mu_{j}\right)}(x, \xi)$ must vanish at any point $\rho \in \tilde{\Sigma}$ if $\mu_{j} \neq 0$.

Proof. Let us fix $\rho \in \Sigma$. Without loss of generality, we can take $\rho=\left(0, e_{n}\right) \in \widetilde{\Sigma}$. The proof is done by induction.

Let us suppose that $a_{\alpha, k}^{\left(\mu_{j}\right)}(\rho)=0,1 \leq j<p<m$ for $|\alpha|+k=m-j-\mu_{j}$ with $\mu_{j} \neq 0$ and let us prove that if $a_{\alpha, k}^{\left(\mu_{p}\right)}(\rho) \neq 0$ for some $\alpha, k,|\alpha|+k=m-p-\mu_{p}$ then we must have $\mu_{p}=0$.

Let us set

$$
\begin{equation*}
t=: \sup \left\{\frac{\mu_{j}}{\mu_{j}+j} ; a_{\alpha, k}^{\left(\mu_{p}\right)}(\rho) \neq 0 \text { for some }|\alpha|+k=m-j-\mu_{j}, j=p, \cdots, m-1\right\} \tag{3.1}
\end{equation*}
$$

We have $t \geq \frac{\mu_{p}}{\mu_{p}+p}$ and $0 \leq t<1$.
Notice that the results of [7] and [10] implies that t must be strictly less than $\frac{1}{2}$ in order to have the well-posedness of the Cauchy problem for \tilde{P}.

On the other hand, in our situation, the cases $t<\frac{1}{2}$ and $t \geq \frac{1}{2}$ can be treated in the same way and we prefer consider both the case and find directly the Levi condition of [7] and [10], in our particular setting.

Suppose that $\mu_{p} \neq 0$ and then $t>0$ and let us show that this fact contradicts the assumptions on the well posedness of the Cauchy problem.

Let $j_{1}<j_{2}<. .<j_{r} \quad\left(1 \leq p \leq j_{1}<j_{2}<. .<j_{r} \leq m-1, \quad 1 \leq r \leq m-1-p\right)$ such that $\frac{\mu_{j_{i}}}{\mu_{j_{i}}+j_{i}}=t$ for $i=1, \cdots, r$.

If s_{n} is a positive real number, let us take $s=\left(s^{\prime \prime \prime}, s_{n}\right)=\left(s_{0}, \cdots, s_{n-1}, s_{n}\right)$ with $s_{j}=t s_{n}$, for $j=0, \cdots, n-1$ and let us consider the change of variables $y=\rho^{-s} x$.

Denoting by P_{ρ} the operator $P_{\rho}\left(x, D_{x}\right)=\rho^{-t s_{n} m} \widetilde{P}\left(\rho^{-s} x, \rho^{s} D_{x}\right)$ we have:

$$
\begin{align*}
& P_{\rho}\left(x, D_{x}\right)=\rho^{-t s_{n} m}\left\{\sum_{k=0}^{m} \sum_{|\alpha|=m-k} A_{\alpha, k}^{(0)}\left(\rho^{-s} x, \rho^{s} D_{x}\right) \rho^{t s_{n}(|\alpha|+k)} D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k}\right. \\
&+\left.\sum_{j=1}^{m} \sum_{k=0}^{m-j-\mu_{j}} \sum_{|\alpha|=m-j-k-\mu_{j}} A_{\alpha, k}^{(\mu, j)}\left(\rho^{-s} x, \rho^{s} D_{x}\right) \rho^{t s_{n}(|\alpha|+k)} D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k}\right\} \\
&= \rho^{-t s_{n} m}\left\{\sum_{k=0}^{m} \sum_{|\alpha|=m-k} A_{\alpha, k}^{(0)}\left(\rho^{-s} x, \rho^{(t-1) s_{n}} \frac{D_{x^{\prime \prime \prime}}}{D_{x_{n}}}, 1\right) \rho^{\left.t s_{n}| | \alpha \mid+k\right)} D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k}\right. \tag{3.2}\\
&+ \sum_{j=1}^{m} \sum_{k=0}^{m-j-\mu_{j}} \sum_{|\alpha|=m-j-k-\mu_{j}} A_{\alpha, k}^{\left(\mu, k^{\prime}\right)}\left(\rho^{-s} x, \rho^{(t-1) s_{n}} \frac{D_{x^{\prime \prime \prime}}}{D_{x_{n}}}, 1\right) \\
&\left.\quad \times \rho^{t s_{n}(|\alpha|+k)+s_{n} \mu_{j}} D_{x_{n}}^{\mu_{j}} D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k}\right\} .
\end{align*}
$$

Applying the Taylor formula, we get

$$
A_{\alpha, k}^{\left(\mu_{k}\right)}\left(\rho^{-s} x, \rho^{(t-1) s_{n}} \frac{D_{x^{\prime \prime \prime}}}{D_{x_{n}}}, 1\right)=a_{\alpha, k}^{\left(\mu_{i}\right)}\left(0, e_{n}\right)+O\left(\rho^{-t s_{n}}\right)+O\left(\rho^{(t-1) s_{n}}\right) .
$$

Hence

$$
\begin{align*}
P_{\rho}\left(x, D_{x}\right) & =\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) D_{x^{x}}^{\alpha} D_{x_{0}}^{k} \\
& +\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j-k-\mu_{j_{i}}} a_{\alpha, k^{\prime}}^{\left(\mu_{j}\right)}\left(0, e_{n}\right) D_{x_{n}}^{\mu_{j}} D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k} \\
& +O\left(\rho^{-t s_{n}}\right)+O\left(\rho^{(t-1) s_{n}}\right)+\sum_{j \neq j_{1}, \cdots, j_{r}, j \in(p, \cdots, m-1)} O\left(\rho^{s_{n}\left(\mu_{j}-t\left(\mu_{j}+j\right)\right)}\right) \tag{3.3}\\
& +\sum_{j=1}^{m} O\left(\rho^{s_{n}\left(\mu_{j}-t\left(\mu_{j}+j\right)-t\right)}\right)+\sum_{j=1}^{m} O\left(\rho^{s_{n}\left(\mu_{j}-t\left(\mu_{j}+j\right)+(t-1)\right)}\right) .
\end{align*}
$$

Since all the powers of ρ in the remainder terms of (3.3) are negative, if we choose s_{n} sufficiently large we get

$$
\begin{align*}
P_{\rho}\left(x, D_{x}\right) & =\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k} \\
& +\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j-k-\mu_{j_{i}}} a_{\alpha, k}^{\left(\mu_{j}\right)}\left(0, e_{n}\right) D_{x_{n}}^{\mu_{j}} D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k} \tag{3.4}\\
& +O\left(\rho^{-N}\right)
\end{align*}
$$

for any $N \in N$.
Let us consider the simplectic dilatation $S_{\rho}\left(x_{0}, \cdots, x_{n}\right)=\left(\rho^{-2} x_{0}, x_{1}, \cdots, x_{n-1}\right.$, $\rho^{-2 / t} x_{n}$.

Then

$$
\begin{align*}
P_{\rho}^{\prime}\left(x, D_{x}\right) & =: \rho^{-2 m} P\left(\rho^{-2} x_{0}, x_{1}, \cdots, x_{n-1}, \rho^{-2 / t} x_{n}, \rho^{2} D_{x_{0}}, D_{x_{1}}, \cdots, D_{x_{n-1}}, \rho^{2 / t} D_{x_{n}}\right) \\
& =\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right)\left(\frac{D_{x^{\prime}}}{\rho^{2}}\right)^{\alpha} D_{x_{0}}^{k} \\
& +\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j_{i}-k-\mu_{j_{i}}} A_{\alpha, k^{\prime}}^{\left(\mu_{k^{\prime}}\right)}\left(0, e_{n}\right) D_{x_{n}}^{\mu_{j^{\prime}}}\left(\frac{D_{x^{\prime}}}{\rho^{2}}\right)^{\alpha} D_{x_{0}}^{k} \tag{3.5}\\
& +O\left(\rho^{-N}\right) .
\end{align*}
$$

Set $E_{\rho}=e^{i \psi_{\rho}}$ with

$$
\psi_{\rho}(x)=\rho^{1 / t} x_{n} \xi_{n}+\rho^{3}\left\langle x^{\prime}, \xi^{\prime}\right\rangle+\rho \gamma x_{0}+i \rho\left|x^{\prime \prime \prime}\right|^{2} / 2+i \rho^{-1+1 / t} x_{n}^{2} / 2
$$

$\left(\right.$ Here $\left.\left(x_{0}, \cdots, x_{n}\right)=:\left(x_{0}, x^{\prime}, x^{\prime \prime \prime}, x_{n}\right)\right)$.
We have
$E_{\rho}^{-1} D_{x_{0}}^{k} E_{\rho}=\rho^{k} \gamma^{k}+k \rho^{k-1} \gamma^{k-1} D_{x_{0}}+O\left(\rho^{k-2}\right)$
$E_{\rho}^{-1} D_{x_{n}}^{\mu_{i}} E_{\rho}=\rho^{\mu_{j_{i}} / t} \xi^{\mu_{i}}+i \mu_{j_{i}} \rho^{-1+\mu_{j_{i}} / t \xi^{\mu_{j_{i}}}-1} x_{n}+O\left(\rho^{\left(\mu_{j_{i}}-1\right) / t}\right)+O\left(\rho^{-1+\left(-1+\mu_{j_{i}}\right) / t}\right)$
$E_{\rho}^{-1} D_{x_{j}}^{\alpha_{j}} E_{\rho}=\rho^{3 \alpha_{j} \xi_{j}^{\prime \alpha_{j}}}+O\left(\rho^{3 \alpha_{j}-3}\right)$.
Hence

$$
\begin{aligned}
& E_{\rho}^{-1} P_{\rho}^{\prime} E_{\rho}=\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) \rho^{|\alpha|+k} \xi^{\prime} \gamma^{k} \\
&+\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) k \rho^{|\alpha|+k-1} \xi^{\prime \alpha} \gamma^{k-1} D_{x_{0}} \\
&+\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j_{i}-k-\mu_{j_{i}}} A_{\alpha, k^{\prime}}^{\left(\mu_{j^{\prime}}\right)}\left(0, e_{n}\right) \rho^{|\alpha|+k+\mu_{j_{i}} / t \xi^{\prime} \alpha \xi_{n}^{\mu_{j}} \gamma^{k}} \\
&+\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j_{i}-k-\mu_{j_{i}}} A_{\alpha, k^{\prime}}^{\left(\mu_{j}\right)}\left(0, e_{n}\right) \rho^{|\alpha|+k-1+\mu_{j_{i} / t}} \\
& \times\left(k \xi^{\prime \alpha \alpha} \xi_{n}^{\mu_{j}} \gamma^{k-1} D_{x_{0}}+i \mu_{j_{i}} \xi^{\prime \alpha} \xi_{n}^{\mu_{j_{i}}-1} \gamma^{k} x_{n}\right) \\
&+\sum_{k=0}^{m} \sum_{|\alpha|=m-k} O\left(\rho^{|\alpha|-2+k}\right) \\
&+\sum_{i=1}^{r} \sum_{|\alpha|+k=m-j_{i}-\mu_{j_{i}}}\left(O\left(\rho^{|\alpha|+k-2+\mu_{j_{i}} / t}\right)+O\left(\rho^{|\alpha|+k-1+\left(\mu_{j_{i}}-1\right) / t}\right)\right) \\
&+O\left(\rho^{-N}\right) .
\end{aligned}
$$

Notice that, if $|\alpha|=m-k-\mu_{j_{i}}-j_{i}$, then $|\alpha|+k+\mu_{j_{i}} / t=m-\left(\mu_{j_{i}}+j_{i}\right)+\mu_{j_{i}} / t=m$.
Hence

$$
\begin{align*}
E_{\rho}^{-1} P_{\rho}^{\prime} E_{\rho} & =\rho^{m}\left(\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) \xi^{\prime \alpha} \gamma^{k}\right. \\
& \left.+\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j_{i}-k-\mu_{j_{i}}} A_{\alpha, k^{\prime}}^{\left(\mu_{j_{i}}\right)}\left(0, e_{n}\right) \xi^{\prime \alpha} \xi_{n}^{\mu_{j_{i}} \gamma^{k}}\right) \tag{3.7}\\
& +L_{\rho}
\end{align*}
$$

with

$$
\begin{equation*}
L_{\rho}=\rho^{m-1} L_{0}+\rho^{m-1 / t} \tilde{L}_{1}+\rho^{m-2} \tilde{L}_{2}+\rho^{m-1-1 / t} \tilde{L}_{3}+\cdots \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
L_{0} & =\left(\sum_{k=1}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) k \xi^{\prime \alpha} \gamma^{k-1}\right. \\
& \left.+\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j_{i}-k-\mu_{j_{i}}} A_{\alpha, k^{\prime}}^{\left(\mu j_{j}\right)}\left(0, e_{n}\right) k \xi^{\prime \alpha} \xi_{n}^{\mu_{j_{i}} \gamma^{k-1}}\right) D_{x_{0}} \tag{3.9}\\
& +\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j_{i}-k-\mu_{j_{i}}} A_{\alpha, k^{\prime}}^{\left(\mu j_{j}\right)}\left(0, e_{n}\right) i \mu_{j_{i}} \xi^{\prime \alpha} \xi_{n}^{\mu_{j_{i}}-1} \gamma^{k} x_{n}
\end{align*}
$$

Set now

$$
\begin{align*}
\tilde{p}_{m}\left(\gamma, \xi^{\prime}, \xi_{n}\right) & =\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) \xi^{\prime \alpha} \gamma^{k} \tag{3.10}\\
& +\sum_{i=1}^{r} \sum_{k=0}^{m-j_{i}-\mu_{j_{i}}} \sum_{|\alpha|=m-j_{i}-k-\mu_{j_{i}}} a_{\alpha, k^{\prime}}^{\left(\mu_{j}\right)^{\prime}}\left(0, e_{n}\right) \xi^{\prime \alpha} \gamma^{k} \xi_{n}^{\mu_{j_{i}}}
\end{align*}
$$

Let us suppose that there exists $j_{i}, p \leq j_{i} \leq m-1$, and $a_{\alpha, k^{i}}^{\left(\mu_{j}\right)}\left(0, e_{n}\right) \neq 0$ with $\mu_{j_{i}}>0$ for some $\alpha, k,|\alpha|+k=m-j_{i}-\mu_{j_{i}}, i=1, \cdots, r$. We show that, in this case, the equation

$$
\tilde{p}_{m}\left(\gamma, \xi^{\prime}, \xi_{n}\right)=0
$$

has at least a root γ with $\operatorname{Im} \gamma<0$ for a suitable choice of ξ^{\prime}, ξ_{n} and moreover that it is possible to find an asymptotic solution u_{ρ} of $L_{\rho} u_{\rho}=0$.

This will imply that there exists a solution of $P_{\rho}^{\prime} v_{\rho}=0$ of the form $v_{\rho}=e^{i \psi_{\rho}} u_{\rho}$ such that $\operatorname{Im}\left(\psi_{\rho}\right)>\rho^{\varepsilon}|x|$, if $x_{0}<0$, for some $\varepsilon>0$, that is in contradiction with the assumption of the well posedness of the Cauchy problem (see [5]).

Notice that, since $j_{i}+\mu_{j_{i}} \geq 2$, the coefficient of γ^{m-1} in (3.10), given by $\sum_{|\alpha|=1} a_{\alpha, m-1}^{(0)}\left(0, e_{n}\right) \xi^{\prime \prime \alpha}$, is real. Hence, it is sufficient to prove the existence of a root γ of $\tilde{p}_{m}\left(\gamma, \xi^{\prime}, \xi_{n}\right)=0$ with $\operatorname{Im} \gamma \neq 0$ for some ξ^{\prime}, ξ_{n}.

Set

$$
\begin{aligned}
& A_{m-k}^{(0)}\left(\xi^{\prime}\right)=\sum_{|\alpha|=m-k} a_{\alpha, k}^{(0)}\left(0, e_{n}\right) \xi^{\prime \alpha} \\
& A_{m-j_{i}-\mu_{j}}^{\left(j_{i}+\mu_{j_{i}}\right)_{j_{i}-k}}\left(\xi^{\prime}\right)=\sum_{|\alpha|=m-j_{i}-\mu_{j_{i}-k}} a_{\alpha, k^{\prime}}^{\left(\mu_{j^{\prime}}\right)}\left(0, e_{n}\right) \xi^{\prime \alpha} \\
& q_{m}\left(\gamma, \xi^{\prime}\right)=\sum_{k=0}^{m} A_{m-k}^{(0)}\left(\xi^{\prime}\right) \gamma^{k} \\
& q_{m-j_{i}-\mu_{j_{i}}}\left(\gamma, \xi^{\prime}\right)=\sum_{k=0}^{m-\sum_{i}-\mu_{j_{i}}} A_{m-j_{i}-\mu_{j_{i}}}^{\left(j_{i}+\mu_{j^{\prime}}\right)}{ }_{\mu_{j}-k}\left(\xi^{\prime}\right) \gamma^{k} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\tilde{p}_{m}\left(\gamma, \xi^{\prime}, \xi_{n}\right)=q_{m}\left(\gamma, \xi^{\prime}\right)+\sum_{i=1}^{r} q_{m-j_{i}-\mu_{j_{i}}}\left(\gamma, \xi^{\prime}\right) \xi_{n}^{\mu_{j_{i}}} \tag{3.11}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\tilde{p}_{m}\left(\gamma, \xi^{\prime}, \xi_{n}\right)=\left|\xi^{\prime}\right|^{m} \tilde{p}_{m}\left(\frac{\gamma}{\left|\xi^{\prime}\right|}, \frac{\xi^{\prime}}{\left|\xi^{\prime}\right|}, \frac{\xi_{n}}{\left|\xi^{\prime}\right| \mid}\right) . \tag{3.12}
\end{equation*}
$$

We have the following.
Lemma 3.2. Let $q_{m}(\gamma)=\sum_{k=0}^{m} A_{m-k}^{(0)} \gamma^{k}$ be a real polynomial of degree m in the variable γ and $q_{m-s}(\gamma)=\sum_{k=0}^{m-s} A_{m-k}^{(s)} \gamma^{k}, s=2, \cdots, m$ polynomials of degree $m-s$ in the variable γ. Let $\delta_{s} \in N$ with $1 \leq \delta_{s} \leq s-1, s=2, \cdots, m$.

If $q_{m}(\gamma)$ has m real roots then $\tilde{p}_{m}(\gamma, \lambda)=q_{m}(\gamma)+\sum_{s=2}^{m} q_{m-s}(\gamma) \lambda^{\delta_{s}}$ has still m real roots for any $\lambda \in \boldsymbol{R}$ iff $q_{m-s}(\gamma)$ is identically zero for $s=2, \cdots, m$.

Proof. Let us prove the statement by induction on the degree m of \tilde{p}_{m}.
Notice that, if $\tilde{p}_{m}(\gamma, \lambda)$ has m real roots for any $\lambda \in \boldsymbol{R}$ then $q_{m-s}(\gamma)$ must be a real polynomial in the variable γ.

The statement is clearly obvious for $m=2$.
Suppose that the statement is true for a polynomial $\tilde{p}_{m}(\gamma, \lambda)$ of degree m and let us prove it for $\tilde{p}_{m+1}(\gamma, \lambda)$.

Suppose that $\tilde{p}_{m+1}(\gamma, \lambda)=q_{m+1}(\gamma)+\sum_{s=2}^{m+1} q_{m+1-s}(\gamma) \lambda^{\delta_{s}}$, with $1 \leq \delta_{s} \leq s-1$, has $m+1$ real roots in the variable γ.

As a consequence

$$
\frac{d}{d \gamma} \tilde{p}_{m+1}(\gamma, \lambda)=\frac{d}{d \gamma} q_{m+1}(\gamma)+\sum_{s=2}^{m} \frac{d}{d \gamma} q_{m+1-s}(\gamma) \lambda^{\delta_{s}}
$$

has m real roots. By induction, this implies that $\frac{d}{d \gamma} q_{m+1-s}(\gamma)$ is identically zero i.e. $A_{m+1-k}^{(s)}=0$ for any $k=1, \cdots, m+1-s, s=2, \cdots, m$.

Hence

$$
\tilde{p}_{m+1}(\gamma, \lambda)=q_{m+1}(\gamma)+\sum_{s=2}^{m+1} A_{m+1}^{(s)} \lambda^{\delta_{s}}
$$

and it is easy to check that $\tilde{p}_{m+1}(\gamma, \lambda)$ has only real roots, for any $\lambda \in \boldsymbol{R}$ iff $A_{m+1}^{(s)}=0$ for any $s=2, \cdots, m+1$.

End of the proof of Proposition 3.1. Applying Lemma 3.2 to the equation (3.11) with $\lambda=\xi_{n}$ we can conclude that $\tilde{p}_{m}\left(\gamma, v, \xi_{n}\right)=0$ must have a root $\gamma\left(v, \xi_{n}\right)$ with $\operatorname{Im} \gamma \neq 0$ for some ξ_{n} and $v \in \boldsymbol{R}^{d}$ with $|v|=1$.

This root is simple. Actually, by (3.12), $\gamma\left(\mu v, \mu^{t} \xi_{n}\right)=\mu \gamma\left(v, \xi_{n}\right)$ for any $\mu \in \boldsymbol{R}^{+}$and $\left(\mathrm{H}_{3}\right)$ implies that $\gamma\left(\mu v, \mu^{t} \xi_{n}\right)$ is simple for small μ.

Writing $t=p / q$, with $p, q \in N$ from (3.7) we get

$$
L_{\rho}=\rho^{m-1} L_{0}+\rho^{m-q / p} \tilde{L}_{1}+\rho^{m-2} \tilde{L}_{2}+\rho^{m-(q+p) / p} \tilde{L}_{3}+\cdots
$$

Eventually by adding some $L_{j}=0$ we can write

$$
L_{\rho}=\sum_{j=0}^{+\infty} \rho^{m-(p+j) / p} L_{j}
$$

Following the arguments of [5], we can find an asymptotic solution u_{ρ} of $L_{\rho} u^{\rho}=0$ in the form

$$
u_{\rho}=\sum_{k=0}^{+\infty} \rho^{-k / p} u_{k}
$$

and this fact contradicts the assumption on the well posedness of the Cauchy problem for P.

Hence $a_{\alpha, k^{p}}^{\left(\mu_{j}\right)}\left(0, e_{n}\right)=0$ if $\mu_{j_{p}}>0$ for any α, k.
Repeating these arguments a finite number of times we can conclude that $a_{\alpha, k}^{\left(\mu_{j} j^{j}\right.}\left(0, e_{n}\right)=0$ if $\mu_{j_{i}}>0$ for any α, k and end the proof of the proposition.

Proof of Theorem 1.1 (Necessary conditions). Let $P(x, D)=P_{m}\left(x, D_{x}\right)$ $+P_{m-1}\left(x, D_{x}\right)+\cdots$ be a differential operator satisfying $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and Ω be a neighboorhood of a point $\bar{\rho} \in \Sigma$.

Without loss of generality we can suppose $m_{1}=m$
Since p_{m} vanishes of order m on $\Sigma \cap \Omega$, the principal symbol $p_{m}(x, \xi)$ can be written at a point $(x, \xi) \in \Omega$ as

$$
\begin{equation*}
p_{m}(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}^{(0)}(x, \xi) q(x, \xi)^{\alpha} \tag{3.13}
\end{equation*}
$$

for some symbol $a_{\alpha}^{(0)}(x, \xi)$ positively homogeneous of degree zero.
By taking, for $(x, \xi) \in(-\Omega), a_{\alpha}^{(0)}(x, \xi)=: a_{\alpha}^{(0)}(x,-\xi)$, (3.13) holds for (x, ξ) $\in W=: \Omega \cup(-\Omega)$.

Let $A_{\alpha}^{(0)}\left(x, D_{x}\right)$ and $Q_{j}\left(x, D_{x}\right)$ be pseudodifferential operators with principal symbols $a_{\alpha}^{(0)}(x, \xi)$ and $q_{j}(x, \xi)$ respectively.

Hence, in W, we can write

$$
\begin{equation*}
P\left(x, D_{x}\right)=\sum_{|\alpha|=m} A_{\alpha}^{(0)}\left(x, D_{x}\right) Q\left(x, D_{x}\right)^{\alpha}+\tilde{P}_{m-1}\left(x, D_{x}\right)+\cdots \tag{3.14}
\end{equation*}
$$

Let $\tilde{\chi}(x, \xi)=(y, \eta)$ be the canonical change of variables of Section 2 and let F be the elliptic Fourier integral operator associated to $\tilde{\chi}$.

$$
\begin{aligned}
\tilde{P}\left(y, D_{y}\right)=: F P\left(x, D_{x}\right) F^{-1} & =\sum_{|\alpha|=m} \tilde{A}_{\alpha}^{(0)}\left(y, D_{y}\right)\left(D_{y_{0}}+R_{0}\right)^{\alpha_{0}}\left(D_{y_{d}}+R_{d}\right)^{\alpha_{d}} \\
& +\widetilde{G}_{m-1}\left(y, D_{y}\right)+\widetilde{G}_{m-2}\left(y, D_{y}\right)+\cdots
\end{aligned}
$$

for some pseudodifferential operator R_{j} of order 0 and \tilde{G}_{m-j} of order $m-j$
Applying Proposition 3.1 to \tilde{P} and then coming back to P we can conclude than, if P satisfies $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and the Cauchy problem for P is well posed in X_{0}, then $\left(\mathrm{H}_{4}\right)$ holds.

4. Sufficient conditions: the energy estimates

In this section we prove the well posedness of the Cauchy problem for P in X_{0}, under assumptions $\left(\mathrm{H}_{1}\right)--\left(\mathrm{H}_{4}\right)$, by using the method of energy estimates (see [5]).

Taking into account that the principal symbol of P is strictly hyperbolic outside Σ we can assume, without loss of generality, that $m_{1}=m$.

Since all the canonical transformations we made in Section 2 preserve the hyperplane $x_{0}=0$, then it will be enough to establish some suitable energy estimate for the operator

$$
\begin{equation*}
\tilde{P}\left(x, D_{x}\right)=\tilde{P}_{m}\left(x, D_{x}\right)+\sum_{j=1}^{m} \sum_{k=0}^{m-j} \sum_{|\alpha|=m-j-k} A_{\alpha, k}\left(x, D_{x}\right) D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{P}_{m}\left(x, D_{x}\right)=\sum_{k=0}^{m} \sum_{|\alpha|=m-k} A_{\alpha, k}\left(x, D_{x^{\prime}}, D_{x^{\prime \prime}}\right) D_{x^{\prime}}^{\alpha} D_{x_{0}}^{k} \tag{4.2}
\end{equation*}
$$

with $A_{\alpha, k}\left(x, D_{x}\right) \in O P S^{0}(X)$ and $A_{0, m}=I$.
Here we have set $x^{\prime}=\left(x_{1}, \cdots, x_{d}\right)$ and $x^{\prime \prime}=\left(x_{d+1}, \cdots, x_{n}\right)$.
Moreover we may assume that the symbol of P is supported in a conic neighborhood of $\tilde{\rho}=\left(\tilde{x}, \tilde{\xi}_{0}=0, \tilde{\xi}^{\prime}=0, \tilde{\xi}^{\prime \prime}\right) \in \tilde{\Sigma}, \tilde{\xi}^{\prime \prime} \neq 0$, of the form

$$
\Gamma_{\varepsilon}=\left\{(x, \xi) ;|x-\tilde{x}|<\varepsilon,\left|\xi^{\prime}\right|<\varepsilon\left|\xi^{\prime \prime}\right|,\left|\frac{\xi^{\prime \prime}}{\left|\xi^{\prime \prime}\right|}-\frac{\xi^{\prime \prime}}{\left|\tilde{\xi}^{\prime \prime}\right|}\right|<\varepsilon\right\} .
$$

Let us start by introducing a suitable class of symbols of pseudodifferential operators.

Definition 4.1. Let X be an open set of $\boldsymbol{R}_{x}^{n}=\boldsymbol{R}_{x^{\prime}}^{d} \times \boldsymbol{R}_{x^{\prime \prime}}^{n-d}$. We say that $a \in S^{m, p}\left(X \times \boldsymbol{R}^{n}\right)$ iff $a \in C^{\infty}\left(X \times \boldsymbol{R}^{n}\right)$ and for any compact $K \subset \subset X$, for any $\alpha \in \boldsymbol{Z}^{n}$, $\beta^{\prime} \in \boldsymbol{Z}^{d}, \beta^{\prime \prime} \in \boldsymbol{Z}^{n-d}$ there exists a positive constant $C_{\alpha, \beta^{\prime}, \beta^{\prime \prime}, K}$ such that:

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi^{\prime}}^{\beta^{\prime}} D_{\xi^{\prime}}^{\beta^{\prime \prime}} a\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\right| \leq C_{\alpha, \beta^{\prime}, \beta^{\prime}, K}\left\langle\xi^{\prime}\right\rangle^{m-\left|\beta^{\prime}\right|}\left\langle\xi^{\prime}, \xi^{\prime \prime}\right\rangle^{p-\left|\beta^{\prime \prime}\right|} \tag{4.3}
\end{equation*}
$$

where $\left\langle\xi^{\prime}\right\rangle=:\left(1+\left|\xi^{\prime}\right|^{2}\right)^{1 / 2}$ and $\left\langle\xi^{\prime}, \xi^{\prime \prime}\right\rangle=:\left(1+\left|\xi^{\prime}\right|^{2}+\left|\xi^{\prime \prime}\right|^{2}\right)^{1 / 2}$.
We denote by $\operatorname{OPS}^{m, p}(X)$ the class of pseudodifferential operators associated with $S^{m, p}\left(X \times \boldsymbol{R}^{n}\right)$ and we set:

$$
H^{m, p}\left(\boldsymbol{R}^{n}\right)=\left\{v \in L^{2}\left(\boldsymbol{R}^{n}\right) ;\|v\|_{m, p}^{2}=\int\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m}\left(1+\left|\xi^{\prime \prime}\right|^{2}\right)^{p}\left|\hat{v}\left(\xi^{\prime}, \xi^{\prime \prime}\right)\right|^{2} d \xi^{\prime} d \xi^{\prime \prime}<+\infty\right\} .
$$

In the following we denote simply by $\|\cdot\|$ the norm in $L^{2}\left(\boldsymbol{R}^{\eta}\right)$.
Remark 4.2. It is easy to check that:

1. If $a \in S^{m, p}\left(X \times \boldsymbol{R}^{n}\right), \operatorname{supp}(a) \subset\left\{(x, \xi) ;\left|\xi^{\prime}\right| \leq c\left|\xi^{\prime \prime}\right|\right\}$ then for any compact $K \subset \subset X$, for any $\alpha \in \boldsymbol{Z}^{n}, \beta^{\prime} \in \boldsymbol{Z}^{d}, \beta^{\prime \prime} \in \boldsymbol{Z}^{n-d}$ there exists a positive constant $C_{\alpha, \beta^{\prime}, \beta^{\prime \prime}, K}$ such that:

$$
\left.\left|D_{x}^{\alpha} D_{\xi^{\prime}}^{\beta^{\prime}} D_{\xi^{\prime \prime}}^{\beta^{\prime \prime}} a\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\right| \leq C_{\alpha, \beta^{\prime}, \beta^{\prime \prime}, K}\left\langle\xi^{\prime}\right\rangle^{m-\left|\beta^{\prime}\right|}\left\langle\xi^{\prime \prime}\right\rangle\right\rangle^{p-\left|\beta^{\prime \prime}\right|}
$$

where $\left\langle\xi^{\prime \prime}\right\rangle=:\left(1+\left|\xi^{\prime \prime}\right|^{2}\right)^{1 / 2}$.
2. If $a \in S^{m, p}\left(X \times \boldsymbol{R}^{n}\right), \operatorname{supp}(a) \subset\left\{(x, \xi) ;\left|\xi^{\prime \prime}\right| \leq c\left|\xi^{\prime}\right|\right\}$ then $a \in S^{m+p}\left(X \times \boldsymbol{R}^{n}\right)$.
3. If $a \in S^{m, p}\left(X \times \boldsymbol{R}^{n}\right), \operatorname{supp}(a) \subset\left\{(x, \xi) ;\left|\xi^{\prime}\right| \leq c\right\}$ then $a \in S^{0, p}\left(X \times \boldsymbol{R}^{n}\right)$.
4. If X^{\prime} is an open set of \boldsymbol{R}^{d} and $a \in S^{m}\left(X^{\prime} \times \boldsymbol{R}^{d}\right)$ then $a \in S^{m, 0}\left(X \times \boldsymbol{R}^{n}\right)$ with $X=X^{\prime} \times \boldsymbol{R}^{n-p}$
5. For any $j \geq 0, S^{m, p}\left(X \times \boldsymbol{R}^{n}\right) \subset S^{m-j, p+j}\left(X \times \boldsymbol{R}^{n}\right)$.
6. If $A\left(x, D_{x}\right) \in O P S^{m, p}(X)$ and $\sigma(A)\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)=0$ for $|x|>R$, for some $R>0$ then $A\left(x, D_{x}\right)$ is continuous from $H^{m, p}\left(\boldsymbol{R}^{n}\right)$ to $L^{2}\left(\boldsymbol{R}^{n}\right)$ i.e

$$
\left\|A\left(x, D_{x}\right) u\right\| \leq C\|u\|_{m, p}, \quad \forall u \in L^{2}\left(\boldsymbol{R}^{n}\right)
$$

We can prove the following energy estimates.

Proposition 4.3. For any $K \subset \subset X$ there exist a constant $C=C_{k}>0$ and a real number $\tau_{K}>0$ such that for any $u \in C_{0}^{\infty}(K)$ and any $\tau>\tau_{k}$ the following inequality holds:

$$
\begin{align*}
& C \int_{x_{0}<0}\left\|\tilde{P}\left(x, D_{x}\right) u\left(x_{0}, \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} \geq \sum_{j=1}^{m} \tau^{2 j-1} \sum_{k=0}^{m-j}\left\|D_{x_{0}}^{k} u(0, \cdot)\right\|_{m-j-k, 0}^{2} \tag{4.4}\\
&+\sum_{j=1}^{m} \tau^{2 j} \sum_{k=0}^{m-j} \int_{x_{0}<0}\left\|D_{x_{0}}^{k} u\left(x_{0} \cdot \cdot\right)\right\|_{m-j-k, 0}^{2} e^{-2 \tau x_{0}} d x_{0}
\end{align*}
$$

Proof. The proof is done along the sane lines of the proof of the well posedness of the Cauchy problem in the strictly hyperbolic case.

Let

$$
\tilde{p}_{m}(x, \xi)=\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right) \xi^{\prime \alpha} \xi_{0}^{k}
$$

be the principal symbol of \tilde{P}.
If $\tilde{\rho}=\left(\tilde{x}, \tilde{\xi}_{0}=0, \tilde{\xi}^{\prime}=0, \tilde{\xi}^{\prime \prime}\right) \in \tilde{\Sigma}, \tilde{\xi}^{\prime \prime} \neq 0$, the assumption $\left(\mathrm{H}_{3}\right)$ guarantees that the localization of \tilde{p}_{m} at $\tilde{\rho}$:

$$
\tilde{p}_{m, \tilde{\rho}}\left(y_{0}, y^{\prime}, \eta_{0}, \eta^{\prime}\right)=\sum_{k=0}^{m} \sum_{|\alpha|=m-k} a_{\alpha, k}\left(y_{0}, y^{\prime}, \tilde{x}^{\prime \prime}, 0, \frac{\tilde{\xi}^{\prime \prime}}{\left|\tilde{\xi}^{\prime \prime}\right|}\right) \eta^{\prime \alpha} \eta_{0}^{k}
$$

has m distinct real roots in η_{0}, for any $y_{0}, y^{\prime}, \eta^{\prime} \neq 0$.
Hence, for $\left(x, \xi^{\prime}, \xi^{\prime \prime}\right) \in \Gamma_{\varepsilon}$ with ε sufficiently small and $\xi^{\prime} \neq 0, \tilde{p}_{m}$ has m distinct real roots $\lambda_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)=\left|\xi^{\prime}\right| \lambda_{j}\left(x, \frac{\xi^{\prime}}{\left|\xi^{\prime}\right|} \frac{\xi^{\prime \prime}}{\left|\xi^{\prime \prime}\right|}\right), j=1, \cdots, m$,

$$
\lambda_{1}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right) \leq \lambda_{2}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right) \leq \cdots \leq \lambda_{m}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)
$$

Moreover, the strict hyperbolicity of p_{m} outside Σ, implies that, for $\left(x, \xi^{\prime}, \xi^{\prime \prime}\right) \in \Gamma_{\varepsilon}$ and ε small, there exist some positive constants c, C such that:

$$
\begin{array}{lc}
c\left|\xi^{\prime}\right| \leq\left|\lambda_{i}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)-\lambda_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\right| \leq C\left|\xi^{\prime}\right|, & \text { for } i \neq j \\
\left|\lambda_{i}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\right| \leq C\left|\xi^{\prime}\right|, & \text { for any } i .
\end{array}
$$

Let us take now a cutoff function $\chi \in C_{0}^{\infty}\left(\boldsymbol{R}^{k}\right)$ with $\chi\left(\xi^{\prime}\right)=1$ if $\left|\xi^{\prime}\right| \leq 1$ and $\chi\left(\xi^{\prime}\right)=0$ if $\left|\xi^{\prime}\right| \geq 2$ and set $\tilde{\lambda}_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)=\left(1-\chi\left(\xi^{\prime}\right)\right) \lambda_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)$.

It is easy to check that $\tilde{\lambda}_{j} \in S^{1,0}\left(X \times \boldsymbol{R}^{n}\right)$.
If $\Lambda_{j} \in O P S^{1,0}$ is a pseudodifferential operator with principal symbol $\tilde{\lambda}_{j}$ we have

$$
\tilde{P}_{m}\left(x, D_{x}\right)=\left(D_{x_{0}}-\Lambda_{j}\left(x, D_{x^{\prime}}, D_{x^{\prime \prime}}\right)\right) Q_{j}\left(x, D_{x_{0}}, D_{x^{\prime}}, D_{x^{\prime \prime}}\right)+S_{j}\left(x, D_{x_{0}}, D_{x^{\prime}}, D_{x^{\prime \prime}}\right)
$$

where

$$
Q_{j}\left(x, D_{x_{0}}, D_{x^{\prime}}, D_{x^{\prime}}\right)=\sum_{k=0}^{m-1} C_{j, k}\left(x, D_{x^{\prime}}, D_{x^{\prime}}\right) D_{x_{0}}^{m-1-k},
$$

with $C_{j, k} \in O P S^{k, 0}\left(X \times \boldsymbol{R}^{\eta}\right), \operatorname{supp}\left(c_{j, k}\right) \subset\left\{(x, \xi) ;\left|\xi^{\prime}\right|>1\right\}$ and

$$
S_{j}\left(x, D_{x_{0}}, D_{x^{\prime}}, D_{x^{\prime}}\right)=\sum_{k=0}^{m-1} S_{j, k}\left(x, D_{x^{\prime}}, D_{x^{\prime}}\right) D_{x_{0}}^{m-1-k}
$$

with $S_{j, k} \in O P S^{k+1,0}\left(X \times \boldsymbol{R}^{n}\right)$ and $\operatorname{supp}\left(s_{j, k}\right) \subset\left\{(x, \xi) ;\left|\xi^{\prime}\right| \leq 2\right\}$.
Notice that, thanks to 3) of Remark 4.2, $S_{j, k} \in O P S^{0,0}\left(X \times \boldsymbol{R}^{n}\right)$.
Let us calculate $2 i \operatorname{Im}\left\langle\tilde{P}\left(x, D_{x}\right) u, Q_{j}\left(x, D_{x}\right) u\right\rangle$, for $u \in C_{0}^{\infty}(K), K \subset \subset X$.
We have:

$$
\begin{align*}
& 2 i \operatorname{Im}\left\langle\tilde{P}\left(x, D_{x}\right) u, Q_{j}\left(x, D_{x}\right) u\right\rangle \\
& =2 i \operatorname{Im}\left\langle\tilde{P}_{m}\left(x, D_{x}\right) u, Q_{j}\left(x, D_{x}\right) u\right\rangle+2 i \operatorname{Im}\left\langle\left(\tilde{P}-\tilde{P}_{m}\right)\left(x, D_{x}\right) u, Q_{j}\left(x, D_{x}\right) u\right\rangle \\
& =2 i \operatorname{Im}\left\langle\left(D_{x_{0}}-\Lambda_{j}\left(x, D_{x^{\prime}}, D_{x^{\prime}}\right)\right) Q_{j}\left(x, D_{x}\right) u, Q_{j}\left(x, D_{x}\right) u\right\rangle \tag{4.5}\\
& +2 i \operatorname{Im}\left\langle S_{j}\left(x, D_{x}\right) u, Q_{j}\left(x, D_{x}\right) u\right\rangle \\
& +2 i \operatorname{Im}\left\langle\left(\tilde{P}-\tilde{P}_{m}\right)\left(x, D_{x}\right) u, Q_{j}\left(x, D_{x}\right) u\right\rangle
\end{align*}
$$

Hence, multiplying the above identity by $i \tau e^{-2 t x_{0}}$ and integrating it for $x_{0}<0$, we have, for τ sufficiently large:

$$
\begin{align*}
& C \int_{x_{0}<0}\left\|\tilde{P}\left(x, D_{x}\right) u\left(x_{0} \cdot \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} \\
& \geq \tau \sum_{j=1}^{m}\left\|Q_{j}\left(x, D_{x}\right) u(0, \cdot)\right\|^{2} \\
& +\tau^{2} \sum_{j=1}^{m} \int_{x_{0}<0}\left\|Q_{j}\left(x, D_{x}\right) u\left(x_{0}, \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} \tag{4.6}\\
& -\tau \int_{x_{0}<0}\left\|\left(\tilde{P}-\tilde{P}_{m}\right)\left(x, D_{x}\right) u\left(x_{0} \cdot \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} \\
& -\tau \sum_{j=1}^{m} \int_{x_{0}<0}\left\|S_{j}\left(x, D_{x}\right) u\left(x_{0} \cdot \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} .
\end{align*}
$$

Now, we can estimate the last two terms in (4.6) by

$$
\begin{aligned}
& \tau \int_{x_{0}<0}\left\|\left(\tilde{P}-\tilde{P}_{m}\right)\left(x, D_{x}\right) u\left(x_{0}, \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} \\
& +\tau \sum_{j=1}^{m} \int_{x_{0}<0}\left\|S_{j}\left(x, D_{x}\right) u\left(x_{0} \cdot \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} \\
& \leq \tau C \sum_{j=1}^{m} \sum_{k=0}^{m-j} \int_{x_{0}<0}\left\|D_{x_{0}}^{k} u\left(x_{0} \cdot \cdot\right)\right\|_{m-j-k, 0}^{2} e^{-2 \tau x_{0}} d x_{0} .
\end{aligned}
$$

On the other hand, using the Lagrange interpolation formula, we have, for $k=0, \cdots, m-1$

$$
\xi_{0}^{k}=\sum_{j=1}^{m} \frac{q_{j}(x, \xi) \tilde{\lambda}_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)^{k}}{\Pi_{i \neq j}\left(\tilde{\lambda}_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)-\tilde{\lambda}_{i}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\right)} \quad \text { if }\left|\xi^{\prime}\right| \geq 2 .
$$

Take now a cutoff function $\chi \in C_{0}^{\infty}\left(\boldsymbol{R}^{k}\right)$ with $\chi\left(\xi^{\prime}\right)=1$ if $\left|\xi^{\prime}\right| \leq 5 / 2$ and $\chi\left(\xi^{\prime}\right)=0$ if $\left|\xi^{\prime}\right| \geq 3$.

Hence

$$
\left(1-\chi^{\prime}\left(\xi^{\prime}\right)\right)\left\langle\xi^{\prime}\right\rangle^{m-1-k} \xi_{0}^{k}=\sum_{j=1}^{m} q_{j}(x, \xi) \frac{\left(1-\chi^{\prime}\left(\xi^{\prime}\right)\right)\left\langle\xi^{\prime}\right\rangle}{\prod_{i \neq j}\left(\tilde{\lambda}_{j}\left(x, \xi^{\prime}-k, \xi^{\prime \prime}\right)-\tilde{\lambda}_{i}\left(x, \tilde{\xi}^{\prime}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\right)\right.} \quad \text { if }\left|\xi^{\prime}\right| \geq 2 .
$$

Since

$$
m_{j, k}=: \frac{\left(1-\chi^{\prime}\left(\xi^{\prime}\right)\right)\left\langle\xi^{\prime}\right\rangle^{m-1-k} \tilde{\lambda}_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)^{k}}{\Pi_{i \neq j}\left(\tilde{\lambda}_{j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)-\widetilde{\lambda}_{i}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\right)}
$$

belongs to S^{0}, we have:

$$
\begin{align*}
\left\|\left(1-\chi^{\prime}\left(D_{x^{\prime}}\right)\right) D_{x_{0}}^{k} u\left(x_{0}, \cdot\right)\right\|_{m-1-k, 0}^{2} \leq & \sum_{j=1}^{m}\left\|Q_{j}\left(x, D_{x}\right) u\left(x_{0} \cdot \cdot\right)\right\|^{2} \tag{4.7}\\
& +C \sum_{j=2}^{m} \sum_{k=0}^{m-j}\left\|D_{x_{0}}^{k} u\left(x_{0} \cdot \cdot\right)\right\|_{m-j-k, 0}^{2}
\end{align*}
$$

On the other hand, if $k \leq m-2$

$$
\begin{equation*}
\left\|\chi^{\prime}\left(D_{x^{\prime}}\right) D_{x_{0} u}^{k} u\left(x_{0}, \cdot\right)\right\|_{m-1-k, 0}^{2} \leq C\left\|D_{x_{0}}^{k} u\left(x_{0}, \cdot\right)\right\|^{2} \tag{4.8}
\end{equation*}
$$

Hence (4.7) and (4.8) give, for $k \leq m-2$:

$$
\begin{align*}
\left\|D_{x_{0}}^{k} u\left(x_{0}, \cdot\right)\right\|_{m-1-k, 0}^{2} & \leq \sum_{j=1}^{m}\left\|Q_{j}\left(x, D_{x}\right) u\left(x_{0}, \cdot\right)\right\|^{2} \tag{4.9}\\
& +C \sum_{j=2}^{m} \sum_{k=0}^{m-j}\left\|D_{x_{0}}^{k} u\left(x_{0}, \cdot\right)\right\|_{m-j-k, 0}^{2} .
\end{align*}
$$

Moreover, since $D_{x_{0}}^{m-1}=Q_{j}-\sum_{k=1}^{m-1} C_{j, k} D_{x_{0}}^{m-j-k}$ we have

$$
\begin{equation*}
\left\|D_{\mathrm{x}_{0}}^{m-1} u\left(x_{0}, \cdot\right)\right\|^{2} \leq\left\|Q_{j}\left(x, D_{x}\right) u\left(x_{0}, \cdot\right)\right\|^{2}+C \sum_{k=0}^{m-2}\left\|D_{x_{0}}^{k} u\left(x_{0} \cdot \cdot\right)\right\|_{m-1-k, 0}^{2} . \tag{4.10}
\end{equation*}
$$

From (4.6), (4.9) and (4.10) we get, for large τ

$$
\begin{align*}
& C \int_{x_{0}<0}\left\|\tilde{P}\left(x, D_{x}\right) u\left(x_{0}, \cdot\right)\right\|^{2} e^{-2 \tau x_{0}} d x_{0} \geq \tau \sum_{k=0}^{m-1}\left\|D_{x_{0}}^{k} u(0, \cdot)\right\|_{m-1-k, 0}^{2} \\
& +\tau^{2} \sum_{k=0}^{m-1} \int_{x_{0}<0}\left\|D_{x_{0}}^{k} u\left(x_{0}, \cdot\right)\right\|_{m-1-k, 0}^{2} e^{-2 \tau x_{0}} d x_{0} \tag{4.11}\\
& -\tau^{2} \sum_{j=2}^{m} \sum_{k=0}^{m-j} \int_{x_{0}<0}\left\|D_{x_{0}}^{k} u\left(x_{0} \cdot \cdot\right)\right\|_{m-j-k} e^{-2 \tau x_{0}} d x_{0}
\end{align*}
$$

and using classical estimates for the terms

$$
\begin{equation*}
\int_{x_{0}<0}\left\|D_{x_{0}}^{k} u\left(x_{0}, \cdot\right)\right\|_{m-1-k, 0}^{2} e^{-2 \tau x_{0}} d x_{0}, \quad k=0, \cdots, m-1 \tag{4.12}
\end{equation*}
$$

we get (4.4) and we end the proof of the proposition.
Proof of Theorem 1.1 (Sufficient conditions). The proof of the theorem follows easily from Proposition 4.3.

Actually, we remark that $P\left(x, D_{x}\right)$ is a hyperbolic differential operator with simple characteristics outside Σ.

Hence, by using classical estimates for strictly hyperbolic operator, Proposition 4.3 and a microlocal partition of the unity, the proof of Theorem 1.1 can be completed by following the arguments of [5].

References

[1] E. Bernardi: Propagation of singularities for hyperbolic operators with multiple involutive characteristics, Osaka J. Math., 25 (1988), 19-31.
[2] E. Bernardi, A. Bove and T. Nishitani: Well posedness of the Cauchy problem for a class of hyperbolic operators with a stratified multiple variety: necessary conditions, (preprint).
[3] L. Garding: Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), 1-62.
[4] B. Helffer: Invariants associés a une classe d'opérateurs pseudodifférentiels et applications a l'hypoellipticité, Ann. Inst. Fourier 26, 2 (1976), 55-70.
[5] L. Hörmander: The Cauchy problem for differential equations with double characteristics, J. d'Analyse Math. 32 (1977), 118-196.
[6] L. Hörmander: The analysis of linear partial differential operators I-IV, Springer-Verlag (1985)

Berlin.
[7] V. Ja. Ivrii, V.M. Petkov: Necessary conditions for the Cauchy problem for non strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk. 29 (1974), 3-70.
[8]. R. Lascar: Propagation des singularités des solutions d'équations pseu-dodifférentielles a caracteristiques de multiplicité variables, Lecture Notes in Math. 856, Springer-Verlag, 1981.
[9] R.B. Melrose, G.A.Uhlmann: Microlocal Structure of Involutive Conical Refraction, Duke Math. Journal 46 (1979), 571-582.
[10] T. Nishitani: Hyperbolicity of localization, Ark. Mat. 31 (1993), 377-393.
[11] M. Petrini, V. Sordoni: Propagation of singularities for hyperbolic operators with multiple involutive characteristics, Osaka J. Math. 28 (1991), 911-933.
[12] J. Sjöstrand: Propagation of singularities for operators with multiple involutive characteristics, Ann. Inst. Fourier 26 (1) (1976), 141-155.

Dipartimento di Matematica
Universitá di Bologna
Piazza di Porta S. Donato,
40127 Bologna, Italy
email: sordoni@dm.unibo.it

