AN EXTENSION OF WHITNEY'S CONGRUENCE

Yuichi YAMADA

(Received July 1, 1993)

1. Introduction and Main results

Throughout this paper, we will work in the $P L$ category, and all embeddings will be locally flat.

Let M be a connected and oriented 4-manifold, F a closed and connected surface of Euler characteristic $\chi(F)$. For a given embedding of F into $M(F \subset M)$, let $e(M, F)$ be the normal Euler number of it, and let $[F]$ be the element in $H_{2}\left(M ; Z_{2}\right)$ represented by F in M. We are interested in the ralation between $e(M, F)$ and $[F]$. In the case of $M=S^{4}$, the following theorem is well-known.

Theorem 1.1 (H. Whitney [8]: Whitney's congruence). If $M=S^{4}$,

$$
e(M, F)+2 \chi(F) \equiv 0 \quad \bmod 4
$$

For some time, we assume that M is closed and $H_{1}(M ; Z)=\{0\}$. We will define a Z_{4}-quadratic map q from $H_{2}\left(M ; Z_{2}\right)$ to Z_{4} as follows. By the assumption $H_{1}(M ; Z)=\{0\}$, the $\bmod 2$-reduction map p_{2} from $H_{2}(M ; Z)$ to $H_{2}\left(M ; Z_{2}\right)$ is surjective. For a given element α in $H_{2}\left(M ; Z_{2}\right)$, we define $q(\alpha)$ by

$$
q(\alpha) \equiv \tilde{\alpha} \circ \tilde{\alpha} \quad \bmod 4,
$$

where $\tilde{\alpha}$ is an element of $p_{2}^{-1}(\alpha)$ and \circ is the intersection form on $H_{2}(M ; Z)$.
The well-definedness of q is easy to see, and q is Z_{4}-quadratic, i.e.,

$$
q(\alpha+\beta) \equiv q(\alpha)+q(\beta)+2(\alpha \bullet \beta) \bmod 4
$$

where - is (Z_{2}-valued) intersection form on $H_{2}\left(M ; Z_{2}\right)$, and 2: $Z_{2} \rightarrow Z_{4}$ is the natural embedding.

Using the quadratic function q, we extend Theorem 1.1 as follows:

Theorem 1.2.

$$
e(M, F)+2 \chi(F) \equiv q([F]) \quad \bmod 4
$$

It is well-known that if $F \subset M$ is characteristic (i.e., $[F]$ is dual to the 2 nd Stiefel-Whitney class $w_{2}(M)$, then $\sigma(M) \equiv[F] \circ[F] \bmod 8$, where $\sigma(M)$ is the signature of M. Thus we have

Corollary 1.3 (V.A. Rochlin [5], see also [4]: Generalized Whitney's congruence). If $F \subset M$ is characteristic,

$$
e(M, F)+2 \chi(F) \equiv \sigma(M) \quad \bmod 4
$$

Theorem 1.2 can be extended to the general case in which the only assumption on M is its orientability; we need not assume that $H_{1}(M ; Z)=\{0\}$ nor that M is closed. M can even be non-compact. In fact, we can prove the following.

Theorem 1.4. Let M be an oriented 4-manifold. A map which assigns $e(M, F)+2 \chi(F)$ mod 4 to an embedding $F \subset M$ induces a Z_{4}-quadratic map from $H_{2}\left(M ; Z_{2}\right)$ to Z_{4}. We will also call it q.

For immersions from F into M, we have the following.

Corollary 1.5. Let M be an oriented 4-manifold, F an closed surface immersed in M with only normal crossings. Then

$$
e(M, F)+2 \chi(F)+2 \# \operatorname{self}(F) \equiv q([F]) \quad \bmod 4,
$$

where \#self(F) is the number of self-intersection points of F.

After writing the first version of this paper, we were informed by Prof. B.-H. Li that he found a general formula which includes our theorem 1.4([3]). In fact, he works in ($2 n, n$)-dimensional case. His proof is homotopy-theoretic, on the other hand, ours is geometric.

2. A Connected sum formula

For a given embedding $F \subset M$, assume that there is a connected sum decomposition of M :

$$
M=M_{1} \# M_{2}=\operatorname{punc} M_{1} \bigcup_{\partial} \operatorname{punc} M_{2},
$$

such that each embedding $F_{i} \subset$ punc M_{i} is proper (i.e., $F_{i} \cap \partial\left(\right.$ punc $\left.M_{i}\right)=\partial F_{i}$), where punc M_{i} is M_{i} with an open 4-ball deleted, and $F_{i}=F \bigcap$ punc M_{i}, for $i=1,2$. Here we assume that F intersects $\partial\left(\right.$ punc $\left.M_{i}\right)$ transversely. The symbol U_{0} on the right-hand side means disjoint union with boundary identified by an orientation reversing homeomorphism.

Then

$$
\left(\partial \text { punc } M_{1}, \partial F_{1}\right)=\left(\partial \operatorname{punc} M_{2}, \partial F_{2}\right) \cong\left(S^{3}, L\right)
$$

for a certain link L in S^{3}.
Let S be a (connected) Seifert Surface for L in S^{3}, and regard it as being in $S^{3}=\partial B^{4}: S \subset S^{3}=\partial B^{4} \subset B^{4}$. Let $\left(M_{i}, \hat{F}_{i}\right)$ denote (punc $\left.M_{i}, F_{i}\right) \bigcup_{\hat{t}}\left(B^{4}, S\right)$, for $i=1,2$. Now, we have

Lemma 2.1 Connected Sum Formula.
Let M_{i}, F, \hat{F}_{i} be as above. Then

$$
e\left(M_{1} \# M_{2}, F\right)=e\left(M_{1}, \hat{F}_{1}\right)+e\left(M_{2}, \hat{F}_{2}\right) .
$$

In particular,

$$
e\left(M_{1} \# M_{2}, F_{1} \# F_{2}\right)=e\left(M_{1}, F_{1}\right)+e\left(M_{2}, F_{2}\right) .
$$

Proof. Let v be a non-zero, normal vector field over S in S^{3}. We can take a transverse push-off F^{\prime} of F in M such that $F^{\prime} \cap\left(\partial\right.$ punc $\left.M_{1}\right)=v(L)$. Then

$$
\begin{aligned}
e(M, F) & =\sum_{p \in F \cap F_{1}^{\prime}} \operatorname{sign}(p)+\sum_{p \in F \cap F_{2}^{\prime}} \operatorname{sign}(p) \\
& =\sum_{p \in F_{1} \cap F_{1}^{\prime}} \operatorname{sign}(p)+\sum_{p \in F_{2} \cap F_{2}^{\prime}} \operatorname{sign}(p),
\end{aligned}
$$

where F_{i}^{\prime} is $F^{\prime} \bigcap$ punc M_{i}, for $i=1,2$. On the other hand, if we regard $F_{i}^{\prime} \bigcup_{\partial} v(S)$ as a push-off of \hat{F}_{i} in M_{i}, then

$$
e\left(M_{i}, \hat{F}_{i}\right)=\sum_{p \in F_{i} \cap F_{i}^{\prime}} \operatorname{sign}(p) .
$$

Thus we have the lemma.

3. Proof of Theorem $\mathbf{1 . 2}$

The proof is devided into 3 steps. We are given an embedding $F \subset M$.
(Step 1) We will show the theorem for $M=m \boldsymbol{C} P^{2} \# n \overline{\boldsymbol{C P}}{ }^{2}(m+n>0)$. We have a standard handlebody decomoposition of M :

$$
M=H^{0} \bigcup\left(\bigcup_{i=1}^{m+n} H_{i}^{2}\right) \bigcup H^{4},
$$

where H^{r} is an r-handle, and fix an identification

$$
h_{i}^{2}: D^{2} \times D^{2} \xlongequal{\rightrightarrows} H_{i}^{2} .
$$

Without loss of generality (by general position augument), we can assume the following.
(1) $F \bigcap H^{4}=\phi$.
(2) $F \bigcap H_{i}^{2}=h_{i}^{2}\left(D^{2} \times\left\{\right.\right.$ finite points in int $\left.\left.D^{2}\right\}\right)$, i.e., each component of $F \bigcap H_{i}^{2}$ is parallel to the core of H_{i}^{2}.

We regard M as $S^{4} \# M$ by $H^{0} \bigcup\left(\bigcup_{i=1}^{m+n} H_{i}^{2} \bigcup H^{4}\right)=B^{4} \bigcup_{\partial}$ punc M, and use the notation " $M_{i}, F_{i}, \hat{F}_{i}$ " as in the last section ($M_{i}=S^{4}, M_{2}=M$). Note that F_{2} consists of some proper disks, and F_{1} is F with some open 2-disks deleted.

We orient all the components of F_{2}, and take a Seifert surface S so that the orientation of S is compatible with that of F_{2}. Note that $\hat{F}_{2}\left(=S \bigcup F_{2}\right)$ is an orientable closed surface.

In the situation above, we have the following equalities.
(1) $e(M, F)=e\left(S^{4}, \hat{F}_{1}\right)+e\left(M, \hat{F}_{2}\right)$
(2) $e\left(S^{4}, \hat{F}_{1}\right)+2 \chi\left(\hat{F}_{1}\right) \equiv 0 \bmod 4$
(3) $e\left(M, \hat{F}_{2}\right)+2 \chi\left(\hat{F}_{2}\right) \equiv e\left(M, \hat{F}_{2}\right) \equiv q\left(\left[\hat{F}_{2}\right]\right) \bmod 4$
(4) $\left[\hat{F}_{2}\right]=[F]$ in $H_{2}\left(M ; Z_{2}\right)$
(5) $\chi\left(\hat{F}_{1}\right)+\chi\left(\hat{F}_{2}\right) \equiv \chi(F) \quad \bmod 2$

The first holds by the connected sum formula, the second by Theorem 1.1, the third follows from the orientability of \hat{F}_{2}, and the others are easy to verify. Now the theorem in this case follows from these equalities.
(Step 2) We will prove the theorem for a simply-connected manifold. We use the following fact [7], [4: Fact (2)].

Fact. Let M be a simply-connected, closed and oriented 4-manifold. Then there exist integers $l, m, n \geq 0$ such that

$$
M \#(l+1) \overline{C P^{2}}=m C P^{2} \# n \overline{C P^{2}} .
$$

For a given embedding $F \subset M$, we take a connected sum $M \#(l+1) C P^{2} \# \overline{C P^{2}}$ disjointly from the neighborhood of F. It is easy to see that $e(M, F), \chi(F)$ and $q([F])$ are unchanged by the connected sum. Thus the proof is reduced to the first step.
(Step 3) The general case $\left(H_{1}(M ; Z)=\{0\}\right)$. For a given embedding $F \subset M$, and an element γ of $\pi_{1}(M)$, we take an embedded circle c in M such that
(1) c represents the element γ,
(2) $c \bigcap F=\phi$, and
(3) c bounds an immersed oriented surface G in M which satisfies the following condition: for each generator x of $H_{2}(M ; Z)$, there is a representing surface T_{x} such that $G \circ T_{x}=0$ and $G \circ F=0$.

This is possible because of the assumption $H_{1}(M ; Z)=\{0\}$ and $\partial G \neq \phi$. We do surgery on M along c, and repeat it till $\pi_{1}(M)$ becomes trivial. At each surgery, $e(M, F), \chi(F)$ and $q([F])$ remain unchanged. We see it as follows ([6]). Suppose that we get

$$
M^{\prime}=D^{2} \times S^{2} \bigcup_{\varphi \mid \partial}\left\{M \backslash \operatorname{int} \varphi\left(S^{1} \times D^{3}\right)\right\}
$$

from M by surgery along c, where φ is a trivialization of a tubular neighborhood of c. Then the homology of M changes into

$$
H_{2}\left(M^{\prime} ; Z\right) \cong H_{2}(M ; Z) \oplus Z\langle x\rangle \oplus Z\langle y\rangle,
$$

where $x=\left[\left(D^{2} \times *\right) \bigcup G\right]$ and $y=\left[* \times S^{2}\right]$.
Thus the intersection form changes as

$$
H_{2}\left(M^{\prime} ; Z\right) \cong H_{2}(M, Z) \oplus\left(\begin{array}{ll}
* & 1 \\
1 & 0
\end{array}\right) .
$$

Under the isomorphism, the corespondence of $[F]_{\text {old }}$ and $[F]_{\text {new }}$ is:

$$
[F]_{\text {new }} \leftrightarrow[F]_{\text {old }}+0+0 .
$$

Thus $q([F])$ is unchanged, and the proof is reduced to the second step.

4. Proof of Theorem 1.4

This proof is devided into 3 steps. We are given an embedding $F \subset M$. If M is closed and $H_{1}(M ; Z)=\{0\}$, then Theorem 1.2 applies. We will consider other cases step by step.
(Step 1) Suppose that M is closed but $H_{1}(M ; Z) \neq\{0\}$. We perform surgery along embedded circles c which are disjoint from F and represent non-zero elements of $H_{1}(M ; Z)$.

Suppose that two embedded surfaces $F_{1}, F_{2} \subset M$ satisfy $\left[F_{1}\right]=\left[F_{2}\right]$ in $H_{2}\left(M ; Z_{2}\right)$ and they are in general position. In Z_{2}-coefficient chain complex, we can take a 3 -chain Δ^{3} whose boundary is $F_{1}+F_{2}$. We will show that we can do surgery (along c to get M^{\prime} from M) so that F_{1} and F_{2} also satisfy $\left[F_{1}\right]=\left[F_{2}\right]$ in $H_{2}\left(M^{\prime} ; Z_{2}\right)$.

Since Δ has boundary $F_{1}+F_{2}$ with Z_{2}-coefficient, the small normal circle of F_{i} intersects Δ at an odd number of points. If necessary, by connecting c with the small normal circle along Δ, we can choose c such that the geometric intersection number $\#(c \bigcap \Delta)$ is even and $N(c) \cap \Delta$ consists of an even number of 3-balls B,
where $N(c)$ is a thin tubular neighborhood of c. Then in $D^{2} \times S^{2}$ which is to be attached to $M \backslash \operatorname{int} N(c)$, we can take $\{$ half as many proper arcs $\} \times S^{2}$ whose boundary is the same as $(\partial N(c), \partial B)$. Then it is clear that $F_{1}+F_{2}$ bounds a new 3-chain Δ^{\prime} in M^{\prime} with Z_{2}-coefficient.
(Step 2) Suppose that M is compact but $\partial M \neq \phi$.
Let $D M$ be the double of $M\left(D M=M \bigcup_{\hat{0}}-M\right)$. The mapping q is already well-defind over $D M$ by Step 1. Over M, the mapping is the composition $q \circ i_{*}$, where i_{*} is the homology homomorphism: $H_{2}\left(M ; Z_{2}\right) \rightarrow H_{2}\left(D M ; Z_{2}\right)$, induced by canonical inclusion i.
(Step 3) Suppose that M is non-compact. There is a seqence of countably many compact oriented 4 -manifolds and inclusions:

$$
M_{1} \subset M_{2} \subset M_{3} \subset \cdots \text { such that } \bigcup_{i=1}^{\infty} M_{i}=M .
$$

Since F is compact, there is a sufficiently large n such that $F \subset M_{n}$. We can apply the method in Step 2.

5. Proof of Corollary 1.5

We are given an immersed surface F in M with only normal crossings. For a crossing point p, we take a 4-ball neighborhood B around p. To remove the crossing at p, we cut out int $B \bigcap F$ from F, where $\partial B \bigcap F \subset \partial B$ is a Hopf link, and glue in an annulus $A \subset \partial B$. We call this new surface \tilde{F}. By the construction, $[\tilde{F}]=[F]$ in $H_{2}\left(M ; Z_{2}\right), \chi(\tilde{F}) \equiv \chi(F) \bmod 2$ and $\# \operatorname{self}(\tilde{F})=\# \operatorname{self}(F)-1$.

Figure 1

We show $e(M, \tilde{F})=e(M, F) \pm 2$. Let F^{\prime} be a push-off of F. We can assume that F^{\prime} is parallel to F near p and in particular $\partial B \bigcap F^{\prime}$ gives a trivial framing for each component of $\partial B \bigcap F$ in $\partial B \cong S^{3}$. Then we can take an annulus A such that $\partial A=\partial B \bigcap F$ and $A \bigcap\left(\partial B \bigcap F^{\prime}\right)$ consists of two points whose signs are the same (Figure 1). Let A^{\prime} be a push-off of A which is properly embedded in B^{4} such that $\partial A^{\prime}=\partial B \bigcap F^{\prime}$. If we regard $\left(F^{\prime} \backslash\right.$ int $\left.B\right) \bigcup_{0} A^{\prime}$ as a push-off of \tilde{F}, we have the claim.

We can repeat the above process till \#self(F) becomes zero without changing both sides of the congruence. Thus we can reduce the corollary to Theorem 1.2 or 1.4 .

6. Examples

In this section, we will give two examples for Theorem 1.2.
Example 1. ([2]) Let $M=m \boldsymbol{C} P^{2} \# n \overline{\boldsymbol{C P}}{ }^{2}(m+n>0)$, and identify its 2 nd homology $H_{2}\left(M ; Z_{2}\right)$ with $\oplus_{i=1}^{m} Z_{2}\left\langle\xi_{i}\right\rangle \oplus \oplus_{j=1}^{n} Z_{2}\left\langle\eta_{j}\right\rangle$. For an embedding $F \subset M$, such that $[F] \equiv \sum_{i=1}^{k} \xi_{i}+\sum_{j=1}^{l} \eta_{j}$,

$$
e(M, F)+2 \chi(F) \equiv k-l \bmod 4
$$

Example 2. Let $M=S^{2} \times S^{2}$, and identify its 2nd homology $H_{2}\left(S^{2} \times S^{2} ; Z\right)$ with $Z\langle x\rangle \oplus Z\langle y\rangle$, where $x \circ x=y \circ y=0$ and $x \circ y=y \circ x=1$. Let $S^{2}(m) \subset S^{2} \times S^{2}$ be an embedding of S^{2} representing $1 \cdot x+m \cdot y$, which is for instance the graph of a degree m map $g_{m}: S^{2} \rightarrow S^{2}$. Then

$$
e\left(S^{2} \times S^{2}, S^{2}(m)\right)=2 m
$$

As an element of $H_{2}\left(S^{2} \times S^{2} ; Z_{2}\right) \cong Z_{2}\langle\underline{x}\rangle \oplus Z_{2}\langle\underline{y}\rangle$,

$$
\left[S^{2}(m)\right] \equiv \begin{cases}\underline{x} & \text { if } m \text { is even } \\ \underline{x}+\underline{y} & \text { if } m \text { is odd }\end{cases}
$$

Thus we have

$$
q\left(\left[S^{2}(m)\right]\right) \equiv\left\{\begin{array}{ll}
0 & \text { if } m \text { is even } \\
2 & \text { if } m \text { is odd }
\end{array} \quad \bmod 4\right.
$$

Example 2 shows that our main theorem is optimal in a sense.
Acknowledgement. The author would like to thank to Professor Bang-He Li for sending his preprint [3]. Also the author would like to express sincere gratitude to Professors Yukio Matsumoto and Mikio Furuta for their valuable advice and encouragement.

References

[1] R.C. Kirby: "The Topology of 4-Manifolds," Lecture Notes in Math. 1374, Springer, 1989.
[2] Li Bang-He: Embeddings of surfaces in 4-manifolds (I)(II), Chinese Sci. Bull. 36 (1991), 2025-2033.
[3] ——: Generalization of Whitney-Mahowald Theorem, preprint.
[4] Y. Matsumoto: An elementary proof of Rochlin's Signature Theorem and its extension by Guillou and Marin, in "Progress in Math. 62," Birkhäuser Inc., 1986.
[5] V.A. Rohlin: Proof of Gudkov's hypothesis, Funct. Anal. Appl. 6 (1972), 136-138.
[6] C.T.C. Wall: Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140.
[7] -: On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149.
[8] H. Whitney: On the topology of differentiable manifolds, in "Lectures in Topology," Universtiy of Michigan Press, Ann. Arbor. Mich. (1941), 101-141.

Department of Mathematical Sciences
University of Tokyo
7-3-1 Hongo Bunkyo-ku
Tokyo, 113, Japan.

