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AN EXTENSION OF WHITNEY'S CONGRUENCE
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1. Introduction and Main results

Throughout this paper, we will work in the PL category, and all embeddings
will be locally flat.

Let M be a connected and oriented 4-manifold, F a, closed and connected
surface of Euler characteristic χ(F). For a given embedding of F into M(F α M),
let e(M,F) be the normal Euler number of it, and let [F] be the element in
H2(M;Z2) represented by F in M. We are interested in the ralation between
e(M,F) and [F]. In the case of M = 5 4 , the following theorem is well-known.

Theorem 1.1 (H. Whitney [8]: Whitney's congruence). If M=S4,

e(M, F) + 2χ(F) = 0 mod 4.

For some time, we assume that M is closed and Hi(M;Z) = {0}. We will
define a Z4-quadratic map q from H2(M\Z2) to Z 4 as follows. By the assumption
//1(M;Z) = {0}, the mod 2-reduction map p2 from H2(M;Z) to H2(M;Z2) is
surjective. For a given element α in H2{M\Z2\ we define #(α) by

#(α) = αo5 mod 4,

where α is an element of p2~
ι((x) and o is the intersection form on H2(M;Z).

The well-definedness of q is easy to see, and q is Z4-quadratic, i.e.,

q(oc + β) = q(oc) + q(β) + 2(α β) mod 4,

where is (Z2-valued) intersection form on H2(M\ Z2), and 2: Z 2 -• Z 4 is the
natural embedding.

Using the quadratic function q, we extend Theorem 1.1 as follows:

Theorem 1.2.

mod 4.
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It is well-known that if F c M is characteristic (i.e., [F] is dual to the 2nd
Stiefel-Whitney class w2(M))9 then σ(M) = \_F] ° [F] mod 8, where σ(M) is the signature
of M. Thus we have

Corollary 1.3 (V.A. Rochlin [5], see also [4]: Generalized Whitney's
congruence). IfFczM is characteristic,

e(M, F) + 2χ(F) = σ(M) mod 4.

Theorem 1.2 can be extended to the general case in which the only assumption
on M is its orientability; we need not assume that Hί(M;Z) = {0} nor that M is
closed. M can even be non-compact. In fact, we can prove the following.

Theorem 1.4. Let M be an oriented 4-manifold. A map which assigns
e(M, F) -f 2χ(F) mod 4 to an embedding F a M induces a Z^-quadratic map from
H2{M;Z2) to Z 4. We will also call it q.

For immersions from F into M, we have the following.

Corollary 1.5. Let M be an oriented 4-manifold9 F an closed surface immersed
in M with only normal crossings. Then

e{M, F) + 2χ(F) + 2# selflF) = ?([F]) mod 4,

where $self{F) is the number of self-intersection points of F.

After writing the first version of this paper, we were informed by Prof. B.-H.
Li that he found a general formula which includes our theorem 1.4([3]). In fact,
he works in (2«, «)-dimensional case. His proof is homotopy-theoretic, on the
other hand, ours is geometric.

2. A Connected sum formula

For a given embedding F a M, assume that there is a connected sum
decomposition of M:

1 (JapuncM2,

such that each embedding Ft c= puncMr is proper (i.e., FfQδίpuncAf^δi^), where
puncMj is Mi with an open 4-ball deleted, and F^FQpuncMf, for z=l,2. Here
we assume that F intersects δ(puncMj) transversely. The symbol (J a on the
right-hand side means disjoint union with boundary identified by an orientation
reversing homeomorphism.
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Then

(δpunc Mί9 ΘFJ = (dpunc M2, dF2) ̂  (S\ L)

for a certain link L in S3.
Let S be a (connected) Seifert Surface for L in S3, and regard it as being in

S3 = dB4:SaS3 = dB* a B*. Let (Mh/;) denote (puncMhF f)|Ja(£4,5), for / = 1,2.
Now, we have

Lemma 2.1 Connected Sum Formula.
Let Mh F, Ft be as above. Then

In particular,

Proof. Let v be a non-zero, normal vector field over S in S3. We can take
a transverse push-off F' of F in M such that F'n(dpuncMl) = v(L). Then

e(M,F)= £ sign(p)+ £
peFnF'j peFnF'2

= Σ «sΦ)+ Σ
peFinF'j peF2C\F'2

where F/ is Ff |puncM ί 5 for i = l,2. On the other hand, if we regard F'\jdv{S)
as a push-off of Ft in Mf, then

Thus we have the lemma. •

3. Proof of Theorem 1.2

The proof is devided into 3 steps. We are given an embedding F a M.
(Step 1) We will show the theorem for M=mCP2%nCP2(m + n>0). We have

a standard handlebody decomoposition of M:

where FT is an r-handle, and fix an identification
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Without loss of generality (by general position augument), we can assume the
following.

(1) Ff)H* = φ.

(2) Ff]Hf = hf(D2 x {finite points in int D2 }),

i.e., each component of Ff]Hf is parallel to the core of Hf.

We regard M as SHM by H0{J({J?=

+

ί

nHf[jH4) = B*{JdpuncM, a n d u s e t h e notation
"MbFi9F" as in the last section ( M ^ S 4 , M2 = M). Note that F2 consists of some
proper disks, and Fx is F with some open 2-disks deleted.

We orient all the components of F2, and take a Seifert surface S so that the
orientation of S is compatible with that of F2. Note that F2( = S[JF2) is an
orientable closed surface.

In the situation above, we have the following equalities.

(1)

(2) ^(54,A) + 2χ(/'1) = 0 mod 4

(3) e(M,F2) + 2χ(F2) = e(M9F2) = q(lF2-]) mod 4

(4) [F2] = [F] in H2(M;Z2)

(5) χ(Λ) + χ(F2)^χ(F) mod 2

The first holds by the connected sum formula, the second by Theorem 1.1, the
third follows from the orientability of F2, and the others are easy to verify. Now
the theorem in this case follows from these equalities.

(Step 2) We will prove the theorem for a simply-connected manifold. We
use the following fact [7], [4: Fact (2)].

Fact. Let M be a simply-connected, closed and oriented 4-manifold. Then
there exist integers l,m,n>0 such that

Mίt(/+ \)CP1 = mCPHnCP1.

For a given embedding F c M , we take a connected sum M#(/+ \)CP2$ICP2

disjointly from the neighborhood of F. It is easy to see that e(M9 F), χ(F) and
q([_FJ) are unchanged by the connected sum. Thus the proof is reduced to the
first step.

(Step 3) The general case (i/1(M;Z) = {0}). For a given embedding F a M,
and an element y of nx{M), we take an embedded circle c in M such that

(1) c represents the element y,

(2) cf]F=φ, and
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(3) c bounds an immersed oriented surface G in M which satisfies the
following condition: for each generator x of //2(M;Z), there is a
representing surface Tx such that GoTx = 0 and GoF=0.

This is possible because of the assumption Hl(M;Z) = {0} and dGφφ. We do
surgery on M along c, and repeat it till nx(M) becomes trivial. At each surgery,
e(M, F), χ(F) and q(\_FJ) remain unchanged. We see it as follows ([6]). Suppose
that we get

M' = D2xS2Uφld{M\mtφ(SιxD3)}

from M by surgery along c, where φ is a trivialization of a tubular neighborhood
of c. Then the homology of M changes into

H2(M'; Z) s H2(M; Z)®Z(x

where x = [(Z>2 x *)(JG] and y = [* x S2].
Thus the intersection form changes as

H2(M';Z)^H2(M9Z)® (*

Under the isomorphism, the corespondence of [F] o W and [i7],,^ is:

Thus q([F]) is unchanged, and the proof is reduced to the second step. •

4. Proof of Theorem 1.4

This proof is devided into 3 steps. We are given an embedding F c M . If
M is closed and //1(Λf;Z)={0}, then Theorem 1.2 applies. We will consider other
cases step by step.

(Step 1) Suppose that M is closed but /ί1(M;Z)#{0}. We perform surgery
along embedded circles c which are disjoint from F and represent non-zero elements
of HX(M\Z).

Suppose that two embedded surfaces FUF2 <= M satisfy [ F J = [F2] in H2(M; Z2)
and they are in general position. In Z2-coefficient chain complex, we can take
a 3-chain Δ3 whose boundary is Fί+F2. We will show that we can do surgery
(along c to get M from M) so that Fγ and F2 also satisfy \_F{] = [F2] in H2(M'\ Z2).

Since Δ has boundary Fί+F2 with Z2-coefficient, the small normal circle of
Ft intersects Δ at an odd number of points. If necessary, by connecting c with
the small normal circle along Δ, we can choose c such that the geometric intersection
number fl^cQΔ) is even and N(c)f]A consists of an even number of 3-balls B,
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where N(c) is a thin tubular neighborhood of c. Then in D2 x S2 which is to be
attached to M\int N(c), we can take {half as many proper arcs} xS2 whose
boundary is the same as (dN(c),dB). Then it is clear that Fί+F2 bounds a new
3-chain Δ' in M' with Z2-coefficient.

(Step 2) Suppose that M is compact but dMΦφ.
Let DM be the double of M(DM= M[jδ — M). The mapping q is already well-defind
over DM by Step 1. Over M, the mapping is the composition qoi^ where /„ is
the homology homomorphism: H2(M; Z2) -• H2(DM\ Z2), induced by canonical
inclusion i.

(Step 3) Suppose that M is non-compact. There is a seqence of countably
many compact oriented 4-manifolds and inclusions:

Mx a M2 c M3 c . . . such that \JfLt Mt = M.

Since F is compact, there is a sufficiently large n such that F c Mn. We can
apply the method in Step 2. •

5. Proof of Corollary 1.5

We are given an immersed surface F in M with only normal crossings. For
a crossing point /?, we take a 4-ball neighborhood B around p. To remove the
crossing at /?, we cut out int^QF from F, where dBf]Fcz dB is a Hopf link, and
glue in an annulus A a dB. We call this new surface F. By the construction,

in H2(M;Z2), χ(F) = χ(F) mod 2 and

— dBΠF

— dBDF'

Figure 1
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We show e(M,F) = e(M,F)±2. Let F be a push-off of F. We can assume
that F' is parallel to F near p and in particular dBf]Ff gives a trivial framing for
each component of dBf]F in dB^S3. Then we can take an annulus A such that
dA=dBf]F and Af](dBf]Fr) consists of two points whose signs are the same
(Figure 1). Let A' be a push-off of A which is properly embedded in B* such
that dA' = dBf]F'. If we regard (F\int B)\Jd A' as a push-off of F, we have the claim.

We can repeat the above process till #self{F) becomes zero without changing
both sides of the congruence. Thus we can reduce the corollary to Theorem 1.2
or 1.4. •

6. Examples

In this section, we will give two examples for Theorem 1.2.

Example 1. ([2]) Let M=mCPHnCP2(m + n>0\ and identify its 2nd homology
H2(M;Z2) with ®?=1Z2(ξiy ® ®n

j=ίZ2(ηj}. For an embedding F a M, such
that [F]^£*=1 ίi + ΣJ- i^

e(M,F) + 2χ(F) = k-l mod 4.

Example 2. Let M=S2xS2, and identify its 2nd homology H2{S2xS2;Z) with
Z<x> 0 Z<j>, where JCOX=J;OJ; = 0 and χoy=yoX= 1. Let 52(m) c S2 x S2 be
an embedding of S2 representing l x + rn-y, which is for instance the graph of a
degree m map gm: S2 -* S2. Then

As an element of H2(S2 xS2;Z2)^Z2(x) ® Z2<y\

ifwiseven

( j ifmisodd

Thus we have

f ifmiseven , Λ. mod 4.
lfmisodd

Example 2 shows that our main theorem is optimal in a sense.
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