Harada, M. Osaka J. Math. **32** (1995), 135–153

ARTINIAN RINGS RELATED TO RELATIVE ALMOST PROJECTIVITY

Manabu HARADA

(Received May 26, 1993)

Let R be an artinian ring. We consider the following condition: if eR/A is fR/B-projective (resp. N-projective for an R-module N), then every submodule M' of eR/A is fR/B-projective (resp. N-projective), where e and f are primitive idempotents. We have shown in [7] that R satisfies the above condition for any eR/A and any fR/B if and only if R is a hereditary ring with $J^2=0$. In this paper we consider a weaker condition: if eR/A is N-projective, then M' is almost N-projective where i): N is local and ii): N is a direct sum of local modules, respectively. In the second section we shall study QF, QF-2, and QF-3 rings with the above weaker condition, respectively. We study right almost hereditary rings with $J^2=0$ in the third section.

In a forthcoming paper we shall give a characterization of rings over which the weaker condition is satisfied when M and N are any R-modules.

1. Characterizations

We always assume that R is an associative artinian ring with identity and every module is a finitely generated and unitary right R-module. Moreover since we are interested in the structure of R, we may assume that R is basic.

Let M and N be any finitely generated R-modules. We have studied rings with the following properties (1) (4) in [3] and [7]:

(1) If M is N-projective, then M' is again N-projective for any submodule M' of M.

(2) If eR/B is fR/A-projective, then C/B is again fR/A-projective for any $C \supset B$, where e and f are primitive idempotents and $C \supset B$ (resp. A) are R-submodules of eR (resp. fR).

(3) e = f in (2).

(4) If M is almost N-projective, then M' is again almost N-projective for any submodules M' of M.

Here we shall consider a weaker condition than (4).

(5) If M is N-projective, then M' is almost N-projective for any submodule M' of M.

Let R be a two-sided artinian ring. We know from [3] or [7] that the following are equivalent: i) (1) holds, ii) (2) holds and iii) R is a hereditary ring with $J^2 = 0$.

In this section we shall give a characterization of artinian rings over which (5) holds on local modules M and N. By J(M) (resp. J) we denote the Jacobson radical of M (resp. of R).

Lemma 1. Let $fJ \supset A \supset B$ be submodules of fR such that A/B is almost fR-projective. Then there exists a submodule S^* of fR such that $A = S^* \oplus B$, where f is a primitive idempotent.

Proof. Consider a diagram

$$A/B$$

$$\downarrow h$$

$$fR \xrightarrow{\nu} fR/B \to 0$$

where h is the inclusion.

Since $h(A | B) \subset fJ | B$ and fR is indecomposable, there exists $\tilde{h}: A | B \to fR$ with $v\tilde{h} = h$, and hence $A = B \oplus \tilde{h}(A | B)$.

From now on we study (5) when M and N are local modules. We denote primitive idempotents by e, f, g, and so on.

Lemma 2. Assume (5) on local modules M and N. Then for any local module L, every submodule of fR is almost L-projective.

Proof. Since fR is L-projective, this is clear from (5).

Corollary. Assume (5) on local modules M and N and $\bar{e}\bar{R}=eR/eJ$ is a simple component of Soc(R). Let x be a non-zero element in fJ with xe=x. Then xR is simple.

Proof. Since $fJ/xJ \supset xR/xJ \approx \bar{e}\bar{R}$, xR/xJ is isomorphic to a submodule of some gR, and xR/xJ is almost fR-projective by Lemma 2. Hence $xR=xJ\oplus S$ and $xR=S\approx \bar{e}\bar{R}$ by Lemma 1.

Lemma 3. Let X be an R-module such that X is isomorphic to a submodule of J(L), where L is a local R-module. If X is almost L-projective, X is quasi-projective.

$$X$$

$$\downarrow h$$

$$X/A$$

$$\cap$$

$$L \xrightarrow{v} L/A \rightarrow 0,$$

where h is the natural homomorphism of X to X/A. Then there exists $\tilde{h}: X \to L$ with $v\tilde{h} = h$, and hence $\tilde{h}(X) \subset X$. Therefore X is quasi-projective.

Corollary. Assume (5) on local modules M and N. Then every submodule of any indecomposable quasi-projective module is quasi-projective.

Proof. This clear from Lemma 3.

Lemma 4. If (5) holds on local modules M and N, then $J^3 = 0$.

Proof. From Corollary to Lemma 3 $eJ = X_1 \oplus X_2 \oplus \cdots \oplus X_m$ for a primitive idempotent e, where the X_i are indecomposable and quasi-projective. Further $eJ^2 = X_1J \oplus X_2J \oplus \cdots \oplus X_mJ$, X_i/X_iJ is simple and $X_iJ = Y_{i1} \oplus Y_{i2} \oplus \cdots \oplus Y_{in_i}$, where the Y_{ij} are indecomposable and quasi-projective. We denote this situation by the following figure:

(6)
$$\begin{array}{cccc} eJ & X_1 & X_2 & \cdots & X_m \\ eJ^2 & Y_{11} & \cdots & Y_{1n_1} & Y_{21} & \cdots & Y_{m_1} & \cdots & Y_{mn_m} \\ eJ^3 & Z_{111} & \cdots & & \cdots & \end{array}$$

We note $X_1 \cap eJ^2 = X_1J$ and so on from (6). Let $X_i \approx f_i R / A_i$ and $f_i J \approx g_{i1} R / C_{i1} \oplus \cdots \oplus g_{in_i} R / C_{in_i}$. Then since $f_i J / A_i \approx Y_{i1} \oplus \cdots \oplus Y_{in_i}$ $(=X_i J)$, Y_{ik} is a homomorphic image of some $g_{it}R$. Now assume $eJ^3 \neq 0$ for some e. Then we may suppose $Y_{11} \neq \operatorname{Soc}(eR)$. Let $X_1 \approx fR / A$ and $Y_{11} \approx gR / C$ (via θ). Then $fJ = X' \oplus \cdots$; $X' \approx gR / A'$ (via θ') from the above remark. Since Y_{11} ($\approx gR / C$) $\neq \operatorname{Soc}(eR)$, $X' \neq \operatorname{Soc}(fR)$ by Corollary to Lemma 2. Hence $X'J \neq 0$. eR/eJ^3 is fR/fJ^3 -projective by [1], p. 22, Exercise 4, and hence $Y_{11} / Y_{11}J \approx gR/gJ$ is almost fR/fJ^3 -projective (see (6)). Consider a diagram

$$Y_{11} / Y_{11}J$$

$$\downarrow h$$

$$(X' + fJ^3) / (X'J + fJ^3) \approx gR / gJ$$

$$\cap$$

 $fR/fJ^3 \xrightarrow{\nu} (fR/fJ^3)/((X'J+fJ^3)/fJ^3) \to 0,$

where h is the induced isomorphism from θ and θ' . Then there exists \tilde{h} : $Y_{11}/Y_{11}J \rightarrow fR/fJ^3$ with $v\tilde{h} = h$. Therefore $\tilde{h}(Y_{11}/Y_{11}J) + fJ^3 + X'J = X' + fJ^3$, and hence $X' + fJ^3 = \tilde{h}(Y_{11}/Y_{11}J) + fJ^3$. Accordingly $X'/(X' \cap fJ^3)$ ($\approx (X' + fJ^3)/fJ^3$) is simple. On the other hand $X' \cap fJ^3 = X'J^2$. Therefore $X'J = X'J^2$, and hence X'J = 0, a contradiction.

Now $J^3 = 0$ from Lemma 4. We denote an indecomsable and projective module P with $PJ^2 \neq 0$ (resp. $PJ^2 = 0$, $PJ \neq 0$) by eR (resp. fR). From Corollary to Lemma 3 we suppose $eJ = X_1 \oplus X_2 \oplus \cdots \oplus X_s \oplus S_1 \oplus \cdots \oplus S_t$, where $X_i \approx h_i R / A_i$; $A_i \neq h_i J$ and $S_i \approx g_i R / g_i J$; the h_k and g_m are primitive idempotents.

Lemma 5. Assume (5) on local modules M and N and eJ is as above. Then X_i is projective and uniserial, and hence $X_i \approx f_i R$ for some f_i .

Proof. Let $X_1 \approx h_1 R/A_1$. Suppose $h_1 R = e_1 R$, i.e. $h_1 J^2 \neq 0$. Then $A_1 \neq 0$; θ : $e_1 R/A_1 \approx X_1$. Let $e_1 J = X'_1 \oplus \cdots \oplus X'_s, \oplus S'_1 \oplus \cdots \oplus X'_s$, by Corollary to Lemma 2. If $\{S'_i\} = \phi, A_1 = eJ$, a contradiction. Hence assume $\{S'_i\} \neq \phi$. Then since $A_1 \neq e_1 J$, there exists S'_1 such that $S'_1 \neq A_1$. Being a submodule of eR, $e_1 R/A_1$ is almost $e_1 R/S'_1$ -projective by Lemma 2. However A_1 is characteristic by Corollary to Lemma 3 and $S'_1 \neq A_1$, $S'_1 \neq A_1$, because $A_1 \supset X'_1$, and hence $e_1 R/A_1 \oplus e_1 R/S'_1$ does not have LPSM, a contradiction to [4], Proposition 4. Therefore $h_1 R = fR$, i.e. $h_1 J^2 = 0$ and $h_1 J \neq 0$. The above argument shows us $A_1 = 0$, since fJ is semisimple. Next we shall show that $X_1 = f_1 R$ is uniserial. Suppose $f_1 J$ $= A \oplus B \oplus \cdots$, where A, B are non-zero simple modules. Now $\theta(eJ) = 0$ for any θ in Hom_R($eR, f_1 R$). Hence eR/A is $f_1 R/B$ -projective. Accordingly $f_1 R/A$ is almost $f_1 R/B$ -projective, and $f_1 R/A \oplus f_1 R/B$ has LPSM and hence A = B by [9], Lemma 1. Therefore $f_1 J$ is simple.

From Lemmas 4 and 5 we have

(7)
$$eJ \approx f_1 R \oplus f_2 R \oplus \cdots \oplus f_s R \oplus S_1 \oplus \cdots \oplus S_k; \quad f_i R \text{ is uniserial} \\ (e'J \approx f'_1 R \oplus \cdots \oplus f'_s, R \oplus S'_1 \oplus \cdots)$$

Since $f_i R$ is projective, we have

Lemma 6. Let R be any artinian ring. If eJ and e'J have the above structure

(7) (where $f_i R$ need not be uniserial), then for any non-isomorphic homomorphism θ : $eR \rightarrow e'R$, $\theta(eJ) = 0$.

Lemma 7. Assume (5) on local modules M and N. If $eR \not\approx e'R$ in (7), $f_iR \not\approx f'_jR$ for any i and j.

Proof. Assume $fR \approx f'R$. Now eR/fJ is e'R-projective by Lemma 6. As a consequence $fR/fJ \approx f'R/f'J$ is almost e'R-projective, which is a contradiction from Lemma 1.

We can express (7) as follows:

(7')
$$eR \supset eJ \approx \sum_{i=1}^{s} \bigoplus (f_i R)^{(n_i)} \bigoplus \sum_{j=1}^{t} \bigoplus S_j, \text{ where the } f_i R \text{ are uniserial (and } e'R \supset e'J \approx \sum_{i=1}^{s'} \bigoplus (f'_i R)^{(n'_i)} \bigoplus \sum_{j=1}^{t'} \bigoplus S'_j).$$

We put $P_i = (f_i R)^{(n_i)}$ and $P = \sum_{i=1}^s \bigoplus P_i$. Let $\pi_i \colon P \to P_i$ be the projection of P onto P_i . We shall regard $(f_i R)^{(n_i)}$ as a submodule of eJ.

Lemma 8. Suppose that (5) holds on local modules M and N. Let eR and P be as above. Let S be a simple submodule of P. Then $eReS = \sum_{i \in I} \bigoplus Soc(P_i)$, where I is a subset of $\{1, 2, \dots, s\}$.

Proof. Let first $S = \text{Soc}(f_1R)$ and $S^* = eReS$. If $S^* \neq \text{Soc}(P_1)$, then there exists $f_{1i}R$ such that $f_{1i}R \cap S^* = 0$; $f_{1i}R = f_1R$ which is the ith component of P_1 . Since eR/S is eR/S^* -projective, f_1R/S is almost eR/S^* -projective. From the diagram

$$f_{1}R/S$$

$$(S^{*} \oplus f_{1i}R)/(S^{*} \oplus S_{i})$$

$$(S^{*} \oplus f_{1i}R)/(S^{*} \oplus S_{i})$$

$$(S^{*} \oplus F_{1i}R)/(S^{*} \oplus S_{i}) \rightarrow 0, \text{ where } S_{i} = \operatorname{Soc}(f_{1i}R).$$

we obtain a contradiciton. Therefore $S^* \supset \operatorname{Soc}(P_1)$. Next assume that S is any simple submodule of P. Since eR/S^* is eR/S^* -projective, P/S^* is quasi-projective by Corollary to Lemma 3. Further $S^* \subset \operatorname{Soc}(P) = J(P)$, and hence P is a projective cover of P/S^* . Accordingly $S^* \supset \pi_{ij}(S^*)$, where $\pi_{ij}: P \to f_{ij}R$ is the projection. Moreover $\pi_i(S^*) \supset \pi_i(S) \neq 0$ implies $\pi_{ij}(S^*) = \operatorname{Soc}(f_{ij}R) \subset S^*$ for some j, and hence $S^* \supset \operatorname{Soc}(P_i)$ from the initial part. Let $I = \{i_j \in \{1, \dots, s\} | \pi_{ij}(S) \neq 0\}$. Then we have shown $S^* \supset \Sigma_I \oplus \operatorname{Soc}(P_{ij})$. On the other hand $S \subset \Sigma_I \oplus \operatorname{Soc}(P_{ij})$, and hence $S^* \subset \Sigma_I \oplus \operatorname{Soc}(P_{ij})$ for $eRe \operatorname{Soc}(P_{ij}) = \operatorname{Soc}(P_{ij})$ by Corollary to Lemma 2.

Next we assume that (5) holds whenever M is local and N is any finite direct sum of local modules. By P(Soc(R)) we denote the projective cover of Soc(R).

Lemma 9. Let R be as above. Then P(Soc(R)) is a direct sum of uniserial modules.

Proof. Let $\bar{g}R = gR/gJ$ be isomorphic to a simple component of Soc(R) and $gJ \neq 0$. Take two submodules A_1, A_2 of gJ such that $gJ^j \supset A_i \supset gJ^{j+1}$ and A_i/gJ^{j+1} is simple (i=1,2 and j=1,2). Since $\bar{g}R$ is isomorphic to a proper submodule of some $hR, \bar{g}R$ is almost $(gR/A_1 \oplus gR/A_2)$ -projective by assumption. Assume that gJ^j/gJ^{j+1} is not simple, and $A_1 \neq A_2, A_i \neq gJ^j$. Then $\bar{g}R$ is not gR/A_i -projective, and hence $gR/A_1 \oplus gR/A_2$ has LPSM by [6], Theorem. Therefore $A_1 = A_2$ by [9], Lemma 1, a contradiction. As a consequence gR is uniserial.

We consider a direct sum $M = M_1 \oplus M_2$. Let π_i be the projection of M onto M_i for i=1,2. For any submodule A of M we put

(8)
$$A_i = A \cap P_i$$
 and $A^i = \pi_i(A)$ for $i = 1, 2$.

We use the following trivial lemma (see. [5], p.449)

Lemma 10. Let M and A be as above. Then θ : $A^1/A_1 \approx A^2/A_1$ and $A = \{m_1 + m_2 | m_i \in A^i \text{ and } \theta(m_1 + A_1) = m_2 + A_2\}.$

Finally we obtain the main theorem.

Theorem 1. Let R be an artinian ring. (5) holds on local modules M and N, if and only if i): $J^3 = 0$ and eJ has the structure (7') with f_iR uniserial, ii) if $eR \not\approx e'R$, then $f_iR \not\approx f_jR$ for all i and j in (7') and iii) $\overline{f_iR}$ in (7') is never isomorphic to any simple component of Soc(R), and iv) the condition in Lemma 8, $eReS = \Sigma_I \oplus Soc(P_i)$ for any simple submodule S in P, is satisfied, where e, e' are any primitive idempotents with $eJ^2 \neq 0$ and $e'J^2 \neq 0$.

Proof. Suppose that (5) holds. Then we have $i \ge i \ge 1$ by Corollary to Lemma 2 and Lemmas 4, 5, 7 and 8. Conversely we assume $1 \ge i \ge 1$. First we study a structure of submodule B/A of eR/A. We take the decomposition (7'): $eJ = P_1 \oplus \cdots \oplus P_s \oplus S_1 \oplus \cdots \oplus S_r$. Put $P = \sum_{i=1}^s \oplus P_i$ and $\tilde{S} = \sum_{j=1}^t \oplus S_j$, and hence $eJ = P \oplus \tilde{S}$. We apply Lemma 10 to this decomposition $eJ = P \oplus \tilde{S}$ and the submodule A of eJ. Then there exists an isomorphism $\theta: A^1/A_1 \approx A^2/A_2$. Since any simple sub-factor module of $P/\operatorname{Soc}(P)$ is never isomorphic to any one of \tilde{S} (and hence any one of A^2/A_2) by iii), $A^1/A_1 \subset (\operatorname{Soc}(P) + A_1)/A_1 \approx \operatorname{Soc}(P)/(\operatorname{Soc}(P) \cap A_1)$. Accordingly there exists a submodule K_1 of Soc(P) such that

 $A^1/A_1 = (K_1 \oplus A_1)/A_1$. A^2 being semisimple, we obtain $A^2 = A_2 \oplus K_2$ for some K_2 in A^2 , and clearly θ : $K_1 \approx K_2$. Therefore $A = A_1 \oplus A_2 \oplus K_2(\theta^{-1})$ by Lemma 10, where $A_1 \subset P$ and A_2, K_2 are contained in \tilde{S} . Since \tilde{S} is semisimple, $\tilde{S} = A_2 \oplus K_2 \oplus K_2$ for some K_2 . Then $eJ = P \oplus A_2 \oplus K_2(\theta^{-1}) \oplus K_2$, and putting $\tilde{S}' = A_2 \oplus K_2(\theta^{-1}) \oplus K_2$, we obtain

(9)
$$A = A \cap P \oplus A \cap \widetilde{S}' \ (eJ = P \oplus \widetilde{S}').$$

Next let $eJ \supset B \supset A$. Then we obtain from the above observation (take first the decomposition of B and use the above argument on A)

(10)

$$eJ = P \oplus \widetilde{S}_{a} \oplus \widetilde{S}_{b} \oplus \widetilde{S}_{c} \supset$$

$$B = B_{1} \oplus \widetilde{S}_{a} \oplus \widetilde{S}_{b} \supset$$

$$A = A_{1} \oplus \widetilde{S}_{a},$$

where $B_1 = B \cap P$, $A_1 = A \cap P$ and the \tilde{S}_a , \tilde{S}_b and \tilde{S}_c are contained in Soc(eJ). From (10) we may study the structure of B_1/A_1 . Hence we assume $P \supset B_1 = P \cap B \supset A_1 = P \cap A$. Since P is projective, considering first the decomposition of A, we obtain

(11)

$$P = P_1 \oplus P_2 \oplus P_3 \supset$$

$$B_1 = P_1 \oplus P_2 \oplus B_1 \cap P_3 \supset$$

$$A_1 = P_1 \oplus A_1 \cap (P_2 \oplus P_3),$$

where the P_i are isomorphic to direct sums of some copies of $\{f_{i1}R, \dots, f_{iq}R\}$ and $B_1 \cap P_3$, $A_1 \cap (P_2 \oplus P_3)$ are semisimple modules

(12) whose simple components are isomorphic to those of Soc(eJ).

Since $A_1 \cap (P_2 \oplus P_3) \subset P_2 \oplus B_1 \cap P_3$ and $A_1 \cap (P_2 \oplus P_3)$, $B_1 \cap P_3$ are semisimple, we obtain a new decomposition: $P_2 \oplus B_1 \cap P_3 = P_2 \oplus V'$ such that $A \supset A_1 \cap (P_2 \oplus P_3)$ $= A_2 \oplus A_3$ and $A_2 \subset J(P_2)$, $A_3 \subset V'$, which is a semisimple module as (12). Therefore $B_1/A_1 \approx P_2/A_2 \oplus V$. Let $P_2 \approx \sum_{I'} \oplus (f_i R)^{(m_i)}$; $m_i \leq n_i$, where $I' \subset \{1, 2, \dots, s\}$ and Ithe subset of I' such that $k \in I$ if and only if $\pi_k(A_2) \neq 0$, where $\pi_k: P \to (f_k R)^{(m_i)}$ is the projection. Then

(13)
$$B_1/A_1 \approx \Sigma_I \oplus (f_i R)^{(m_i)}/A_2 \oplus \Sigma_{I'-I} \oplus (f_i R)^{(m_t)} \oplus V,$$

where $A \supset A_1 \supset A_2$ and V is a semisimple module as (12).

We resume to prove the converse. We shall show first that

a) Soc(R) is almost L-projective for any local module L=gR/D.

Let S be a simple component of Soc(R) and consider a diagram:

S

↓h

(14)

$$gR/D \xrightarrow{\nu} gR/C \rightarrow 0.$$

If h is an epimorphism, h is an isomorphism. Hence putting $\tilde{h} = h^{-1}v$, we have $h\tilde{h} = v$. Accordingly we assume that h is not an epimorphism, i.e., $h(S) \subset gJ/C$. If gR = fR ($fJ^2 = 0$), fJ/D is semisimple, and hence we obtain $\tilde{h}: S \to fJ/D \subset fR/D$ with $v\tilde{h} = h$. Next assume gR = eR ($eJ^2 \neq 0$). Then we may consider the following diagram instead of (14)

(14')
$$S \\ \downarrow h \\ eJ/D \xrightarrow{v} eJ/C \to 0$$

Let $S \approx kR$ for a primitive idempotent k and h(S) = (xR+C)/C; $xk = x \in eJ$. Then $x \in Soc(eJ)$ by iii), and hence xR = xR/xJ is simple. Accordingly h(S) = (xR+C)/C $\approx xR$. Since $xR \cap D \subset xR \cap C = 0$, we obtain an isomorphism $\tilde{h}: S \to xR \subset eJ/D$ with $v\tilde{h} = h$. Thus we have shown a).

Now let M = gR/A, N = pR/D and M be N-projective. Take any diagram for any submodule M' of

(15)
$$\begin{array}{c} M' \\ \downarrow h \\ pR/D \xrightarrow{\nu} pR/C \to 0 \end{array}$$

$$\alpha) \qquad \qquad M = fR / A \ (fJ^2 = 0, \ fJ \neq 0).$$

Then any proper submodule M' of M is contained in Soc(R). Hence M' is almost pR/D-projective by a). Next assume

$$\beta$$
) $M = eR/A \ (eJ^2 \neq 0)$ and $N = fR/D$.

From (10) and (13) M' is a direct sum of the following submodules: 1) $S \approx \text{Soc}(f_i R)$ or $\approx S_j$, 2) $\Sigma_I \oplus (f_i R)^{(m_i)} / A_2$, where $\pi_i (A_2) \neq 0$ for $i \in I$, and 3) $f_j R$. In the cases 1) and 3), M' is almost N-projective by a). Hence we may assume $M' = \Sigma_I \oplus (f_i R)^{(m_i)} / A_2$.

If $fR \approx f_i R$ for all *i* in 2), $\operatorname{Hom}_R(M', fR) = 0$ by iii). Hence M' is trivially *N*-projective. If $fR \approx f_i R$ for some *i*, fR is uniserial and $fJ^2 = 0$. Then $fR \to fR/fJ \to 0$ is only a non-trivial exact sequnce. Therefore M' is almost fR/D-projective (note that fR is projective). Assume

$$\gamma$$
) $M = eR/A$ and $N = e'R/D$; $e'R \not\approx eR$.

Since eR/A is eR/D-projective, $eReA \subset D$. Further $0 \neq \pi_i(A_2)$ implies $Soc(P_i) \subset eReA_2 \subset eReA \subset D \subset C$ by iii) and iv) (we note that if $P = P'_1 \oplus P'_2 \oplus \cdots \oplus P'_s$, where $P'_i \approx (f_i R)^{(p_i)}$, then $P_i = P'_i$ by iii)). We put $eJ = X \oplus Y$, where $X = \sum_I \oplus P_i$ and $Y = \sum_{j \notin I} \oplus P_j \oplus \tilde{S}$. Then from Lemma 10 and iii) $D = D \cap X \oplus D \cap Y \subset C = C \cap X \oplus C \cap Y$. As a consequence we obtain from (15)

- --

$$M' \downarrow h$$

$$eJ/D = X/(D \cap X) \oplus Y/(D \cap Y) \to X/(C \cap X) \oplus Y/(C \cap Y) \to 0$$

Since $\operatorname{Hom}_{R}(P_{i}, P_{j}) = 0$ for $j \notin I$ and $\operatorname{Hom}_{R}(P_{i}, \tilde{S}) = 0$, $h(M') \subset X/(C \cap X)$. Further $X/(D \cap X)$ is semisimple for $D \cap X \supset \operatorname{Soc}(X)$, and hence we obtain \tilde{h} : $M' \to eJ/D$ with $v\tilde{h} = h$.

Next we consider (5) when N is a finite direct sum of local modules.

Theorem 2. Let R be as above. Then (5) holds whenever M is local and N is a finite direct sum of local modules if and only if i > iv in Theorem 1 and v) the condition in Lemma 9, P(Soc(R)) is a direct sum of uniserial modules, are satisfied.

Proof. "Only if" is given by Theorem 1 and Lemma 9. Conversely we assume i) ~v). We use the same argument as given in the proof of Thorem 1. Let $N = \Sigma \bigoplus h_j R/B_j$, where the h_j are primitive idempotents and M (=gR/A) be N-projective. Then M is $h_j R/B_j$ -projective. Take any submodule of M' in M. We know from the proof of Theorem 1 that if M' is almost $h_j R/B_j$ -projective, but not $h_j R/B_j$ -projective, then M' is simple or $M' \approx \Sigma_I \bigoplus (f_i R)^{(m_i)}/A_2$ (see a), α) and β) in the proof of Theorem 1). In this case $h_j R$ is uniserial by v) and [4], Theorem 1. Hence M' is almost N-projective by [6], Theorem.

In a forthcoming paper we shall study (5) when N(resp. M) is any *R*-module.

2. Several rings with (5)

If gR is uniform for every primitive idempotent g, then we call R a right QF-2 ring. If E(R), the injective hull of R, is projective, than we call R a QF-3 ring. In this section we shall study QF, QF-2 and QF-3 rings with (5), respectively.

Proposition 1. Assume that R is either local or QF, then (5) holds on local modules M and N if and only if $J^2 = 0$.

Proof. If (5) holds, then there are no eR with $eJ^2 \neq 0$ from the assumption and Corollary to Lemma 2. The converse is clear from [7], Proposition 7.

Lemma 11. Assume (5) on local modules M and N. If hR is uniform, then hR is uniserial, where h is a primitive idempotent.

Proof. This is clear from Corollary to Lemma 3.

Proposition 2. R is a right QF-2 ring over which (5) holds on local modules M and N if and only if R is a right serial ring with $J^3 = 0$ such that 1) if $eJ^2 \neq 0$, eJ/eJ^2 is never monomorphic to Soc(R), and 2) if $e_iJ^2 \neq 0$ for i=1,2 and $e_1J/e_1J^2 \approx e_2J/e_2J^2$, then $e_1R \approx e_2R$.

Proof. Assume (5) on local modules M and N. Then R is a right serial ring with 1) and 2) by Theorem 1 and Lemma 11. Conversely 1) implies that eJ is projective (cf. Lemma 14 below). Hence (5) holds by Theorem 1.

Next we study left QF-2 rings with (5) as right *R*-modules.

Lemma 12. Let R be a ring with $J^3 = 0$. Assume that eR has the structure (7') if $eJ^2 \neq 0$ (where f_iR need not be uniserial). Let θ be a homomorphism of hR to h'R. If $\theta(hJ) \neq 0$, θ is monomorphic, where e, h and h' are primitive idempotents.

Proof. Suppose that θ is not isomorphic. Since $\theta(hJ) \neq 0$, $\theta(hR) \notin Soc(h'R)$. Hence $h'J^2 \neq 0$. If $hJ^2 \neq 0$, θ is isomorphic by Lemma 6. Hnece $hJ^2 = 0$, and θ is monomorphic from (7').

Lemma 13. Let R be left QF-2. Assume that $J^3 = 0$ and eJ has the structure in (7') if $eJ^2 \neq 0$ (where f_iR need not be uniserial). Then 1) Let S_i be a proper simple submodule of g_iR for i = 1, 2 and $\theta: S_1 \rightarrow S_2$ isomorphic. Then θ is extensible to an element in $\operatorname{Hom}_R(g_1R,g_2R)$ or in $\operatorname{Hom}_R(g_2R,g_1R)$. 2) Let f_iR be contained in eR as in (7'). Then $\overline{f_iR}$ is never monomorphic to $\operatorname{Soc}(R)$. 3) $f_iR(\subset eR) \approx f_jR(\subset e'R)$ if $eR \approx e'R$. 4) For any simple submodule A of $P_i = (f_iR)^{(n_i)} \subset eR$, $eReA \supset \operatorname{Soc}(P_i)$, where the g_i are primitive idempotents.

Proof. 1). Put $S_i = x_i R \subset g_i J$ with $x_2 = \theta(x_1)$ and $S_i \approx h R$. Then we can assume $g_i x_i h = x_i$ for i = 1, 2. Since Rh is uniform, put Soc(Rh) = Rk, where k is a primitive idempotent. Then Rx_i containing Soc(Rh), there exists z_i in kRg_i such that $o \neq z_1 x_1 = z_2 x_2$. Hence from Lemma 12 we have

(17) $g_1 R \approx kR$ or $g_i R \subset kR$ via z_{il} (isomorphically),

where z_{il} is the left-sided multiplication of z_{il} .

i) z_{1l} : $g_1 R \approx k R$.

Then there exists $z_i: kR \to g_1R$ such that $z'z_1 = g_1$. Hence $x_1 = (z'z_2)x_2$ and θ^{-1}

is extensible to $(z'z_2)_l \in \text{Hom}_R(g_2R, g_1R)$. Here we assume 2).

ii) z_{1i} : $g_1R \to kR$ and z_{2i} : $g_2R \to kR$ are monomorphic (not isomorphic). Then $kJ^2 \neq 0$. In order to show 1) we may assume, in this case, kR = eR, $g_1R = f_iR$ and $g_2R = f_iR$ in (7'), i.e., $S_1 \subset f_iR \subset eR$, $S_2 \subset f_iR \subset eR$ and θ : $S_1 \to S_2$, and we give the extension of θ (or θ^{-1}) in $\operatorname{Hom}_R(f_iR, f_iR)$ (or in $\operatorname{Hom}_R(f_iR, f_iR)$). Hence since $S_i \subset eR$, we first consider the case $g_1 = g_2 = e$. Since $eJ^2 \neq 0$, we obtain the case i) from (17). Hence there exists a unit z in eRe such that z_i is an extension of θ . As a consequence $(f_iR)^{(n_i)}$ being characteristic, $f_iR = f_iR$. Put $(f_iR)^{(n_i)} =$ $\sum_{j \leq n_i} \oplus u_j f_iR$, where $u_j = u_j f_i$ and $u_j f_iR \approx f_iR$ for all j. Then we may assume $x_1 = u_1r$, $x_2 = u_1r'$; $r, r' \in f_iJ$. Now $z_l(u_1f_i) = \sum u_jw_j$ and the w_j are units in f_iRf_i or zero by the assumption 2). Since $\sum u_j w_j r = z_l(u_1r) = zx_1 = x_2 = u_1r'$, $z_l(u_1) = u_1w_1 \in u_1f_iR$, because $w_j r \in f_iR$, $f_iR \approx u_j f_iR$ and w_j is a unit or zero. Hence θ is extensible to $(z_i|u_1R) \in \operatorname{Hom}_R(f_iR, f_iR)$.

2) Let $eR \supset f_1R$ be as (7) and S a simple component of Soc(tR), where t is a primitive idempotent with $tJ \neq 0$. Suppose $S \approx f_1R/f_1J$. Then there exist x_1 in f_1R-f_1J and x_2 in S such that $ex_1f_1 = x_1$, $tx_2f_1 = x_2$. Since $eJ^2 \neq 0$, from the similar argument to the initial part in 1)-i) we obtain $eR \approx kR$ as in 1)-i) and $x_1 = zx_2$ for some $z \in eRt$, which is a contradiction, since $x_1 \notin Soc(eR)$.

- 3) This is clear from 1) and Lemma 6.
- 4) Since $A \approx \text{Soc}(f_i R)$. we obtain 4) from 1).

Corollary. Let R be as in Lemma 13. If g_1R and g_2R have mutually isomorphic simple submodules, then $g_1R \approx g_2R$ or one of $\{g_1R,g_2R\}$ contains isomorphically the other.

Proof. This is clear from lemmas 12 and 13.

Proposition 3. Let R be a left QF-2 ring. Then (5) on local modules M and N holds as right R-modules if and only if i) $J^3 = 0$ and eJ has the structure (7'), provided $eJ^2 \neq 0$, (where f_iR is uniserial).

Proof. Let $eR \supset eJ = \Sigma \oplus P_i \oplus \Sigma \oplus S_j$, where $P_i = (f_i R)^{(m_i)}$. Then every simple sub-factor module of P_i is not isomorphic to any one of P_j for $i \neq j$. Hence the proposition is clear from Theorem 1 and Lemma 13.

Corollary. Let R be a right and left QF-2 ring. If (5) holds on local modules M and N, then R is serial, where g and g' are primitive idempotents.

Proof. We may show from Proposition 2 and [13], Lemma 4.3 that every isomorphism θ : $gJ/gJ^2 \approx g'J/g'J^2$ is liftable to an element in Hom_R(gR,g'R).

 α) gR = eR and g'R = e'R $(eJ^2 \neq 0$ and $e'J^2 \neq 0$).

Then e = e' by ii) of Proposition 2. Since eJ is projective, θ is given by an element θ' in Hom_R(eJ,eJ). Let eJ = xR, xh = x for a primitive idempotent h and $\theta'(x) = x'$. Since Rh is uniform, there exist a primitive idempotent k and z, z' in kRe such that $zx = z'x' \neq o$. If $z \in J$, $z_1(eJ) = 0$ by Lemma 6. Hence k = e and z, z' are units in eRe. As a consequence θ is liftable.

 β) gR = eR and g'R = fR ($fJ \neq 0$).

We do not have this case by i) of Proposition 2.

 γ) gR = fR and g'R = f'R.

Then θ is liftable by Lemma 13.

We shall study serial rings with (5) in the next proposition.

Lemma 14. Let R be a serial ring with $J^3 = 0$. Then the following are equivalent:

1) If $eJ^2 \neq 0$, eJ is projective.

2) If $eJ^2 \neq 0$, eJ/eJ^2 is not monomorphic to Soc(R), where e runs over all the primitive idempotents.

Proof. 1) \rightarrow 2). Suppose $eJ/eJ^2 \approx \operatorname{Soc}(gR)$ for a primitive idempotent g. If $gJ^2 \neq 0$, gJ is projective by 1). Let $gJ \approx hR$. Then since $\operatorname{Soc}(gR) \approx hJ = hJ/hJ^2 \approx eJ/eJ^2$, $hR \approx eR$ by [13], Lemma 4.3, a contradiction. We obtain the same result if $gJ^2 = 0$,

2) \rightarrow 1). If eJ is not projective, $eJ \approx gR/gJ^2$ and $gJ^2 \neq 0$. Hence Soc(eJ) $\approx gJ/gJ^2$, a contradiction.

Proposition 4. Let R be a QF-3 ring. Then the following are equivalant:

1) (5) holds on local modules M and N.

2) R is a serial ring with $J^3 = 0$ such that if $eJ^2 \neq 0$, eJ/eJ^2 is not monomorphic to Soc(R).

2') R is serial ring with $J^3 = 0$ such that eJ is projective, if $eJ^2 \neq 0$.

3) R is a serial ring with $J^3 = 0$ such that if $J^2 e \neq 0$, $Je/J^2 e$ is not monomorphic to $Soc(_RR)$.

4) (5) holds on any finitely generated R-modules M and N as right R-modules as well as left R-modules.

Proof. 1) \rightarrow 2). Assume that R is a QF-3 ring and (5) holds on local modules M and N. Then $J^3 = 0$ by Lemma 4. Next we shall show that R is a right serial ring. Let $E(R) \approx \Sigma \oplus (h_i R)^{(p_i)}$, where the $h_i R$ are indecomposable, injective and projective. We know from Lemma 11 that the $h_i R$ are uniserial. Suppose gR is

not injective for a primitive idempotent g such that $gJ \neq 0$. Then considering the projection of E(R) to $h_i R$, we have $gR \subset J(E(R))$, since gR is not injective. Since $h_i J$ is projective by Lemma 5 if $h_i J^2 \neq 0$, $gR \approx h_i J$ for some j. Therefore R is a right serial ring with $J^3 = 0$. The property in 2) is given by Proposition 2. We shall show that R is left serial. If $e_1 J^2 \neq 0$, $e_1 R$ is injective for $J^3 = 0$. Suppose θ : $e_1 J/e_1 J^2 \approx e_2 J/e_2 J^2$ for any primitve idempotent e_2 . Then $e_2 J^2 \neq 0$ by 1) in Proposition 2 and $e_1 R \approx e_2 R$ by 2) in Proposition 2. $e_1 J$ being projective from Lemma 5, θ is given by an isomorphism θ' of $e_1 J$ onto $e_2 J$. Since $e_1 R$ is injective, θ' is extensible to an element in $\operatorname{Hom}_R(e_1 R, e_2 R)$. Suppose $e_1 J^2 = 0$, then $e_2 J^2 = 0$ as above. Hence $e_1 R$ and $e_2 R$ are contained in some injective eR for $\operatorname{Soc}(e_1 R) \approx \operatorname{Soc}(e_2 R)$. Hence θ is extensible to an element in $\operatorname{Hom}_R(e_1 R, e_2 R)$. Suppose $e_1 J = 0$, then $e_1 R = e_2 R$.

2) \rightarrow 1). This is clear from Proposition 2 and [13], Lemma 4.3.

2) \leftrightarrow 2'). This is clear from Lemma 14.

1) \rightarrow 4). Let $M = \Sigma \oplus e_i R / A_i$ be $N = \Sigma \oplus h_j R / B_j$ -projective (see [12]). Take a submodule M' of M; $M' = \Sigma \oplus f_k R / C_k$. Then being uniserial, $f_k R / C_k$ is isomorphic to a submodule of some $e_i R / A_i$. Since $e_i R / A_i$ is $h_j R / B_j$ -projective for all j, $f_k R / C_k$ is almost $h_j R / B_j$ -projective, and hence $f_k R / C_k$ is almost N-projective by [6], Theorem. Hence (5) holds.

2) \rightarrow 3). Suppose $J^2 e_i \neq 0$ for i=1,2 and $Je_1/J^2 e_1 \approx J^2 e_2$. Then there exists e'_i such that (e'_iR, Re_i) is the injective pair for i=1,2 by [2], Theorem 3.1. Then $e'_1J/e'_1J^2 \approx e'_2R/e'_2J$ by [2], Theorem 2.4 for $J^3=0$, and hence $e'_1J \approx e'_2R/e'_2J^2$. As a consequence $e'_1J^2 \approx e'_2J/e'_2J^2$, a contradiction. Next assume $Je_1/J^2e_1 \approx Jf \approx R\bar{g}$, where $J^2f=0$. If Rf is injective, gR is injective by [2], Theorem 3.1 and $e'_1J \approx gR$, a contradiction. If Rf is not injective, $E(Rf) \approx Re'$, which is again a contradiction from the initial. Then since Je_1/J^2e_1 is clearly not projective, Je_1/J^2e_1 is never monomorphic to $Soc(_RR)$.

The remaining implications are clear.

3. Almost hereditary rings with $J^2 = 0$

We studied almost hereditary rings with $J^2 = 0$ in [7]. In this section we shall investigate again those rings. First we shall study a very special almost hereditary ring.

Proposition 5. Every finitely generated R-module is almost projective if and only if R is a serial ring with $J^2 = 0$.

Proof. Suppose that R is a serial ring with $J^2 = 0$. Then every indecomposable R-module is either eR or eR/eJ, where e is any primitive idempotent. If $eJ \neq 0$, eR is injective and hence eR/eJ is almost projective by [11], Theorem 1. Therefore every R-module is almost projective by [12]. The converse is clear from [7],

Proposition 7 and [9], Corollary to Theorem 1.

Proposition 6. Let R be an artinian ring with $J^2 = 0$. Then the following are equivalent:

- 1) R is right almost hereditary.
- 2) (5) holds when M is local.
- 3) (5) holds for any finitely generated R-modules M and N.

Proof. 1) \rightarrow 3). Assume that R is right almost hereditary. Then J is semisimple and almost projective. We quote here the argument in the proof of [7], Theorem 1. Let P be a projective cover of M; $0 \rightarrow Q \rightarrow P \rightarrow M \rightarrow 0$, and M' a submodule of M. Then M' = P'/Q for some submodule P' of P and $P = P_1 \oplus P_2$ such that $P' \supset P_1$ and $P' \cap P_2$ is small in P. Put $Q_1 = Q \cap P_1$ and $Q_2 = Q \cap P_2$. Then since $P' \cap P_2$ is semisimple, we have $M' = P'/Q \approx P_1/Q_1 \oplus Q^*/Q_2$, where $(P \cap P_2)/Q_2 = Q^2/Q_1 \oplus Q^*/Q_2$, and P_1 is a projective cover of P_1/Q_1 . Suppose that M is N-projective. Then P_1/Q_1 is N-projective and $Q^*/Q_2 \subset J(P)/Q_2, Q^*/Q_2$ is almost projective. Therefore M' is almost N-projective.

2) \rightarrow 1). Since eR is N-projective for any R-module N, eJ is almost N-projective by (5). Hence eJ is almost projective.

3) \rightarrow 1). This is clear.

Next we shall study the condition (4). Here we shall give the structure of right almost hereditary ring. From [8], Theorem 2 we know that every right almost hereditary ring is a direct sum of hereditary rings, serial rings and rings of a form

$$R = \begin{pmatrix} T_1 & X_2 & X_3 & \cdots & X_m \\ 0 & S_2 & 0 & \cdots & 0 \\ & & S_3 & 0 & 0 \\ & & & \ddots & S_m \end{pmatrix}$$

where T_1 is a hereditary ring, the S_i are serial rings in the first category and the X_i is a left T_1 -right S_i -module for each i > 1. Without loss of generality, we may assume $S_i = 0$ for all $i \ge 2$. Hence in this note we assume

(18)
$$R = \begin{pmatrix} T_1 & X \\ 0 & S_2 \end{pmatrix}.$$

We study right almost hereditary rings of the form (18), i.e., S_2 is a serial ring in the first category and we may assume

$$S_2 = \begin{pmatrix} \Delta & \Delta \cdots \Delta & 0 \\ \Delta \cdots \Delta & 0 \\ 0 & \vdots & \lambda \\ & \ddots & \Delta \end{pmatrix}$$

where Δ is a division ring.

By h_i , f_i we denote matrix unite e_{ii} in T_1 and S_2 , respectively. Then h_iX is a direct sum of copies of f_1R/B_1 , where $B_1 = (0 \ 0 \cdots 0 \ \Delta \cdots \Delta \ 0 \cdots 0) = f_1R(f_k + f_{k+1} + \cdots) \neq 0$; $k \ge 2$.

If (4) holds for local modules M and N, then $J^2 = 0$ by [7], Proposition 7. Hence we assume $J^2 = 0$ in the above. Then k = 2, i.e.,

(19)
$$h_i X = 0$$
 or $h_i X = (f_1 R / f_1 J)^{(p_i)}$.

We fix such a ring R and study structures of R-modules. Take a projective module $P = P_1 \oplus P_2$, where $P_1 \approx \Sigma \oplus (h_i R)^{(t_i)}$, $P_2 \approx \Sigma \oplus (f_j R)^{(s_j)}$ and $Q \subset J(P)$. $J(P_1)$ and $J(P_2)$ do not contain a common isomorphic sub-factor module from (19). Therefore $Q = Q \cap P_1 \oplus Q \cap P_2$ (put $Q_i = Q \cap P_i$). By $M_{(k)}$ we denote an R-module of the form P_k/Q_k (k = 1,2). Then $M = M_{(1)} \oplus M_{(2)}$.

We put
$$Y = R - \begin{pmatrix} T_1 & X \\ 0 & \Delta \end{pmatrix}$$
 and $Z = \begin{pmatrix} T_1 & X \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Then Y, Z are ideals in R and R/Y is hereditary, R/Z is serial. Further the structure of R-module $M_{(1)}$ (resp. $M_{(2)}$) is the same as the structure of R/Y-module (resp. R/Z-module). (We note $\operatorname{Hom}_{R}(M_{(1)}, M_{(2)}) = 0$ but $\operatorname{Hom}_{R}(M_{(2)}, M_{(1)}) \neq 0$ for some M.)

Lemma 15. Let R be a right almost hereditary ring with $J^2 = 0$ as (18). If the hereditary ring $\tilde{R}(=R/Y) = \begin{pmatrix} T_1 & X \\ 0 & \Delta \end{pmatrix}$ satisfies (4) (resp. (4) where M is of special type), then R does the same.

Proof. We use the same notations as after (19). Let M be any finitely generated R-module and M' a submodule of M. Then from the argument before Lemma 15 we obtain direct decompositions $M = M_{(1)} \oplus M_{(2)}$ and $M' = M'_{(1)} \oplus M'_{(2)}$. Since $M'_{(1)} \approx (\Sigma \oplus (h_k R^{(s'_k)}) / A', M_{(2)} = (\Sigma \oplus (f_j R^{(t_j)}) / B$ and $\operatorname{Hom}_R(hR, fR) = 0$, $\operatorname{Hom}_R(M'_{(1)}, M_{(2)}) = 0$. Hence $M'_{(1)} \subset M_{(1)}$. Since R/Z is serial, f_iR is R/Z-injective, provided $f_i J \neq 0$. Further f_iR is injective as R-modules from (18). Hence $M'_{(2)}$ is almost projective by [11], Theorem 1. Suppose that N is local; i) N = hR/C or ii) N = fR/D, and M is almost N-projectve. i) Since $M_{(1)}$ is almost N-projective as R-modules, we have same as \tilde{R} -module (and vice versa). Hence $M'_{(1)}$ is almost N-projective by assumption and the fact: $M'_{(1)} \subset M_{(1)}$. Further since $M'_{(2)}$ is almost projective, M' is almost N-projective. ii) Since $\operatorname{Hom}_{\mathbb{R}}(M'_{(1)}, f\mathbb{R}/D) = 0$ for any D in $f\mathbb{R}$, $M'_{(1)}$ is (almost) N-projective. Hence we have shown

a) M' is almost N-projective provided N is local.

Now let $N = \Sigma \bigoplus N_i$; the N_i are indecomposable. We can find an integer k such that M is almost N_i -projective but not N_i -projective for all $i \le k$ and M is N_j -projective for all j > k. Then $\sum_{i \le k} \bigoplus N_i$ has LPSM by [6], Theorem and the N_i are local for $i \le k$ by [4], Theorem 1. Put $N^1 = \sum_{i \le k} \bigoplus N_i$, $N^2 = \sum_{j > k} \bigoplus N_j$. Noting that M is N^2 -projective and Y is almost projective from the proof of Proposition 6. Further X is almost N_i-projective for all $i \le k$ by a). Hence since X is N^2 -projective, X is almost N-projective by [6], Theorem. Therefore Y being almost projective, M' is almost N-projective.

REMARK. By the argument after the above a) we have shown that if (4) holds when N is local, then (4) holds for any R-module N.

Lemma 16. Let R be a hereditary ring with $J^2 = 0$. Then (4) holds when M is a finite direct sum of local modules.

Proof. Let M be almost N-projective for R-modules M and N, and M' a submodule of M. In order to show that M' is almost N-projective we may assume that N is local from the above remark. Let A be a submodule of gR, where g is a primitive idempotent. Assume that M is almost gR/A-projective and $M = \sum_{i \leq n} \bigoplus M_i$; the M_i are local, i.e. $M_i = g_i R/D_i$ for all $i \leq n$. We can suppose that M_i is almost gR/A-projective for all j > m. Since M_i is local and is almost gR/A-projective but not gR/A-projective, gR/A is M_i -projective for $i \leq m$ by [4], Proposition 5. Put $L_1 = \sum_{i \leq m} \bigoplus M_i$ and $L_2 = \sum_{j > m} \bigoplus M_j$, i.e., $M = L_1 \oplus L_2$. Let π_i : $M \to L_i$ be the projection of M onto L_i for i = 1, 2. Now we shall show that M' is almost gR/A-projective for any submodule M' of M. Put M' = T and take any diagram

 $T \\ \downarrow h \\ gR/A \xrightarrow{\nu} gR/B \to 0$

We may assume from [10], Theorem 1 that imh is simple. If h is not an epimorphism, then we obtain μ : $imh \to gR/A$ with $v\mu = 1_{imh}$, since gJ is semisimple. Hence we obtain $\tilde{h} = \mu h$: $T \to gR/A$ with $v\tilde{h} = h$. Assume that h is an epimorphism. Then B = gJ and we obtain the isomorphism \bar{h} : $T/T_0 \to gR/gJ$ induced from h, where $T_0 = h^{-1}(0)$. Put $\bar{h}^{-1}(\bar{g}) = t + T_0$ (t = tg) and $t = t_1 + t_2$;

 $t_i = \pi_i(t)$. First we assume $\pi_2(T) = \pi_2(T_0)$. Then we may suppose $t_2 = 0$, and hence $t = t_1 \in L_1$. T/T_0 being simple, $T/T_0 \approx tR/(T_0 \cap tR)$ and we obtain a diagram

$$gR/A$$

$$\downarrow^{\nu}$$

$$gR/gJ$$

$$\gtrless \ \hbar^{-1}$$

$$tR \xrightarrow{v_{iR}} tR/(T_0 \cap tR) \to 0$$

$$\cap \qquad \cap$$

$$L_1 \to L_1/(T_0 \cap tR) \to 0,$$

where $h|tR = hv_{tR}$.

Since gR/A is L_1 -projective, we obtain $\tilde{h}: gR/A \to tR \subset T$ with $v = \bar{h}v_{tR}\tilde{h} = h\tilde{h}$. Next suppose $\pi_2(T) \neq \pi_2(T_0)$ and $t = t_1 + t_2$; we may assume $t_2 \notin \pi_2(T_0)$ from the above argument. Then T/T_0 being simple, $T/T_0 \approx \pi_2(T)/\pi_2(T_0)$. Since $\pi_2(T) \subset L_2$, $\pi_2(T)$ is gR/A-projective from [7], Theorem 1. Consider the diagram

$$\pi_{2}(T)$$

$$\downarrow_{\rho_{2}}$$

$$\pi_{2}(T)/\pi_{2}(T_{0})$$

$$\downarrow_{h'}$$

$$gR/A \xrightarrow{v} gR/gJ \rightarrow 0$$

where $h'(t_2 + \pi_2(T_0)) = \bar{g}$ (note $t_2g = t_2$).

Then there exists $\tilde{h}': \pi_2(T) \to gR/A$ with $v\tilde{h}' = h'\rho_2$. Put $\tilde{h} = \tilde{h}'\pi_2$. For any y in $T \ h(y) = \bar{h}(y+T_0) = \bar{h}(tr+T_0) = \bar{g}r$ for some r in R. On the other hand, since $y = tr + t_0$; $t_0 \in T_0$, $y = t_1r + \pi_1(t_0) + t_2r + \pi_2(t_0)$. Hence $v\tilde{h}(y) = v\tilde{h}'\pi_2(y) = h'\rho_2\pi_2(y) = h'(t_2r + \pi_2(T_0)) = \bar{g}r = h(y)$. Hence $v\tilde{h} = h$.

Proposition 7. Let R be an artinian ring. Then the following are equivalent:

- 1) (4) holds when M is local.
- 2) (4) holds when M is a finite direct sum of local modules.
- 3) Any proper submodule of every local module is almost projective.
- 4) R is a right almost hereditary ring with $J^2 = 0$.

Proof. 1) \rightarrow 4). This is clear from the definition and [5], Proposition 7.

4) \rightarrow 3). Let M = gR/A. Every proper submodule M' of M is contained in gJ/A. Since gJ is semisimple, gJ/A is isomorphic to a direct summand of gJ, which is almost projective. Hence (4) holds when M is local.

3) \rightarrow 1). This is trivial. 1) \leftrightarrow 2). This is clear from Lemmas 15 and 16.

Corresponding to Theorems 1 and 2

Corollary. Let R be as above. Then

1) (4) holds when M and N are local if and only if $J^2 = 0$.

2) (4) holds when M is local and N is a direct sum of local modules if and only if $J^2 = 0$ and the projective cover of Soc(R) is a direct sum of uniserial modules.

3) (4) holds when M is local if and only if $J^2 = 0$ and R is right almost hereditary.

Proof. Since (5) is a generalization of (4), this is clear from Theorem 2 and Proposition 7.

4. Examples

Let $L \supset K$ be fields and σ an automorphism of K.

1.

$$R_{1} = \begin{pmatrix} K & K & \sigma K & K \oplus & \sigma K \\ 0 & K & 0 & K & \\ 0 & 0 & K & K & \\ 0 & 0 & 0 & K & \end{pmatrix},$$

where $(kk' \text{ in } R_1) = (\sigma(k)k' \text{ in } K)$ for any $k \in K$ and $k' \in \sigma K$.

Then $R = R_1$ is a hereditary ring, and putting $e_{ii} = e_i$, we have $e_1R \supset e_1J \approx e_2R \oplus e_3R$ and $\operatorname{Soc}(e_2R) \approx \operatorname{Soc}(e_3R)$. Since every simple submodule S in $\operatorname{Soc}(e_2R \oplus e_3R)$ ($\subset e_1J$) is of a form $S = \{k + \theta(k) | \in \operatorname{Soc}(e_2R)\} \subset e_1J$ for some isomorphism θ of $\operatorname{Soc}(e_2R)$ onto $\operatorname{Soc}(e_3R)$, $e_1Re_1S = \operatorname{Soc}(e_1R)$. Hence we know from Theorem 2 that (5) holds on local module M and a direct sum of local modues N, and R is (almost) hereditary. If we replace K_{σ} with K in the above ring, then this ring has the same structure of R except iv) in Theorem 1, and (5) does not hold on this ring.

2.

$$R_2 = \begin{pmatrix} L & L & L \\ 0 & L & L \\ 0 & 0 & K \end{pmatrix}, \quad \text{which satisfies all conditions in}$$
Theorem 1 except i).

However R_2 satisfies (5) as left *R*-modules when *M* and *N* are local.

3.

 $R_{3} = \begin{pmatrix} K & 0 & K & K \\ 0 & K & K & K \\ 0 & 0 & K & K \\ 0 & 0 & 0 & K \end{pmatrix}$ which satisfies all conditions in Theorem 1 except ii).

 $R_4 = eK \oplus fK \oplus aK \oplus bK \oplus abK$, where $\{e, f\}$ is the set of mutually 4. orthogonal primitive idempotents with 1=e+f, a=eaf and b=fbf. Then R_4 satisfies all conditions in Theorem 1 except iii)

References

- [1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs Textbooks Pure and Appl. 84, Marcel Dekker Inc. New York and Basel.
- [2] K.R. Fuller: On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
- [3] ------: Relative projectivity and injectivity classes by simple modules, J. London Math. Soc. 5 (1972), 423-431.
- [4] M. Harada and T. Mabuchi: On almost relative projectives, Osaka J. Math. 26 (1989), 837-848.
- [5] M. Harada and A. Tozaki: Almost M-projectives and right Nakayama rings, J. Algebra 122 (1989), 447-474.
- [6] M. Harada: On almost relative projectives over perfect rings, Osaka J. Math. 27 (1990), 655-665.
- [7] ------: Hereditary rings and relative projectives, Osaka J. Math. 28 (1991), 811-827.
- [8] -----: Almost hereditary rings, Osaka J. Math. 28 (1991), 793-809.
- (1992), 435-446.
- [11] ------: Almost projective modules, J. Algebra 159 (1993), 150-157.
- [12] T. Nakayama: On Frobenius algebra II, Ann. of Math. 42 (1941), 1-21.
- [13] T. Sumioka: On artinian ring of right local type, Math J. Okayama Univ. 29 (1987), 127-146.

2 - 93Osakabe, Yao 581 Japan