ARTINIAN RINGS RELATED TO RELATIVE ALMOST PROJECTIVITY

Manabu HARADA

(Received May 26, 1993)

Let R be an artinian ring. We consider the following condition: if $e R / A$ is $f R / B$-projective (resp. N-projective for an R-module N), then every submodule M^{\prime} of $e R / A$ is $f R / B$-projective (resp. N-projective), where e and f are primitive idempotents. We have shown in [7] that R satisfies the above condition for any $e R / A$ and any $f R / B$ if and only if R is a hereditary ring with $J^{2}=0$. In this paper we consider a weaker condition: if $e R / A$ is N-projective, then M^{\prime} is almost N-projective where i): N is local and ii): N is a direct sum of local modules, respectively. In the second section we shall study $\mathrm{QF}, \mathrm{QF}-2$, and $\mathrm{QF}-3$ rings with the above weaker condition, respectively. We study right almost hereditary rings with $J^{2}=0$ in the third section.

In a forthcoming paper we shall give a charaterization of rings over which the weaker condition is satisfied when M and N are any R-modules.

1. Characterizations

We always assume that R is an associative artinian ring with identity and every module is a finitely generated and unitary right R-module. Moreover since we are interested in the structure of R, we may assume that R is basic.

Let M and N be any finitely generated R-modules. We have studied rings with the following properties (1) (4) in [3] and [7]:
(1) If M is N-projective, then M^{r} is again N-projective for any submodule M^{\prime} of M.
(2) If $e R / B$ is $f R / A$-projective, then C / B is again $f R / A$-projective for any $\mathrm{C} \supset B$, where e and f are primitive idempotents and $C \supset B($ resp. A) are R-submodules of $e R$ (resp. $f R$).
(3) $e=f$ in (2).
(4) If M is almost N-projective, then M^{\prime} is again almost N-projective for any submodules M^{\prime} of M.

Here we shall consider a weaker condition than (4).
(5) If M is N-projective, then M^{\prime} is almost N-projective for any submodule M^{\prime} of M.

Let R be a two-sided artinian ring. We know from [3] or [7] that the following are equivalent: i) (1) holds, ii) (2) holds and iii) R is a hereditary ring with $J^{2}=0$.

In this section we shall give a characterization of artinian rings over which (5) holds on local modules M and N. By $\mathrm{J}(M)$ (resp. J) we denote the Jacobson radical of M (resp. of R).

Lemma 1. Let $f J \supset A \supset B$ be submodules of $f R$ such that A / B is almost $f R$-projective. Then there exists a submodule S^{*} of $f R$ such that $A=S^{*} \oplus B$, where f is a primitive idempotent.

Proof. Consider a diagram

$$
\begin{aligned}
A / B \\
\downarrow \swarrow \\
f R \xrightarrow{v} f R / B \rightarrow 0
\end{aligned}
$$

where h is the inclusion.
Since $h(A / B) \subset f J / B$ and $f R$ is indecomposable, there exists $\tilde{h}: A / B \rightarrow f R$ with $v \tilde{h}=h$, and hence $A=B \oplus \tilde{h}(A / B)$.

From now on we study (5) when M and N are local modules. We denote primitive idempotents by e, f, g, and so on.

Lemma 2. Assume (5) on local modules M and N. Then for any local module L, every submodule of $f R$ is almost L-projective.

Proof. Since $f R$ is L-projective, this is clear from (5).
Corollary. Assume (5) on local modules M and N and $\bar{e} \bar{R}=e R / e J$ is a simple component of $\operatorname{Soc}(R)$. Let x be a non-zero element in $f J$ with $x e=x$. Then $x R$ is simple.

Proof. Since $f J / x J \supset x R / x J \approx \bar{e} \bar{R}, x R / x J$ is isomorphic to a submodule of some $g R$, and $x R / x J$ is almost $f R$-projective by Lemma 2. Hence $x R=x J \oplus S$ and $x R=S \approx \bar{e} \bar{R}$ by Lemma 1 .

Lemma 3. Let X be an R-module such that X is isomorphic to a submodule of $\mathrm{J}(L)$, where L is a local R-module. If X is almost L-projective, X is quasi-projective.

Proof. We may assume $X \subset \mathrm{~J}(L)$. Let A be any submodule of X and consider a diagram

$$
\begin{gathered}
X \\
\downarrow h \\
X / A \\
\cap \\
L \xrightarrow{\nu} L / A \rightarrow 0,
\end{gathered}
$$

where h is the natural homomorphism of X to X / A.
Then there exists $\tilde{h}: X \rightarrow L$ with $v \tilde{h}=h$, and hence $\tilde{h}(X) \subset X$. Therefore X is quasi-projective.

Corollary. Assume (5) on local modules M and N. Then every submodule of any indecomposable quasi-projective module is quasi-projective.

Proof. This clear from Lemma 3.
Lemma 4. If (5) holds on local modules M and N, then $J^{3}=0$.
Proof. From Corollary to Lemma $3 \mathrm{eJ}=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{m}$ for a primitive idempotent e, where the X_{i} are indecomposable and quasi-projective. Further $e J^{2}=X_{1} J \oplus X_{2} J \oplus \cdots \oplus X_{m} J, X_{i} / X_{i} J$ is simple and $X_{i} J=Y_{i 1} \oplus Y_{i 2} \oplus \cdots \oplus Y_{i n_{i}}$, where the $Y_{i j}$ are indecomposable and quasi-projective. We denote this situation by the following figure:

We note $X_{1} \cap e J^{2}=X_{1} J$ and so on from (6). Let $X_{i} \approx f_{i} R / A_{i}$ and $f_{i} J \approx g_{i 1} R / C_{i 1} \oplus \cdots$ $\oplus g_{i n_{i}} R / C_{i n_{i} .^{-}}$Then since $f_{i} J / A_{i} \approx Y_{i 1} \oplus \cdots \oplus Y_{i n_{i}}\left(=X_{i} J\right), \quad Y_{i k}$ is a homomorphic image of some $g_{i t} R$. Now assume $e J^{3} \neq 0$ for some e. Then we may suppose $Y_{11} \not \subset \operatorname{Soc}(e R)$. Let $X_{1} \approx f R / A$ and $Y_{11} \approx g R / C$ (via θ). Then $f J=X^{\prime} \oplus \cdots$; $X^{\prime} \approx g R / A^{\prime}$ (via $\left.\theta^{\prime}\right)$ from the above remark. Since $Y_{11}(\approx g R / C) \notin \operatorname{Soc}(e R)$, $X^{\prime} \not \subset \operatorname{Soc}(f R)$ by Corollary to Lemma 2. Hence $X^{\prime} J \neq 0$. $e R / e J^{3}$ is $f R / f J^{3}$ projective by [1], p. 22, Exercise 4, and hence $Y_{11} / Y_{11} J \approx g R / g J$ is almost $f R / f J^{3}$-projective (see (6)). Consider a diagram

$$
\begin{gathered}
Y_{11} / Y_{11} J \\
\downarrow h \\
\left(X^{\prime}+f J^{3}\right) /\left(X^{\prime} J+f J^{3}\right) \approx g R / g J \\
\cap \\
f R / f J^{3} \xrightarrow{\nu}\left(f R / f J^{3}\right) /\left(\left(X^{\prime} J+f J^{3}\right) / f J^{3}\right) \rightarrow 0,
\end{gathered}
$$

where h is the induced isomorphism from θ and θ^{\prime}.
Then there exists $\tilde{h}: Y_{11} / Y_{11} J \rightarrow f R / f J^{3}$ with $v \tilde{h}=h$. Therefore $\tilde{h}\left(Y_{11} / Y_{11} J\right)+f J^{3}$ $+X^{\prime} J=X^{\prime}+f J^{3}$, and hence $X^{\prime}+f J^{3}=\tilde{h}\left(Y_{11} / Y_{11} J\right)+f J^{3}$. Accordingly $X^{\prime} /\left(X^{\prime} \cap f J^{3}\right)$ $\left(\approx\left(X^{\prime}+f J^{3}\right) / f J^{3}\right)$ is simple. On the other hand $X^{\prime} \cap f J^{3}=X^{\prime} J^{2}$. Therefore $X^{\prime} J=X^{\prime} J^{2}$, and hence $X^{\prime} J=0$, a contradiction.

Now $J^{3}=0$ from Lemma 4. We denote an indecomsable and projective module P with $P J^{2} \neq 0$ (resp. $P J^{2}=0, P J \neq 0$) by $e R$ (resp. $f R$). From Corollary to Lemma 3 we suppose $e J=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{s} \oplus S_{1} \oplus \cdots \oplus S_{t}$, where $X_{i} \approx h_{i} R / A_{i}$; $A_{i} \neq h_{i} J$ and $S_{j} \approx g_{j} R / g_{j} J$; the h_{k} and g_{m} are primitive idempotents.

Lemma 5. Assume (5) on local modules M and N and eJ is as above. Then X_{i} is projective and uniserial, and hence $X_{i} \approx f_{i} R$ for some f_{i}.

Proof. Let $X_{1} \approx h_{1} R / A_{1}$. Suppose $h_{1} R=e_{1} R$, i.e. $h_{1} J^{2} \neq 0$. Then $A_{1} \neq 0 ; \theta$: $e_{1} R / A_{1} \approx X_{1}$. Let $e_{1} J=X_{1}^{\prime} \oplus \cdots \oplus X_{s}^{\prime}, \oplus S_{1}^{\prime} \oplus \cdots$ similar to $e J$ above (note $X_{1}^{\prime} \neq 0$). Since $\theta\left(e_{1} J / A_{1}\right) \subset X_{1} J=\operatorname{Soc}\left(X_{1}\right), A_{1} \supset X_{1}^{\prime} \oplus \cdots \oplus X_{s}^{\prime}$, by Corollary to Lemma 2. If $\left\{S_{i}^{\prime}\right\}=\phi, A_{1}=e J$, a contradiction. Hence assume $\left\{S_{i}^{\prime}\right\} \neq \phi$. Then since $A_{1} \neq e_{1} J$, there exists $S_{1}^{\prime \prime}$ such that $S_{1}^{\prime} \not \subset A_{1}$. Being a submodule of $e R, e_{1} R / A_{1}$ is almost $e_{1} R / S_{1}^{\prime}$-projective by Lemma 2 . However A_{1} is characteristic by Corollary to Lemma 3 and $S_{1}^{\prime} \not \subset A_{1}, S_{1}^{\prime} \not \supset A_{1}$, because $A_{1} \supset X_{1}^{\prime}$, and hence $e_{1} R / A_{1} \oplus e_{1} R / S_{1}^{\prime}$ does not have LPSM, a contradiction to [4], Proposition 4. Therefore $h_{1} R=f R$, i.e, $h_{1} J^{2}=0$ and $h_{1} J \neq 0$. The above argument shows us $A_{1}=0$, since $f J$ is semisimple. Next we shall show that $X_{1}=f_{1} R$ is uniserial. Suppose $f_{1} J$ $=A \oplus B \oplus \cdots$, where A, B are non-zero simple modules. Now $\theta(e J)=0$ for any θ in $\operatorname{Hom}_{R}\left(e R, f_{1} R\right)$. Hence $e R / A$ is $f_{1} R / B$-projective. Accordingly $f_{1} R / A$ is almost $f_{1} R / B$-projective, and $f_{1} R / A \oplus f_{1} R / B$ has LPSM and hence $A=B$ by [9], Lemma 1. Therefore $f_{1} J$ is simple.

From Lemmas 4 and 5 we have

$$
\begin{align*}
& e J \approx f_{1} R \oplus f_{2} R \oplus \cdots \oplus f_{s} R \oplus S_{1} \oplus \cdots \oplus S_{k} ; \quad f_{i} R \text { is uniserial } \\
& \left(e^{\prime} J \approx f_{1}^{\prime} R \oplus \cdots \oplus f_{s}^{\prime}, R \oplus S_{1}^{\prime} \oplus \cdots\right) \tag{7}
\end{align*}
$$

Since $f_{i} R$ is projective, we have
Lemma 6. Let R be any artinian ring. If eJ and $e^{\prime} J$ have the above structure
(7) (where $f_{i} R$ need not be uniserial), then for any non-isomorophic homomorphism $\theta: e R \rightarrow e^{\prime} R, \theta(e J)=0$.

Lemma 7. Assume (5) on local modules M and N. If e $R \not \approx e^{\prime} R$ in (7), $f_{i} R \not \approx f_{j}^{\prime} R$ for any i and j.

Proof. Assume $f R \approx f^{\prime} R$. Now $e R / f J$ is $e^{\prime} R$-projective by Lemma 6. As a consequence $f R / f J \approx f^{\prime} R / f^{\prime} J$ is almost $e^{\prime} R$-projective, which is a contradiction from Lemma 1.

We can express (7) as follows:

$$
\begin{align*}
& e R \supset e J \approx \Sigma_{i=1}^{s} \oplus\left(f_{i} R\right)^{\left(n_{i}\right)} \oplus \Sigma_{j=1}^{t} \oplus S_{j}, \quad \text { where the } f_{i} R \text { are } \\
& \text { uniserial (and } e^{\prime} R \supset e^{\prime} J \approx \Sigma_{i=1}^{s^{\prime}} \oplus\left(f_{i}^{\prime} R\right)^{\left(n_{i}^{\prime}\right)} \oplus \Sigma_{j=1}^{t_{j}^{\prime}} \oplus S_{j}^{\prime} \text {). } \tag{7'}
\end{align*}
$$

We put $P_{i}=\left(f_{i} R\right)^{\left(n_{i}\right)}$ and $P=\Sigma_{i=1}^{s} \oplus P_{i}$. Let $\pi_{i}: P \rightarrow P_{i}$ be the projection of P onto P_{i}. We shall regard $\left(f_{i} R\right)^{\left(n_{i}\right)}$ as a submodule of $e J$.

Lemma 8. Suppose that (5) holds on local modules M and $N . \quad$ Let eR and P be as above. Let S be a simple submodule of P. Then eReS $=\Sigma_{i \in I} \oplus \operatorname{Soc}\left(P_{i}\right)$, where I is a subset of $\{1,2, \cdots, s\}$.

Proof. Let first $S=\operatorname{Soc}\left(f_{1} R\right)$ and $S^{*}=e R e S$. If $S^{*} \not \supset \operatorname{Soc}\left(P_{1}\right)$, then there exists $f_{1 i} R$ such that $f_{1 i} R \cap S^{*}=0 ; f_{1 i} R=f_{1} R$ which is the ith component of P_{1}. Since $e R / S$ is $e R / S^{*}$-projective, $f_{1} R / S$ is almost $e R / S^{*}$-projective. From the diagram

$$
\begin{gathered}
f_{1} R / S \\
\text { ॥ } \\
f_{1 i} R / S_{i} \\
" \\
\left(S^{*} \oplus f_{1 i} R\right) /\left(S^{*} \oplus S_{i}\right) \\
\cap \\
e R / S^{*} \rightarrow e R /\left(S^{*} \oplus S_{i}\right) \rightarrow 0, \text { where } S_{i}=\operatorname{Soc}\left(f_{1 i} R\right)
\end{gathered}
$$

we obtain a contradiciton. Therefore $S^{*} \supset \operatorname{Soc}\left(P_{1}\right)$. Next assume that S is any simple submodule of P. Since $e R / S^{*}$ is $e R / S^{*}$-projective, P / S^{*} is quasi-projective by Corollary to Lemma 3. Further $S^{*} \subset \operatorname{Soc}(P)=\mathrm{J}(P)$, and hence P is a projective cover of P / S^{*}. Accordingly $S^{*} \supset \pi_{i j}\left(S^{*}\right)$, where $\pi_{i j}: P \rightarrow f_{i j} R$ is the projection. Moreover $\pi_{i}\left(S^{*}\right) \supset \pi_{i}(S) \neq 0$ implies $\pi_{i j}\left(S^{*}\right)=\operatorname{Soc}\left(f_{i j} R\right) \subset S^{*}$ for some j, and hence $S^{*} \supset \operatorname{Soc}\left(P_{i}\right)$ from the initial part. Let $I=\left\{i_{j} \in\{1, \cdots, s\} \mid \pi_{i j}(S) \neq 0\right\}$. Then we have shown $S^{*} \supset \Sigma_{I} \oplus \operatorname{Soc}\left(P_{i_{j}}\right)$. On the other hand $S \subset \Sigma_{I} \oplus \operatorname{Soc}\left(P_{i_{j}}\right)$, and hence $S^{*} \subset \Sigma_{I} \oplus \operatorname{Soc}\left(P_{i_{j}}\right)$ for $e \operatorname{Re} \operatorname{Soc}\left(P_{i_{j}}\right)=\operatorname{Soc}\left(P_{i_{j}}\right)$ by Corollary to Lemma 2.

Next we assume that (5) holds whenever M is local and N is any finite direct sum of local modules. By $\mathrm{P}(\operatorname{Soc}(R))$ we denote the projective cover of $\operatorname{Soc}(R)$.

Lemma 9. Let R be as above. Then $\mathrm{P}(\operatorname{Soc}(R))$ is a direct sum of uniserial modules.

Proof. Let $\bar{g} R=g R / g J$ be isomorphic to a simple component of $\operatorname{Soc}(R)$ and $g J \neq 0$. Take two submodules A_{1}, A_{2} of $g J$ such that $g J^{j} \supset A_{i} \supset g J^{j+1}$ and $A_{i} / g J^{j+1}$ is simple ($i=1,2$ and $j=1,2$). Since $\bar{g} R$ is isomorphic to a proper submodule of some $h R, \bar{g} R$ is almost ($g R / A_{1} \oplus g R / A_{2}$)-projective by assumption. Assume that $g J^{j} / g J^{j+1}$ is not simple, and $A_{1} \neq A_{2}, A_{i} \neq g J^{j}$. Then $\bar{g} R$ is not $g R / A_{i}$-projective, and hence $g R / A_{1} \oplus g R / A_{2}$ has LPSM by [6], Theorem. Therefore $A_{1}=A_{2}$ by [9], Lemma 1, a contradiction. As a consequence $g R$ is uniserial.

We consider a direct sum $M=M_{1} \oplus M_{2}$. Let π_{i} be the projection of M onto M_{i} for $i=1,2$. For any submodule A of M we put

$$
\begin{equation*}
A_{i}=A \cap P_{i} \text { and } A^{i}=\pi_{i}(A) \text { for } i=1,2 . \tag{8}
\end{equation*}
$$

We use the following trivial lemma (see. [5], p.449)
Lemma 10. Let M and A be as above. Then $\theta: A^{1} / A_{1} \approx A^{2} / A_{1}$ and $A=\left\{m_{1}+m_{2} \mid m_{i} \in A^{i}\right.$ and $\left.\theta\left(m_{1}+A_{1}\right)=m_{2}+A_{2}\right\}$.

Finally we obtain the main theorem.

Theorem 1. Let R be an artinian ring. (5) holds on local modules M and N, if and only if i): $J^{3}=0$ and eJ has the structure (7^{\prime}) with $f_{i} R$ uniserial, ii) if e $R \not \approx e^{\prime} R$, then $f_{i} R \not \approx f_{j}^{\prime} R$ for all i and j in (7') and iii) $\bar{f}_{i} \bar{R}$ in (7') is never isomorphic to any simple component of $\operatorname{Soc}(R)$, and iv) the condition in Lemma 8, eReS $=\Sigma_{I} \oplus \operatorname{Soc}\left(P_{i}\right)$ for any simple submodule S in P, is satisfied, where e, e^{\prime} are any primitive idempotents with $e J^{2} \neq 0$ and $e^{\prime} J^{2} \neq 0$.

Proof. Suppose that (5) holds. Then we have i)~iv) by Corollary to Lemma 2 and Lemmas 4, 5, 7 and 8. Conversely we assume 1)~iv). First we study a structure of submodule B / A of $e R / A$. We take the decomposition (7'): $e J=P_{1} \oplus \cdots \oplus P_{s} \oplus S_{1} \oplus \cdots \oplus S_{t}$. Put $P=\Sigma_{i=1}^{s} \oplus P_{i}$ and $\tilde{S}=\Sigma_{j=1}^{t} \oplus S_{j}$, and hence $e J=P \oplus \tilde{S}$. We apply Lemma 10 to this decomposition $e J=P \oplus \tilde{S}$ and the submodule A of $e J$. Then there exists an isomorphism $\theta: A^{1} / A_{1} \approx A^{2} / A_{2}$. Since any simple sub-factor module of $P / \operatorname{Soc}(P)$ is never isomorphic to any one of \tilde{S} (and hence any one of $\left.A^{2} / A_{2}\right)$ by iii), $A^{1} / A_{1} \subset\left(\operatorname{Soc}(P)+A_{1}\right) / A_{1} \approx$ $\operatorname{Soc}(P) /\left(\operatorname{Soc}(P) \cap A_{1}\right)$. Accordingly there exists a submodule K_{1} of $\operatorname{Soc}(P)$ such that
$A^{1} / A_{1}=\left(K_{1} \oplus A_{1}\right) / A_{1} . \quad A^{2}$ being semisimple, we obtain $A^{2}=A_{2} \oplus K_{2}$ for some K_{2} in A^{2}, and clearly $\theta: K_{1} \approx K_{2}$. Therefore $A=A_{1} \oplus A_{2} \oplus K_{2}\left(\theta^{-1}\right)$ by Lemma 10, where $A_{1} \subset P$ and A_{2}, K_{2} are contained in \tilde{S}. Since \tilde{S} is semisimple, $\tilde{S}=A_{2} \oplus K_{2} \oplus K_{2}^{\prime}$ for some K_{2}^{\prime}. Then $e J=P \oplus A_{2} \oplus K_{2}\left(\theta^{-1}\right) \oplus K_{2}^{\prime}$, and putting $\widetilde{S}^{\prime}=A_{2} \oplus K_{2}\left(\theta^{-1}\right) \oplus K_{2}^{\prime}$, we obtain

$$
\begin{equation*}
A=A \cap P \oplus A \cap \tilde{S}^{\prime}\left(e J=P \oplus \tilde{S}^{\prime}\right) \tag{9}
\end{equation*}
$$

Next let $e J \supset B \supset A$. Then we obtain from the above observation (take first the decomposition of B and use the above argument on A)

$$
\begin{align*}
e J & =P \oplus \tilde{S}_{a} \oplus \tilde{S}_{b} \oplus \tilde{S}_{c} \supset \\
B & =B_{1} \oplus \tilde{S}_{a} \oplus \tilde{S}_{b} \supset \tag{10}\\
A & =A_{1} \oplus \tilde{S}_{a},
\end{align*}
$$

where $B_{1}=B \cap P, A_{1}=A \cap P$ and the $\tilde{S}_{a}, \tilde{S}_{b}$ and \tilde{S}_{c} are contained in $\operatorname{Soc}(e J)$. From (10) we may study the structure of B_{1} / A_{1}. Hence we assume $P \supset B_{1}=P \cap B \supset A_{1}=P \cap A$. Since P is projective, considering first the decomposition of A, we obtain

$$
\begin{align*}
P & =P_{1} \oplus P_{2} \oplus P_{3} \supset \\
B_{1} & =P_{1} \oplus P_{2} \oplus B_{1} \cap P_{3} \supset \tag{11}\\
A_{1} & =P_{1} \oplus A_{1} \cap\left(P_{2} \oplus P_{3}\right),
\end{align*}
$$

where the P_{i} are isomorphic to direct sums of some copies of $\left\{f_{i 1} R, \cdots, f_{i q} R\right\}$ and $B_{1} \cap P_{3}, A_{1} \cap\left(P_{2} \oplus P_{3}\right)$ are semisimple modules
(12) whose simple components are isomorphic to those of $\operatorname{Soc}(e J)$.

Since $A_{1} \cap\left(P_{2} \oplus P_{3}\right) \subset P_{2} \oplus B_{1} \cap P_{3}$ and $A_{1} \cap\left(P_{2} \oplus P_{3}\right), B_{1} \cap P_{3}$ are semisimple, we obtain a new decomposition: $P_{2} \oplus B_{1} \cap P_{3}=P_{2} \oplus V^{\prime}$ such that $A \supset A_{1} \cap\left(P_{2} \oplus P_{3}\right)$ $=A_{2} \oplus A_{3}$ and $A_{2} \subset \mathrm{~J}\left(P_{2}\right), A_{3} \subset V^{\prime}$, which is a semisimple module as (12). Therefore $B_{1} / A_{1} \approx P_{2} / A_{2} \oplus V$. Let $P_{2} \approx \Sigma_{I} \oplus\left(f_{i} R\right)^{\left(m_{i}\right)} ; m_{i} \leqq n_{i}$, where $I^{\prime} \subset\{1,2, \cdots, s\}$ and I the subset of I such that $k \in I$ if and only if $\pi_{k}\left(A_{2}\right) \neq 0$, where $\pi_{k}: P \rightarrow\left(f_{k} R\right)^{\left(m_{i}\right)}$ is the projection. Then

$$
\begin{equation*}
B_{1} / A_{1} \approx \Sigma_{I} \oplus\left(f_{i} R\right)^{\left(m_{i}\right)} / A_{2} \oplus \Sigma_{I^{\prime}-I} \oplus\left(f_{t} R\right)^{\left(m_{t}\right)} \oplus V \tag{13}
\end{equation*}
$$

where $A \supset A_{1} \supset A_{2}$ and V is a semisimple module as (12).
We resume to prove the converse. We shall show first that
a) $\quad \operatorname{Soc}(R)$ is almost L-projective for any local module $L=g R / D$.

Let S be a simple component of $\operatorname{Soc}(R)$ and consider a diagram:
(14)

$$
\begin{gathered}
S \\
\downarrow h \\
g R / D \xrightarrow{\nu} g R / C \rightarrow 0 .
\end{gathered}
$$

If h is an epimorphism, h is an isomorphism. Hence putting $\tilde{h}=h^{-1} v$, we have $h \tilde{h}=v$. Accordingly we assume that h is not an epimorphism, i.e., $h(S) \subset g J / C$. If $g R=f R\left(f J^{2}=0\right), f J / D$ is semisimple, and hence we obtain $\widetilde{h}: S \rightarrow f J / D \subset f R / D$ with $v \tilde{h}=h$. Next assume $g R=e R\left(e J^{2} \neq 0\right)$. Then we may consider the following diagram instead of (14)

$$
\begin{gather*}
S \\
\downarrow h \tag{14'}\\
e J / D \xrightarrow{v} e J / C \rightarrow 0 .
\end{gather*}
$$

Let $S \approx \bar{k} R$ for a primitive idempotent k and $h(S)=(x R+C) / C ; x k=x \in e J$. Then $x \in \operatorname{Soc}(e J)$ by iii), and hence $x R=x R / x J$ is simple. Accordingly $h(S)=(x R+C) / C$ $\approx x R$. Since $x R \cap D \subset x R \cap C=0$, we obtain an isomorphism $\tilde{h}: S \rightarrow x R \subset e J / D$ with $v \tilde{h}=h$. Thus we have shown a).
Now let $M=g R / A, N=p R / D$ and M be N-projective. Take any diagram for any submodule M^{\prime} of

$$
\begin{gather*}
M^{\prime} \\
\downarrow h \tag{15}\\
p R / D \xrightarrow{v} p R / C \rightarrow 0
\end{gather*}
$$

$\alpha)$

$$
M=f R / A\left(f J^{2}=0, f J \neq 0\right) .
$$

Then any proper submodule M^{\prime} of M is contained in $\operatorname{Soc}(R)$. Hence M^{\prime} is almost $p R / D$-projective by a). Next assume

$$
M=e R / A\left(e J^{2} \neq 0\right) \text { and } N=f R / D
$$

From (10) and (13) M^{\prime} is a direct sum of the following submodules:

1) $S \approx \operatorname{Soc}\left(f_{i} R\right)$ or $\approx S_{j}$,
2) $\Sigma_{I} \oplus\left(f_{i} R\right)^{\left(m_{i}\right)} / A_{2}$, where $\pi_{i}\left(A_{2}\right) \neq 0$ for $i \in I$, and
3) $f_{j} R$.

In the cases 1) and 3), M^{\prime} is almost N-projective by a). Hence we may assume $M^{\prime}=\Sigma_{I} \oplus\left(f_{i} R\right)^{\left(m_{i}\right)} / A_{2}$.

If $f R \not \approx f_{i} R$ for all i in 2), $\operatorname{Hom}_{R}\left(M^{\prime}, f R\right)=0$ by iii). Hence M^{\prime} is trivially N-projective. If $f R \approx f_{i} R$ for some $i, f R$ is uniserial and $f J^{2}=0$. Then $f R \rightarrow f R / f J \rightarrow 0$ is only a non-trivial exact seuqnce. Therefore M^{\prime} is almost $f R / D$-projective (note that $f R$ is projective). Assume

$$
M=e R / A \text { and } N=e^{\prime} R / D ; e^{\prime} R \not \approx e R .
$$

Since $e R / A$ is $e R / D$-projective, $e R e A \subset D$. Further $0 \neq \pi_{i}\left(A_{2}\right)$ implies $\operatorname{Soc}\left(P_{i}\right)$ $\subset e \operatorname{Re} A_{2} \subset e \operatorname{Re} A \subset D \subset C$ by iii) and iv) (we note that if $P=P_{1}^{\prime} \oplus P_{2}^{\prime} \oplus \cdots \oplus P_{s}^{\prime}$, where $P_{i}^{\prime} \approx\left(f_{i} R\right){ }^{\left(p_{i}\right)}$, then $P_{i}=P_{i}^{\prime}$ by iii)). We put $e J=X \oplus Y$, where $X=\Sigma_{I} \oplus P_{i}$ and $Y=\Sigma_{j \notin I} \oplus P_{j} \oplus \tilde{S}$. Then from Lemma 10 and iii) $D=D \cap X \oplus D \cap Y \subset C=C \cap X \oplus$ $C \cap Y$. As a consequence we obtain from (15)

$$
\stackrel{M^{\prime}}{\stackrel{\downarrow h}{ }} \stackrel{\downarrow}{ } / D=X /(D \cap X) \oplus Y /(D \cap Y) \rightarrow X /(C \cap X) \oplus Y /(C \cap Y) \rightarrow 0
$$

Since $\operatorname{Hom}_{R}\left(P_{i}, P_{j}\right)=0$ for $j \notin I$ and $\operatorname{Hom}_{R}\left(P_{i}, \tilde{S}\right)=0, h\left(M^{\prime}\right) \subset X /(C \cap X)$.
Further $X /(D \cap X)$ is semisimple for $D \cap X \supset \operatorname{Soc}(X)$, and hence we obtain \tilde{h} : $M^{\prime} \rightarrow e J / D$ with $v \tilde{h}=h$.

Next we consider (5) when N is a finite direct sum of local modules.
Theorem 2. Let R be as above. Then (5) holds whenever M is local and N is a finite direct sum of local modules if and only if i) $\sim i v$) in Theorem 1 and v) the condition in Lemma 9, $\mathrm{P}(\operatorname{Soc}(R))$ is a direct sum of uniserial modules, are satisfied.

Proof. "Only if" is given by Theorem 1 and Lemma 9. Conversely we assume i$) \sim \mathrm{v}$). We use the same argument as given in the proof of Thorem 1. Let $N=\Sigma \oplus h_{j} R / B_{j}$, where the h_{j} are primitive idempotents and $M(=g R / A)$ be N-projective. Then M is $h_{j} R / B_{j}$-projective. Take any submodule of M^{\prime} in M. We know from the proof of Theorem 1 that if M^{\prime} is almost $h_{j} R / B_{j}$-projective, but not $h_{j} R / B_{j}$-projective, then M^{\prime} is simple or $M^{\prime} \approx \Sigma_{I} \oplus\left(f_{i} R\right)^{\left(m_{i}\right)} / A_{2}$ (see a), α) and β) in the proof of Theorem 1). In this case $h_{j} R$ is uniserial by v) and [4], Theorem 1. Hence M^{\prime} is almost N-projective by [6], Theorem.

In a forthcoming paper we shall study (5) when $N($ resp. M) is any R-module.

2. Several rings with (5)

If $g R$ is uniform for every primitive idempotent g, then we call R a right $Q F-2$ ring. If $\mathrm{E}(R)$, the injective hull of R, is projective, than we call R a $Q F-3$ ring. In this section we shall study $\mathrm{QF}, \mathrm{QF}-2$ and $\mathrm{QF}-3$ rings with (5), respectively.

Proposition 1. Assume that R is either local or QF , then (5) holds on local modules M and N if and only if $J^{2}=0$.

Proof. If (5) holds, then there are no $e R$ with $e J^{2} \neq 0$ from the assumption and Corollary to Lemma 2. The converse is clear from [7], Proposition 7.

Lemma 11. Assume (5) on local modules M and N. If $h R$ is uniform, then $h R$ is uniserial, where h is a primitive idempotent.

Proof. This is clear from Corollary to Lemma 3.

Proposition 2. R is a right QF-2 ring over which (5) holds on local modules M and N if and only if R is a right serial ring with $J^{3}=0$ such that 1) if e $J^{2} \neq 0$, $e J / e J^{2}$ is never monomorphic to $\operatorname{Soc}(R)$, and 2) if $e_{i} J^{2} \neq 0$ for $i=1,2$ and $e_{1} J / e_{1} J^{2} \approx e_{2} J / e_{2} J^{2}$, then $e_{1} R \approx e_{2} R$.

Proof. Assume (5) on local modules M and N. Then R is a right serial ring with 1) and 2) by Theorem 1 and Lemma 11. Conversely 1) implies that $e J$ is projective (cf. Lemma 14 below). Hence (5) holds by Theorem 1.

Next we study left QF-2 rings with (5) as right R-modules.
Lemma 12. Let R be a ring with $J^{3}=0$. Assume that e R has the structure (7') if eJ $J^{2} \neq 0$ (where $f_{i} R$ need not be uniserial). Let θ be a homomorphism of $h R$ to $h^{\prime} R$. If $\theta(h J) \neq 0, \theta$ is monomorphic, where e, h and h^{\prime} are primitive idempotents.

Proof. Suppose that θ is not isomorphic. Since $\theta(h J) \neq 0, \theta(h R) \not \subset \operatorname{Soc}\left(h^{\prime} R\right)$. Hence $h^{\prime} J^{2} \neq 0$. If $h J^{2} \neq 0, \theta$ is isomorphic by Lemma 6. Hnece $h J^{2}=0$, and θ is monomorphic from (7^{\prime}).

Lemma 13. Let R be left $\mathrm{QF}-2$. Assume that $J^{3}=0$ and eJ has the structure in (7^{\prime}) if eJ $J^{2} \neq 0$ (where $f_{i} R$ need not be uniserial). Then 1) Let S_{i} be a proper simple submodule of $g_{i} R$ for $i=1,2$ and $\theta: S_{1} \rightarrow S_{2}$ isomorphic. Then θ is extensible to an element in $\operatorname{Hom}_{R}\left(g_{1} R, g_{2} R\right)$ or in $\operatorname{Hom}_{R}\left(g_{2} R, g_{1} R\right)$. 2) Let $f_{i} R$ be contained in eR as in (7'). Then $\bar{f}_{i} R$ is never monomorphic to $\operatorname{Soc}(R)$. 3) $f_{i} R(\subset e R) \not \not \not \not f_{j} R\left(\subset e^{\prime} R\right)$ if $e R \not \approx e^{\prime} R$. 4) For any simple submodule A of $P_{i}=\left(f_{i} R\right)^{\left(n_{i}\right)} \subset e R$, $e \operatorname{Re} A \supset \operatorname{Soc}\left(P_{i}\right)$, where the g_{i} are primitive idempotents.

Proof. 1). Put $S_{i}=x_{i} R \subset g_{i} J$ with $x_{2}=\theta\left(x_{1}\right)$ and $S_{i} \approx \hbar R$. Then we can assume $g_{i} x_{i} h=x_{i}$ for $i=1,2$. Since $R h$ is uniform, put $\operatorname{Soc}(R h)=R k$, where k is a primitive idempotent. Then $R x_{i}$ containing $\operatorname{Soc}(R h)$, there exists z_{i} in $k R g_{i}$ such that $\mathrm{o} \neq z_{1} x_{1}=z_{2} x_{2}$. Hence from Lemma 12 we have

$$
\begin{equation*}
g_{1} R \approx k R \text { or } g_{i} R \subset k R \text { via } z_{i l} \text { (isomorphically) } \tag{17}
\end{equation*}
$$

where $z_{i l}$ is the left-sided multiplication of z_{i}.
i) $z_{11}: g_{1} R \approx k R$.

Then there exists $z_{l}^{\prime}: k R \rightarrow g_{1} R$ such that $z^{\prime} z_{1}=g_{1}$. Hence $x_{1}=\left(z^{\prime} z_{2}\right) x_{2}$ and θ^{-1}
is extensible to $\left(z^{\prime} z_{2}\right)_{l} \in \operatorname{Hom}_{R}\left(g_{2} R, g_{1} R\right)$.
Here we assume 2).
ii) $z_{11}: g_{1} R \rightarrow k R$ and $z_{2 l}: g_{2} R \rightarrow k R$ are monomorphic (not isomorphic).

Then $k J^{2} \neq 0$. In order to show 1) we may assume, in this case, $k R=e R, g_{1} R=f_{i} R$ and $g_{2} R=f_{i^{\prime}} R$ in (7'), i.e., $S_{1} \subset f_{i} R \subset e R, S_{2} \subset f_{i^{\prime}} R \subset e R$ and $\theta: S_{1} \rightarrow S_{2}$, and we give the extension of θ (or θ^{-1}) in $\operatorname{Hom}_{R}\left(f_{i} R, f_{i} R\right)$ (or in $\operatorname{Hom}_{R}\left(f_{i} R, f_{i} R\right)$). Hence since $S_{i} \subset e R$, we first consider the case $g_{1}=g_{2}=e$. Since $e J^{2} \neq 0$, we obtain the case i) from (17). Hence there exists a unit z in $e R e$ such that z_{l} is an extension of θ. As a consequence $\left(f_{i} R\right)^{\left(n_{i}\right)}$ being characteristic, $f_{i} R=f_{i} R$. Put $\left(f_{i} R\right)^{\left(n_{i}\right)}=$ $\Sigma_{j \leqq n_{i}} \oplus u_{j} f_{i} R$, where $u_{j}=u_{j} f_{i}$ and $u_{j} f_{i} R \approx f_{i} R$ for all j. Then we may assume $x_{1}=u_{1} r$, $x_{2}=u_{1} r^{\prime} ; r, r^{\prime} \in f_{i} J$. Now $z_{l}\left(u_{1} f_{i}\right)=\Sigma u_{j} w_{j}$ and the w_{j} are units in $f_{i} R f_{i}$ or zero by the assumption 2). Since $\Sigma u_{j} w_{j} r=z_{l}\left(u_{1} r\right)=z x_{1}=x_{2}=u_{1} r^{\prime}, \quad z_{l}\left(u_{1}\right)=u_{1} w_{1} \in u_{1} f_{i} R$, because $w_{j} r \in f_{i} R, f_{i} R \approx u_{j} f_{i} R$ and w_{j} is a unit or zero. Hence θ is extensible to $\left(z_{l} \mid u_{1} R\right) \in \operatorname{Hom}_{R}\left(f_{i} R, f_{i} R\right)$.
2) Let $e R \supset f_{1} R$ be as (7^{\prime}) and S a simple component of $\operatorname{Soc}(t R)$, where t is a primitive idempotent with $t J \neq 0$. Suppose $S \approx f_{1} R / f_{1} J$. Then there exist x_{1} in $f_{1} R-f_{1} J$ and x_{2} in S such that $e x_{1} f_{1}=x_{1}, t x_{2} f_{1}=x_{2}$. Since $e J^{2} \neq 0$, from the similar argument to the initial part in 1)-i) we obtain $e R \approx k R$ as in 1)-i) and $x_{1}=z x_{2}$ for some $z \in e R t$, which is a contradiction, since $x_{1} \notin \operatorname{Soc}(e R)$.
3) This is clear from 1) and Lemma 6.
4) Since $A \approx \operatorname{Soc}\left(f_{i} R\right)$. we obtain 4) from 1).

Corollary. Let R be as in Lemma 13. If $g_{1} R$ and $g_{2} R$ have mutually isomorphic simple submodules, then $g_{1} R \approx g_{2} R$ or one of $\left\{g_{1} R, g_{2} R\right\}$ contains isomorphically the other.

Proof. This is clear from lemmas 12 and 13.

Proposition 3. Let R be a left $\mathrm{QF}-2$ ring. Then (5) on local modules M and N holds as right R-modules if and only if i) $J^{3}=0$ and eJ has the structure (7'), provided eJ $J^{2} \neq 0$, (where $f_{i} R$ is uniserial).

Proof. Let $e R \supset e J=\Sigma \oplus P_{i} \oplus \Sigma \oplus S_{j}$, where $P_{i}=\left(f_{i} R\right)^{\left(m_{i}\right)}$. Then every simple sub-factor module of P_{i} is not isomorphic to any one of P_{j} for $i \neq j$. Hence the proposition is clear from Theorem 1 and Lemma 13.

Corollary. Let R be a right and left QF-2 ring. If (5) holds on local modules M and N, then R is serial, where g and g^{\prime} are primitive idempotents.

Proof. We may show from Proposition 2 and [13], Lemma 4.3 that every isomorphism $\theta: g J / g J^{2} \approx g^{\prime} J / g^{\prime} J^{2}$ is liftable to an element in $\operatorname{Hom}_{R}\left(g R, g^{\prime} R\right)$.

人) $\quad g R=e R$ and $g^{\prime} R=e^{\prime} R\left(e J^{2} \neq 0\right.$ and $\left.e^{\prime} J^{2} \neq 0\right)$.
Then $e=e^{\prime}$ by ii) of Proposition 2. Since $e J$ is projective, θ is given by an element θ^{\prime} in $\operatorname{Hom}_{R}(e J, e J)$. Let $e J=x R, x h=x$ for a primitive idempotent h and $\theta^{\prime}(x)=x^{\prime}$. Since $R h$ is uniform, there exist a primitive idempotent k and z, z^{\prime} in $k R e$ such that $z x=z^{\prime} x^{\prime} \neq 0$. If $z \in J, z_{l}(e J)=0$ by Lemma 6. Hence $k=e$ and z, z^{\prime} are units in $e R e$. As a consequence θ is liftable.
B) $\quad g R=e R$ and $g^{\prime} R=f R(f J \neq 0)$.

We do not have this case by i) of Proposition 2.
ү) $\quad g R=f R$ and $g^{\prime} R=f^{\prime} R$.
Then θ is liftable by Lemma 13.
We shall study serial rings with (5) in the next proposition.
Lemma 14. Let R be a serial ring with $J^{3}=0$. Then the following are equivalent:

1) If $e J^{2} \neq 0$, eJ is projective.
2) If $e J^{2} \neq 0, e J / e J^{2}$ is not monomorphic to $\operatorname{Soc}(R)$, where e runs over all the primitive idempotents.

Proof. 1) $\rightarrow 2$). Suppose $e J / e J^{2} \approx \operatorname{Soc}(g R)$ for a primitive idempotent g. If $g J^{2} \neq 0, g J$ is projective by 1). Let $g J \approx h R$. Then since $\operatorname{Soc}(g R) \approx h J=h J / h J^{2} \approx$ $e J / e J^{2}, h R \approx e R$ by [13], Lemma 4.3, a contradiction. We obtain the same result if $g J^{2}=0$,
2) $\rightarrow 1$). If $e J$ is not projective, $e J \approx g R / g J^{2}$ and $g J^{2} \neq 0$. Hence $\operatorname{Soc}(e J)$ $\approx g J / g J^{2}$, a contradiction.

Proposition 4. Let R be a QF-3 ring. Then the following are equivalant:

1) (5) holds on local modules M and N.
2) R is a serial ring with $J^{3}=0$ such that if $e J^{2} \neq 0, e J / e J^{2}$ is not monomorphic to $\operatorname{Soc}(R)$.
$\left.2^{\prime}\right) R$ is serial ring with $J^{3}=0$ such that eJ is projective, if eJ $J^{2} \neq 0$.
3) R is a serial ring with $J^{3}=0$ such that if $J^{2} e \neq 0, J e / J^{2} e$ is not monomorphic to $\operatorname{Soc}_{R} R$).
4) (5) holds on any finitely generated R-modules M and N as right R-modules as well as left R-modules.

Proof. 1) $\rightarrow 2$). Assume that R is a QF-3 ring and (5) holds on local modules M and N. Then $J^{3}=0$ by Lemma 4. Next we shall show that R is a right serial ring. Let $\mathrm{E}(R) \approx \Sigma \oplus\left(h_{i} R\right)^{\left(p_{i}\right)}$, where the $h_{i} R$ are indecomposable, injective and projective. We know from Lemma 11 that the $h_{i} R$ are uniserial. Suppose $g R$ is
not injective for a primitive idempotent g such that $g J \neq 0$. Then considering the projection of $\mathrm{E}(R)$ to $h_{i} R$, we have $g R \subset \mathrm{~J}(\mathrm{E}(R))$, since $g R$ is not injective. Since $h_{i} J$ is projective by Lemma 5 if $h_{i} J^{2} \neq 0, g R \approx h_{i} J$ for some j. Therefore R is a right serial ring with $J^{3}=0$. The property in 2) is given by Proposition 2. We shall show that R is left serial. If $e_{1} J^{2} \neq 0, e_{1} R$ is injective for $J^{3}=0$. Suppose θ : $e_{1} J / e_{1} J^{2} \approx e_{2} J / e_{2} J^{2}$ for any primitve idempotent e_{2}. Then $e_{2} J^{2} \neq 0$ by 1) in Proposition 2 and $e_{1} R \approx e_{2} R$ by 2) in Proposition 2. $e_{1} J$ being projective from Lemma $5, \theta$ is given by an isomorphism θ^{\prime} of $e_{1} J$ onto $e_{2} J$. Since $e_{1} R$ is injective, θ^{\prime} is extesible to an element in $\operatorname{Hom}_{R}\left(e_{1} R, e_{2} R\right)$. Suppose $e_{1} J^{2}=0$, then $e_{2} J^{2}=0$ as above. Hence $e_{1} R$ and $e_{2} R$ are contained in some injective $e R$ for $\operatorname{Soc}\left(e_{1} R\right) \approx \operatorname{Soc}\left(e_{2} R\right)$. Hence θ is extensible to an element in $\operatorname{Hom}_{R}\left(e_{1} R, e_{2} R\right)$. Therefore R is serial ring by [13], Lemma 4.3.
$2) \rightarrow 1$). This is clear from Proposition 2 and [13], Lemma 4.3.
2) $\leftrightarrow 2^{\prime}$). This is clear from Lemma 14.

1) \rightarrow 4). Let $M=\Sigma \oplus e_{i} R / A_{i}$ be $N=\Sigma \oplus h_{j} R / B_{j}$-projective (see [12]). Take a submodule M^{\prime} of $M ; M^{\prime}=\Sigma \oplus f_{k} R / C_{k}$. Then being uniserial, $f_{k} R / C_{k}$ is isomorphic to a submodule of some $e_{i} R / A_{i}$. Since $e_{i} R / A_{i}$ is $h_{j} R / B_{j}$-projective for all j, $f_{k} R / C_{k}$ is almost $h_{j} R / B_{j}$-projective, and hence $f_{k} R / C_{k}$ is almost N-projective by [6], Theorem. Hence (5) holds.
2) $\rightarrow 3$). Suppose $J^{2} e_{i} \neq 0$ for $i=1,2$ and $J e_{1} / J^{2} e_{1} \approx J^{2} e_{2}$. Then there exists e_{i}^{\prime} such that ($e_{i}^{\prime} R, R e_{i}$) is the injective pair for $i=1,2$ by [2], Theorem 3.1. Then $e_{1}^{\prime} J / e_{1}^{\prime} J^{2} \approx e_{2}^{\prime} R / e_{2}^{\prime} J$ by [2], Theorem 2.4 for $J^{3}=0$, and hence $e_{1}^{\prime} J \approx e_{2}^{\prime} R / e_{2}^{\prime} J^{2}$. As a consequence $e_{1}^{\prime} J^{2} \approx e_{2}^{\prime} J / e_{2}^{\prime} J^{2}$, a contradiction. Next assume $J e_{1} / J^{2} e_{1} \approx J f \approx R \bar{g}$, where $J^{2} f=0$. If $R f$ is injective, $g R$ is injective by [2], Theorem 3.1 and $e_{1}^{\prime} J \approx g R$, a contradiction. If $R f$ is not injective, $\mathrm{E}(R f) \approx R e^{\prime}$, which is again a contradiction from the initial. Then since $J e_{1} / J^{2} e_{1}$ is clearly not projective, $J e_{1} / J^{2} e_{1}$ is never monomorphic to $\operatorname{Soc}\left({ }_{R} R\right)$.

The remaining implications are clear.

3. Almost hereditary rings with $\boldsymbol{J}^{2}=0$

We studied almost hereditary rings with $J^{2}=0$ in [7]. In this section we shall investigate again those rings. First we shall study a very special almost hereditary ring.

Proposition 5. Every finitely generated R-module is almost projective if and only if R is a serial ring with $J^{2}=0$.

Proof. Suppose that R is a serial ring with $J^{2}=0$. Then every indecomposable R-module is either $e R$ or $e R / e J$, where e is any primitive idempotent. If $e J \neq 0$, $e R$ is injective and hence $e R / e J$ is almost projective by [11], Theorem 1. Therefore every R-module is almost projective by [12]. The converse is clear from [7],

Proposition 7 and [9], Corollary to Theorem 1.
Proposition 6. Let R be an artinian ring with $J^{2}=0$. Then the following are equivalent:

1) R is right almost hereditary.
2) (5) holds when M is local.
3) (5) holds for any finitely generated R-modules M and N.

Proof. 1) $\rightarrow 3$). Assume that R is right almost hereditary. Then J is semisimple and almost projective. We quote here the argument in the proof of [7], Theorem 1. Let P be a projective cover of $M ; 0 \rightarrow Q \rightarrow P \rightarrow M \rightarrow 0$, and M^{\prime} a submodule of M. Then $M^{\prime}=P^{\prime} / Q$ for some submodule P^{\prime} of P and $P=P_{1} \oplus P_{2}$ such that $P^{\prime} \supset P_{1}$ and $P^{\prime} \cap P_{2}$ is small in P. Put $Q_{1}=Q \cap P_{1}$ and $Q_{2}=Q \cap P_{2}$. Then since $P^{\prime} \cap P_{2}$ is semisimple, we have $M^{\prime}=P^{\prime} / Q \approx P_{1} / Q_{1} \oplus Q^{*} / Q_{2}$, where $\left(P \cap P_{2}\right) / Q_{2}=Q^{2} / Q_{1} \oplus Q^{*} / Q_{2}$, and P_{1} is a projective cover of P_{1} / Q_{1}. Suppose that M is N-projective. Then P_{1} / Q_{1} is N-projective and $Q^{*} / Q_{2} \subset J(P) / Q_{2}, Q^{*} / Q_{2}$ is almost projective. Therefore M^{\prime} is almost N-projective.
2) $\rightarrow 1$). Since $e R$ is N-projective for any R-module N, eJ is almost N-projective by (5). Hence $e J$ is almost projective.
$3) \rightarrow 1$). This is clear.
Next we shall study the condition (4). Here we shall give the structure of right almost hereditary ring. From [8], Theorem 2 we know that every right almost hereditary ring is a direct sum of hereditary rings, serial rings and rings of a form

$$
R=\left(\begin{array}{ccccc}
T_{1} & X_{2} & X_{3} & \cdots & X_{m} \\
0 & S_{2} & 0 & \cdots & 0 \\
& & S_{3} & 0 & 0 \\
& & & \ddots & S_{m}
\end{array}\right)
$$

where T_{1} is a hereditary ring, the S_{i} are serial rings in the first category and the X_{i} is a left T_{1}-right S_{i}-module for each $i>1$. Without loss of generality, we may assume $S_{i}=0$ for all $i \geqq 2$. Hence in this note we assume

$$
R=\left(\begin{array}{ll}
T_{1} & X \tag{18}\\
0 & S_{2}
\end{array}\right)
$$

We study right almost hereditary rings of the form (18), i.e., S_{2} is a serial ring in the first category and we may assume

$$
S_{2}=\left(\begin{array}{cccc}
\Delta & \Delta \cdots \Delta & 0 \\
& \Delta \cdots \Delta & 0 \\
& \cdots & & \vdots \\
& & \ddots & \Delta
\end{array}\right)
$$

where Δ is a division ring.
By h_{i}, f_{i} we denote matrix unite $e_{i i}$ in T_{1} and S_{2}, respectively. Then $h_{i} X$ is a direct sum of copies of $f_{1} R / B_{1}$, where $B_{1}=(00 \cdots 0 \Delta \cdots \Delta 0 \cdots 0)=f_{1} R\left(f_{k}\right.$ $\left.+f_{k+1}+\cdots\right) \neq 0 ; k \geqq 2$.

If (4) holds for local modules M and N, then $J^{2}=0$ by [7], Proposition 7. Hence we assume $J^{2}=0$ in the above. Then $k=2$, i.e.,

$$
\begin{equation*}
h_{i} X=0 \quad \text { or } \quad h_{i} X=\left(f_{1} R / f_{1} J\right)^{\left(p_{i}\right)} . \tag{19}
\end{equation*}
$$

We fix such a ring R and study structures of R-modules. Take a projective module $P=P_{1} \oplus P_{2}$, where $P_{1} \approx \Sigma \oplus\left(h_{i} R\right)^{\left(t_{i}\right)}, P_{2} \approx \Sigma \oplus\left(f_{j} R\right)^{\left(s_{j}\right)}$ and $Q \subset J(P)$. $\quad J\left(P_{1}\right)$ and $J\left(P_{2}\right)$ do not contain a common isomorphic sub-factor module from (19). Therefore $Q=Q \cap P_{1} \oplus Q \cap P_{2}$ (put $Q_{i}=Q \cap P_{i}$). By $M_{(k)}$ we denote an R-module of the form $P_{k} / Q_{k}(k=1,2)$. Then $M=M_{(1)} \oplus M_{(2)}$.

$$
\text { We put } Y=R-\left(\begin{array}{ll}
T_{1} & X \\
0 & \Delta
\end{array}\right) \text { and } Z=\begin{array}{cc}
T_{1} & X \\
0 & 0 \\
& 0
\end{array}
$$

Then Y, Z are ideals in R and R / Y is hereditary, R / Z is serial. Further the structure of R-module $M_{(1)}$ (resp. $M_{(2)}$) is the same as the structure of R / Y-module (resp. R / Z-module). (We note $\operatorname{Hom}_{R}\left(M_{(1)}, M_{(2)}\right)=0$ but $\operatorname{Hom}_{R}\left(M_{(2)}, M_{(1)}\right) \neq 0$ for some M.)

Lemma 15. Let R be a right almost hereditary ring with $J^{2}=0$ as (18). If the hereditary ring $\tilde{R}(=R / Y)=\left(\begin{array}{ll}T_{1} & X \\ 0 & \Delta\end{array}\right)$
satisfies (4) (resp. (4) where M is of special type), then R does the same.
Proof. We use the same notations as after (19). Let M be any finitely generated R-module and M^{\prime} a submodule of M. Then from the argument before Lemma 15 we obtain direct decompositions $M=M_{(1)} \oplus M_{(2)}$ and $M^{\prime}=M_{(1)}^{\prime} \oplus M_{(2)}^{\prime}$. Since $M_{(1)}^{\prime} \approx\left(\Sigma \oplus\left(h_{k} R^{\left(s_{k}^{\prime}\right)}\right) / A^{\prime}, M_{(2)}=\left(\Sigma \oplus\left(f_{j} R^{\left(t_{j}\right)}\right) / B\right.\right.$ and $\operatorname{Hom}_{R}(h R$, $f R)=0, \operatorname{Hom}_{R}\left(M_{(1)}^{\prime}, M_{(2)}\right)=0$. Hence $M_{(1)}^{\prime} \subset M_{(1)}$. Since R / Z is serial, $f_{i} R$ is R / Z-injective, provided $f_{i} J \neq 0$. Further $f_{i} R$ is injective as R-modules from (18). Hence $M_{(2)}^{\prime}$ is almost projective by [11], Theorem 1. Suppose that N is local; i) $N=h R / C$ or ii) $N=f R / D$, and M is almost N-projectve.
i) Since $M_{(1)}$ is almost N-projective as R-modules, we have same as \tilde{R}-module (and vice versa). Hence $M_{(1)}^{\prime}$ is almost N-projective by assumption and the fact: $M_{(1)}^{\prime} \subset M_{(1)}$. Further since $M_{(2)}^{\prime}$ is almost projective, M^{\prime} is almost N-projective.
ii) Since $\operatorname{Hom}_{R}\left(M_{(1)}^{\prime}, f R / D\right)=0$ for any D in $f R, M_{(1)}^{\prime}$ is (almost) N-projective. Hence we have shown
a) M^{\prime} is almost N-projective provided N is local.

Now let $N=\Sigma \oplus N_{i}$; the N_{i} are indecomposable. We can find an integer k such that M is almost N_{i}-projective but not N_{i}-projective for all $i \leqq k$ and M is N_{j}-projective for all $j>k$. Then $\Sigma_{i \leqq k} \oplus N_{i}$ has LPSM by [6], Theorem and the N_{i} are local for $i \leqq k$ by [4], Theorem 1. Put $N^{1}=\Sigma_{i \leqq k} \oplus N_{i}, N^{2}=\Sigma_{j>k} \oplus N_{j}$. Noting that M is N^{2}-projective and Y is almost projective from the proof of Proposition 6. Further X is almost N_{i}-projective for all $i \leqq k$ by a). Hence since X is N^{2}-projective, X is almost N-projective by [6], Theorem. Therefore Y being almost projective, M^{\prime} is almost N-projective.

Remark. By the argument after the above a) we have shown that if (4) holds when N is local, then (4) holds for any R-module N.

Lemma 16. Let R be a hereditary ring with $J^{2}=0$. Then (4) holds when M is a finite direct sum of local modules.

Proof. Let M be almost N-projective for R-modules M and N, and M^{\prime} a submodule of M. In order to show that M^{\prime} is almost N-projective we may assume that N is local from the above remark. Let A be a submodule of $g R$, where g is a primitive idempotent. Assume that M is almost $g R / A$-projective and $M=\Sigma_{i \leqq n} \oplus M_{i}$; the M_{i} are local, i.e. $M_{i}=g_{i} R / D_{i}$ for all $i \leqq n$. We can suppose that M_{i} is almost $g R / A$-projective for all $j>m$. Since M_{i} is local and is almost $g R / A$-projective but not $g R / A$-projective, $g R / A$ is M_{i}-projective for $i \leqq m$ by [4], Proposition 5. Put $L_{1}=\Sigma_{i \leqq m} \oplus M_{i}$ and $L_{2}=\Sigma_{j>m} \oplus M_{j}$, i.e., $M=L_{1} \oplus L_{2}$. Let π_{i} : $M \rightarrow L_{i}$ be the projection of M onto L_{i} for $i=1,2$. Now we shall show that M^{\prime} is almost $g R / A$-projective for any submodule M^{\prime} of M. Put $M^{\prime}=T$ and take any diagram

$$
\begin{gathered}
T \\
\downarrow h \\
g R / A \xrightarrow{\stackrel{v}{\rightarrow}} g R / B \rightarrow 0
\end{gathered}
$$

We may assume from [10], Theorem 1 that imh is simple. If h is not an epimorphism, then we obtain μ : imh $h g R / A$ with $v \mu=1_{i m h}$, since $g J$ is semisimple. Hence we obtain $\tilde{h}=\mu h: T \rightarrow g R / A$ with $v \tilde{h}=h$. Assume that h is an epimorphism. Then $B=g J$ and we obtain the isomorphism $\overline{h: T / T} T_{0} \rightarrow g R / g J$ induced from h, where $T_{0}=h^{-1}(0)$. Put $\hbar^{-1}(\bar{g})=t+T_{0}(t=t g)$ and $t=t_{1}+t_{2}$;
$\mathrm{t}_{i}=\pi_{i}(t)$. First we assume $\pi_{2}(T)=\pi_{2}\left(T_{0}\right)$. Then we may suppose $t_{2}=0$, and hence $t=t_{1} \in L_{1} . \quad T / T_{0}$ being simple, $T / T_{0} \approx t R /\left(T_{0} \cap t R\right)$ and we obtain a diagram

$$
\begin{gathered}
g R / A \\
\downarrow v \\
g R / g J \\
\Downarrow \hbar^{-1} \\
t R \xrightarrow{v_{1} R} t R /\left(T_{0} \cap t R\right) \rightarrow 0 \\
\cap \\
\cap \\
L_{1} \rightarrow L_{1} /\left(T_{0} \cap t R\right) \rightarrow 0,
\end{gathered}
$$

where $h \mid t R=\hbar \nu_{t R}$.
Since $g R / A$ is L_{1}-projective, we obtain $\tilde{h}: g R / A \rightarrow t R \subset T$ with $v=\tilde{h} v_{t R} \tilde{h}=h \tilde{h}$. Next suppose $\pi_{2}(T) \neq \pi_{2}\left(T_{0}\right)$ and $t=t_{1}+t_{2}$; we may assume $t_{2} \notin \pi_{2}\left(T_{0}\right)$ from the above argument. Then T / T_{0} being simple, $T / T_{0} \approx \pi_{2}(T) / \pi_{2}\left(T_{0}\right)$. Since $\pi_{2}(T) \subset L_{2}$, $\pi_{2}(T)$ is $g R / A$-projective from [7], Theorem 1. Consider the diagram

$$
\begin{gathered}
\pi_{2}(T) \\
\downarrow \rho_{2} \\
\pi_{2}(T) / \pi_{2}\left(T_{0}\right) \\
\downarrow h^{\prime} \\
g R / A \xrightarrow{v} g R / g J \rightarrow 0
\end{gathered}
$$

where $h^{\prime}\left(t_{2}+\pi_{2}\left(T_{0}\right)\right)=\bar{g}\left(\right.$ note $\left.t_{2} g=t_{2}\right)$.
Then there exists $\tilde{h}^{\prime}: \pi_{2}(T) \rightarrow g R / A$ with $v \tilde{h}^{\prime}=h^{\prime} \rho_{2}$. Put $\tilde{h}=\tilde{h}^{\prime} \pi_{2}$. For any y in $T h(y)=\bar{h}\left(y+T_{0}\right)=\bar{h}\left(t r+T_{0}\right)=\bar{g} r$ for some r in R. On the other hand, since $y=t r+t_{0} ; \quad t_{0} \in T_{0}, \quad y=t_{1} r+\pi_{1}\left(t_{0}\right)+t_{2} r+\pi_{2}\left(t_{0}\right)$. Hence $v \tilde{h}(y)=v \tilde{h}^{\prime} \pi_{2}(y)=h^{\prime} \rho_{2} \pi_{2}(y)$ $=h^{\prime}\left(t_{2} r+\pi_{2}\left(T_{0}\right)\right)=\bar{g} r=h(y)$.
Hence $v \tilde{h}=h$.

Proposition 7. Let R be an artinian ring. Then the following are equivalent:

1) (4) holds when M is local.
2) (4) holds when M is a finite direct sum of local modules.
3) Any proper submodule of every local module is almost projective.
4) R is a right almost hereditary ring with $J^{2}=0$.

Proof. 1) $\rightarrow 4$). This is clear from the definition and [5], Proposition 7.
4) $\rightarrow 3$). Let $M=g R / A$. Every proper submodule M^{\prime} of M is contained in $g J / A$. Since $g J$ is semisimple, $g J / A$ is isomorphic to a direct summand of $g J$, which is almost projective. Hence (4) holds when M is local.
3) $\rightarrow 1$). This is trivial.
$1) \leftrightarrow 2$). This is clear from Lemmas 15 and 16 .
Corresponding to Theorems 1 and 2

Corollary. Let R be as above. Then

1) (4) holds when M and N are local if and only if $J^{2}=0$.
2) (4) holds when M is local and N is a direct sum of local modules if and only if $\mathrm{J}^{2}=0$ and the projective cover of $\operatorname{Soc}(R)$ is a direct sum of uniserial modules.
3) (4) holds when M is local if and only if $J^{2}=0$ and R is right almost hereditary.

Proof. Since (5) is a generalization of (4), this is clear from Theorem 2 and Proposition 7.

4. Examples

Let $L \supset K$ be fields and σ an automorphism of K.
1.

$$
R_{1}=\left(\begin{array}{cccc}
K & K & { }_{\sigma} K & K \\
0 & K & 0 & K \\
0 & 0 & K & K \\
0 & 0 & 0 & K
\end{array}\right)
$$

where $\left(k k^{\prime}\right.$ in $\left.R_{1}\right)=\left(\sigma(k) k^{\prime}\right.$ in K) for any $k \in K$ and $k^{\prime} \epsilon_{\sigma} K$.
Then $R=R_{1}$ is a hereditary ring, and putting $e_{i i}=e_{i}$, we have $e_{1} R \supset e_{1} J \approx e_{2} R \oplus e_{3} R$ and $\operatorname{Soc}\left(e_{2} R\right) \approx \operatorname{Soc}\left(e_{3} R\right)$. Since every simple submodule S in $\operatorname{Soc}\left(e_{2} R \oplus e_{3} R\right)\left(\subset e_{1} J\right)$ is of a form $S=\left\{k+\theta(k) \mid \in \operatorname{Soc}\left(e_{2} R\right)\right\} \subset e_{1} J$ for some isomorphism θ of $\operatorname{Soc}\left(e_{2} R\right)$ onto $\operatorname{Soc}\left(e_{3} R\right), e_{1} R e_{1} S=\operatorname{Soc}\left(e_{1} R\right)$. Hence we know from Theorem 2 that (5) holds on local module M and a direct sum of local modues N, and R is (almost) hereditary. If we replace K_{σ} with K in the above ring, then this ring has the same structure of R except iv) in Theorem 1, and (5) does not hold on this ring.
2.

$$
R_{2}=\left(\begin{array}{lll}
L & L & L \\
0 & L & L \\
0 & 0 & K
\end{array}\right), \quad \text { which satisfies all conditions in }
$$

However R_{2} satisfies (5) as left R-modules when M and N are local.
3.

$$
R_{\mathbf{3}}=\left(\begin{array}{cccc}
K & 0 & K & K \\
0 & K & K & K \\
0 & 0 & K & K \\
0 & 0 & 0 & K
\end{array}\right) \quad \text { which satisfies all conditions in } \quad \text { Theorem } 1 \text { except ii). }
$$

4. $\quad R_{4}=e K \oplus f K \oplus a K \oplus b K \oplus a b K$, where $\{e, f\}$ is the set of mutually orthogonal primitive idempotents with $1=e+f, a=e a f$ and $b=f b f$. Then R_{4} satisfies all conditions in Theorem 1 except iii)

References

[1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs Textbooks Pure and Appl. 84, Marcel Dekker Inc. New York and Basel.
[2] K.R. Fuller: On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
[3] -: Relative projectivity and injectivity classes by simple modules, J. London Math. Soc. 5 (1972), 423-431.
[4] M. Harada and T. Mabuchi: On almost relative projectives, Osaka J. Math. 26 (1989), 837-848.
[5] M. Harada and A. Tozaki: Almost M-projectives and right Nakayama rings, J. Algebra 122 (1989), 447-474.
[6] M. Harada: On almost relative projectives over perfect rings, Osaka J. Math. 27 (1990), 655-665.
[7] -: Hereditary rings and relative projectives, Osaka J. Math. 28 (1991), 811-827.
[8] —: Almost hereditary rings, Osaka J. Math. 28 (1991), 793-809.
[9] -: Characterizations of right Nakayama rings, Glasgow Math. J. 34 (1992), 91-102.
[10] —: Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29 (1992), 435-446.
[11] —: Almost projective modules, J. Algebra 159 (1993), 150-157.
[12] T. Nakayama: On Frobenius algebra II, Ann. of Math. 42 (1941), 1-21.
[13] T. Sumioka: On artinian ring of right local type, Math J. Okayama Univ. 29 (1987), 127-146.

