TWO COUNTEREXAMPLES TO CORNEA'S CONJECTURE ON THIN SETS

PAVEL PYRIH

(Received July 5, 1993)

1. Introduction

In the paper of Cornea ([1], p. 836) is the following conjecture: A set $A \subset \mathbb{R}^d$ is thin at 0 if there exist $v_1, v_2, v_3 \in \mathbb{R}^d$ linearly independent (pairwise, if d=2) with $||v_j|| = 1$ and such that $T_{v_j}(A)$ is thin at 0, j = 1, 2, 3, where $T_v(x) := x - \langle x, v \rangle v$. We show that this conjecture fails.

We recall that the *fine topology* on \mathbb{R}^d is the smallest topology on \mathbb{R}^d for which all superharmonic functions are continuous in the extended sense. A set $E \subset \mathbb{R}^d$ is *thin* at x if x is not a fine limit point of E. The Wiener test relates thinness of E to the *capacity* of certain subsets of E. We note that thinness of a set at a point is related to irregularity of boundary points relative to the Dirichlet problem. For general information see [2], [3].

2. An example in R^2

We denote P_x , P_y , P_z and P_w the orthogonal projections which map \mathbb{R}^2 onto a line through the origin in such a way that the points (0,1), (1,0), (1,-1) and (1,1), respectively are mapped to the origin. We set $I_2 := \{(x,y) \in \mathbb{R}^2, 0 \le x \le 1, 0 \le y \le 1\}$, cap denotes the logarithmic capacity.

Lemma 2.1. Given $\varepsilon > 0$ there exists a set $E \subset I_2$ such that $\operatorname{cap}(P_x E) < \varepsilon$, $\operatorname{cap}(P_y E) < \varepsilon$, $\operatorname{cap}(P_z E) = 0$ and $\operatorname{cap}(E) \ge \operatorname{cap}(P_w E) \ge \sqrt{2/8}$.

Proof. We set $A := \{(x,0) \in I_2, x \in Q\}$, A is countable, hence cap(A) = 0. There exists an open set $U \supset A$ in \mathbb{R}^2 such that $cap(U) < \varepsilon$. Denote $V := \{(x,0)\} \in I_2\} \cap U$. We set $E := \{(x,y) \in I_2, (x,0) \in V, 0 \le y \le \varepsilon, x + y \in Q\}$. Then

- (i) $P_x E = V \subset U$, hence $\operatorname{cap}(P_x E) < \varepsilon$;
- (ii) $P_{v}E = \{(0, y) \in I_{2}, 0 \le y \le \varepsilon\}$, hence $\operatorname{cap}(P_{v}E) < \varepsilon$;

Research Supported by the Grant No. 201/93/2174 of Czech Grant Agency and by the Grant No. 354 of Charles University.

P. Pyrih

(iii) $P_z E$ is countable, hence $cap(P_z E) = 0$.

Denote *l* the segment joining points (0,0) and (1/2, -1/2). Then $l \subset P_w E$, hence $cap(E) \ge cap(P_w E) \ge cap(l) = \sqrt{2}/8$. \Box

REMARK 2.2. We show that the set *E* can be constructed to be compact: We find real numbers $0 = \alpha_0 < \beta_0 < \cdots < \alpha_n < \beta_n = 1$ such that $\alpha_j - \beta_{j-1} < \varepsilon$, for $j = 1, \dots, n$, and

$$\operatorname{cap}(\{(x,0)\in I_2, \alpha_j\leq x\leq \beta_j \text{ for some } j=0,\dots,n\})<\varepsilon.$$

(Here we use the Wiener capacity, which is countably subadditive.)

For each j=0,1,...,n we construct lines $l_1^j,...,l_{k_j}^j$ with slopes -1 such that the point $(\beta_{j,0}) \in l_1^j$, $(\alpha_{j,\varepsilon}) \in l_{k_j}^j$ and the distance between l_p^j and l_{p+1}^j is less than $\sqrt{2}/(\beta_i - \alpha_i)$. We set

$$\widetilde{E} := \bigcup_{j=0}^{n} \bigcup_{p=1}^{k_j} (l_p^j \cap \{(x,y) \in I_2, \ \alpha_j \le x \le \beta_j, \ 0 \le y \le \varepsilon\}).$$

The set \tilde{E} is compact (consists only of finitely many segments) and the estimates of $\operatorname{cap}(P_x \tilde{E})$, $\operatorname{cap}(P_y \tilde{E})$, $\operatorname{cap}(P_z \tilde{E})$ and $\operatorname{cap}(P_w \tilde{E})$ can be obtained similarly as in the proof of Lemma 2.1.

COUNTEREXAMPLE 2.3. There is a set E in \mathbb{R}^2 such that E is not thin at the origin and the projections $P_x E$, $P_y E$ and $P_z E$ are thin at the origin.

Proof. Let E_n be the set E in Lemma 2.1 constructed with $\varepsilon = 1/2^{n^3}$. Set

$$E := \bigcup_{n=3}^{\infty} \frac{1}{2^{n+1}} \cdot ((1,1) + \frac{1}{2} \cdot E_n).$$

Denote $A_n := \{a \in \mathbb{R}^2, 1/2^{n+1} \le ||a|| \le 1/2^n\}$. Then

$$\operatorname{cap}(P_x E \cap A_n) = \operatorname{cap}(P_x(E \cap A_n)) < 1/2^{n^3}.$$

$$\operatorname{cap}(P_y E \cap A_n) = \operatorname{cap}(P_y(E \cap A_n)) < 1/2^{n^3}.$$

$$\operatorname{cap}(P_z E \cap A_n) = \operatorname{cap}(P_z(E \cap A_n)) = 0, \text{ and }$$

$$\operatorname{cap}(E \cap A_n) \ge \operatorname{cap}(P_w(E \cap A_n)) \ge \sqrt{2}/(16 \cdot 2^{n+1}).$$

Hence $P_x E$, $P_y E$ and $P_z E$ are thin, and E is not thin at the origin due to the Wiener test. \Box

122

3. An example in R^3

We denote P_{xy} , P_{xz} , P_{yz} and P_{wy} the orthogonal projections, which map \mathbb{R}^3 onto a plane through the origin in such a way, that (0,0,1), (0,1,0), (1,0,0) and (1,0,1), respectively are mapped to the origin. We set $I_3 := \{(x,y,z) \in \mathbb{R}^3, 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$, c denotes the Newton capacity.

Lemma 3.1. Given $\varepsilon > 0$ there exists a set $E \subset I_3$ such that $c(P_{xy}E) < \varepsilon$, $c(P_{xz}E) < \varepsilon$, $c(P_{yz}E) < \varepsilon$ and $c(E) \ge c(P_{wy}E) \ge c(P_{wy}\{(x,y,0) \in I_3\})$, (=:b>0).

Proof. We set $A := \{(x, y, 0) \in I_3, x \in Q\}$, hence c(A) = 0. There exists an open set $U \supset A$ in \mathbb{R}^3 such that $c(U) < \varepsilon$. Denote $V := \{(x, y, 0) \in I_3\} \cap U$.

We set $L := \{(0, y, 0) \in I_3\}$, hence c(L) = 0. We find $\delta < \varepsilon$ such that $c(\{(0, y, z) \in I_3, 0 \le z \le \delta\}) < \varepsilon$.

We set $E := \{(x, y, z) \in I_3, (x, y, 0) \in V, 0 \le z \le \delta\}$. Then

- (i) $P_{xy}E \subset V$, hence $c(P_{xy}E) \le c(U) < \varepsilon$;
- (ii) $P_{xz}E \subset \{(x,0,z) \in I_3, 0 \le z \le \delta\}$, hence $c(P_{xz}E) < \varepsilon$ due to construction of δ ;
- (iii) $P_{yz}E \subset \{(0, y, z) \in I_3, 0 \le z \le \delta\}$, hence $c(P_{yz}E) < \varepsilon$ due to construction of δ .

Nevertheless $P_{wy}E$ contains the set $P_{wy}(\{(x,y,0) \in I_3\})$, hence $c(E) \ge c(P_{wy}E) \ge b$. \Box

REMARK 3.2. We show that the set E can be constructed in such a way that it is a compact set consisting of finitely many rectangles (like in Remark 2.2).

COUNTEREXAMPLE 3.3. There is a set E in \mathbb{R}^3 such that E is not thin at the origin and the projections $P_{xy}E$, $P_{xz}E$ and $P_{yz}E$ are thin at the origin.

Proof. Let E_n be the set E in Lemma 3.1 constructed with $\varepsilon = 1/2^n$. Set

$$E := \bigcup_{n=10}^{\infty} \frac{1}{2^{n+1}} \cdot ((1,1,1) + \frac{1}{2} \cdot E_n).$$

The rest of the proof runs like in the proof of Counterexample 2.3. \Box

REMARK 3.4. A counterexample to Cornea's conjecture in dimension d > 3 can be derived from the set E in Conterexample 3.3. It suffices to consider the set $E \times \mathbb{R}^{d-3} \subset \mathbb{R}^d$ because, for any set $F \subset \mathbb{R}^3$, $F \times \mathbb{R}^{d-3}$ is thin at 0 in \mathbb{R}^d if and only if F itself is thin at 0 in \mathbb{R}^3 (in the sense of potential theory in \mathbb{R}^3).

REMARK 3.5. Cornea states in [1], Remark on the page 836, that the conjecture is true for a set A contained in a set of the form $\bigcup_{j=0}^{\infty} G_j$, where G_j is a Lipschitz manifold (graph of a Lipschitz function). It should be compared with

P. Pyrih

Counterexample 2.3, where the set obtained is contained in countably many lines.

References

- [1] A. Cornea, An identity theorem for logarithmic potentials, Osaka J. Math. 28 (1991), 829-836.
- [2] W.K. Hayman, Subharmonic functions, vol. 2, London Mathematical Society Monograph No. 20, 1989.
- [3] L.L. Helms, Introduction to the Potential Theory, Wiley-Interscience Series in Pure and Applied Mathematics, volume 22, New York, 1969.

Departmant of Mathematical Analysis Charles University Sokolovská 83 Prague-8 CZ-18600 Czech Republic E-mail: Pyrih@Karlin.Mff.Cuni.Cz