# TWO COUNTEREXAMPLES TO CORNEA'S CONJECTURE ON THIN SETS 

Pavel PYRIH

(Received July 5, 1993)

## 1. Introduction

In the paper of Cornea ([1], p. 836) is the following conjecture: A set $A \subset \boldsymbol{R}^{d}$ is thin at 0 if there exist $v_{1}, v_{2}, v_{3} \in \boldsymbol{R}^{d}$ linearly independent (pairwise, if $d=2$ ) with $\left\|v_{j}\right\|=1$ and such that $T_{v_{j}}(A)$ is thin at $0, j=1,2,3$, where $T_{v}(x):=x-\langle x, v\rangle v_{0}$. We show that this conjecture fails.

We recall that the fine topology on $\boldsymbol{R}^{d}$ is the smallest topology on $\boldsymbol{R}^{d}$ for which all superharmonic functions are continuous in the extended sense. A set $E \subset R^{d}$ is thin at $x$ if $x$ is not a fine limit point of $E$. The Wiener test relates thinness of $E$ to the capacity of certain subsets of $E$. We note that thinness of a set at a point is related to irregularity of boundary points relative to the Dirichlet problem. For general information see [2], [3].

## 2. An example in $\boldsymbol{R}^{\mathbf{2}}$

We denote $P_{x}, P_{y}, P_{z}$ and $P_{w}$ the orthogonal projections which map $\boldsymbol{R}^{2}$ onto a line through the origin in such a way that the points $(0,1),(1,0),(1,-1)$ and $(1,1)$, respectively are mapped to the origin. We set $I_{2}:=\left\{(x, y) \in \boldsymbol{R}^{2}, 0 \leq x \leq 1\right.$, $0 \leq y \leq 1\}$, cap denotes the logarithmic capacity.

Lemma 2.1. Given $\varepsilon>0$ there exists a set $E \subset I_{2}$ such that $\operatorname{cap}\left(P_{x} E\right)<\varepsilon$, $\operatorname{cap}\left(P_{y} E\right)<\varepsilon, \operatorname{cap}\left(P_{z} E\right)=0$ and $\operatorname{cap}(E) \geq \operatorname{cap}\left(P_{w} E\right) \geq \sqrt{2} / 8$.

Proof. We set $A:=\left\{(x, 0) \in I_{2}, x \in \boldsymbol{Q}\right\}, A$ is countable, hence $\operatorname{cap}(A)=0$. There exists an open set $U \supset A$ in $\boldsymbol{R}^{2}$ such that $\operatorname{cap}(U)<\varepsilon$. Denote $\left.V:=\{(x, 0)) \in I_{2}\right\} \cap U$. We set $E:=\left\{(x, y) \in I_{2},(x, 0) \in V, 0 \leq y \leq \varepsilon, x+y \in \boldsymbol{Q}\right\}$. Then
(i) $P_{x} E=V \subset U$, hence $\operatorname{cap}\left(P_{x} E\right)<\varepsilon$;
(ii) $P_{y} E=\left\{(0, y) \in I_{2}, 0 \leq y \leq \varepsilon\right\}$, hence $\operatorname{cap}\left(P_{y} E\right)<\varepsilon$;

[^0](iii) $P_{z} E$ is countable, hence $\operatorname{cap}\left(P_{z} E\right)=0$.

Denote $l$ the segment joining points $(0,0)$ and $(1 / 2,-1 / 2)$. Then $l \subset P_{w} E$, hence $\operatorname{cap}(E) \geq \operatorname{cap}\left(P_{w} E\right) \geq \operatorname{cap}(l)=\sqrt{2} / 8$.

Remark 2.2. We show that the set $E$ can be constructed to be compact: We find real numbers $0=\alpha_{0}<\beta_{0}<\cdots<\alpha_{n}<\beta_{n}=1$ such that $\alpha_{j}-\beta_{j-1}<\varepsilon$, for $j=1, \cdots, n$, and

$$
\operatorname{cap}\left(\left\{(x, 0) \in I_{2}, \alpha_{j} \leq x \leq \beta_{j} \text { for some } j=0, \cdots, n\right\}\right)<\varepsilon
$$

(Here we use the Wiener capacity, which is countably subadditive.)
For each $j=0,1, \cdots, n$ we construct lines $l_{1}^{j}, \cdots, l_{k_{j}}^{j}$ with slopes -1 such that the point $\left(\beta_{j}, 0\right) \in l_{1}^{j},\left(\alpha_{j}, \varepsilon\right) \in l_{k_{j}}^{j}$ and the distance between $l_{p}^{j}$ and $l_{p+1}^{j}$ is less than $\sqrt{2} /\left(\beta_{j}-\alpha_{j}\right)$. We set

$$
\tilde{E}:=\bigcup_{j=0}^{n} \bigcup_{p=1}^{k_{j}}\left(l_{p}^{j} \cap\left\{(x, y) \in I_{2}, \alpha_{j} \leq x \leq \beta_{j}, 0 \leq y \leq \varepsilon\right\}\right) .
$$

The set $\tilde{E}$ is compact (consists only of finitely many segments) and the estimates of $\operatorname{cap}\left(P_{x} \tilde{E}\right), \operatorname{cap}\left(P_{y} \tilde{E}\right), \operatorname{cap}\left(P_{z} \tilde{E}\right)$ and $\operatorname{cap}\left(P_{w} \tilde{E}\right)$ can be obtained similarily as in the proof of Lemma 2.1.

Counterexample 2.3. There is a set $E$ in $R^{2}$ such that $E$ is not thin at the origin and the projections $P_{x} E, P_{y} E$ and $P_{z} E$ are thin at the origin.

Proof. Let $E_{n}$ be the set $E$ in Lemma 2.1 constructed with $\varepsilon=1 / 2^{n^{3}}$. Set

$$
E:=\bigcup_{n=3}^{\infty} \frac{1}{2^{n+1}} \cdot\left((1,1)+\frac{1}{2} \cdot E_{n}\right) .
$$

Denote $A_{n}:=\left\{a \in \boldsymbol{R}^{2}, 1 / 2^{n+1} \leq\|a\| \leq 1 / 2^{n}\right\}$. Then

$$
\begin{aligned}
& \operatorname{cap}\left(P_{x} E \cap A_{n}\right)=\operatorname{cap}\left(P_{x}\left(E \cap A_{n}\right)\right)<1 / 2^{n^{3}} \\
& \operatorname{cap}\left(P_{y} E \cap A_{n}\right)=\operatorname{cap}\left(P_{y}\left(E \cap A_{n}\right)\right)<1 / 2^{n^{3}} \\
& \operatorname{cap}\left(P_{z} E \cap A_{n}\right)=\operatorname{cap}\left(P_{z}\left(E \cap A_{n}\right)\right)=0, \text { and } \\
& \operatorname{cap}\left(E \cap A_{n}\right) \geq \operatorname{cap}\left(P_{w}\left(E \cap A_{n}\right)\right) \geq \sqrt{2} /\left(16 \cdot 2^{n+1}\right) .
\end{aligned}
$$

Hence $P_{x} E, P_{y} E$ and $P_{z} E$ are thin, and $E$ is not thin at the origin due to the Wiener test.

## 3. An example in $\boldsymbol{R}^{\mathbf{3}}$

We denote $P_{x y}, P_{x z}, P_{y z}$ and $P_{w y}$ the orthogonal projections, which map $\boldsymbol{R}^{3}$ onto a plane through the origin in such a way, that $(0,0,1),(0,1,0),(1,0,0)$ and $(1,0,1)$, respectively are mapped to the origin. We set $I_{3}:=\left\{(x, y, z) \in \boldsymbol{R}^{3}, 0 \leq x \leq 1\right.$, $0 \leq y \leq 1,0 \leq z \leq 1\}, c$ denotes the Newton capacity.

Lemma 3.1. Given $\varepsilon>0$ there exists a set $E \subset I_{3}$ such that $c\left(P_{x y} E\right)<\varepsilon$, $c\left(P_{x z} E\right)<\varepsilon, c\left(P_{y z} E\right)<\varepsilon$ and $c(E) \geq c\left(P_{w y} E\right) \geq c\left(P_{w y}\left\{(x, y, 0) \in I_{3}\right\}\right),(=: b>0)$.

Proof. We set $A:=\left\{(x, y, 0) \in I_{3}, x \in \boldsymbol{Q}\right\}$, hence $c(A)=0$. There exists an open set $U \supset A$ in $R^{3}$ such that $c(U)<\varepsilon$. Denote $V:=\left\{(x, y, 0) \in I_{3}\right\} \cap U$.

We set $L:=\left\{(0, y, 0) \in I_{3}\right\}$, hence $c(L)=0$. We find $\delta<\varepsilon$ such that $c\left(\left\{(0, y, z) \in I_{3}\right.\right.$, $0 \leq z \leq \delta\}$ ) $<\varepsilon$.

We set $E:=\left\{(x, y, z) \in I_{3},(x, y, 0) \in V, 0 \leq z \leq \delta\right\}$. Then
(i) $P_{x y} E \subset V$, hence $c\left(P_{x y} E\right) \leq c(U)<\varepsilon$;
(ii) $P_{x z} E \subset\left\{(x, 0, z) \in I_{3}, 0 \leq z \leq \delta\right\}$, hence $c\left(P_{x z} E\right)<\varepsilon$ due to construction of $\delta$;
(iii) $P_{y z} E \subset\left\{(0, y, z) \in I_{3}, 0 \leq z \leq \delta\right\}$, hence $c\left(P_{y z} E\right)<\varepsilon$ due to construction of $\delta$. Nevertheless $P_{w y} E$ contains the set $P_{w y}\left(\left\{(x, y, 0) \in I_{3}\right\}\right)$, hence $c(E) \geq c\left(P_{w y} E\right) \geq b$.

Remark 3.2. We show that the set $E$ can be constructed in such a way that it is a compact set consisting of finitely many rectangles (like in Remark 2.2).

Counterexample 3.3. There is a set $E$ in $\boldsymbol{R}^{3}$ such that $E$ is not thin at the origin and the projections $P_{x y} E, P_{x z} E$ and $P_{y z} E$ are thin at the origin.

Proof. Let $E_{n}$ be the set $E$ in Lemma 3.1 constructed with $\varepsilon=1 / 2^{n}$. Set

$$
E:=\bigcup_{n=10}^{\infty} \frac{1}{2^{n+1}} \cdot\left((1,1,1)+\frac{1}{2} \cdot E_{n}\right)
$$

The rest of the proof runs like in the proof of Counterexample 2.3.
Remark 3.4. A counterexample to Cornea's conjecture in dimension $d>3$ can be derived from the set $E$ in Conterexample 3.3. It suffices to consider the set $E \times \boldsymbol{R}^{d-3} \subset \boldsymbol{R}^{d}$ because, for any set $F \subset \boldsymbol{R}^{3}, F \times \boldsymbol{R}^{d-3}$ is thin at 0 in $\boldsymbol{R}^{d}$ if and only if $F$ itself is thin at 0 in $\boldsymbol{R}^{3}$ (in the sense of potential theory in $\boldsymbol{R}^{3}$ ).

Remark 3.5. Cornea states in [1], Remark on the page 836, that the conjecture is true for a set $A$ contained in a set of the form $\bigcup_{j=0}^{\infty} G_{j}$, where $G_{j}$ is a Lipschitz manifold (graph of a Lipschitz function). It should be compared with

Counterexample 2.3 , where the set obtained is contained in countably many lines.

## References

[1] A. Cornea, An identity theorem for logarithmic potentials, Osaka J. Math. 28 (1991), 829-836.
[2] W.K. Hayman, Subharmonic functions, vol. 2, London Mathematical Society Monograph No. 20, 1989.
[3] L.L. Helms, Introduction to the Potential Theory, Wiley-Interscience Series in Pure and Applied Mathematics, volume 22, New York, 1969.

Departmant of Mathematical Analysis Charles University
Sokolovská 83
Prague-8
CZ-18600
Czech Republic
E-mail: Pyrih@Karlin.Mff.Cuni.Cz


[^0]:    Research Supported by the Grant No. 201/93/2174 of Czech Grant Agency and by the Grant No. 354 of Charles University.

