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1. Introduction

In a previous paper, henceforth quoted as [7], necessary conditions have been
obtained for a first order system L to be strongly hyperbolic. In patricular, these
conditions assert that, at an involutive characteristic, say z°, the dimension of
KerL(z°) must be equal to the order (or the multiplicity) of z° (Corollary 1.4 in
[7]). Then the Taylor expansion of L along KerL(z°) starts with a linear term
Lzo, called the localization at z° (Section 3), which would be the first candidate
for approximations of L on KerL(z°).

Unfortunately, in general, the localization is not diagonalizable even if the
original system is strongly hyperbolic and the characteristic is involutive, in contrast
with constant coefficient case (see Lemma 8 in [8] and Example 4.1 below). Our
aim in this paper is then to make more detailed studies on localizations at an
involutive characteristic of strongly hyperbolic systems.

Our first result is concerned with the localization Lzo at an involutive
characteristic z° of order r of a strongly hyperbolic system L. Hence Lzo is a
rxr system. Then we show that every (r— l)-th minor of Lzo vanishes of order
s — 2 at every characteristic of order s of Lzo (Theorem 4.1). This means that the
localization must satisfy the same necessary condition which is verified by the
original strongly hyperbolic system (see Theorem 1.1 in [7]).

The second result is stated as: Let z°, z1 be characteristics of the original
system L and of the localization Lzo of order r and s respectively. Then, assuming
that the characteristic set of L is an involutive C00 manifold, every (r—l)-th minor
of Lzo vanishes of order .s—1 at z1 if (z°9z

ι) is "involutive" (Theorem 5.1). In
particular, the dimension of KerL^z1) is equal to s and hence Lzo(zι) is
diagonalizable. If the characteristic z° is non degenerate (Definition 3.3) and (z0^1)
is "involutive" for every characteristic z1 of Lzo, then the localization Lzo is strongly
hyperbolic, more precisely the coefficient matrices of Lz0 are simultaneously
symmetrizable (Theorem 5.2). We also show that the same results hold under
less restrictive assumptions on the characteristics, which though, are not coordinate
free (Propositions 6.1 and 6.2). These results, applied to the constant coefficients
case, generalize Theorem 1 in [8].
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2. Higher order localizations

Let h(x) be a monic polynomial in i j of degree m\

where α/x^eC^t/) , x' = (x2, •• -,*„) and (7 is an open neighborhood of the origin

of/?"" 1 . We assume that h(x) is hyperbolic with respect to the xx variable, that

is the equation Λ(x) = 0 in xί has only real roots for every x' e U. Let x°eR x C/=Ω

be a characteristic of h of order r0:

djh(x°) = 0, y < r0, <f°λ(;c0) ^ 0.

We define hχ0(x) as

which is a well defined homogeneous polynomial of degree r0 on TχOΩ/Axo(h) where

Λ^λ) is the lineality of hχ0(x) defined as

Aχ0(h) = {xe Tχ0Ω I hχ0(y + tx) = hχ0(yl W e R, Vye Tχ0Ω}

which is a linear subspace in 7>Ω (see [1], [2]). Moreover fιχ0(x) is hyperbolic

with respect to the xγ variable (cf. Lemma 1.3.3 in [3]).

In the following we denote by μ0, μί two small parameters with 0 < μ 0 < μγ«1.

Lemma 2.1. Let x1 e TχOΩ/Axo{h) be a characteristic of order r t of hχΌ and let

yeAxo(h). Then we have

h{x° + μoix1 +y) + μoμγx) = μfμϊ {hγ{y, x, μo/μi) + μ&fo,x, μu μo/μi))

where h(y,x,s) is a polynomial in (y,x,s), homogeneous of degree i\ in (x,s) which

is hyperbolic with respect to the xί variable and gι(y,x,μι,s) is C00 in

1*1+ lμo>1<ε> l s l < 2 with sufficiently small ε>0.

Proof. It is clear that we can write

h(x° + μox) = μΌ°

where go(
x»^o) i s ^°° ^n \μo\ + \μox\<ε with small ε. By Rouche's theorem and

the hyperbolicity of h it follows that

*1 +y+^ μo)=°
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has rx real zeros converging to zero with (x\ μ0) -• (0,0). Applying Lemma 1.3.3
in [3] we obtain

(2.1) Kxo^μo{x1+y + x)) = μ^{hι(yix,μo)-Ygo{y,x,μo))

where h1{y,x9μ0) is a polynomial in (y,x,μ0), homogeneous in (x,μ0) of degree rt

which is hyperbolic with respect to the xί variable and go{y,x,μ^ *s C°° in
8 with small ε of the form

Σ

Here note that

, μi*, μ0)=μϊ+ * Σ x" (μo/

It is clear that gt is C00 in l^il + l^o^i^l + l^o^^6? \μolμ\\< 2 with small ε. Then
replacing Λ: by μtx in (2.1) we get the desired result. •

We are interested in the case when either μo = μx or μ0 = O(μ™+ι). In the
former case we set

h{xofXι)(y,x) = hι(y9x, 1), gΐ(y,x,μ) = μg1(y,x,μ, 1)

so that

(2.2) *(° 1 2 +

where gj is C00 in |μ| + |μ2x| + |μ^|<ε with small ε and gt(3;,x,0) = 0. In the latter
case we set

so that

(2.3) A(x° + μo{xι +y) + μoμix) = μtfμϊih^o^y, x)+g%(y9 x,

where gι(y9x9μι9μ0/μi) is C°° i n \μi\ + \μoμix\ + \μoy\<ε with small ε > 0 and
,0?0) = 0. Note that by definition we have

(2.4) hixoψχl)(y9 x + w)=h{xotX^{y9 x\ h{χOfXi}(y, x + w) = A{xot,i}(y, x)
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for every w e Aχ0(h)f that is they depend only on the class of x in Tχ0Ω/Aχ0(h).

The following lemma is easily verified.

Lemma 2.2. A(JCOΪJCI)Q>,Λ:) is independent ofyeAχ0(h) and we have

h(χθ,χi)(x) = {hxo)xi(x).

In particular, A(xo)Jci)(x) is independent of the choice of parameters μ} provided that

Note that Lemma 2.1 shows that

h{xo9Xί}{y,λx) = h1{y,λx, l) = λrihι(y,

which implies that

(2.5) lim λ ~ rih{xo,χί}(y, λx) = hί(y, x, 0)=h ixo tχ l)(x)9

λ-+σo

that is Λ(JcotXi)(x) is the principal part of h{χ0>xι}{y, x) with respect to x. Denoting

by Λ(xo5jci)(/0 t n e lineality of Λ(xo^i), it follows from (2.4) that

(2.6) Λ^A) c Λ(χ0,χl)(Λ).

Lemma 2.3. We have

h{X°,xφ> x + w) = h{xotXi}(y, x\ Vw e Λ(xotXi)(A).

Proof. Since Λ(Xo>Λ.i)(jc) is the principal part of h{xotXι}(y9 x) with respect to x

and A{xo%Jci}Cv, x) is hyperbolic with respect to the xt variable, the assertion follows

from Corollary 12.4.8 in [2]. D

Set

Hlx°\x)= Σ h(β\x°)xβ/β\
\β\ = ι

where h{β\x°) = dβh{x°)/dxβ. Then

Lemma 2.4. Let x°, xι eTχOΩ/Axo(h) be characteristics of A, hχ0 of order r

and s respectively. Assume that Λ(jcoxi)(A) is given by xα = 0 where x = (xa9xb) is a

partition of the variable x. Then we have

unless α = (αfl,0).
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Proof. By definition we see easily that

Since Lemma 2.3 shows that h{xoiXι}(y,x) is a polynomial in (y,xa), we obtain the

desired result. •

We now study how h{xotXι}(y,x) depends on yeAχ0(h) assuming that

Σ = {jceΩ|rf'Λ(jc) = O,7< r, drh{x)Φϋ]

is a C00 manifold through jc°. For y e Σ and x e iVyΣ = TyΩ/TyΣ we define AΣ(y, x) by

(2.7)

which is well defined on the normal bundle 7VΣ of Σ. Take the local coordinates

x = (xa,xb) for which Σ is defined by xa — 0. In these coordinates, h and hΣ are

given by

h(xa>Xb)= Σ CJίXtoXjxZ hΣ(xa,xb)= Σ Ca(xbiO)x*a
|α|=r |ot|=r

where Ca(xb9xa) are C00. Let x °eΣ, ^1eΛΓJCoΣ\0 be characteristics of h, hχ0 of

order r and s respectively. In our coordinates, x° = (xb90), xί=(0,xl) and

(xb> xϊ) e ^VΣ\Σ. Remark that (xb, x\) is a characteristic of order s of ΛΣ because

and hence hΣ(xb,xl+xa) is hyperbolic with respect to the variable xγ and has the

zero xt=0 of order s when xa=0 with xfl = (^i,x f l).

Lemma 2.5. Let x be the local coordinates as above. Then h{χOfXι}(xb,xa) is

a polynomial of degree s with principal part hτ{χ0 xιpcb,xX the localization of hΣ at

Proof. Set

h*(xb,xa,p)= Σ Ca{xb,pxa)xa

a.
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It is clear that h*(xb + xb9 x\ + xω p) has the zero xγ = 0 of order s when (xb,xa,,p) =

and hyperbolic with respect to the variable xv Then it follows that

where h*0{xb,xωp) is a homogeneous polynomial of degree s which is hyperbolic

with respect to Xj. Since

h{x° + μ{xx 4-xfc) -f μ2xa) = μr/φc£ + μxb,x ι

a + μxa, μ)

it follows that h{xotXi}(xb, xa) = h*0(xb, xa,l). On the other hand, by definition, we have

λΣ(x£ 4- μxb, x\ + μxa) = μs(hΣ{xofXia)(xb9 xa) 4- O(μ))

and hence Λi(Jcofxi)(xfc, xfl) = h*0(xb, xa, 0) because hΣ(xb9 xa) = Λ*(xft, xα,0). This proves the

assertion. Π

3. Localization of system

Let Ω be an open set in Rn+ί with local coordinates x = (xo,x
f) where

x' = (xU' >,xn) and let T*Ω be the cotangent bundle over Ω with corresponding

coordinates (x, ξ). Let L be a first order differential operator on C°°(Ω, Cm) with

symbol L(x,ξ)eCcx>(T*Ω,9 Horn (Cm)). We denote by h(x,ξ) the determinant of

L(x,ξ). Following [8] (see also [1]) we define the localization of L(x,ξ) at a

characteristic zo = (xo,ξo)eT*Ω\0 of order r of h with

dim KerL(z°) = r.

Let π be the natural projection π: Cm -> Cm/ImL(z°) and ^ be the inclusion

*:KerL(z°)->Cm.

DEFINITION 3.1. We define Lz0(z) by

L2o(z) = lim μ~ ιπL(z° -4-μz)ί, z e Γzo(ΓΏ).

Taking bases for Cm and then for KerL(z°), K e r ^ z 0 ) , where ^(z 0 ) denotes the

transposed of L(z°), we study Lzo(z). We choose t/̂ , vi e Cm so that

KerL(z°) = span — {uu , wr}, Ker^(z 0 ) = span — {vu , yr}.

With U=(uu-,un\ V—(υl9 , yM), which are m x r matrices, we set L{VV)(z) = * VL(z)U.

Then in these bases, Lzo(z) is expressed by L( l7 K)Zo(z):
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L(v,v)z°(z) = I™ μ ' ι L(U V)(z° + μz).

For another pair of bases U9 V for KerL(z°), Ker'Lfc0) respectively it is clear that

Lφy)(z) = MίLiUtV)(z)M2 with some non singular MιsM(r9C) and hence

(3.1) Lφp)zo{z) = M1 L(U,V)zo(z)M2.

We next examine the effects of a change of basis for Cm. Let Lτ(z) = T~ιL(z)T

with a non singular TeM(m,C) and let Uί9 Vγ be a pair of bases for KerLτ(z°),

Ker fLΓ(z). Then it is also clear that

(3.2) LTυuVi)zo{z) = NxL{Uy)zo{z)N2

with non singular NieM{r,C). From (3.1) the determinant of Lzo(z) is well defined

up to non-zero multiple constant.

Lemma 3.1. We have

(detL)zo(z) = detLzO(z)

up to non-zero multiple constant.

Proof. As noted above, it is enough to show the assertion with suitably

chosen bases U, V for KerL(z°), Ker'/^z0) and a basis for Cm. After a change of

basis for Cm we may assume that L(z°) = G®0 where GeM(m — r, C) is non singular

and O denotes the zero matrix of order r. Write

21 ^ 2 2

where Lij(z°) = O unless (/,/) = (1,1) and Lίl(z°) = G. Thus choosing U9V suitably

we have

Since L11(z° + μz) = G+O(μ), Lij(z0 + μz) = μL'ij(z) + O(μ2) as μ -• 0, we see that

detL(z° -h μz) = μr{(detG)detL22(z) + O(μ)}

and hence (detL)z0(z) = (detG)detL22 (z). On the other hand, by definition, we have

L(u,v)z°(z) — L'22(z) a n < l hence the assertion. •
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From (3.1) it is clear that every s-ih minor of Lφψ)zo(z) is a linear combination

of 5 -th minors of L(υv)zo(z) and vice versa.

Lemma 3.2. Every (r—l)-th minor of Lzo(z) is a linear combination of mzo(zfs

where m(z) are (m — l)-th minors of L{z).

Proof. It is enough to show the assertion for L(C7?F)zo(z) with suitably chosen

U, V and a basis for Cm. As observed in the proof of Lemma 3.1 we may assume that

\ O(μ) μL'22(z) + O(μ2)

Let m(z) be the (m — l)-th minor of L(z) obtained removing i-th row and y-th

column of L(z). Similarly we denote by l(z) the so obtained (r—l)-th minor of

Lf

22(z). Then it is clear that

as μ-»0 and hence /(z) = (detG)~1mzo(z), which proves the assertion. •

Recall that Lzo(z) is Hom(KerL(z°), Cm/ImL(z0)) valued linear function in z.

DEFINITION 3.2. Let Lzo(z)=(φJ(z)). We call

d(L2o) — dim span — {φfi

the reduced dimension of Lzo.

DEFINITION 3.3. Assume that L(z) is real. Let z° be a characteristic of order

r of h with dim KerL(z°) = r. We say that z° is non degenerate if

d(Lzo) >r(r 4-1)/2.

Let z° be a characteristic of h of order r again. Note that one can take mxr

matrices U(z) and V{z\ depending smoothly on z near z°, verifying

dim KerL(z) = r=> U(z\ V(z) are bases for KerL(z), Ker'L(z) respectively.

Then it is also clear that

(3.3) L2(w) = lim μ
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with M(z) = tV{z)L(z)U{z) if dim KerL(z) = r.

Lemma 3.3. Assume that

Σ = {zeT*Ω\djh(z) = O,j<r, drh{z)Φϋ]

is a C00 manifold through z° and that dim KerL(z) = r, z e Σ . Then we have

(3.4) Lz(w) = O, weTzΣ, zeΣ.

In particular, if zeΣ then d(Lz) = d(hz).

Proof. Since M(z)=O on Σ, the first assertion is clear by (3.3). To prove

the second assertion, it is enough to note that if zeΣ then d(Lz)>d(hz) by Lemma

3.1. The opposite inequality follows from (3.4). •

4. Necessary condition (1)

Let

be a differential operator of order 1 on C°°(Ω, Cm). We assume that h(x, ξ) is

hyperbolic with respect to t(x) eC°°(Ω), rfφc)/O, that is

has only real roots for every xeΩ, ξeT*Ω. Let σ = Σn

jz=0 dξjΛdXj be the canonical

symplectic two form on T*Ω and for SaTw(T*Ω) we denote by Sσ the annihilator

of S with respect to σ:

In what follows we assume that t(x) = x0 and Λ0 = Im, the identity matrix of order

m without restrictions. Recall that we say that L is strongly hyperbolic near the

origin if the Cauchy problem for L(x, D) + B{x) is correctly posed for every

B(x)eC^(Ω,M(m9Q) in both Ω\ Ωt with small t, where Ωt = {xeΩ\x0<ή and
Ω = {xeΩ\xo>ή.

In this section we show the following result.

Theorem 4.1. Assume that A3{x) are real analytic in Ω containing the origin. Let

Z°GΓ O *Ω\0, zιeTzo(T*Ω) be characteristics of order r and s of h and hzo = detLzo

respectively with Azo(h)σ a Azo(h). If L is strongly hyperbolic near the origin then
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every (r—\)-th minor of Lzo vanishes of order s — 2 at z1.

This result is optimal in a sense. We give an example.

EXAMPLE 4.1: Let

L(z) =

ξo ί i

o£i to

0

0 = (0,en), n>2.

0 0 ξ0-2xoξu

For this L{z), it is not difficult to examine the following.

1) L is strongly hyperbolic near the origin (see Example 1.2. in [6]) and z° is a

characteristic of order 3 of h with Λzo(/0σ <= Λzo(A).

2)

and z1 =((),£!) is a characteristic of detLzo(z) of order 3.

3) the 2-minor

0 ξ0

vanishes of order 1 = 3 — 2 at z1.

We first derive an a priori estimate for the well posed Cauchy problem which

will be needed in the following sections also. Let σ=(σ 0 , •• ,σB)eβπ

+

+ 1 and set

(4.1)
J = l

where y , tfeRn+x and ε 7 e β + , 0 < ε 1 < ε 2 < <ε s . For a differential operator P

on C°°(Ω, Cm) with C°°(Ω) coefficients we set

(4.2) η(λ); x,ξ) = > λκη(λ) + λ"
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with κeQ+ where λ~σ = (λ~σox0, --9λ~σnxn) etc. Assuming that the Cauchy problem

for P(x9D) is correctly posed in both Ω* and Ω, for every small t, we derive an a

priori estimate for Pλ(x9D).

Proposition 4.2. Let σegV" 1 and κ> £j£Q+- Assume that OeΩ, y° = 0 and

the Cauchy problem for P(x9 D) is correctly posed in both Ω* and Ωf for every small

t. Then for every compact set Ϋ9 H cz R{n + 1)s, WczRn+ί and for every positive

T>0 we can find C>0, 2 > 0 and peN such that

Iu\co i W t )<Cλ<a +«»IPλuIC P { W t > Iu\ c o { W t ) <Cλ^^\P λ u\ C P { W t )

for λ>l,ueC$(W,Cm%\t\<T,Y=(y\ >,ys)eΫ,H=(η\. ,ηs)eHwhere σ = max jσ j.

Proof. Set

so that P(x, ξ) = P(x, λκμ(λ) + ξ). Let K α Ω be a compact set and recall Proposition

2.1 in [7]:

M^co^CI/^l/W), M<τ> »eC?(A, Cm)

with an integer peN and a τ > 0 . Since \u\CPiKt)<Cίλ
κp\e~iλκ<η{λ)'x>u\CP{Kt) it

follows that \u\CoiKt)< C2λ
κp\P(x9D)u\CpiKt). Repeating the proof of Proposition 2.2

in [7] we get the desired assertion. •

Before going into details we recall what we have proved in [7]: Let m(z) be

a (m —l)-th minor of L(z) and assume that

hλ(y(λl η(λ); x, ξ) = P{ao(h)(Y9 H;x9

); x9 ξ) = P+τ{σo(m)( Y9 H9 x9ξ) 4- o(\)}

as λ-+oo where Y=(y1

9-~9y
s)9 H={ηι

9--,ηs). Then if L is strongly hyperbolic

near the origin and τ > 0 , it follows that σo{m)(Y9H;x9 ξ) is divisible by σo(h)(Y9H;x9 ξ)

as polynomials in ξ0.

To show Theorem 4.1 we prepare several lemmas. Since Azo(h)σ c Azo(h)9

choosing suitable local coordinates x9 preserving the plane xo = 09 we may assume

that z° = (0,ew) and

(4.3) hAz) = Q(xb,ξα)

with a homogeneous polynomial Q of degree s where x=(xα,xb),x f l = (x0> •> **)>•**> =

(x f c + 1, •••,*„) is a partition of the variable x and ξ = {ζα>ζb) ^s ^ a t °̂  ί (c^- Proposition
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2.6 in [7]). Let zi=(y9η) and set

σ,.= l/3, 0<j<k9 σj = 2β9 k

We now study

\ η(λ); x, ξ) = *"Λ(z° + λ ~ ̂ z 1 +λ~ v\xa, ξb) + 2" 2/3(x,, ξa))

where m* = m-{r + s)β and zβ = (xβ,ξfc), zb = (xb,^fl). From (2.5) it follows that

Λ{Zo,zi}(^^) = Λ(zθ,zi)(zb)+ polynominal in ξ0 of degree <s-l.

We summarize the above observations as:

Lemma 4.3. Let z°eΓo*Ω\0, z1 e Γzo(:Γ*Ω) be characteristics of h and hzo of

order r and s respectively. Then we have

hλ(y(λ\ η(λ); x, ξ) = λm\σ0(h)(y, η; x, ξ) + O(λ~ "*))

where <Jo(h)(y, η; x, ξ) is a polynomial in ξ0 of degree s.

Let m(x,ξ) be a (m — l)-th minor of L(x,ξ) and hence of homogeneous of

degree m—\ in ξ. Study mλ(y(λ\η(λ);x,ξ).

(4.4)

where

and G(/,α,/J) = w i - l - ( / - | α + i8|)/3-|/?β + α6 |/3-2|αβ + A|/3 with α = (αα,αb),

(βa,βb)

Lemma 4.4. Assume that m^)

)(z°) = 0 for \<x + β\<r—l and

Then we have M\fβ)(z°;z1) = 0 for l+\oc + β\<r+s-3.
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Proof. Since G(l, α, β) > m -1 - (/ +1 α + β |)/3, it follows that

Now the proof is immediate. •

Lemma 4.5. Assume that /wg}(z°) = 0 for | α + β \ < r -1. If G(l9oc,β)>m* then

oc0<s — 2.

Proof. Recall that G(/, α, β) = m - 1 - (/ +1 αα 4- ft,|)/3. Suppose that α 0 > s -1

and G(l9(x,β)>m* with some /,α,/?. Then since l>r — 1 by hypothesis we get

G(l9(x,β)<m* —1/3 which is an obvious contradiction. •

Proof (of Theorem 4.1). Let m(z) be a (m —l)-th minor of L(z). We first

remark that the dimension of KerL(z°) is equal to r by Corollary 1.4 in [7] and

hence Lzo is well defined. On the other hand the assertion

follows from Theorem 1.3 in [7]. From Lemma 3.2, to prove the theorem, it is

enough to show that m ^ ) ( z 1 ) = 0, |α-hj8|<5 —2 for all (m--l)-th minors ra(z) of

L(z). Suppose that

(4.5) m{$φι)ΦQ for some

Write λ-m*mλ(y(λ),η(λ);x,ξ) = λχσ0(rn)(y,η;x9ξ) + o(l)) and note that mzo(z) =

Mr_ι{z°\z). From Lemma 4.4 with l=r— 1 we would have τ > 0 if (4.5) were

true. On the other hand, by Lemma 4.5 we see that σo(m)(y, η; x, ξ) is a polynomial

in ξ0 of degree at most s — 2. Since σo(m)(y, η; x, ξ) is divisible by σo(h)(y, η; x9 ξ)

this shows that σo(m) = 0 and hence a contradiction. •

5. Necessary condition (2)

Let

Σ = {zeT*Ω\ djh(z) = 0 J < r, drh(z) Φ 0}

be the set of characteristics of order r of h. We assume that Σ is an involutive

C°° manifold through z° and let hΣ be the localization of h along Σ defined by

(2.7). Denote by α the canonical projection from Γ*Ω onto Ω: Γ*Ω -» Ω and assume

that

(5.1) dazo. Tzo(T*Ω) -• Γα(z0)Ω is surjective on TzoΣ.
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Recall that on NΣ we have an invariant symplectic two form, denoted by σ and

called the relative symplectic two form (see [4]) which is given by

σ= Y J d j j a a
j=o

where we have assumed that Σ is defined by ξa = 0 and NΣ is parametrized by

(xa, xb, ξb; x*a). Let XeNΣ\0 and we introduce the condition;

(5.2) Ax(hΣf c Ax(hτ)

where Ax(hΣ)
σ denotes the annihilator of Ax(hΣ) with respect to the relative symplectic

two form σ. Then we have:

Theorem 5.1. Assume that A}(x) are real analytic in Ω which contains the origin

and L is strongly hyperbolic near the origin. Let Σ be the characteristic set of

order r which is assumed to be an involutive C00 manifold verifying (5.1). Let

z1 eNzoΣ\0 be a characteristic of order s of Λzo = detLzo and we assume (5.2) with

X—(z°,z1). Then every (r—l)-th minor of the localization Lzo vanishes of order

(s— 1) at zι. In particular, we have

dim KerLzo(z1) = s.

Theorem 5.2. Assume that Ape) are real analytic in Ω which contains the

origin and L is strongly hyperbolic near the origin. Let Σ be the characteristic set

of order r which is assumed to be an involutive C00 manifold verifying (5.1). Suppose

that z° is non degenerate and (5.2) holds with X=(z°,z1)for every z1 eNzoΣ\0. Then

Lzo(z) is symmetrizable by a non singular constant matrix T;

Γ~ ιLzo{z)T

is symmetric for every z. In particular, Lzo(z) is strongly hyperbolic on 7zo(Γ*Ω).

Proof. From Lemma 3.3 and Theorem 5.1 we see that

dim KerLzo(z) = the order of z

for every multiple characteristic z of detL2o(z). Then it will suffice to apply

Corollary 3.5 in [5]. D

Here we give several examples.
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EXAMPLE 5.1:

/ ξo ξi

Hi ξθ

\ 0 0

ξo

0

ξo

0

0

0

0

0 Z/4Yz) =

Co

xίξi

0

ξo

4ξ,

0

ξi

ξo

0 ξ

ξi

ξo

0

o
0

0

0

1) Let z° = (0,^π) and «>2. It is clear that the characteristic set of order 3 of

L(i) near z° is an involutive C00 manifold given by Σ = {ξo = ξί=0}. Denoting

Λ(ί)(z) = detL(ί)(z), it is obvious that h%z) = ξl(ξo-ξ1) and hence zι^9ex) is a

double characteristic of h%z).

2) It is not difficult to show that L (1) and L ( 3 ) are strongly hyperbolic near the

origin. For L ( 1 ) we have A$=-(fo-*o)/*$. . i)» Λ ^ f ^ Λ ^ ^ ) where

X= (z°,z1). On the other hand, it is clear that Ag = -$§=A^p Zi), Λx(Ai;3))5

and every 2-minor of L^o} vanishes at z1.

3) We have Ag=-(#-*?)#*$.,,„ A # y c A # 1 and *g*=-«=*$.,•),
ΛX(Λ^4)). The localizations of L (2) and L ( 4 ) are given by

ί i 0

0

\o o ξo-ξj

Since the 2-minor

ί i 0

does not vanish at z1 then L ( 2 ) and L ( 4 ) are not strongly hyperbolic near the origin.

To prove Theorem 5.1 we first examine what condition (5.2) implies. Let

x = {xωxh\ xα = Cxo> >*fc)>*i> = (*fc+i> ••>*,,) be a partition of the variable x then

we sometimes abbreviate je {0, ••-,&} to yea, etc.

Lemma 5.3. Assume that (5.1) holds. Then we can find local coordinates xa
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and the corresponding coordinates φa = (xa

9ξ
a) in T*Ω, preserving the plane xo = O9

such that φa(z°) = (O,en)=p and TzoΣ is given by

(5.3) //Λβ,ίβ) = ίJ + //Λβ,ίβί) = O, 0<j<k

with some k<n where //p) = 0, dl/p) = O and the quadratic term of lj at p depends

only on # = (xj + 1 , - , β ) .

Proof. From hypothesis (5.1) and that TzoΣ is involutive, one can assume

that TzoΣ is given in the original coordinates by fj = ξj + lJ{χ,ξ) = 09 jea with

dl/p) = 0. By subtractions we may assume that fj = ξj, + //x, ξb) -f O
3 where O3

denotes the term which is O3 as (x, ξ) -• (0, en). Write

ί - 1

where qj{x)ξn is the quadratic part in x of lj and ξb' = (ξk+ir~9ζn-i)- Since the

involutivity of/; assures the existence of T(x) satisfying dT(x)/dxj = qJ{x),jea, taking

new local coordinates y,y=x9 yn—xn—Ί\x\ one can assume that ^ = 0 . Write

;ι= Σrjίχξmξb)ξ;ι=
i = k+l

where /^(JC) are linear in x. The same argument as above shows that the system

dSiixydxj^ljiixlJea, ieb'

admits solutions Sfae). Then taking new coordinates y

yj = xp j ea,yn = xn, yt = x, - S^x), i e 6'

we get fj = ξj+Ίj(ξb) + O3 which is the desired assertion. •

Lemma 5.4. Let xa be the local coordinates for which Tz0Σ is given by

(5.3). Then one can find homogeneous symplectic coordinates φβ = (xβ,ξβ) such that

φβ(z°) = (0,en)=p and TzOΣ is given by ξ^ = 0,jea and moreover

ξβj(Λ ξa)-fj(x*> ξa)=O3

9 jea, (x, ξ) ->/>.

In particular, φ'βa(p) = I with φβa = φβ°φ~ι and ( φ » z = (0,0,0,c/ξfc)), jea with

Proof. To simplify notations, we denote (y,η), (x,ξ) for (xβ,ξβ\ (x*,ξΛ)

respectively. Take ηo=fo a n ( l determine η3 successively by solving
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Hηiηj = 0, 0</</, ηj\c=fj\c

where C={xi = 090<i<j-l}. Since/) are in involution, we see that ηj = O on

Σ. Noting that ι/.—/ί==O3, 0 < / < y - l we conclude that η.-fj=O3. We now

extend ηj9jea to homogeneous symplectic coordinates (y9η). It is clear that one

can take (y9η) so that (y,rj)'{p) = I. •

Let φa = (xα, ξa)9 φβ = (xβ

9ξ
β) be the coordinates in Lemmas 5.3 and 5.4

respectively and denote by ha

9 p9 q the representatives of Λ, z°, z1 in the coordinates

φa. Note that

* k > ' ξa)=hfpjw9 ξa + φ"βa(p){w 4- ?))

with w = {xa>Xb&b)- From Lemma 5.4 it follows that φβΛ(p)(w + q) = F[ξb) mod TpΣ

where the components of F(ξb) are polynomials in <̂ b of degree at most two. Then

it follows that

(5.4) h"{pJw, ξa) = hfpjw, ξa+F[ξb)).

Lemma 5.5. Let φa = (xa

9ξ
a) be local coordinates for which T2oΣ is given by

ξ% = 0 Then for any given kxk real non singular A with %Ae0 = e^ and kxk real

symmetric T, we can find local coordinates φγ = (xy

9ξ
γ) with xy

0 — χ% for which TzoΣ

is given by ζl = 0 and

(5.5) hl,qV)(xa9 xb9 ξb; ξa)=h*{pJΛ " ιxa9 xb9 ξb9 'A ξa + TA~ ιxa)

where tAqγ = q and hγ

9 qγ are representatives of h9 q in the coordinates φγ.

Proof. To simplify notation we write (x9 ξ), (y9 η) for (xa

9 ξ
a)9 (xγ

9 ξγ) respectively

and set φ = φaγ. Note that k>\9 because otherwise we would have # = 0 which

contradicts qeNpΣ\0. Since the map

with a non singular A and a real symmetric T generates a group, we may suppose

that q = ek. Since the assertion when T=O is almost trivial, it suffices to show

the assertion with A—I. Let

It is obvious that φ(p)=p and φ'{p) = I. It is also easy to see that

= (Txa)P ξ](p)(w9w) = 09jea9 weTpΣ
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with w = (xωxb,ξωξb). This proves that φ"(q,w)=Txa, φ"(w,w) = 0 mod TpΣ and

hence the assertion. •

Lemma 5.6. Assume (5.2) with X=(z°,zi) and let φβ be the local coordinates

in Lemma 5.4. Then choosing a non singular A with tAe0 = e0 and a symmetric T

suitably, we have

hβ

ΣiPtq)(A~ιxa,0,0;xAξu + TA~xxa) = Q(ξ0, -9ξμ9xμ + 1 5 . ,x v )

with some μ<v<k where Q is a polynomial of degree s.

Proof. Note that the lineality of h^q)(xa, 0,0; ξa) is given by li(xa9ξa) = 0,

0 < / < v where l{ are linear functions in {xa,ξa). Then we get h{{pq)(xa,0,0;ξa) =

Q(li(xωζa)) with a homogeneous polynomial Q of degree s. From hypothesis

Aipq)(hΣ)
σ cz A(pq)(hΣ\ it follows that li(xωξa) are in involution with respect to

dξaΛdxa. Then to prove the assertion, it is enough to follow the arguments in

[3], page 127. •

Let A, T be given in Lemma 5.6. For these A, T we choose the local

coordinates xy in Lemma 5.5 so that (5.5) holds. From (5.4) it follows that

hlPtqy)(xa9xb9 ξb; ξa) = hfpJA ~ ιxω xb, ξb; ^ a + TA~lxa+F{ξb)).

It is clear that the principal part of hy

{pqγ)(xaixb,ξb;ξa) with respect to (xa,ξa) coincides

with that of hfPtq)(A~1xa9xtiξb;
tAξa + TA~1xJ. Then from Lemma 2.5 it follows

that the principal part of h\Ptqy){xω xb9 ξb9 ξa) with respect to (xa9 ξa) is h{(pq)(A ~ ιxa, 0,0;
tAξa+TA~ίxa) and hence equal to

by Lemma 5.6. Thus the principal part with respect to ξa is Q{ξ0, - ?^ μ,0, ,0)

and then we have hy

(Pfqγ)(ξa) = Q(ξ0, •• ,ξμ,0, •••,()). Since hy

{Pfqy}(xa,xb9ξb,ξa) is

hyperbolic with respect to the ξ0 variable, Corollary 12.4.8 in [2] shows that

h{P,qy}(xa>Xb>ζblζa) is a polynomial in (ξo,-',ξμ,xμ+u'-,Xv,Xb>ξb)' Hence we see

that hy

{p>qγ)(xa,xb,ξb;ξa) is constant along {(x0, •• ,xμ,0, •• ,0)}=ΛθMzV)(Ay)<τ

Here we summarize our observations.

Proposition 5.7. Let Σ be the characteristic set ofh of order r which is assumed

to be an involutive C°° manifold verifying (5.1). Let z1eNzoΣ\0 be a characteristic

of order s of hzo and suppose (5.2) with X=(z°,z1). Then one can find local

coordinates x, preserving the plane x0 = 0,/or which TzoΣ is given by ζa = 0 and that

h{zo,zφ, ξa) = h{zofZi}{0, ξa
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6. Proof of Theorem

In this section we shall prove Theorem 5.1. To do so, without assuming

that Σ is a manifold, we give more general results which are not coordinate free

though. We denote by p the radial vector field on T*Ω. Recall that

Λzo(A) cz Λ(z0)Zi)(Λ) and hence

Proposition 6.1. Assume that A}{x) are real analytic in Ω which contains the

origin and L is strongly hyperbolic near the origin. Let Z°GTQQ\0, zιeTzo(T*Ω)

be characteristics of order r and s of h and hzo = det Lzo respectively with

(6.1) p(z°)φAAh)σ c Λzo(Λ).

Assume that we can find local coordinates x near the origin with t(x) — x0 such that

(6.2) h{zo,zί}(v, z) = λ { zo,z l }(0, z), V* e Λ(χOf , !,(*)*

Then every (r—l)-th minor ofLz0 vanishes of order s— 1 at z1. In particular, we have

dim

The proof of Theorem 5.1 follows immediately from Propositions 5.7 and 6.1

because p(z°)φAzo(h) by (5.1).

Proposition 6.2. Assume that Aj(x) are real analytic in Ω which contains the

origin and L is strongly hyperbolic near the origin. Let z° e ΓQΩ\0 be a non

degenerate characteristic of h of order r with (6.1). Assume that for every multiple

characteristic z1eTzo(T*Ω) of hzo = detLzo we can find local coordinates x with

t(x) = x0 verifying (6.2). Then Lzo(z) is symmetrizable by a non singular constant

matrix.

This result clearly generalizes Theorem 1 in [8].

Corollary 6.3. Assume that A}{x) are real analytic in Ω which contains the

origin and L is strongly hyperbolic near the origin. Let z° e ΓQΩ\0 be a characteristic

of order r of h with (6.1). Assume that for every z1eΛz0(Λ) one can find local

coordinates x with t(χ) = χ0 verifying (6.2). Then we have d(Lzo) = d(detLzo).

Proof. The proof follows immediately from Proposition 1 in [8] and

Proposition 6.1 above. •

To show Propositions 6.1 and 6.2, we look for local coordinates x for which
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(6.2) remains true and Λ(zotZi)(/z) is in a special position.

Lemma 6.4. Let z°e Γ^Ω\0, z1 eTzo(T*Ω) be multiple characteristics of h and

hzo with (6.1). Let S a Azo(h)σ be a linear subspace and assume that

(6.3) h{Zo,zι}(w, z) = V> 2i }(0, z\ Vw G 5

in some local coordinates. Then we can find new local coordinates x preserving the

plane xo = 0, and the corresponding coordinates {x9ξ) in T*Ω such that

(i) the coordinates of z° are (0,en)=p,

(ii) Azo(h) is given by ξj = 0,0 <j < k, x} = 0, k + 1 <j < N9

(iii) (6.3) remains true in these coordinates.

Lemma 6.5. Let z°e TQΩ.\0, Z 1 G ΓZO(Γ*Ω) be multiple characteristics of h and

hzo with (6.1). Assume that (6.2) holds in some local coordinates. Then we can find

new local coordinates x verifying all conditions stated in Lemma 6.4 with *S'=Λ(zojZi)(Λ)<τ

and furthermore satisfying

(iv) Λ(zozi)(Λ) is given by £/ = 0, 0<j<ku x ; = 0, k + lKjKNi^ with some kγ<k,

NX<N.

Let z — {x,ξ) be the coordinates for which (6.3) holds. Without restrictions

we may assume that z° = (0,en). To simplify notations we denote by 5Z,ΛZ c= R2n+2

the representatives of 5, Λzo(A) in the coordinates z. We first recall that with

fι(w) = h(z(w)) we have

£{wθfWi}(»9 U) = h{zotZi}(v, U + Z"(W°){W1 + V))

where ύ = z\w°)u, v = z\w°)v and w° = w{z°\ wι =w\z°)z\ Thus if

(6.4) z'\w°){w\vl z>°)(

it follows that h~{wofyvι}(v,u) = h{zofZι}(v,u + z"(w0)(w1)) and then /Γ{H7o>vvi} verifies (6.3) if

h{z°,zi)(h) does. Remark that successive change of coordinates z = z(ζ) = z(w(ζ)) verifies

(6.4) provided if each change of coordinates z = z(w), w = w(ζ) verifies (6.4).

Since Λz contains the (0,eM)-axis we can assume that Λz is given by φj(x,ξ) = 09

0<j<N where φj(x,ξ) are linearly independent linear functions in (x,?),

ξ = (ξOi ~ 9ξn_ι). We first study the case Λz contains (ew,0)-axis and hence φj

contains no xn. Note that some φj actually depend on ξ0 because hzo is hyperbolic

with respect to the ξ0 variable. By a linear change of coordinates 3c = (x0, •••,xw_1)

preserving the plane xo = 0, the (0,eπ)-axis and a renumbering of the </>/s, we can

assume that φ 0

 = £o + ôC*) ^n the original coordinates. Choose new coordinates

y so that
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where Q is a real symmetric matrix. With suitable choice of Q, Aw is given by

ty=0, 0<j<k9 j>,= 0, k + l

(cf.[3]) which proves (ii). Since veAσ

w implies that vyn = vηn=0 it is clear that

ξ'j(w°)(v,u) = 0 if veA^, uηn=0. Note that we can assume that H>*Π = 0 because Λw

contains the (0, eM)-axis. Then z"{w°){wι,v\ z"(w°)(υ,υ) are proportional to (en,0)eΛ2

and hence (iii).

We turn to the case Γz does not contain the (eπ, 0)-axis. Renumbering φj if

necessary, we can assume that φN contains xn. Subtracting constant times φN

from the other </>/s we can assume that φj(j<N) contains no xn. We first treat

the case φj (/< A7) contains no ξ0. Renumbering φj again, one can assume that

where ξ"=(ξu ,<JΠ_1), a^O. By a linear change of coordinates x, preserving the

plane xo = 0, one can assume that

in the original coordinates. Take new coordinates y so that y=x, yn = xn — axoxn

and hence Λw is given by

It is clear that x'j(w°) = 0 unless j=n and ξ'j(w°) = 0 unless j=0, n. It is also easy

to see that

)= -a\nvyo

if Vyn = Vηn = 0. Thus we have Z"(W°)(M, V) G ΛZ, Vz eΛ^,, VM. Since Aw contains the

(en, 0)-axis the proof is reduced to the preceding case.

We next treat the case that some φj(j<N) depend on ξ0. Renumbering φ/s

if necessary we may assume that φ0 = ξ0 + /(x, ξ"). As before, after a linear change

of coordinates x, we may assume φ0 = ξ0 4- ll(x). Subtracting constant times φ0

from the other φ/s one can assume that φj, l<j<N contains no ξ0. Repeating

this argument we arrive at

), 0<j<k-h φj = lβ\ k<j<N-h

φN = lN(x) + axn or φN = ξk + lN(x) + axn

with some k. Suppose φN = ξk + lN(x) + axn. Since φ} are in involution we have
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φj = lj(xb,xc), k<j<N-\ where xb = (xk+l9—,xN), xc = (xN+u •• , ^ w - i ) . By a linear

change of coordinates (xb,xc) we may assume that φj = χj+ u k<j<N— 1. Subtrac-

tions give

lj = !j{xa,xc)9 0<j<k-\, lN = lN(xa,xc)

with xa = (x0,'-,Xk) Thus one can assume that Λz is given by

in the original coordinates. Take new coordinates y; y = x, yn=xn — axkxn. Then

similar arguments as before prove that Z"(H>°)(W, V) e Γz, Vz/eΓ£,, Vw and the proof

is reduced to the previous case.

Finally let lβ) = lJ{xb,,xNixc), k<j<N where x^ = (xk, •• ,x i V_1), x C '=(x N + i ,

• ,x r ι_1). Since (0,en)<£Az by hypothesis, it follows that lN(x)Φ0. Therefore by

a linear change of coordinates x and subtractions we may assume that Λz is given by

ξj + lpca., xc) + i ^ = 0, 0 <y < k -1,

where x f l =(x O j •• >*k-i) Make a linear change yN=xN + axn, yj — Xpj^N. After

subtractions one can assume that Λ2 is given by

ξj + lfa XcΉcfiCn^O, 0<j<k-U Xj = 0, k<j<N

in the original coordinates. We take new coordinates y

k-\

y=χ> yn=χn- Σ
7 = 0

so that Aw is given by fy + //jVίJV) = 0> 0<j<k— 1, ^ = 0, k<j<N. It is now

easy to check that Z"(W°)(H, y) e Λz, V̂  G Λ ,̂, VW. The rest of the proof is simply a

repetition. •

Proof (of Lemma 6.6). By Lemma 6.5 we can assume that (i), (ii) and (iii)

are satisfied in the original coordinates. Since Azo(h) cz Λ(zofZί)(h) one may assume

that Λ(zofZi)(A) is given by ψjiξφ xb) = 0,0 <j<N2 with ξa = (ξθ9 , ξk\ xb = (xk + l9 ,xN)

After a linear change of coordinates one can assume that

i + u—,XN

with the original coordinates where k—kί+N2 = N1. Take new coordinates y
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y=x9 yn=χn-
j

so that Λw is given by ̂  = 0, 0<j<kί9 yj = O, k + \<j<Nv It is easy to see that

Z"(H>°)(M, υ)9 Z"(W°)(V, V) E ΛZ, VZ; G Λ ,̂, VM and hence the proof is complete. •

We now complete the proof of Propositions 6.1 and 6.2. Choose the

coordinates found in Lemma 6.6 and let zί=(y,η) be a characteristic of hzo of

order s verifying the hypotheses of Proposition 6.1. Recall that

zO + μz1 -f μ2(x, ξ)) = μr+{

where

Hι(z°;x9ξ)= X
\*+β\ = ι

From Lemma 6.6 there is a homogeneous polynomial Q of degree r such that

where x = (xa,xb,xc) = (x0,-;xk,xk+u--,XN>XN+u'-,xn) and ξ = (ξa,ξb,ξc) is the
corresponding partition. We set

and ξa = (ξaι,ξa2), ξb = (ξbί,ξb2)' Lemma 6.6 asserts that for \<x + β\ + l=r + s

(6.5) ^ ( z V 1 +z) = //$)(z°;z1), VzGΛ(zo,zl)(Λr.

Let us take

σ o = l / 3 - ε 1 - ε o , σ < / =l/3-ε-ε 1 , l^y^*!,

^ j εl9 k+l<j<Nu

σj = 2/3-ε1-v9 N^IKJKN, σj=l/29 N+\<j<n

where ε 1 > ε > ε o > 0 , v > 0 which will be determined later. Put
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and study

To simplify notations we set

pί = l/3-ε-εί, p2=2β + ε + εu p = l/3 + εu t = 2εί+ε=p-pί

and note that

ί 1 ί -^x^

where xfll = (x0,x f l') and

Note that B is a characteristic of hzo of order 5 because Λzo(A) = {ξα = 0, xb = 0}. Then

one can write

(6.6) hλ = £ λF«>**>^H\tfb)(z°; B)xl»ξl°l*a\βb\

where

We first study the term with l+\<xa + βb\ = r + s in (6.6). For l+\oιa + βb\ = r + s it

follows from Lemma 2.4 that //{^(z0; £) = 0 unless αfl2 = 0, /?b2 = 0 because

Λ(zo,2i}(Λ) = {ξaι = 0, xfrl = 0}. Therefore we get

b{z°; B) = Hfoityz0; z1 + λ\λ« "%, xβ;,ξfcl

l,*aι,βbί,yc,6c,yb2,5a2)^ χ-x
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where

Since l<r + s because l+\ocaι + βbι\ = r+s it follows that

because \yc + δc + γb2 + δa2\>l. Take ε^O, v>0 so that

(6.7) 3ε1(r + , ϊ - l )<v<l/6-ε 1

and hence F2 <0. Then from (6.5) and (λεo~εxo, xa,, ξb) G Λ(2ofZi)(A)σ it follows that

l + \aaι+βbι\=r + s

with some v ^ O and Fί=F+t(l— \oca + βb\). We next observe Fx:

*^+βbι\+(e-ε0)ot0

because p2 — t — 2pί=ε1+2ε, p2 — 2pί = 3(ε + εί). Let l+\aa + βb\ = r+s + u with
u>\. Then we see that with m* = m — (1/3 + ε^r — (l/3 + εo)s

1)|αfll+)?f,1H-(ε-εo)αo<(2ε1-fε)r4-(ε-hε14-εo^-(l/3-ε-ε1)M

-(ε1+2ε-v)(^ + M) = (2ε1+ε)r + (εo-ε-f v)s-(l/3 + ε-v)u.

Here we take ε ^ O , v>0 so that
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(6.8) 3ε1r + (ε 1 +v)y<l/3-v

and hence we have iΓ

1(/,αfl,j?b)<m* if /+|α f l4-/? ί,|>r + ,s>+ 1. We summarize our

observations.

Lemma 6.6. Choose v>0, εί>ε>εo>0 sufficiently small so that (6.7) and

(6.8) hold. Then we have

hλ=λm\diHr(z°; z')ξys\+o(i))=A-WAXy. v x, ξ)+o(i)).

Proof. It is enough to examine the term

for l+\<xaι+βbί\ = r+s. Recall that

Here the maximum is attained if and only if /=r, oco=s since ε>ε 0 . This proves

the assertion. •

We turn to study (m— l)-th minors of L. Let m(z) be a (m — l)-th minor of

L(z). Assume that m vanishes of order r— 1 at z°. Recall that

= λm~ ιm(z° + λ~P2A ^rλ-pB) = Yaλ
G^β)Mfβ){z°\ zι)xβξ*/<x\β\

where

and

which is equal to
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+ (1/3 + ε, - v)\βa2 + ccb2\ + ( 8 l - ε)\βbl + α.J + (ε - εo)αo

because we have

pι-2p=-(l/3 + ε + 3εί), p2-2p=-(εί-ε)

p2-t-2p=-3εu l/2-2p=-(l/6 + 2ε1).

Lemma 6.7. Assume that m(z) vanishes of order r—ί at z° and (εt— εo)s<3ει.
Then for I, <x, β with l+\ot + β\<r+s-2, Mffifz0?1)^ we have G(l,a,β)>m*.

Proof. Set l+\a+β\=r+s-3 + u, «<0. Then we see that

+ (ε - εo)αo + (3ε, + v)\βb2 + αfl2| + (1/6 + 2β,)| αc + βc\

> — l + 3p-(ε1—ε0)s—pu=3ε1—(ει — ε0)s—pu.

This shows the assertion because κ<0. Π

Lemma 6.8. Assume that m(z) vanishes of order r—ί at z° and ε,(3r —1)< 1/3.
Then if G(l,0L,β)>m it follows that a.0<s-2.

Proof. We first note that

- 0>2 ~P)\ βbι + αβ l I + (ε - ε 0 K -ip2-p-t- v)| /?62 + αfl2|

which is equal to

since
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% p2-p=l/3 + ε, p2-p-t=l/3-2εu l/2-p=ΐ/6-εί.

Since M^ z) is a polynomial of degree / in z and then |α + /?|</. From this it
follows that G(l9θL,β)<m-l-pl+{ε + 2εί)l-(l/3 + ε0)(x0. Suppose that α o >.s- l
then, taking l>r— 1 into account we get

This clearly gives a contradiction. •

We now summarize what we have proved. We choose v>0, ε 1 > ε > ε o > 0
so that Lemmas 6.6, 6.7 and 6.8 hold and then fix them.

Lemma 6.9. Assume that m(z) vanishes of order r — 1 at z° and there are /,
α, β such that /+|α + β |<r+.s-2, M^β){z°\zγ)φ0. Then we have

with τ>0 where σo(m)(y9η;x,ξ) is a polynomial in ξ0 of degree at most s — 2.

Proof (of Proposition 6.1). Since σo(m) must be divisible by σo(h) it follows
that σo(m)(y,η;x9ξ) = 0. Since mzo(z) = Mr_1(z°;z) it follows from Lemma 6.9 with
/ = r - l that

Applying Lemma 3.2 we get the desired result. •

Proof (of Proposition 6.2). It suffices to repeat the proof of Theorem 5.2. •
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