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1. Introduction

In a previous paper, henceforth quoted as [7], necessary conditions have been
obtained for a first order system L to be strongly hyperbolic. In patricular, these
conditions assert that, at an involutive characteristic, say z° the dimension of
KerL(z°) must be equal to the order (or the multiplicity) of z° (Corollary 1.4 in
[7]). Then the Taylor expansion of L along KerL(z°) starts with a linear term
L,o, called the localization at z° (Section 3), which would be the first candidate
for approximations of L on KerL(z°).

Unfortunately, in general, the localization is not diagonalizable even if the
original system is strongly hyperbolic and the characteristic is involutive, in contrast
with constant coefficient case (see Lemma 8 in [8] and Example 4.1 below). Our
aim in this paper is then to make more detailed studies on localizations at an
involutive characteristic of strongly hyperbolic systems.

Our first result is concerned with the localization L, at an involutive
characteristic z° of order r of a strongly hyperbolic system L. Hence L, is a
rxr system. Then we show that every (r—1)-th minor of L, vanishes of order
s—2 at every characteristic of order s of L,o (Theorem 4.1). This means that the
localization must satisfy the same necessary condition which is verified by the
original strongly hyperbolic system (see Theorem 1.1 in [7]).

The second result is stated as: Let z° z' be characteristics of the original
system L and of the localization L, of order r and s respectively. Then, assuming
that the characteristic set of L is an involutive C® manifold, every (r— 1)-th minor
of L, vanishes of order s—1 at z' if (z°2z!) is “involutive” (Theorem 5.1). In
particular, the dimension of KerL,(z') is equal to s and hence L,(z!) is
diagonalizable. If the characteristic z° is non degenerate (Definition 3.3) and (z°,z!)
is “involutive” for every characteristic z! of Lo, then the localization L, is strongly
hyperbolic, more precisely the coefficient matrices of L, are simultaneously
symmetrizable (Theorem 5.2). We also show that the same results hold under
less restrictive assumptions on the characteristics, which though, are not coordinate
free (Propositions 6.1 and 6.2). These results, applied to the constant coefficients
case, generalize Theorem 1 in [8].
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2. Higher order localizations

Let A(x) be a monic polynomial in x, of degree m:
h(x)=x7+ Y, af{x)x7 ™
j=1

where a(x’)e C*(U), x'=(x,,--+,x,) and U is an open neighborhood of the origin
of R"~!. We assume that A(x) is hyperbolic with respect to the x, variable, that
is the equation A(x)=0 in x, has only real roots for every x’e U. Let xX°e Rx U=Q
be a characteristic of 4 of order r:

Fh(x°)=0, j<ro, dh(x")#£0.
We define h,(x) as
h(xo + ”x) = ”m(hxo(X) + 0(”))’ u- 0

which is a well defined homogeneous polynomial of degree r, on T,0Q/A o(h) where
A,o(h) is the lineality of h,(x) defined as

Ao(h)={x€ T oQ|ho(y +tx)=h.o(y), VtieR, VyeT.Q}

which is a linear subspace in T,oQ (see [1], [2]). Moreover h.o(x) is hyperbolic
with respect to the x, variable (cf. Lemma 1.3.3 in [3]).
In the following we denote by u,, , two small parameters with 0 <p, <p, < 1.

Lemma 2.1. Let x' € T.oQ/Ao(h) be a characteristic of order r, of h,o and let
yeA,olh). Then we have

h(X° + po(X" + ) + popy x) = pep (hy(v, X, o/ i) + 1181 (Y, X, 1y, Ho/11))

where h(y,x,s) is a polynomial in (y,x,s), homogeneous of degree r, in (x,s) which
is hyperbolic with respect to the x, variable and g,(y,x,u,,s) is C® in
g+ oty x|+ 1oy | <e, |s| <2 with sufficiently small ¢>0.

Proof. It is clear that we can write

h(x® + p1ox) = P (A o(x) + Ho8o(X, Ho))

where go(x, o) is C® in |py| +|uox|<e with small &. By Rouché’s theorem and
the hyperbolicity of 4 it follows that

hoo(x' + %)+ pogo(X' +y + X, 1) =0
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has ry real zeros converging to zero with (x',u,) = (0,0). Applying Lemma 1.3.3
in [3] we obtain

2.1) h(x®+ po(x" +y + X)) = u (hy (v, X, o) + &0y, X, o))

where h,(y,x, up) is a polynomial in (y, x, u,), homogeneous in (x, u,) of degree r,
which is hyperbolic with respect to the x, variable and &, (y,x,u,) is C® in
| ol +1uox|+| 1oyl <& with small ¢ of the form

Gox, )= Y. xuhG,{y, X, to)-

la| +i=r1+1

Here note that

Zol0s X, o) = pip 1 , Y X (/Y Gofs % i (o/1))
laj +j=r1+1

=u g (0, x, s o/ 1y)-

It is clear that g, is C® in |u,|+|pop x|+ 0oyl <é, |po/mil< 2 with small &. Then
replacing x by u; x in (2.1) we get the desired result. O

We are interested in the case when either uy=p, or uo=0uT*"). In the
former case we set

h(xo,xl)(y, x)': hl(y’ X, 1)’ gl(y’ X, ﬂ) = ng(y, X, W, 1)
so that
22 R(x® 4+ p(x! +y) + 12 x) = o o o(1, X) +81(0, X, 1)

where g, is C® in |u|+|u’x|+|uy|<e with small ¢ and g,(y,x,0)=0. In the latter
case we set

R0 51y, X)=hy(p, x, 0),
810y, %, pys po/ 1) = 1181(¥, X, 1, Ho/ 1) + (9, X, o/ pty) —h1(p, %, 0)
so that
(23) h(x® + po(x! +y) + pops X) = U7 (Bixo (¥, X) + 81 (Y, X, iy Ho/ 1))

where g,(3, X, 1y, Ho/By) is C® in |uy|+|uop x|+ pey| <& with small ¢>0 and
£:(»,x,0,0)=0. Note that by definition we have

(24) h(xo,xl)(y9 X+ W) = h(xo,xl)(ys X), h(xo,xl)(y’ x+ W) = h(xo.x‘}(ys X)
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for every we A,o(h), that is they depend only on the class of x in T,Q/A o).
The following lemma is easily verified.

Lemma 2.2. /Ao 1y, X) is independent of ye A,o(h) and we have
h(xo,x’)(x) = (hxo)xl(x)'

In particular, ho 1(X) is independent of the choice of parameters p; provided that
Ho=O(u7™").

Note that Lemma 2.1 shows that
hlx",xl)(yi }.X) = hl(ya Axs 1) = Anhl(y, X, 1/'1)

which implies that

2.5 lim A™" Ao o1)(y, AX) = hy (1, X, 0) =0 . 1)(X),

A=

that is Ao .1)(x) is the principal part of ko .1)(y,x) with respect to x. Denoting
by Ao .y(h) the lineality of Ao ,1), it follows from (2.4) that

(2.6) A olh) © Azo x1)(h).
Lemma 2.3. We have
hixo xty(0, X +W) = hyro 1) (3, X), YWE Aro c1)(h).

Proof. Since Ao ,1)(x) is the principal part of Ao ,1)(y,x) with respect to x
and Ao 1)(y, X) is hyperbolic with respect to the x; variable, the assertion follows
from Corollary 12.4.8 in [2]. O

Set

H{(x%x)= Y, hP(x°)xP/p!
lT=1

where A®(x°)=0Ph(x®)/ox?. Then

Lemma 2.4. Let x° x'eT,Q/Ao(h) be characteristics of h, hyo of order r
and s respectively. Assume that Ao 1\(h) is given by x,=0 where x=(x, x;) is a
partition of the variable x. Then we have

HP(x% x' +y)=0, Vye Awlh), I+|a|=r+s

unless o.=(a,,0).



LOCALIZATION OF HYPERBOLIC SYSTEMS 45

Proof. By definition we see easily that

h(xo,xl)(ya X) = Z Hy,)(xo; xl +}’)xﬂ/ﬁ'

1+|B|=r+s

Since Lemma 2.3 shows that Ao .1(y,X) is a polynomial in (y,x,), we obtain the
desired result. O

We now study how Ao ,1(y,x) depends on y€A,o(h) assuming that
T={xeQ|dh(x)=0,j< r, d"h(x)#0}

is a C* manifold through x°. ForyeZXand xe N,X =TQ/T X we define hg(y, x) by

2.7 hs(y, x)=limp""h(y + px)

p—0

which is well defined on the normal bundle NX of X. Take the local coordinates
x=(x,x,) for which X is defined by x,=0. In these coordinates, » and h; are
given by

h(x, xp) = Z C(xp X2)X5 hy(Xg Xp) = Z C,(xp, 0)xg

la|=r la]=r

where C,(x,,x,) are C°. Let x°€Z, x' € N, oZ\0 be characteristics of A, A, of
order r and s respectively. In our coordinates, x°=(xp,0), x'=(0,x]) and
(x9,x1) e NE\Z. Remark that (xJ, x!)is a characteristic of order s of 5 because

hxo(x: + xa) = hz(xz?, x: + xa)

and hence hg(x}, x! +x,) is hyperbolic with respect to the variable x; and has the
zero x, =0 of order s when x, =0 with x,=(x,x,).

Lemma 2.5. Let x be the local coordinates as above. Then ho .1(Xy,X,) is
a polynomial of degree s with principal part h;(xg'xn,(x,,, x,), the localization of hy at

(63, Xa)-

Proof. Set

h*(xb’ Xas p) = z Ca(xba an)xz~

la|=r
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It is clear that A*(x} + x,, x} + x,, p) has the zero x, =0 of order s when (x,, x,, p)=0
and hyperbolic with respect to the variable x,. Then it follows that

R (xp + Xy, Xg +Xgs p) =Ho(Xps X ) + Ol | +1 X, +1 p !

where hg(x,, x,, p) is a homogeneous polynomial of degree s which is hyperbolic
with respect to x;. Since

(x® 4 pxt +x) + 2 x5) = Wh' () + oy, X} + puxg, 1)
it follows that /1,0 .1)(x, X,) = Ho(xp, X,,1).  On the other hand, by definition, we have
h}:('xg + HXp, xu} + I'txa) = “s(h}:(xg,x;)(xh xa) + 0(#))

and hence hz(xg,x;)(xb, X,) = ho(x, X, 0) because hg(x,, x,) =h*(x,, x,,0). This proves the
assertion. 0

3. Localization of system

Let Q be an open set in R"*! with local coordinates x=(x,,x’) where
x'=(x4, -+, x,) and let T*Q be the cotangent bundle over Q with corresponding
coordinates (x,&). Let L be a first order differential operator on C®(Q, C™) with
symbol L(x,&)e C*(T*Q, Hom (C™). We denote by h(x,&) the determinant of
L(x,&). Following [8] (see also [1]) we define the localization of L(x,¢) at a
characteristic z°=(x°, £°)e T*Q\0 of order r of & with

dim KerZL(z%=r.

Let n be the natural projection nm: C™— C™/ImL(z°) and ¢ be the inclusion
¢:KerL(z%) -» C™

DerINITION 3.1. We define L,o(z) by

L,o(z)=lim p~'nL(z°+ pz)e, ze T,o(T*Q).

[ad!]

Taking bases for C™ and then for KerL(z°%), Ker'L(z°), where 'L(z°) denotes the
transposed of L(z°), we study L.o(z). We choose u;,»;€ C™ so that

KerL(z%)=span—{uy,---,u,}, Ker'L(z°)=span—{v,, ---,2,}.

With U=(uy,---,u,), V=(vy, -+, 1,), which are m x r matrices, we set Ly y(z) ="VL(z)U.
Then in these bases, L,o(z) is expressed by Ly y)z0(2):



LocAL1ZATION OF HYPERBOLIC SYSTEMS 47

L(U,V)zo(z) =lim H - llz(U,V)(ZO + ﬂZ).
n=0

For another pair of bases U, I for KerL(z%), Ker'L(z%) respectively it is clear that
L@ »(2)=M Ly y(z)M, with some non singular M;e M(r, C) and hence

(3.1 L@y,zo(z) =M, L(U,V)zo(Z)M 2+

We next examine the effects of a change of basis for C™. Let LT(z)=T"'L(z)T
with a non singular Te M(m,C) and let U,, V, be a pair of bases for KerL7(z°),
Ker'LT(z). Then it is also clear that

(3.2) L(Tul,vl)zO(Z) =N, L(U,V)zO(Z)NZ

with non singular N;e M(r,C). From (3.1) the determinant of L,«(z) is well defined
up to non-zero multiple constant.

Lemma 3.1. We have
(detL)zo(Z) = detho(Z)

up to non-zero multiple constant.

Proof. As noted above, it is enough to show the assertion with suitably
chosen bases U, V for KerL(z°%), Ker’L(z°) and a basis for C™. After a change of
basis for C™ we may assume that L(z®)= G® O where Ge M(m—r, C) is non singular
and O denotes the zero matrix of order r. Write

L= (Ll 1 L 1 2)
Lll LZZ
where L;{z°)= O unless (i,/)=(1,1) and L,,(z°)=G. Thus choosing U, V' suitably
we have

Ly, v\z)=L,5(2).
Since Ly(z°+ puz)=G+ O(n), L;j(z°+ pz)=pLifz)+ O(u?) as p— 0, we see that
detL(z° + pz) = " {(detG)detL} 5(z) + O(p)}

and hence (detL),o(z) =(detG)detL’,, (z). On the other hand, by definition, we have
Ly yyo(2)=L},(z) and hence the assertion. O
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From (3.1) it is clear that every s-th minor of L ),0(2) is a linear combination
of s-th minors of Ly y),0(z) and vice versa.

Lemma 3.2. Every (r—1)-th minor of L,o(z) is a linear combination of m,o(z)’s
where m(z) are (m—1)-th minors of L(z).

Proof. It is enough to show the assertion for L y,),0(z) with suitably chosen
U, V and a basis for C™.  As observed in the proof of Lemma 3.1 we may assume that

G+ 0 O(p) )

0 —
e Z’”( OG)  nLsula)+ O

Let m(z) be the (m—1)-th minor of L(z) obtained removing i-th row and j-th
column of L(z). Similarly we denote by /(z) the so obtained (r—1)-th minor of
52(2). Then it is clear that

mo(2) =~ {(detG)l(z)+ O}
as u — 0 and hence /(z)=(detG)™ 'm,o(z), which proves the assertion. O
Recall that L,o(z) is Hom(KerZ(z®), C™/ImL(z°) valued linear function in z.
DEFINITION 3.2.  Let L,o(z)=(¢{(z)). We call
d(L,0)=dim span— {¢%}
the reduced dimension of L.

DEFINITION 3.3.  Assume that L(z) is real. Let z° be a characteristic of order
r of h with dim KerL(z°)=r. We say that z° is non degenerate if

d(L0)=r(r+ 1)/2.

Let z° be a characteristic of & of order r again. Note that one can take mxr
matrices U(z) and V(z), depending smoothly on z near z° verifying

dim KerL(z)=r = U(z), V(z) are bases for KerL(z), Ker'L(z) respectively.

Then it is also clear that

(3.3) L(w)=1lim pu~ *M(z+ uw)

u—0
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with M(z)='WV(z)L(z)U(z) if dim KerL(z)=r.
Lemma 3.3. Assume that
L={zeT*Q|dh(z)=0, j<r, d"h(z) #0}
is a C* manifold through z° and that dim KerL(z)=r, zeX. Then we have
(34 Lw)=0, weTX, zeX.

In particular, if ze X then d(L,)=d(h,).

Proof. Since M(z)=0 on X, the first assertion is clear by (3.3). To prove
the second assertion, it is enough to note that if ze X then d(L,)>d(h,) by Lemma
3.1. The opposite inequality follows from (3.4). O

4. Necessary condition (1)

Let

L(x, D)= '—io AfX)D,

J

be a differential operator of order 1 on C®(Q,C™). We assume that A(x,¢) is
hyperbolic with respect to #(x)e C*(Q), dt(x)#0, that is

h(x, &+ Adt(x))=0
has only real roots for every xeQ, (e T'Q. Let 6=X}_, d{;\dx; be the canonical
symplectic two form on T*Q and for S T,(T*Q) we denote by S° the annihilator
of S with respect to o:

S?={ze T(T*Q)|o(z,u)=0,Vue S}.

In what follows we assume that #(x)=x, and 4,=1,, the identity matrix of order
m without restrictions. Recall that we say that L is strongly hyperbolic near the
origin if the Cauchy problem for L(x,D)+ B(x) is correctly posed for every
B(x)e C™(Q, M(m,C)) in both @, Q, with small ¢, where Q'={xeQ|x,<t} and
Q={xeQlx,>1t}.

In this section we show the following resuit.

Theorem4.1.  Assume that A(x) are real analytic in Q containing the origin. Let
e T;Q\0, z' e T,o(T*Q) be characteristics of order r and s of h and h,o=detL,o
respectively with A,ol(h)’ < A,o(h). If L is strongly hyperbolic near the origin then
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every (r—1)-th minor of L,o vanishes of order s—2 at z'.

This result is optimal in a sense. We give an example.

ExXAMPLE 4.1: Let

S & 0
Liz)= | x3¢, & 0 , 2°=(0,e,), n>2.
0 0 ¢&,5—2xy¢,

For this L(z), it is not difficult to examine the following.

1) L is strongly hyperbolic near the origin (see Example 1.2. in [6]) and z° is a
characteristic of order 3 of & with A,o(h)’ = A(h).

2)
£y & O
L,o(2)=0 & O
0 0 &

and z!=(0,e,) is a characteristic of det L,o(z) of order 3.

3) the 2-minor

¢ 0
0 &

vanishes of order 1=3—-2 at z'.

We first derive an a priori estimate for the well posed Cauchy problem which
will be needed in the following sections also. Let o=(0o,:--,0,)€ @' and set

s
,71',1—81
j=1

J

@) YD =3+ T YA n=n"+

J

where y/, e R"*! and ¢;€Q,, 0<g,<¢,<---<g,. For a differential operator P
on C*(Q,C™) with C°(Q) coefficients we set

4.2) P (y(A), n(A); x,&)=P(NA)+A77x, A*n(A)+ 7€)
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with ke @, where 17 7=(1""°x,,--,A”%"x,) etc. Assuming that the Cauchy problem
for P(x,D) is correctly posed in both Q' and Q, for every small ¢, we derive an a
priori estimate for P,(x, D).

Proposition 4.2. Let ce Q' and k, ¢;€ Q.. Assume that 0€Q, y°=0 and
the Cauchy problem for P(x,D) is correctly posed in both Q' and Q, for every small
t. Then for every compact set ¥, H < R"*V5, W< R**' and for every positive
T>0 we can find C>0, 2>0 and peN such that

|| cowe < CAC*0P | Pu| crwey | Ulcowy < CAe*™P| P lceawsy
for A=A, ue C{(W,C™,|1|<T, Y=(",---,y)e ¥, H=(n', -, ) € H where g =maxq;.
Proof. Set
P(x, D)=~ <10:x> p(x D)git* <nd).x>

so that P(x, &)= P(x, \*u(A)+ &). Let K < Q be a compact set and recall Proposition
2.1 1in [7]:

|9 Deogy < C1 Po| Doy 111<1, v€ C(K, C™)

with an integer peN and a t>0. Since |u|cpgy<CiA™|e™ F"<MD*>y| ke it
follows that |u|coge < C,A™P | P(x, D)u|cox: Repeating the proof of Proposition 2.2
in [7] we get the desired assertion. O

Before going into details we recall what we have proved in [7]: Let m(z) be
a (m—1)-th minor of L(z) and assume that

h(y(2), 1(A); x, &) = {a (WY, H; x,£) + (1)},
m;(y(A), n(A); x, &)= A" {oo(m)(Y, H; x,£) + (1)}

as A — oo where Y=(',---,59), H=(n',---,#°). Then if L is strongly hyperbolic
near the origin and ©>0, it follows that a,(m)(Y, H; x, £) is divisible by a4(h)(Y, H; x, £)
as polynomials in &,.

To show Theorem 4.1 we prepare several lemmas. Since A,dh)” < A,o(h),
choosing suitable local coordinates x, preserving the plane x,=0, we may assume
that z°=(0,¢,) and

(4.3) h.o(2)= Q(x4, &)

with a homogeneous polynomial Q of degree s where x =(x,, x,), X, = (X0, =+, Xz, Xp =
(Xx+ 1>+ X,) is @ partition of the variable x and &=(¢,,&,) is that of ¢ (cf. Proposition
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2.6 in [7]). Let z!=(y,n) and set

0;=1/3,0<j<k, 0;=2/3, k+1<j<n,
YA)=2"1Py, n(A)=e,+ 17"

We now study

B 1, & = A+ 21321 4 13(x,, £) + A 23(x,,&,)
= ,1m'(h(zo,,1,(za, Zb) + 0(,{— 1/3))

where m*=m—(r+s)/3 and z,=(x,,&,), z,=(x;,&,). From (2.5) it follows that
hzo,211(Za Zp) = hz0 51)(2p) + polynominal in &, of degree <s—1.
We summarize the above observations as:

Lemma 4.3. Let z°e TyQ\O, z' € To(T*Q) be characteristics of h and h, of
order r and s respectively. Then we have

Ry, n(A); x, &)= A (G o(h)w, 15 x, §) + O(A~1/3))
where ao(h)y,n; x, &) is a polynomial in &, of degree s.

Let m(x,&) be a (m—1)-th minor of L(x,{) and hence of homogeneous of
degree m—1 in & Study m(y(A)n(2); x, &).

4.4) my(Y(A), n(A); x, E)= A" 1m0+ A7 13z + A7 13(x,, &)
+472B(x, &) = l’;ﬂlc("u'mM (2% 21 )xP & ol B!
where
M)\(2% 2)= o lm‘(;’)x”f“/a! B!, z=(x,¢)

and G(, o, f)=m—1—(I—|a+BN/3—|Ba+asl/3—2|os+Bp|/3 With a=(xs0), f=
(Ba’ﬂb)‘

Lemma 4.4. Assume that m@)(z°)=0 for |a+p|<r—1 and
A7 my((A), n(A); x, &)= O(1), A — co.

Then we have M(z%z')=0 for I+|a+p|<r+s—3.
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Proof. Since G(/,a, f)=m—1—(I+|a+ fB])/3, it follows that
Gy, p)—m*=>(r+s—3—(+a+ Bl)/3.
Now the proof is immediate. O

Lemma 4.5. Assume that m{3)(z°)=0 for |a+p|<r—1. If G(,o, f)=m" then
0o <s5—2.

Proof. Recall that G(,a, f)=m—1—(I+|a,+pB,))/3. Suppose thatog>s—1
and G(/,a, f)=>m"* with some /,a, . Then since />r—1 by hypothesis we get
G(l,a, f)<m*—1/3 which is an obvious contradiction. O

Proof (of Theorem 4.1). Let m(z) be a (m—1)-th minor of L(z). We first
remark that the dimension of KerL(z°) is equal to r by Corollary 1.4 in [7] and
hence L, is well defined. On the other hand the assertion

m@(z%)=0, |a+pl<r—1

follows from Theorem 1.3 in [7]. From Lemma 3.2, to prove the theorem, it is
enough to show that m{®,(z")=0, |a+p|<s—2 for all (m— 1)-th minors m(z) of
L(z). Suppose that

@.5) m®Bg(z"')#0 for some o+ f|<s—2.

Write  2~™'m,(y(A), g(d); x, &)= A(aom)y, n; x,E)+0(1)) and note that m,o(z)=
M,_,(z%z). From Lemma 4.4 with /=r—1 we would have t>0 if (4.5 were
true. On the other hand, by Lemma 4.5 we see that o(m)(y, n; x, £) is a polynomial
in &, of degree at most s—2. Since oo(m)(y,n;x, &) is divisible by a(h)y, n; x, &)
this shows that o4(m)=0 and hence a contradiction. O

5. Necessary condition (2)
Let
E={ze T*Q|dh(z)=0,j<r,d"h(z) #0}

be the set of characteristics of order r of . We assume that ¥ is an involutive
C® manifold through z° and let Ay be the localization of 4 along X defined by
(2.7). Denote by o the canonical projection from 7*Q onto Q: 7*Q — Q and assume
that

(5.1) doo: T,o(T*Q) = T,(,0f2 is surjective on T;oX.
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Recall that on NX we have an invariant symplectic two form, denoted by ¢ and
called the relative symplectic two form (see [4]) which is given by

k
o=y, dxi\dx;=dx;\dx,
j=o

where we have assumed that X is defined by £,=0 and NX is parametrized by
(% Xy &y x2).  Let Xe NZ\0 and we introduce the condition;

(5-2) Ax(hz)a < Axlhy)

where Ay(hy)? denotes the annihilator of A y(hs) with respect to the relative symplectic
two form 6. Then we have:

Theorem 5.1.  Assume that A{x) are real analytic in Q which contains the origin
and L is strongly hyperbolic near the origin. Let ¥ be the characteristic set of
order r which is assumed to be an involutive C® manifold verifying (5.1). Let
z' € N,oZ\0 be a characteristic of order s of hyo=det Lo and we assume (5.2) with
X=(2%2z"). Then every (r—1)-th minor of the localization L,. vanishes of order
(s—1) at z'. In particular, we have

dim KerL,o(z!)=s.

Theorem 5.2. Assume that AfX) are real analytic in Q which contains the
origin and L is strongly hyperbolic near the origin. Let X be the characteristic set
of order r which is assumed to be an involutive C* manifold verifying (5.1). Suppose
that z° is non degenerate and (5.2) holds with X =(z° z") for every z' € N,oX\0. Then
L,«(2) is symmetrizable by a non singular constant matrix T,

T 'L(2)T
is symmetric for every z. In particular, L,o(2) is strongly hyperbolic on T,(T*Q).
Proof. From Lemma 3.3 and Theorem 5.1 we see that
dim KerL,o(z)=the order of z

for every multiple characteristic z of detL,o(z). Then it will suffice to apply
Corollary 3.5 in [5]. O

Here we give several examples.
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ExXAMPLE 5.1: Let

o & O o & 0
LY2)= | x3¢, & 0 » LP@)=| xi¢, & 0 >

0 0 &—¢ 0 0 &—¢

$o %o, 0 S & 0
L= |x3¢ & 0 |, LY2)=|x3 & O

0 0 ¢&—¢& 0 0 &—¢

1) Let z°=(0,e,) and n>2. It is clear that the characteristic set of order 3 of
LY near z° is an involutive C* manifold given by T={¢{,=¢,=0}. Denoting
h9(z)=det LY(z), it is obvious that AW (z)=E3(E,—¢&,) and hence z'=(0,e,) is a
double characteristic of Al}(z).

2) It is not difficult to show that LY and L® are strongly hyperbolic near the
origin.. For L™ we have h{}=—(E3—x3)#h 1, Ax(h) £ Ax(hy") where
X=(z%z"). Onthe other hand, itis clear that A} = — E3=h{ .\, Ax(B) = Ax(h$),
and every 2-minor of LR vanishes at z!.

3) We have A= —(&5—x}) #hZ .1, Ax(h) < Ax(h’) and K= —EF=h{R ),
Ax(HPY = Ax(h$P). The localizations of L'® and L™ are given by

€ & O
LP=LP={0 ¢&, 0
0 0 &—¢
Since the 2-minor
& 0
0 &—¢,

does not vanish at z! then L'® and L™ are not strongly hyperbolic near the origin.
To prove Theorem 5.1 we first examine what condition (5.2) implies. Let
X=(Xg Xp), Xa=Xg "+ X), Xp=(Xx+1,"",X,) be a partition of the variable x then

we sometimes abbreviate je {0, -,k} to jea, etc.

Lemma 5.3. Assume that (5.1) holds. Then we can find local coordinates x*



56 T. NISHITANI

and the corresponding coordinates ¢,=(x% &%) in T*Q, preserving the plane x,=0,
such that ¢z°)=(0,e,)=p and T,oZ is given by

(5.3) Sx, &) =&+ 1(x*8)=0, 0<j<k

with some k<n where I{p)=0, dl{p)=0 and the quadratic term of I; at p depends
only on fg=(x§+ 157" 6:)'

Proof. From hypothesis (5.1) and that T,oX is involutive, one can assume
that T,.X is given in the original coordinates by f;=¢;+/(x,{)=0, jea with
dl{p)=0. By subtractions we may assume that f;=¢&;+/(x,&,)+ 0> where O°
denotes the term which is 03 as (x,¢) — (0,e,). Write

1x, &) = q )&, + Ifx &, E)EL !

where g;(x)¢, is the quadratic part in x of /; and &, =(&4q,-++,&,—1). Since the
involutivity of f; assures the existence of T(x) satisfying 07(x)/0x;=qx), j € a, taking
new local coordinates y;j=2%, y,=x,— T(x), one can assume that g;=0. Write

n—1
Hxl &) '= Y L&+ T(E)E !

i=k+1
where /;(x) are linear in x. The same argument as above shows that the system
0S(x)/0x;=1;(x), jea, ieb’
admits solutions Sy(x). Then taking new coordinates y
Yi=X; jea, y,=x,, y;i=%;—S{x), ied’
we get f;=¢; +7J(£,,)+ 0? which is the desired assertion. O

Lemma 54. Let x* be the local coordinates for which ToX is given by
(5.3). Then one can find homogeneous symplectic coordinates ¢p=(x*,&P) such that
$4(z°)=(0,e,)=p and T,X is given by E#=0, jea and moreover

é;ﬂi(xaa 61) ___f,{xa, fu) = 03’ jE a, (X, 6) - D

In particular, 3 (p)=1I with ¢pg,=¢sod; ' and (£5)'(p)z=(0,0,0,c{¢,)), jea with
z2=(x, Xbs Eas Ep)-

Proof. To simplify notations, we denote (y,7), (x,&) for (xf,&), (x* &9
respectively. Take no=f, and determine #; successively by solving
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Hyn;=0, 0<i<j, njle=fjlc

where C={x;=0,0<i<j—1}. Since f; are in involution, we see that #,=0 on
Z. Noting that n,—f;=0% 0<i<j—1 we conclude that #;—f;=0% We now
extend 7;, jea to homogeneous symplectic coordinates (y,n). It is clear that one
can take (y,#) so that (y,n)(p)=1 O

Let ¢,=(x%¢&%), ¢z=(x!,¢#) be the coordinates in Lemmas 5.3 and 5.4
respectively and denote by 4% p, q the representatives of A, z°, z! in the coordinates
¢, Note that

?p,q)(w’ 60) = h?l’,q)(w’ éa + ¢Za(p)(w + q))

with w=(x,, x;,{,). From Lemma 5.4 it follows that ¢, (p)w+q)=F(,) mod T,X
where the components of F(&,) are polynomials in &, of degree at most two. Then
it follows that

(5'4) h‘(zp,q)(w’ éa) = h{p,q}(wf 611 + Héb))

Lemma 5.5. Let ¢,=(x &%) be local coordinates for which ToX is given by
=0 Then for any given k x k real non singular A with '‘Aey=e, and k xk real
symmetric T, we can find local coordinates ¢,=(x?,&") with x}=x§ for which T,X
is given by £1=0 and

(55) h(yp,qv)(xaa Xbs éb’ én) =h?p,q)(A N lxm Xps éb’ rA ia + TA™ lxn)

where 'Aq’=q and h*, q" are representatives of h, q in the coordinates ¢,.

Proof. To simplify notation we write (x, &), (y, ) for (x% &%), (x?, &) respectively
and set ¢=¢,,. Note that k>1, because otherwise we would have g=0 which
contradicts ge N,X\0. Since the map

(X, é)H(A - lxna xba él» 'Aéa"‘ TA - lxa)

with a non singular 4 and a real symmetric T generates a group, we may suppose
that g=e,. Since the assertion when T=0 is almost trivial, it suffices to show
the assertion with 4=1. Let

Yi=X; jJ#k, ye=x+ <Txpx,>/2.

J

It is obvious that ¢(p)=p and ¢'(p)=1 It is also easy to see that

&ioNg, w)=(Tx,);, &jp)w,w)=0, jea, weT,X
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with w=(x,,xy, £, &y).  This proves that ¢"(q,w)=Tx,, ¢"(w,w)=0 mod T,X and
hence the assertion. O

Lemma 5.6. Assume (5.2) with X=(z°2z") and let ¢, be the local coordinates
in Lemma 5.4. Then choosing a non singular A with ‘Aey=e, and a symmetric T
suitably, we have

hg(p,q)(A - l-xw 09 O» tACa + TA lx“)z Q@o, "'af,u xu+ 1s ""xv)

with some u<v<k where Q is a polynomial of degree s.

Proof. Note that the lineality of hf, ,(x,0,0;&,) is given by l(x,&,)=0,
0<i<v where /; are linear functions in (x,¢&,). Then we get hf, ,(x,0,0;¢)=
O((x,E)) with a homogeneous polynomial Q of degree s. From hypothesis
A(p’q)(hx)’; < Ay glhy), it follows that I(x,¢,) are in involution with respect to
dé,Ndx,. Then to prove the assertion, it is enough to follow the arguments in
[3], page 127. O

Let A, T be given in Lemma 5.6. For these 4, T we choose the local
coordinates x? in Lemma 5.5 so that (5.5) holds. From (5.4) it follows that

h{p,q‘/)(xmxb’ éln éa) = h{p,q)(A - lxm xb’ éby 'A éa + TA B 1xa +H§b»

It is clear that the principal part of A, ;.)(x4, X5, &p; £,) With respect to (x,, £,) coincides
with that of hf, (4™ 'x,,x,,¢&,;'A¢,+ TA 'x,). Then from Lemma 2.5 it follows
that the principal part of A}, ;»\(x,, X, &; £,) With respect to (x,, £,) is R, (A 'x,,0,0;

'A¢,+TA 'x,) and hence equal to

Q(éo’ ) éw Xyt 15" ‘,x‘,)

by Lemma 5.6. Thus the principal part with respect to &, is Q(&o, -+, &,,0,:++,0)
and then we have h}, ,(£)=0(&, ,&,0,:::,0). Since hl, (X Xp, &by o) 18
hyperbolic with respect to the £, variable, Corollary 12.4.8 in [2] shows that
hlp (X X &by €4) 18 a polynomial in (&y, -+, &y X, 44, 0, Xy, X3,8,).  Hence we see
that A, (X, Xp,Cp; £,) is constant along {(xo, -+, X,,0, -, 0)} = A, g(R").

Here we summarize our observations.

Proposition 5.7. Let X be the characteristic set of h of order r which is assumed
to be an involutive C® manifold verifying (5.1). Let z' € N,0X\0 be a characteristic
of order s of hy, and suppose (5.2) with X=(z%2z'). Then one can find local
coordinates x, preserving the plane x, =0, for which T,X is given by £,=0 and that

h(z”,z‘)(v’ 6;1) = h(zo,zl}(o’ &a)5 VYve A(zo,zl)(h)d'
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6. Proof of Theorem

In this section we shall prove Theorem 5.1. To do so, without assuming
that ¥ is a manifold, we give more general results which are not coordinate free
though. We denote by p the radial vector field on T*Q. Recall that
Ao(h) © Ag0,1)(h) and hence

A(zo,zl)(h)a < Azo(h)a.

Proposition 6.1. Assume that A{x) are real analytic in Q which contains the
origin and L is strongly hyperbolic near the origin. Let z°e T{Q\0, z' e T,o(T*Q)
be characteristics of order v and s of h and h,=det L,o respectively with

(6.1) p(2O)EA oh) < Aolh).

Assume that we can find local coordinates x near the origin with t(x)= x, such that
6.2) hizo 210, 2) = R0 ,11(0,2), Yoe Ao ,1)(h)°.

Then every (r — 1)-th minor of Lo vanishes of order s—1at z'. In particular, we have

dim Ker L_o(z!)=s.

The proof of Theorem 5.1 follows immediately from Propositions 5.7 and 6.1
because p(z°)¢A,o(h) by (5.1).

Proposition 6.2. Assume that Ajx) are real analytic in Q which contains the
origin and L is strongly hyperbolic near the origin. Let z°e T{Q\O be a non
degenerate characteristic of h of order r with (6.1). Assume that for every multiple
characteristic z' € T(T*Q) of hpo=detL,o0 we can find local coordinates x with
Hx)=x, verifying (6.2). Then L,o(z) is symmetrizable by a non singular constant
matrix.

This result clearly generalizes Theorem 1 in [8].

Corollary 6.3. Assume that A{x) are real analytic in Q which contains the
origin and L is strongly hyperbolic near the origin. Let z° € T§Q\0 be a characteristic
of order r of h with (6.1). Assume that for every z'e€A,olh) one can find local
coordinates x with t(x)=x, verifying (6.2). Then we have d(L,o)=d(det L,.).

Proof. The proof follows immediately from Proposition 1 in [8] and
Proposition 6.1 above. 0O

To show Propositions 6.1 and 6.2, we look for local coordinates x for which
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(6.2) remains true and Ao (h) is in a special position.

Lemma 6.4. Let z°e T{Q\O, z' € T,o(T*Q) be multiple characteristics of h and
h,o with (6.1). Let S < A,o(h)° be a linear subspace and assume that

(6.3) h(zo’zl}(w, Z)=h(zl),zl}(0, Z), VWES

in some local coordinates. Then we can find new local coordinates x preserving the
plane x,=0, and the corresponding coordinates (x,&) in T*Q such that

(i)  the coordinates of z° are (0,e,)=p,
(i)  Aolh) is given by ¢;=0,0<j<k,x;=0, k+1<j<N,

(iii) (6.3) remains true in these coordinates.

Lemma 6.5. Let z°e T{Q\0, z! € T,o(T*Q) be multiple characteristics of h and
h,o with (6.1). Assume that (6.2) holds in some local coordinates. Then we can find
new local coordinates x verifying all conditions stated in Lemma 6.4 with S= A ;o ,1,(h)°
and furthermore satisfying
(iv)  Aoy(h) is given by £;=0, 0<j<k,, x;=0, k+1<j<N; with some k,<k,
N, <N.

Let z=(x, &) be the coordinates for which (6.3) holds. Without restrictions
we may assume that z°=(0,¢,). To simplify notations we denote by S,, A, = R*"*?2
the representatives of S, A,(h) in the coordinates z. We first recall that with
h(w)=h(z(w)) we have

Pwo oy, ) = higo 1)(3, i1+ 2" (WO)(w" +2))
where &i=2(Wu, 7=2(W°v and w®=w(z%, w!=w'(z°z'. Thus if
6.4) Z'WO)w',0), 2" W), 0)€A,,

it follows that Ao (0, ) =Hhgo 4@+ 2"(W°)(w')) and then Ao, verifies (6.3) if
ho ,1y(h) does. Remark that successive change of coordinates z = z({) = z(w(()) verifies
(6.4) provided if each change of coordinates z=z(w), w=w({) verifies (6.4).

Since A, contains the (0,e,)-axis we can assume that A, is given by ¢ (x, £)=0,
0<j<N where ¢[x,¢) are linearly independent linear functions in (x, 13}
E=(&, -+, &,_1). We first study the case A, contains (e, 0)-axis and hence ¢;
contains no x,. Note that some ¢; actually depend on &, because 4,0 is hyperbolic
with respect to the &, variable. By a linear change of coordinates ¥ =(xg, -**, X, {)
preserving the plane x,=0, the (0,¢,)-axis and a renumbering of the ¢;’s, we can
assume that ¢,=¢&,+[y(X) in the original coordinates. Choose new coordinates
y so that
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x=p, y,=<0x%,x%>/2
where Q is a real symmetric matrix. With suitable choice of Q, A, is given by
1;=0, 0<j<k, y;=0, k+1<j<N

(cL[3]) which proves (ii). Since »eAj, implies that », =», =0 it is clear that
Ew ) o, u)=0 if ve AY, u, =0. Note that we can assume that w, =0 because A,
contains the (0,e,)-axis. Then z"(W°)(w',v), z"(w°)(v, v) are proportional to (e, 0)e A,
and hence (ii1).

We turn to the case I', does not contain the (e,,0)-axis. Renumbering ¢; if
necessary, we can assume that ¢, contains x,. Subtracting constant times ¢y
from the other ¢;s we can assume that ¢;(j<N) contains no x,. We first treat
the case ¢; (j < N) contains no £,. Renumbering ¢; again, one can assume that

do=C8o+ (X, ) Fax,, ¢;=1(x,L"), 1<j<N

where &' =(¢y,---,&,-1), a#0. By a linear change of coordinates X, preserving the
plane x,=0, one can assume that

bo=Co+5(®) +ax,, ¢;=[(E)+E(E), 1<j<N

in the original coordinates. Take new coordinates y so that y=X%, y,=x,—axqx,
and hence A,, is given by

1o +15(3) =0, L(n")+E(»)=0, 1<j<N.

It is clear that xj(w®)=0 unless j=n and &;(w°)=0 unless j=0, n. It is also easy
to see that

X (WO)u,0) =au,, vy, EowO)u,0)= —a’u,,p,,

if v, =0, =0. Thus we have 2"(W)(u,v)e A, Yoe A%, Yu. Since A, contains the
(e, 0)-axis the proof is reduced to the preceding case.

We next treat the case that some ¢;(j<N) depend on &, Renumbering ¢;s
if necessary we may assume that ¢,=¢&,,+ (%, &").  As before, after a linear change
of coordinates X, we may assume @,=¢&,+03(X). Subtracting constant times ¢,
from the other ¢;s one can assume that ¢; 1<j<N contains no £, Repeating
this argument we arrive at

b;=&+1(%), 0<j<k—1, ¢;=IfX), k<j<N-1,
On=Ix(%)+ax, or ¢y=_{;+I\X)+ax,

with some k. Suppose ¢y=¢,+Iy(X)+ax, Since ¢; are in involution we have
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@;j=1(xp, x.), k<jSN—1 where x,= (X4 4, "+, Xy), X, =(Xn11, ", X,-y). By a linear
change of coordinates (x,, x.) we may assume that ¢;=x;,,, k<j<N—1. Subtrac-
tions give

Li=1lx,x), 0<j<k—1, Iy=Iy(x,x,)
with x,=(xg,:-,x,). Thus one can assume that A, is given by
Ei+lxx)=0, 0<j<k—1, x;=0, k+1<j<N,
&+ In(xg x)+ax,=0

in the original coordinates. Take new coordinates y; y=X, y,=x,—ax.x,. Then
similar arguments as before prove that z’(w°)(u,2)eT,, YveI'?, Yu and the proof
is reduced to the previous case.

Finally let [(X)=1[(x,,xy,x.), k<j<N where x, =(x3, -, Xn_1) X¢=(Xn+1,
-, Xx,_1) Since (0,e,)¢ A7 by hypothesis, it follows that [y(X)#0. Therefore by
a linear change of coordinates X and subtractions we may assume that A, is given by

Ei+l(xa, x ) +bxy=0, 0<j<k—1,
x;=0, k<j<N-—1, xy+ax,=0

where x, =(xo, ", X,-;). Make a linear change yy=xy+ax,, y;=x; j#N. After
subtractions one can assume that A, is given by

Ei+lixan x )+ %, =0, 0<j<k—1, x;=0, k<j<N

in the original coordinates. We take new coordinates y

k=1

;=5€, Yn=Xp— z ijjxn

j=0

so that A, is given by n;+/(y,,y.)=0, 0<j<k—1, y;=0, k<j<N. It is now
easy to check that z"(w°)u,0)e A,, Yoe A%, Yu. The rest of the proof is simply a
repetition. O

Proof (of Lemma 6.6). By Lemma 6.5 we can assume that (i), (ii) and (iii)
are satisfied in the original coordinates. Since A,o(h) = A0 ,1)(h) One may assume
that Ao .1 (h) is given by Y (€, x,) =0, 0<j< N, with &,=(8o, -+, &y Xp= (X1 157, Xn)-
After a linear change of coordinates one can assume that

=&+ lxn 110 xn), 0<j<ky, Yi=Xy_ i+ k1 +1<j<N,

with the original coordinates where k—k,+N,=N;. Take new coordinates y
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ky
V=X Yp=Xp— z lj(xN1+ 1> "'9xN)xj
j=0

so that A, is given by #;,=0, 0<j<k,, y;=0, k+1<j<N,. Itis easy to see that
2"(wO)(u,v), z’(W°)(@,v)€ A,, Yve A%, Vu and hence the proof is complete. O

We now complete the proof of Propositions 6.1 and 6.2. Choose the
coordinates found in Lemma 6.6 and let z' =(y,n) be a characteristic of A, of
order s verifying the hypotheses of Proposition 6.1. Recall that

h(Z°+ﬂZ‘+u2(x,é))=u'”< Y HSE‘&)(Z°;Z‘)x"€“/a!ﬂ!+0(1))

I+|a+pl=r+s

where

H(x,9= Y HgEOre/alp.
lat Bl =1

From Lemma 6.6 there is a homogeneous polynomial Q of degree r such that
hzn(xa f) = H,(zo;x, é) = Q(xb, éa)

where x=(Xg Xp X)=X0 ***s Xps Xk 1> "> Xn> XN+ 15 s Xn) and E=(&, &, &) is the
corresponding partition. We set

X =Xays Xa,) =(X05 "5 Xpeys Xiey +15 % Xi)s
Xy =(Xpys Xp,) =Xkt 15 "' Xnys XNy 41575 XnN)
and ¢,=(&,,, &), &=(&,,¢,,). Lemma 6.6 asserts that for |a+f|+[=r+s
(6.5) H\(2%2" +2)= H{)(2% z"), Vze Ao 1(h)’.
Let us take
0o=1/3—¢,—¢9, 0;=1/3—e—¢;, 1<j<k,,
o;=1/3+¢e,+v, ki +1<j<k, 0;=2/3+¢e+¢;, k+1<j<N,,
0;=2/3—¢;—v, Ny+1<j<N, 0;=1/2, N+1<j<n
where ¢, >¢&>¢,>0, v>0 which will be determined later. Put

YA=A"1R"5y, ()=, +A7 137y
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and study
Ry, n(A); x, §) =h((A)+ A~ °x, An(2)+A7¢)
=A"h(z°+ A7 1B e 4 (A7 7x, A7 1))
To simplify notations we set
p1=1/3—¢e—¢&y, p,=2/3+e+¢,, p=1/3+¢,, t=2¢,+e=p—p,
and note that

APz (A7, AT =ATP2 4 AT PR T, X &y, )+ A TP T (X0, &)
+l_“(x,,1,l'+”xb2, ls—sofo, fap/l'”faz)*‘l_l/z(xv éc)=l—p2A +1'PB

where x,, = (x,, Xq! ) and
A = (xbp lt-*’ vxbza /18—5060’ én'la A‘ * véaz)’
B= Zl + Al(lzo _sxO’ xﬂ’l’ ébl) + '1 - v(xaz’ ébz) + Ap- 1/2(xc’ éc)'

Note that B is a characteristic of 4,0 of order s because A o(h)={{,=0,x,=0}. Then
one can write

(6.6) hy= Y ATCPIHES (% Bxfrle o By

I+|ag+Bp|2r+s
where
F, 055 By) =m—p(I — |0ty + By ) — P2l 05 + Byl + (€ — €)oo + (£ + V)| otg, + By, |-

We first study the term with /+|a,+ f,|=r+s in (6.6). For [+|o,+ f,|=r+s it
follows from Lemma 24 that H{%)(z%B)=0 unless a,,=0, B,,=0 because
Ao () ={¢,,=0,x,, =0}. Therefore we get

H) (2% B)= H{{;;I)(zo; zt 4+ AM(A%0 ey, Xa;58b,))

Fa(l,aay,Bbs7c,0c,Yb3:0a,) FJ(@ay + v+ ¥by) (,0. 1 —t,1
+ A i DH{G 220 A7z
|7et+dc+ vy +ay|21

+ (lm_exo, Xas gbl))xfcézcxjgzé,’,';z/éc!vc!5«2!%2!



LOCALIZATION OF HYPERBOLIC SYSTEMS 65
where
Fy=tI=10a,+ By, +7e+ 0+ Vs, +00,) = V160, +7p,l + (0 — 1/2)lyc + ..
Since /<r+s because /+|a, + B,,|=r+s it follows that
Fy<tlr+s=1) =918, + | —(112=p)6.+d

<tfr+s—1)—min{v,1/2—p} =(2e; +e)fr +s—1)—min{v,1/6 —¢,}
because |y, +0.+7,, +6,,/>1. Take &>0, v>0 so that
6.7) g, (r+s—D<v<1/6—¢,

and hence F, <0. Then from (6.5) and (A% ~*x¢, X,, &) € A0 ,1)(h)7 it follows that

hy= Y AT H{Gg\ (2% 2ot o, By, + O(T™)

I+|ag, +Bb,|=r+s

+ Y NGl (20 AT B By

I+|ag+ppl2r+s+1
with some v, >0 and F, =F+/—|a,+B,)). We next observe F;:
Fy=m—py (=gt )~ (p* — 1=ty + Bl
—p?lotg, + By, | +(e—0)%o
=m—p(l+|og+ Byl) — (&1 + 26— )|ty + By,
—3(e+&y)lotg, + By, | +(€—€0)to

because p?—t—2p,=¢,+2¢ p,—2p,=3(+¢). Let I+|o,+B,=r+s+u with
u>1. Then we see that with m*=m—(1/3+¢,)r—(1/3+¢,)s

Fy—m*'=(1/34+¢,—p)r+(1/3+eo—p)s—pu—(g; +25_V)|“a2+ﬁb2|
—3(e+e)lag, + Py, +(e—e0)o <(26; +&)r+(e+ & +eo)s—(1/3—e—ey)u
—(e1+2e—V)(s+u)=Q2¢, +e)r+(eg—e+v)s—(1/3 +e—v)u.

Here we take ¢, >0, v>0 so that
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6.8) eir+ (e, +v)s<1/3—v

and hence we have Fi(l,a, f,)<m* if I+|o,+B,|>r+s+1. We summarize our
observations.

Lemma 6.6. Choose v>0, ¢,>e>¢,>0 sufficiently small so that (6.7) and
(6.8) hold. Then we have

hy= A" (O3, H (2% 2")&5 /s 4+ 0(1) = A (a (), 1 %, &) + (1)
Proof. It is enough to examine the term
AFaanPor) HiEs (20 2 )xfoEaas /o, | By, !
for I+|og, + By,|=7r+s. Recall that
FU, o, By, ) =m—p(l+og, + By, ) + (€1 —&)lota, + Bp, | + (e —€0)xo
<m—pr+s)+(e,—¢e)s+(e—ep)s=m—pr—(p+e,—e)s=m".

Here the maximum is attained if and only if /=r, ay=s since ¢>¢,. This proves
the assertion. O

We turn to study (m—1)-th minors of L. Let m(z) be a (m—1)-th minor of
L(z). Assume that m vanishes of order r—1 at z°. Recall that

m;=2"""m(y(A)+ A" x, n(A) + A7~ 1&)
=""'m(z% + A"P24 + A" PB) =Y ACC=D M@ (2% 2 )xPE al p1
where

M(2%2) Y, m@EOPE B!, z=(x,¢)

latp|=1

and
G=m—1—p(l—|oa+B))—p1|Ba, + %] + (0 —&)Bo— (P +V)|Ba, + o,
=Pl By, + %l + (e —€0)oto — (P2 — t— V)| By, + &g, | — | B+ f/2

which is equal to
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m—1—p(l+]o+ B))+(1/3+¢&+ 3e,)| Ba, + o (€0 — &)Po
+(1/34+ &1 —V)|Ba, + 0, + (€1 — &)l By, + %, | +(e—€0)to
+(3ey +V)IBy, + %4, | +(1/6 4 284 ).+ B.|
because we have
P1—2p=—(1/34+¢+3¢y), p,—2p=—(s,—¢)

pr—t—2p=—3¢,, 1/2—2p=—(1/6+2¢,).

Lemma 6.7. Assume that m(z) vanishes of order r—1 at z° and (e, —&y)s < 3¢,.
Then for I, a, B with [+|o+B|<r+s—2, M{3(z%2z")#0 we have G(l, o, f)>m".

Proof. Set /+|a+fl=r+s—3+u, u<0. Then we see that
G—m'=—1—(e;—¢&p)s+p(B—u)+(1/3+ &+ 3¢y)| B, + 0,

+(eo—8)Bo+(1/3 4y — V)| Bay + oy, + (81 — )| By, + %4,

+(e—go)tg +(3e; + V)| By, + 04, | +(1/6 4 2¢,)| . + B

> —14+3p—(g; —&o)s—pu=3e; —(&; — &o)s — pu.

This shows the assertion because u <0. O

Lemma 6.8. Assume that m(z) vanishes of order r—1 at z° and &,(3r—1)<1/3.
Then if G(l,a, f)=m" it follows that oy <s—2.

Proof. We first note that
G=m—1—pl—(p,—p)|Ba, + %, |+ (€0 —&)Bo—V|Ba, + %,

—(P2=D)| By, + %4, | +(e—E0)otg— (P2 — P — 1 — V)| By, + 2,
—(1/2=p)le.+ B

which is equal to
m—1—pl+(e+2¢)| Ba, + %, + (60— €)Bo — V| Ba, + %,
—(1/3+48)| B, + g | +(e—0)to — (1/3 — 281 — V)| By, + ttg,| — (1/6 — &)l + Bl

since
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p1—p=—(e+2¢), p—p=1/3+¢, p—p—t=1/3—2¢,, 1/2—p=1/6—¢,.

Since M(z%z) is a polynomial of degree / in z and then |a+f|<[ From this it
follows that G(l,a, f)<m—1—pl+(c+2¢)|—(1/3+¢5)x,- Suppose that oy>s—1
then, taking />r—1 into account we get

G<m—1—(1/3—e—e )l —(1/3+&p)s—1)
<m'—(1/3+e+e,—eo)+(e+2e )r<m*+¢,3r—1)—1/3.

This clearly gives a contradiction. O

We now summarize what we have proved. We choose v>0, ¢, >e>¢,>0
so that Lemmas 6.6, 6.7 and 6.8 hold and then fix them.

0o

Lemma 6.9. Assume that m(z) vanishes of order r—1 at z° and there are |,

a, B such that I+|a+pl<r+s—2, M{(z%z")#0. Then we have
my=2A""* o o(m)(y, n; x, &)+ o(1))
with ©>0 where oo(m)(y,n; x, &) is a polynomial in &, of degree at most s—2.

Proof (of Proposition 6.1). Since o,(m) must be divisible by g,(h) it follows
that ao(m)(y,n;x,&)=0. Since m,o(z)=M,_,(z%2) it follows from Lemma 6.9 with
I=r—1 that

m®Bp)(z")=0 if |a+f|l<s—1.
Applying Lemma 3.2 we get the desired result. O

Proof (of Proposition 6.2). It suffices to repeat the proof of Theorem 5.2. [

References

[1] M.F. Atiyah, R. Bott, L. Garding: Lacunas for hyperbolic differential operators with constant
coefficients, I, Acta Math. 124 (1970), 109-189.

[2] L. Hoérmander: The Analysis of Linear Partial Differential Operators, II, Springer, Berlin-
Heiderberg-New York-Tokyo, 1985.

[3] L. Hormander: The Cauchy problem for differential equations with double characteristics, J.
Analyse Math. 32 (1977), 118-196.

[4] Y. Laurent: Théorie de la deuxiéme microlocalisation dans le domaine complexe, Progress in
Math. Birkhduser 53, 1985.

[5] T. Nishitani: Symmetrization of a class of hyperbolic systems with real constant coefficients, Ann.
Scuo. Sup. Pisa 21 (1994), 97-130.



LOCALIZATION OF HYPERBOLIC SYSTEMS 69

[6] T. Nishitani: Systémes effectivement hyperboliques, In Calcul d’opérateurs et fronts d’ondes, J.
Vaillant ed., Hermann Paris 1988, pp108-132.

[7] T. Nishitani: Necessary conditions for strong hyperbolicity of first order systems, J. Analyse
Math. 61 (1993), 181-229.

[8] J. Vaillant: Symétrisabilité des matrices localisées d'une matrice fortement hyperbolique, Ann.
Scuo. Sup. Pisa 5 (1978), 405-427.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan








