ON A THETA PRODUCT FORMULA FOR THE SYMMETRIC A-TYPE CONNECTION FUNCTION

Kazuhiko AOMOTO

(Received June 2, 1993)

1. Introduction

In this note we are concerned about a formula which gives a product expression for a sum of theta rational functions. This sum has already appeared in the connection formulae among symmetric A-type Jackson integrals (See [1], [2]).

Let $q \in \boldsymbol{C},|q|<1$ be the elliptic modulus. We shall use frequently the Jacobi elliptic theta function $\theta(u)=(u)_{\infty}(q / u)_{\infty}(q)_{\infty}$, where $(u)_{\infty}=\Pi_{v=0}^{\infty}\left(1-q^{v} u\right)$. Let $\alpha_{1}, \alpha_{2}, \cdots$, α_{n}, β, γ and γ^{\prime} be complex numbers such that $\alpha_{j}=\alpha_{1}+(j-1)\left(\gamma^{\prime}-\gamma\right)$ and $\gamma+\gamma^{\prime}=1$. The symmetric group of n-th degree \mathscr{G}_{n} acts on a function $f(t)$ on the n dimensional algebraic torus $\left(C^{*}\right)^{n}$ as $\sigma f(t)=f\left(\sigma^{-1}(t)\right)=f\left(t_{\sigma(1)}, \cdots, t_{\sigma(n)}\right)$ for $t=\left(t_{1}, \cdots, t_{n}\right) \in\left(C^{*}\right)^{n}$.

Let $\left\{U_{\sigma}(t)\right\}_{\sigma \in \mathscr{G}_{n}}$ be the theta rational functions on $\left(C^{*}\right)^{n}$ defined as follows,

$$
\begin{equation*}
U_{\sigma}(t)=\prod_{\sigma=1(i)>\sigma^{-1}(j)}^{1 \leq i<j}\left(\frac{t_{j}}{t_{i}}\right)^{\gamma-\gamma} \frac{\theta\left(q^{\gamma} t_{j} / t_{i}\right)}{\theta\left(q^{\gamma^{\nu}} t_{j} / t_{i}\right)} . \tag{1.1}
\end{equation*}
$$

These are pseudo-constants and define one-cocycle of \mathscr{G}_{n} with values in \boldsymbol{C}^{*},

$$
\begin{equation*}
U_{\sigma \sigma^{\prime},},(t)=U_{\sigma^{\prime}}(t) \cdot \sigma U_{\sigma},(t) \quad \text { and } \quad U_{e}(t)=1 \tag{1.2}
\end{equation*}
$$

for all $\sigma, \sigma^{\prime} \in \mathscr{G}_{n}(e$ denotes the identity).
Let $\varphi(x), x=\left(x_{1}, \cdots, x_{n}\right) \in\left(C^{*}\right)^{n}$, be the theta rational function

$$
\begin{equation*}
\varphi(x)=\prod_{j=1}^{n} x_{j}^{\alpha_{j}} \frac{\theta\left(q^{\alpha_{j}+\cdots+\alpha_{n}+\gamma+1} x_{j} / x_{j-1}\right)}{\theta\left(q^{\gamma+1} x_{j} / x_{j-1}\right)} \tag{1.3}
\end{equation*}
$$

for $x_{0}=q^{\nu}$. Consider the generalized alternating sum with the weight $\left\{U_{\sigma}^{-1}(x)\right\}_{\sigma \epsilon \mathscr{G}_{n}}$ as follows,

$$
\begin{equation*}
\tilde{\varphi}(x)=\sum_{\sigma \in \mathscr{G}_{n}} \sigma \varphi(x) \cdot \operatorname{sgn}(\sigma) \cdot U_{\sigma}(x)^{-1} . \tag{1.4}
\end{equation*}
$$

It has the equivariant property

$$
\begin{equation*}
\sigma \tilde{\varphi}(x)=U_{\sigma}(x) \cdot \tilde{\varphi}(x) \cdot \operatorname{sgn} \sigma \quad \text { for } \quad \sigma \in \mathscr{G}_{n} . \tag{1.5}
\end{equation*}
$$

We want to show that $\tilde{\varphi}(x)$ can be expressed as a product of theta monomials. More precisely we can prove the following Theorem.

Theorem.

$$
\begin{gather*}
\tilde{\varphi}(x)=\Pi_{j=1}^{n} q^{-(j-1)^{2} \gamma} \frac{\theta\left(q^{\alpha_{j}+\cdots+\alpha_{n}+1}\right)}{\theta\left(q^{\alpha_{1}+1-(n+j-2) \gamma}\right)} \tag{1.6}\\
\cdot \Pi_{j=1}^{n} x_{j}^{\alpha_{1}-2(j-1) \gamma} \frac{\theta\left(q^{\alpha_{1}+1-(n-1) \gamma} x_{j}\right)}{\theta\left(q x_{j}\right)} \cdot \Pi_{1 \leq i<j \leq n} \frac{\theta\left(q x_{j} / x_{i}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{i}\right)} .
\end{gather*}
$$

This formula has been stated as a conjecture and has been proved in case of $n=2$ and 3 in [3]. It can be regarded as an elliptic version of the one concerning Hall-Littlewood polynomials stated in [9], p 104. We shall give elsewhere an application of it to establising the explicit connection formulae for general symmetric A-type Jackson integrals relevant to Yang-Baxter equation (See for relevant subjects [2], [10], [11], and [12]).

2. Proof of Theorem.

We denote by $\varphi^{*}(x)$ the function of the right hand side of (1.6). If $n=1$, $\tilde{\varphi}(x)$ reduces to $x_{1}^{\alpha_{1}} \frac{\theta\left(q^{\alpha_{1}+1} x_{1}\right)}{\theta\left(q x_{1}\right)}$ which coincides with $\varphi^{*}(x)$. So the Theorem holds. We assume now $n \geq 2$. Suppose that the formula (1.6) is true for $n \leq N-1$. We must prove it for $n=N$. We denote by σ_{r} the permutation: $\left(t_{1}, \cdots, t_{n}\right) \rightarrow\left(t_{2}, \cdots, t_{r}, t_{1}, t_{r+1}, \cdots, t_{n}\right) \quad$ so that $\quad \sigma^{-1}(1)=2, \cdots, \sigma^{-1}(r-1)=r, \quad \sigma^{-1}(r)=1$, $\sigma^{-1}(j)=j$ for $j \geq r+1$. Then $\tilde{\varphi}(x)$ can be described as

$$
\begin{align*}
& \tilde{\varphi}(x)=\sum_{r=1}^{N} \sum_{\sigma^{\prime} \in \mathscr{E}_{N-1}} \sigma_{r} \sigma^{\prime} \varphi(x) \cdot \operatorname{sgn}\left(\sigma_{r} \sigma^{\prime}\right) \cdot U_{\sigma_{r} \sigma}^{-1}(x) \tag{2.1}\\
& =\sum_{r=1}^{N}(-1)^{r-1} U_{\sigma_{r}}^{-1}(x) \tilde{\varphi}_{r}(x), \\
& \tilde{\varphi}_{r}(x)=\sum_{\sigma^{\prime} \in \mathscr{E}_{N-1}} \sigma^{\prime} \varphi\left(\sigma_{r}^{-1}(x)\right) \cdot \operatorname{sgn}\left(\sigma^{\prime}\right) \cdot U_{\sigma^{\prime}}^{-1}\left(\sigma_{r}^{-1}(x)\right),
\end{align*}
$$

where \mathscr{G}_{N-1} denotes the symmetric group of $(N-1)$ th degree consisting of the permutations which fix the argument 1. $\tilde{\varphi}_{r}(x)$ equals

$$
\begin{gather*}
\tilde{\varphi}_{r}(x)=x_{r}^{\alpha_{1}} \frac{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+1} x_{r}\right)}{\theta\left(q x_{r}\right)} \cdot \sum_{\sigma^{\prime} \mathscr{G}_{N}} \operatorname{sgn}\left(\sigma^{\prime}\right) U_{\sigma^{\prime}}^{-1}\left(x^{\prime}\right) \tag{2.2}\\
\sigma^{\prime}\left\{\Pi_{j=2}^{N} x_{j}^{\prime \alpha_{j}} \frac{\theta\left(q^{\alpha_{j}+\cdots+\alpha_{N}+\gamma+1} x_{j}^{\prime} / x_{1}^{\prime}\right)}{\theta\left(q^{\gamma+1} x_{j}^{\prime} / x_{1}^{\prime}\right)}\right\}
\end{gather*}
$$

for $x_{1}^{\prime}=x_{r}, x_{2}^{\prime}=x_{1}, \cdots, x_{r}^{\prime}=x_{r-1}, x_{j}^{\prime}=x_{j}$ for $j \geq r+1$. We can now apply the formula (1.6) for $n=N-1$ by replacing $\alpha_{1}, \cdots, \alpha_{N-1}$ and x_{1}, \cdots, x_{N-1} by $\alpha_{2}, \cdots, \alpha_{N}$ and $q^{y} x_{2}^{\prime} / x_{1}^{\prime}, \cdots, q^{\nu} x_{N}^{\prime} / x_{1}^{\prime}$ respectively (Remark that $\alpha_{j-}=\alpha_{2}+(j-2)\left(\gamma^{\prime}-\gamma\right)$). Hence we have

$$
\begin{gather*}
\tilde{\varphi}_{r}(x)=x_{r}^{\alpha_{1}} \frac{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+1} x_{r}\right)}{\theta\left(q x_{r}\right)} \tag{2.3}\\
\cdot \Pi_{j=1}^{r-1}\left(q^{-\gamma} x_{r}\right)^{j-1} x_{j}^{\alpha_{j}-2(j-1) \gamma} \frac{\theta\left(q^{\alpha_{2}+1-(N-2) \gamma+\gamma} x_{j} / x_{r}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{r}\right)} \\
\cdot \Pi_{j=r+1}^{N}\left(q^{-\gamma} x_{r}\right)^{j-2} x_{j}^{\alpha_{2}-2(j-2) \gamma} \frac{\theta\left(q^{\alpha_{2}+1-(N-2) \gamma+\gamma} x_{j} / x_{r}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{r}\right)} \\
\cdot \Pi_{j=2}^{N} q^{-(j-2)^{2} \gamma} \frac{\theta\left(q^{\alpha_{j}+\cdots+\alpha_{N}+1}\right)}{\theta\left(q^{\alpha_{2}+1-(N+j-4) \gamma}\right)} \cdot \Pi_{i, j \leq r} i<j \leq N \frac{\theta\left(q x_{j} / x_{i}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{i}\right)} .
\end{gather*}
$$

Since $U_{\sigma_{r}}(x)=\Pi_{1 \leq i \leq r}\left(\frac{x_{r}}{x_{i}}\right)^{\gamma-\gamma} \frac{\theta\left(q^{\gamma} x_{r} / x_{i}\right)}{\theta\left(q^{\gamma^{\prime}} x_{r} / x_{i}\right)}$, we have

$$
\begin{gather*}
U_{\sigma_{r}}^{-1}(x) \Pi_{\substack{\leq j \neq r}} \frac{1}{\theta\left(q^{1+\gamma} x_{j} / x_{r}\right)} \Pi_{i, j \neq r} \leq \frac{\theta\left(q x_{j} / x_{i}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{i}\right)} \tag{2.4}\\
=(-1)^{r-1} \Pi_{i=1}^{r-1}\left(\frac{x_{r}}{x_{i}}\right)^{-2 \gamma} \prod_{\substack{1 \leq j \leq N \\
j \neq r}} \theta\left(q x_{j} / x_{r}\right)^{-1} \Pi_{1 \leq i<j \leq N} \frac{\theta\left(q x_{j} / x_{i}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{i}\right)} .
\end{gather*}
$$

Hence $\tilde{\varphi}(x)$ can be simplified to

$$
\begin{gather*}
\tilde{\varphi}(x)=-\left\{\Pi_{j=2}^{N} q^{-(j-2)^{2} \gamma} \frac{\theta\left(q^{\alpha_{j}+\cdots+\alpha_{N}+1}\right)}{\theta\left(q^{1+\alpha_{2}-(N+j-4) \gamma}\right)} \cdot \Pi_{j=1}^{N} x_{j}^{\alpha_{1}+1-2(j-1) \gamma}\right. \tag{2.5}\\
\left.\Pi_{1 \leq i<j \leq N} \frac{\theta\left(q x_{j} / x_{i}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{i}\right)}\right\} \cdot\left\{\sum_{r=1}^{N} \frac{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+1} x_{r}\right)}{\theta\left(x_{r}\right)}\left(q^{-\gamma} x_{r}\right)^{(N-1)(N-2)}{ }_{2}\right. \\
\Pi_{\substack{1 \leq j \leq N \\
j \neq r}} \frac{\theta\left(q^{\alpha_{1}+2-(N-1) \gamma} x_{j} / x_{r}\right)}{\theta\left(q x_{j} / x_{r}\right)} .
\end{gather*}
$$

We now use the following Lemma.

Lemma. We put $f(u)=\Pi_{j=1}^{N} \theta\left(q^{\alpha_{1}+1-(N-1) \gamma} x_{j} u\right)$ and $\delta=\frac{(N-1)(N-2)}{2}$. Then $f(u)$ can be described as an interpolation formula expressed by elliptic theta functions at the points $u=q / x_{r}$,

$$
\begin{equation*}
f(u)=\sum_{r=1}^{N} \frac{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+1-\delta} x_{r} u\right)}{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+2-\delta}\right)} f\left(q x_{r}^{-1}\right) \prod_{\substack{1 \leq j \leq N \\ j \neq r}} \frac{\theta\left(x_{j} u\right)}{\theta\left(q x_{j} / x_{r}\right)} . \tag{2.6}
\end{equation*}
$$

Proof. We denote by $f^{*}(u)$ the right hand side of (2.6). Remark that the theta polynomials $f(u)$ and $\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+1-\delta} x_{r} u\right) \Pi_{\substack{1 \leq j \leq N \\ j \neq r}} \theta\left(x_{j} u\right)$ both satisfy the same quasi-periodicity for the shift $u \rightarrow q u: f(q u)=(-1)^{N} \frac{q^{-N \alpha_{1}-N+N(N-1) \gamma}}{x_{1} \cdots x_{N}} u^{-N} f(u)$, since $\alpha_{1}+\cdots+\alpha_{N}=N \alpha_{1}+\frac{N(N-1)}{2}-N(N-1) \gamma$. Hence $f(u)$ and $f^{*}(u)$ have the same quasiperiodicity. On the other hand, we have $f\left(q / x_{r}\right)=f^{*}\left(q / x_{r}\right), 1 \leq r \leq N$. Hence $f^{*}(u)-f(u)$ must be divided out by the product $\Pi_{j=1}^{N} \theta\left(x_{j} u\right): f^{*}(u)-f(u)=g(u) \Pi_{j=1}^{N} \theta\left(x_{j} u\right)$, where $g(u)$ denotes a theta polynomial satisfying the multiplicative property with constant multiplier,

$$
\begin{equation*}
g(q u)=q^{-N \alpha_{1}-N+N(N-1) \gamma} g(u) . \tag{2.7}
\end{equation*}
$$

$g(u)$ having a Laurent expansion $g(u)=\sum_{-\infty}^{+\infty} c_{m} u^{m}$, (2.7) implies that the coefficients c_{m} vanish except probably for one, say $c_{k}(k \in Z)$ such that $k=-N \alpha_{1}-N+N(N-1) \gamma$. Since α_{1} is a general complex number, this equality is impossible. Hence c_{k} also vanishes. $g(u)$ vanishes identically., i.e., $f^{*}(u)=f(u)$.

Corollary. When we put $u=1$, then

$$
\begin{gather*}
\sum_{r=1}^{N} \frac{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+1-\delta} x_{r}\right) \theta\left(q^{\alpha_{1}+2-(N-1) \gamma}\right)}{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+2-\delta}\right)} \prod_{\substack{1 \leq j \leq N \\
j \neq r}}\left\{\theta\left(q^{\alpha_{1}+2-(N-1) \gamma} x_{j} / x_{r}\right)\right. \tag{2.8}\\
\left.\prod_{\substack{1 \leq j \leq N \\
j \neq r}} \frac{\theta\left(x_{j}\right)}{\theta\left(q x_{j} / x_{r}\right)}\right\}=\Pi_{j=1}^{N} \theta\left(q^{\alpha_{1}+1-(N-1) \gamma} x_{j}\right) \quad \text { for } \quad \delta=\frac{(N-1)(N-2)}{2},
\end{gather*}
$$

or equivalently

$$
\begin{gather*}
\sum_{r=1}^{N}\left(q^{-1} x_{r}\right) \frac{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+1} x_{r}\right) \theta\left(q^{\alpha_{1}+2-(N-1) r}\right)}{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+2}\right) \theta\left(x_{r}\right)} \tag{2.9}\\
\prod_{\substack{\leq \leq j \leq N \\
j \neq r}} \frac{\theta\left(q^{\alpha_{1}+2-(N-1) \gamma} x_{j} / x_{r}\right)}{\theta\left(q x_{j} / x_{r}\right)}=\Pi_{j=1}^{N} \frac{\theta\left(q^{\alpha_{1}+1-(N-1) \gamma} x_{j}\right)}{\theta\left(x_{j}\right)} .
\end{gather*}
$$

We now return to the proof of the Theorem. By applying the formula (2.9) to the RHS of (2.5), we have finally

$$
\begin{gather*}
\tilde{\varphi}(x)=-\frac{\theta\left(q^{\alpha_{1}+\cdots+\alpha_{N}+2}\right)}{\theta\left(q^{\alpha_{1}+2-(N-1) \gamma}\right)} q^{(1-\gamma) \delta} \cdot \Pi_{j=2}^{N}\left\{q^{-(j-2)^{2} \gamma}\right. \tag{2.10}\\
\left.\frac{\theta\left(q^{\alpha_{j}+\ldots+\alpha_{N}+1}\right)}{\theta\left(q^{\alpha_{1}+2-(N+j-2) \gamma}\right)}\right\} \Pi_{j=1}^{N} x_{j}^{\alpha_{1}+1-2(j-1) \gamma} \frac{\theta\left(q^{\alpha_{1}+1-(N-1) \gamma} x_{j}\right)}{\theta\left(x_{j}\right)} \\
\Pi_{1 \leq i<j \leq N} \frac{\theta\left(q x_{j} / x_{i}\right)}{\theta\left(q^{1+\gamma} x_{j} / x_{i}\right)}=\varphi^{*}(x) .
\end{gather*}
$$

References

[1] K. Aomoto: On connection coefficients for q-difference system of A-type Jackson integral (dedicated to Prof. R. Askey on occasion of his 60th birthday), SIAM J. Math. Anal., 25 (1994), 256-273.
[2] K. Aomoto and Y. Kato: Connection formula of symmetric A-type Jackson integrals, Duke Math. J., 74 (1994), 129-143.
[3] K. Aomoto: 2 conjectural formulae for symmetric A-type Jackson integrals, preprint, 1992.
[4] R. Askey: Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J., Math. Anal., 11 (1980), 938-951.
[5] R. Evans: Multidimensional q-beta integrals, ibid., 23 (1992), 758-765.
[6] L. Habsieger: Une q-intégrale de Selberg et Askey, ibid., 19 (1988), 1475-1489.
[7] H. Hancock: Lectures on the theory of elliptic functions, Dover, 1958.
[8] K. Kadell: A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris, SIAM J., Math. Anal., 19 (1989), 969-986.
[9] I. G. Macdonald: Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
[10] A. Matsuo: Quantum algebra structure of certain Jackson integrals, Commu. Math. Phys., 157 (1993), 479-498.
[11] K. Mimachi: Connection problem in holonomic q-difference system associated with a Jackson integral of Jordan Pochhammer type, Nagoya Math. J., 116 (1989), 149-161.
[12] A. Varchenko: Quantized Knizhnik-Zamolodchikov equations, quantum Yang-Baxter, and difference equations for q-hypergeometric functions, preprint, 1993.

Dept. of Math.
Nagoya University
Furo-cho 1, Chikusa-ku
Nagoya, Japan

