Kamata, M. Osaka J. Math. **31** (1994), 473–486

THE MULTIPLICATIVE GENUS ASSOCIATED WITH THE FORMAL GROUP LAW $(x+y-2axy) / (1-(a^2+b^2)xy)$

MASAYOSHI KAMATA

(Received November 21, 1992) (Revised January 25, 1993)

1. Introduction

The complex cobordism group $MU^*(CP^{\infty})$ is isomorphic to the ring of formal power series $MU^*[[x]]$, where $x = e_{MU}(\eta)$ is the Euler class of the tautological line bundle over the infinite complex projective space CP^{∞} . Since $MU^*(CP^{\infty} \times CP^{\infty}) \cong MU^*[[x_1,x_2]]$, $x_1 = e_{MU}(\eta \otimes 1)$ and $x_2 = e_{MU}(1 \otimes \eta)$, we can write

$$e_{MU}(\eta \widehat{\otimes} \eta) = \sum a_{ij}^U x_1^i x_2^j$$

The formal power series induces a formal group law over MU^*

$$F_{MU}(x,y) = \sum a_{ij}^U x^i y^j$$

The complex cobordism ring MU^* with the formal group law F_{MU} is isomorphic to Lazard's ring with the universal formal group law [8]. Given any formal group law F(x,y) over a commutative ring R, there is a ring homomorphism $\varphi:MU^* \to R$ which is called a multiplicative genus. In this paper we study the multiplicative genus $\varphi_{a,b}: MU^* \to Q$ associated with the formal group law

$$F(x,y) = \frac{x+y-2axy}{1-(a^2+b^2)xy}$$

which is related to the following formal power series, called the logarithm for F(x,y),

$$l(z) = \int_0^z \frac{1}{1 - 2ax + (a^2 + b^2)x^2} dx,$$

which satisfies l(F(x,y)) = l(x) + l(y). The characteristic power series $Q(z) = z/l^{-1}(z)$ (cf. [3]) for the multiplicative genus is given by

$$Q(z) = \frac{z(b+a \tan bz)}{\tan bz}$$

The cobordism classes of Milnor manifolds

where $i \leq j$, and the complex projective spaces CP^n generate MU^* . Let $H(x,y) = \Sigma[H_{ij}]x^iy^j$, and

$$\log_{MU}(z) = \frac{[CP^n]}{n+1} z^{n+1},$$

which is the logarithm for $F_{MU}(x,y) = \sum a_{i,j}^{U} x^{i} y^{j}$. Then relations on a_{ij}^{U} , $[H_{ij}]$ and $[CP^{n}]$ are given by the following [2]:

$$H(x,y) = \frac{d \log_{MU}(x)}{dx} \frac{d \log_{MU}(y)}{dy} F_{MU}(x,y).$$

We use the relations to calculate the multiplicative genus $\varphi_{a,b}$: $MU^* \rightarrow Q$ associated with the above formal group law for Milnor manifolds. The main theorem of this paper is the following.

Theorem 1.1. Let $\varphi_{a,b}$: $MU^* \rightarrow Q$ be the multiplicative genus associated with the formal group law $F(x,y) = (x+y-2axy)/(1-(a^2+b^2)xy)$. The values of $\varphi_{a,b}$ for the Milnor manifolds $H_{s,k}$, $s \leq k$, are as follows:

$$\varphi_{a,b}([H_{s,k}]) = \left(\frac{\alpha^{s+1} - \beta^{s+1}}{\alpha - \beta}\right) \left(\frac{\alpha^k - \beta^k}{\alpha - \beta}\right) ,$$

$$\overline{-1} \text{ and } \beta = a - b_s \sqrt{-1}.$$

where $\alpha = a + b\sqrt{-1}$ and $\beta = a - b\sqrt{-1}$.

The paper is organized as follows. In Section 2 we study multiplicative idempotent natural transformations over the cobordism cohomology $MU^*(-)\otimes Q$ which induce multiplicative genera. In Section 3 we investigate the multiplicative genus $\varphi_{a,b}: MU^* \rightarrow Q$ and we give a proof of Theorem 1.1. In Section 4 we discuss multiplicative genus related to the logarithm given by the integral of $1/\{a \text{ polynomial}\}$.

2. The decomposition of $MU^* \otimes Q$ and the multiplicative genus

Let $p(t_1, \dots, t_n)$ be a symmetric polynomial, and let

MULTIPLICATIVE GENERA

$$p(t_1,\cdots,t_n) = P(\sigma_1,\cdots,\sigma_n)$$

where σ_i is the *i*-th elementary symmetric polynomial. For a complex vector bundle ξ over X with dim_c $\xi = n$ we have

$$P(c_1(\xi), \cdots, c_n(\xi)) \in MU^*(X)$$

where $c_i(\xi)$ is the *i*-th complex cobordism Chern class, and

$$S_P(\xi) = \Phi_{\xi}(P(c_1(\xi), \cdots, c_n(\xi))) \in \widetilde{MU}^*(T(\xi))$$

where $T(\xi)$ is the Thom complex of ξ and Φ_{ξ} is the Thom isomorphism. Let

$$\alpha = \{h\} \in MU^{k}(X) = \lim_{n \to \infty} [S^{2n-k}X^{+}, MU(n)]_{0},$$

h: $S^{2n-k}X^{+} \to MU(n) = T(\gamma^{n}),$

where $\gamma^n \to BU(n)$ is the universal complex vector bundle over BU(n). The complex cobordism cohomology operation $S_P: MU^*(X) \to MU^*(X)$ is given by

$$S_P(\alpha) = \sigma^{k-2n} h^*(S_P(\gamma^n))$$

where σ^{k-2n} denotes the (k-2n)-fold suspension isomorphism. For any set $\omega = (i_1, \dots, i_q)$ of positive integers, denote $S_{\omega}(t)$ the smallest symmetric function of variable t_j , $1 \le j \le n$, which contains the monomial $t_1^{i_1} \cdots t_q^{i_q}$ and write

$$S_{\omega}(t) = P_{\omega}(\sigma_1, \cdots, \sigma_n).$$

Then we have the Landweber-Novikov operation $S_{\omega}(\alpha) = S_{P_{\omega}}(\alpha)$ (cf. [6] and [4]).

Given a formal power series

$$\hat{f}(x) = 1 + v_1 x + v_2 x^2 + \cdots$$
$$f(x) = x\hat{f}(x)$$

where $v_i \in MU^{-2i}$, we have a symmetric polynomial

$$\hat{f}(t_1)\cdots\hat{f}(t_n)=P_f(\sigma_1,\cdots,\sigma_n).$$

The multiplicative natural operation $S_f: MU^*(X) \rightarrow MU^*(X)$ given by

$$S_f(\alpha) = S_{P_f}(\alpha)$$

satisfies

(1)
$$S_f(g^*(\alpha)) = g^*(S_f(\alpha))$$
, for any map $g: Y \to X$

(2)
$$S_f(\alpha\beta) = S_f(\alpha)S_f(\beta)$$

(3) $S_f(c_1(\gamma^1)) = f(c_1(\gamma^1)).$

If $v_i \in MU^* \otimes Q$ then we similarly obtain the multiplicative natural operation $S_f: MU^*(-) \otimes Q \rightarrow MU^*(-) \otimes Q$. We now define

$$\operatorname{mog}_{MU}^{f}(x) = \sum \frac{S_{f}([CP^{n}])}{n+1} x^{n+1} \in MU^{*} \hat{\otimes} Q[[x]] \text{ (cf.[10])}.$$

Since the logarithm $\log_{MU}(x)$ for the formal group law $F_{MU}(x,y)$ uniquely exists,

$$S_f(\log_{MU}(x)) = \log_{MU}(x)$$

and for $x = c_1(\gamma^1)$,

$$\mathrm{mog}_{MU}^{f}(f(x)) = \mathrm{log}_{MU}(x).$$

 $MU^* \otimes Q$ is the polynomial ring over Q generated by $\{[CP^1], [CP^2], \dots, [CP^n], \dots\}$. Given a formal power series

$$g(x) = x + \frac{b_1}{2}x^2 + \dots + \frac{b_n}{n+1}x^{n+1} + \dots$$

in $MU^* \otimes Q[[x]], b_i \in MU^{-2i} \otimes Q$, we can consider the ring homomorphism

$$\psi_q: MU^* \otimes Q \to MU^* \otimes Q, \ \psi_q([CP^n]) = b_n.$$

The formal power series g(x) is said to be *projective* if ψ_g is the projection, namely $\psi_g \psi_g = \psi_g$.

Proposition 2.1. Suppose that $g(x) \in MU^* \otimes Q[[x]]$ is projective. Let

$$f(x) = g^{-1}(\log_{MU}(x)) = x + v_1 x^2 + v_2 x^3 + \dots + v_n x^{n+1} + \dots$$

Then the multiplicative operation $S_f: MU^*(-) \otimes Q \rightarrow MU^*(-) \otimes Q$ satisfies the following properties.

- (1) $S_f(S_f(c_1(\gamma^1))) = S_f(c_1(\gamma^1))$
- (2) $S_f(v_n) = 0$, for any $n \ge 1$.

Proof. Since $g(f(x)) = \log_{MU}(x) = \max_{MU}^{f}(f(x))$ for $x = c_1(\gamma^1)$, we have

 $S_f([CP^n]) = b_n$. Since the operation S_f on $MU^* \otimes Q$ coincides with ψ_g and g(x) is projective, we get $S_f(S_f([CP^n])) = S_f([CP^n])$. Apply S_f to $mog_{MU}^f(S_f(x)) = \log_{MU}(x), \ x = c_1(\gamma^1)$, to obtain

$$\operatorname{mog}_{MU}^{f}(S_{f}(S_{f}(x))) = \operatorname{mog}_{MU}^{f}(S_{f}(x)).$$

Hence (1) follows. Apply S_f to $f(x) = x + v_1 x^2 + v_2 x^3 + \dots + v_n x^{n+1} + \dots$, $x = c_1(\gamma^1)$, to get

$$f(x) = S_f(S_f(x)) = f(x) + S_f(v_1)(f(x))^2 + S_f(v_2)(f(x))^3 + \cdots$$

and $S_f(v_i) = 0, i > 0.$

Suppose that $g(x) \in MU^* \otimes Q[[x]]$ is projective. Put

 $f(x) = g^{-1}(\log_{MU}(x))$

and

$$f(x) = x + v_1 x^2 + v_2 x^3 + \dots + v_n x^{n+1} + \dots, \ v_i \in MU^{-2i} \otimes Q.$$

Then we have a natural transformation

$$\varepsilon_{f}: MU^{*}(X) \otimes Q \to MU^{*}(X) \otimes Q,$$
$$\varepsilon_{f}(\alpha) = \sum v_{1}^{r_{1}} \cdots v_{k}^{r_{k}} S_{(\underbrace{1, \cdots, 1}_{r_{1}}, \cdots, \underbrace{k, \cdots, k}_{r_{k}})}(\alpha).$$

Theorem 2.2. The natural transformation ε_f satisfies the following:

- (1) ε_f is multiplicative.
- (2) $\varepsilon_f \varepsilon_f = \varepsilon_f$.
- (3) $\varepsilon_f(MU^*(-)\otimes Q)$ is a generalized cohomology.

Proof. Let

$$S^{r_1,\cdots,r_k}(\alpha) = S_{(\underbrace{1,\cdots,1}_{r_1},\cdots,\underbrace{k,\cdots,k}_{r_k})}(\alpha)$$

We then have

$$S^{R}(\alpha\beta) = \sum_{R'+R''=R} S^{R'}(\alpha) S^{R''}(\beta),$$

which completes the proof of (1). We can see that $\varepsilon_f(x) = f(x)$, for

 $x = c_1(\gamma^1)$, and so $\varepsilon_f = S_f$. Therefore (2) is an immediate result of Proposition 3.1(2) and $\varepsilon_f(MU^*(-)\otimes Q)$ is a direct summand of $MU^*(-)\otimes Q$. (3) follows from (2).

EXAMPLE. (1) (Brown-Peterson) The formal power series

$$g(x) = \sum_{n=0}^{\infty} \frac{[CP^{p^n-1}]}{p^n} x^{p^n}$$

is projective. Since the coefficients of $f(x) = g^{-1}(\log_{MU}(x))$ exist in $MU^* \otimes Z_{(p)}$ (cf. [1] and [10]), we have a natural idempotent operation

$$\varepsilon_f: MU^*(-) \otimes Z_{(p)} \rightarrow MU^*(-) \otimes Z_{(p)}$$

and the Brown-Peterson cohomology $BP^*(-) = \varepsilon_f(MU^*(-) \otimes Z_{(p)})$.

(2) (Ochanine) The formal power series

$$g(x) = \int_0^x \frac{1}{\sqrt{1 - 2[CP^2]x^2 + (3[CP^2]^2 - 2[CP^4])x^4}} \, dx$$

is projective. The multiplicative idempotent operation ε_f for $f(x) = g^{-1}(\log_{MU}(x))$ gives rise to a generalized cohomology $h^*(-) = \varepsilon_f(MU^*(-) \otimes Q)$ with $h^*(a \text{ point}) = Q[[CP^2], [CP^4]]$ and the multiplicative genus

 $\varphi = \varepsilon_f: MU^* \rightarrow Q[[CP^2], [CP^4]].$

The Ochanine genus $\Phi: MU^* \rightarrow Q[\varepsilon, \delta](cf.[7] \text{ and } [5])$ is the multiplicative genus associated with the formal group law $F(x,y) = l^{-1}(l(x) + l(y))$ with

$$l(x) = \int_0^x \frac{1}{\sqrt{1-2\delta x^2+\varepsilon x^4}} \, dx,$$

and $\Phi([CP^2]) = \delta$ and $\Phi([H_{3,2}]) = \varepsilon$ (cf. Proposition 3 of [7]). Thus the Ochanine multiplicative genus is represented as the following composite.

Here ψ is the ring homomorphism defined by

$$\psi([CP^2]) = \delta$$
 and $\psi([CP^4]) = (3\delta^2 - \varepsilon)/2$.

(3) The formal power series

$$g(x) = \int_0^x \frac{1}{1 - [CP^1]x + [CP^1]^2 x^2} dx$$

is projective. The multiplicative idempotent operation ε_f for $f(x) = g^{-1}(\log_{MU}(x))$ induces the multiplicative genus $\varepsilon_f \colon MU^* \to Q[[CP^1]]$. The values for complex projective spaces are as follows.

$$\varepsilon_f([CP^{3n}]) = (-1)^n [CP^1]^{3n}, \ \varepsilon_f([CP^{3n+1}]) = (-1)^n [CP^1]^{3n+1}, \\ \varepsilon_f([CP^{3n+2}]) = 0.$$

3. The genus associated with $(x+y-2axy)/(1-(a^2+b^2)xy)$

Let $\varphi_{a,b}$: $MU^* \rightarrow Q$ be the multiplicative genus associated with the formal group law $F(x,y) = (x+y-2axy)/(1-(a^2+b^2)xy)$ for rational numbers a and b. The logarithm of $\varphi_{a,b}$ is

$$l(x) = \int_0^x \frac{1}{1 - 2ax + (a^2 + b^2)x^2} \, dx.$$

Consider the formal power series

$$g(x) = \int_0^x \frac{1}{1 - [CP]x + ([CP^1]^2 - [CP^2])x^2} dx$$

which is projective. By Theorem 2.2 it induces a multiplicative idempotent operation ε_f for $f(x) = g^{-1}(\log_{MU}(x))$ which gives a generalized cohomology $h^*(-) = \varepsilon_f(MU^*(-) \otimes Q)$ with $h^*(a \text{ point}) = Q[[CP^1], [CP^2]]$ and the multiplicative genus

$$\varphi = \varepsilon_f \colon MU^* \to Q[[CP^1], [CP^2]].$$

The multiplicative genus $\varphi_{a,b}$ is represented as the following composite.

Here ψ is the ring homomorphism defined by $\psi([CP^1]) = 2a$ and $\psi([CP^2]) = 3a^2 - b^2$.

The characteristic power series for the multiplicative genus $\varphi_{a,b}$ is given by $Q(z) = z/l^{-1}(z)$. Since

$$l(x) = \frac{1}{b} \left(\arctan\left(\frac{a^2 + b^2}{b} \left(x - \frac{a}{a^2 + b^2}\right)\right) + \arctan\left(\frac{a}{b}\right),$$

it follows that

$$Q(z) = \frac{z(b+a\tan bz)}{\tan bz}.$$

For rational numbers a and b, put

$$h(x,y) = \frac{x+y-2axy}{1-(a^2+b^2)xy} \cdot \frac{1}{1-2ax+(a^2+b^2)x^2} \cdot \frac{1}{1-2ay+(a^2+b^2)y^2}$$

Then

$$(1 - (a^2 + b^2)xy)(1 - 2ax + (a^2 + b^2)x^2)(1 - 2ay + (a^2 + b^2)y^2)h(x,y)$$

= x + y - 2axy

and for $k \ge 3$

$$\frac{\partial^{k}h}{\partial y^{k}}(x,0) - k(2a + (a^{2} + b^{2})x) \frac{\partial^{k-1}h}{\partial y^{k-1}}(x,0)$$
$$+ k(k-1)(a^{2} + b^{2})(1 + 2ax) \frac{\partial^{k-2}h}{\partial y^{k-2}}(x,0)$$
$$- k(k-1)(k-2)(a^{2} + b^{2})^{2}x \frac{\partial^{k-3}h}{\partial y^{k-3}}(x,0) = 0.$$

Proposition 3.1. Let $\alpha = a + b\sqrt{-1}$ and $\beta = a - b\sqrt{-1}$. Then

$$\frac{\partial^k h}{\partial y^k}(x,0) = \frac{k!}{(1-\alpha x)(1-\beta x)} \left(\frac{\alpha^k - \beta^k}{\alpha - \beta} + \alpha^k \beta^k x^{k+1} \right).$$

Proof. Put

$$P_{k} = \frac{\partial^{k} h}{\partial y^{k}}(x,0)$$
$$Q_{k} = P_{k} - 2akP_{k-1} + k(k-1)(a^{2}+b^{2})P_{k-2}.$$

We then have

$$Q_k - k(a^2 + b^2)xQ_{k-1} = 0$$

and

$$Q_{k} = \frac{k!}{2}(a^{2}+b^{2})^{k-2}x^{k-2}Q_{2}.$$

Thus it follows that

$$P_{k}-2akP_{k-1}+k(k-1)(a^{2}+b^{2})P_{k-2}=\frac{k!}{2}(a^{2}+b^{2})^{k-2}x^{k-2}Q_{2}.$$

Let $\alpha = a + b\sqrt{-1}$, $\beta = a - b\sqrt{-1}$ and $R_k = P_k - k\alpha P_{k-1}$. Then we get $R_k - k\beta R_{k-1} = (\alpha\beta x)^{k-2} \frac{k!}{2} Q_2$

and

$$R_{k} - \beta^{k-2} \frac{k!}{2} R_{2} = \frac{k!}{2} \beta^{k-2} (P_{2} - 2(\alpha + \beta)P_{1} + 2\alpha\beta P_{0}) \sum_{i=1}^{k-2} (ax)^{i}.$$

Note that

$$P_{0} = \frac{x}{(1 - \alpha x)(1 - \beta x)}$$
$$P_{1} = \frac{1 + \alpha \beta x^{2}}{(1 - \alpha x)(1 - \beta x)}$$
$$P_{2} = \frac{2(\alpha + \beta) + 2\alpha^{2}\beta^{2}x^{3}}{(1 - \alpha x)(1 - \beta x)}.$$

Then we get

$$R^{k} = k! \beta^{k-1} \frac{1 - (\alpha x)^{k} (1 - \beta x)}{(1 - \alpha x)(1 - \beta x)}$$

and

$$P_{k} = \frac{k!}{(1-\alpha x)(1-\beta x)} \left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta} + \alpha^{k}\beta^{k}x^{k+1} \right). \qquad \Box$$

We utilize Proposition 3.1 to obtain Theorem 1.1.

Proof of Theorem 1.1.

The h(x,y) is described as

$$h(x,y) = h(x,0) + \frac{\partial h}{\partial y}(x,0)y + \frac{1}{2!} \frac{\partial^2 h}{\partial y^2}(x,0)y^2 + \dots + \frac{1}{k!} \frac{\partial^k h}{\partial y^k}(x,0)y^k + \dots$$

From Proposition 3.1 it follows that

$$\frac{1}{k!} \frac{\partial^k h}{\partial y^k}(x,0) = \frac{\alpha^k - \beta^k}{\alpha - \beta} \sum_{s=0}^{\infty} \left(\sum_{i+j=s} \alpha^i \beta^j \right) x^s + \alpha^k \beta^k \sum_{s=0}^{\infty} \left(\sum_{i+j=s} \alpha^i \beta^j \right) x^{s+k+1}$$

and the coefficient of $x^{s}y^{k}$ is

$$\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}\sum_{i+j=s}\alpha^{i}\beta^{j}=\left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}\right)\left(\frac{\alpha^{s+1}-\beta^{s+1}}{\alpha-\beta}\right).\qquad \Box$$

REMARK. When b=0 in this theorem,

$$\varphi_{a,0}([H_{s,k}]) = (s+1)ka^{s+k-1}$$

Especially $\varphi_{1,0}$ corresponds to the Euler characteristic and $\varphi_{0,b}$ is the Ochanine multiplicative genus of case $\delta = -b^2$ and $\varepsilon = b^4$.

Let ξ be the canonical line bundle over $\mathbb{C}P^2$ and let P(m,n) denote the projective space bundle associated with $\xi^m \oplus \xi^n$.

Proposition 3.2.

$$[P(m,n)] = -\frac{(m-n)^2}{3} [H_{2,2}] + \frac{(m-n)^2 + 3}{3} [CP^2] [CP^1]$$

Proof. Put

$$[P(m,n)] = x[H_{2,2}] + y[CP^2][CP^1] + z[CP^1]^3.$$

We can determine x, y and z by the facts that

MULTIPLICATIVE GENERA

$$\begin{split} S_{(3)}(P(m,n)) &= 2(m-n)^2, \ S_{(2,1)}(P(m,n)) = 6, \ S_{(1,1,1)}(P(m,n)) = 6, \\ S_{(3)}(H_{2,2}) &= -6, \ S_{(2,1)}(H_{2,2}) = 6, \ S_{(1,1,1)}(H_{2,2}) = 6, \\ S_{(3)}(CP^2 \times CP^1) &= 0, \ S_{(2,1)}(CP^2 \times CP^1) = 6, \ S_{(1,1,1)}(CP^2 \times CP^1) = 6, \\ S_{(3)}((CP^1)^3) &= 0, \ S_{(2,1)}((CP^1)^3) = 0, \ S_{(1,1,1)}((CP^1)^3) = 8. \end{split}$$

To the formal group law $F(x,y) = (x+y-2axy)/(1-(a^2+b^2)xy)$ we apply

$$a = \frac{\delta}{2}$$
 and $b = \frac{\sqrt{3}\delta}{2}$

The logarithm is

$$l(x) = \int_0^x \frac{1}{1 - \delta x + \delta^2 x^2} dx.$$

Let φ_{δ} : $MU^* \rightarrow Q$ denote the multiplicative genus associated with the formal group law $F(x,y) = (x+y-\delta xy)/(1-\delta^2 xy)$. Then we have the following.

Theorem 3.3. The ideal in $MU^* \otimes Q$ consisting of α with $\varphi_{\delta}(\alpha) = 0$ for any δ is generated by cobordism classes of fibre bundles over CP^2 .

Proof. Let $S_{(n)}(M)$ denote the characteristic number of M corresponding to the symmetric polynomial Σt_i^n . The characteristic number of the Milnor manifold (cf.[9]) is

$$S_{(n+m-1)}(H_{n,m}) = -\binom{n+m}{n}, \ 2 \le n \le m.$$

We take a generating set $\{[CP^1], [CP^2], [H_{2,j}] | j \ge 2\}$ of the ring $MU^* \otimes Q$. We use Theorem 1.1 to get $\varphi_{\delta}([CP^1]) = \delta$, $\varphi_{\delta}([CP^2]) = 0$ and $\varphi_{\delta}([H_{2,j}]) = 0, j \ge 2$. Therefore the kernel of φ_{δ} is generated by $\{[CP^2], [H_{2,j}], j \ge 2\}$. If j > 2, $H_{2,j}$ is a fibre bundle over CP^2 with the fibre CP^{j-1} . By using Proposition 3.3 we see that $[H_{2,2}]$ belongs to the ideal generated by cobordism classes of fibre bundles over CP^2 . \Box

4. Genera cancelling $[H_{2,j}], j > n$

We discuss the multiplicative genus associated with the formal group law $F(x,y) = l^{-1}(l(x) + l(y))$ with the logarithm l(x) given by the integral

of $1/\{a \text{ polynomial}\}\$ which is a generalization of the logarithm for the multiplicative genus φ_{δ} in Section 3. For rational numbers $\delta_1, \delta_2, \dots, \delta_n$, we consider a formal power series

$$l(z) = \int_0^z \frac{1}{1 + \delta_1 x + \delta_1^2 x^2 + \delta_2 x^3 + \dots + \delta_n x^{n+1}} dx$$

and denote the multiplicative genus associated with the formal group law $F(x,y) = l^{-1}(l(x) + l(y))$ by

$$\varphi_{\delta_1,\dots,\delta_n}: MU^* \to Q.$$

We then have the following

Proposition 4.1.

(1)
$$\varphi_{\delta_1,\dots,\delta_n}([CP^1]) = -\delta_1, \ \varphi_{\delta_1,\dots,\delta_n}([CP^2]) = 0, \ \varphi_{\delta_1,\dots,\delta_n}([H_{2,1}]) = \delta_1^2$$

(2) $\varphi_{\delta_1,\dots,\delta_n}([H_{2,j}]) = \begin{cases} \frac{j+1}{2}\delta_j, & 2 \le j \le n\\ 0, & j > n \end{cases}$

Proof. The logarithm l(x) for F(x,y) is described as

$$l(x) = \sum \frac{\varphi_{\delta_1, \dots, \delta_n}([CP^n])}{n+1} x^{n+1}.$$

We obtain (1) by the facts that

$$l(z) = z - \frac{\delta_1}{2} z^2 + higher terms of degree \ge 4$$

and $[H_{2,1}] = [CP^1]^2$. Consider the formal power series

$$h(x,y) = \sum \varphi_{\delta_1,\dots,\delta_n}([H_{i,j}]) x^i y^j.$$

The Buchstaber formula [2]

$$H(x,y) = \left(\sum [CP^n]x^n\right)\left(\sum [CP^n]y^n\right)F_{MU}(x,y)$$

implies

$$h(x,y) = l'(x)l'(y)F(x,y)$$

= $\left(l'(0) + \frac{l''(0)}{1!}x + \dots + \frac{l^{(n+1)}(0)}{n!}x^n + \dots\right) \cdot l'(y) \cdot$

MULTIPLICATIVE GENERA

$$\left(F(0,y)+\frac{1}{1!}\frac{\partial F}{\partial x}(0,y)x+\frac{1}{2!}\frac{\partial^2 F}{\partial x^2}(0,y)x^2+\cdots+\frac{1}{n!}\frac{\partial^n F}{\partial x^n}(0,y)x^n+\cdots\right).$$

Comparing the coefficients of x^2 , we have

$$h_{2,0} + h_{2,1}y + h_{2,2}y^2 + \dots + h_{2,n}y^n + \dots$$

= $l'(y) \cdot \left(\frac{l'(0)}{2} \frac{\partial^2 F}{\partial x^2}(0,y) + l''(0) \frac{\partial F}{\partial x}(0,y) + \frac{l^{(3)}(0)}{2}F(0,y)\right),$

where $h_{i,j} = \varphi_{\delta_1,\dots,\delta_n}([H_{i,j}])$. Since l(F(x,y)) = l(x) + l(y), it follows that

$$l'(F(x,y))\frac{\partial F}{\partial x} = l'(x)$$

and

$$l''(F(x,y))(\frac{\partial F}{\partial x})^2 + l'(F(x,y))\frac{\partial^2 F}{\partial x^2} = l''(x).$$

From the facts that l'(0)=1, $l''(0)=-\delta_1$ and $l^{(3)}(0)=0$, it follows that

$$h_{2,0} + h_{2,1}y + h_{2,2}y^2 + \dots + h_{2,n}y^n + \dots$$
$$= -\delta_1 + \delta_1^2 y + \frac{3}{2}\delta_2 y^2 + \dots + \frac{n+1}{2}\delta_n y^n$$

and we complete the proof of (2). \Box

We can take a generating set $\{[CP^1], [CP^2], [H_{2,2}], \dots, [H_{2,n}], \dots\}$ for the polynomial ring $MU^* \otimes Q$. Therefore it follows from Proposition 4.1 that

Theorem 4.2. $[M] (\in MU^* \otimes Q)$ belongs to the ideal generated by $\{[CP^2], [H_{2,j}] (j > n)\}$ in $MU^* \otimes Q$ if and only if for any $\delta_1, \dots, \delta_{n-1}$ and $\delta_n (\in Q)$

$$\varphi_{\delta_1,\dots,\delta_n}([M]) = 0.$$

References

- [1] S. Araki: Typical formal groups in complex cobordism and K-theory, Lectures in Math., Dept. of Math., Kyoto Univ., Tokyo, Kinokuniya Book Store, 1973.
- [2] V.M. Buchstaber: The Chern-Dold character in cobordisms. I. Math. USSR-Sbornik

12 (1970), 573-594.

- [3] F. Hirzebruch: Topological Methods on Algebraic Geometry, Springer, Berlin, 1966.
- P.S. Landweber: Cobordism operations and Hopf algebras. Trans. Amer. Math. Soc. 129 (1967), 94-110.
- [5] P.S. Landweber: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. vol 1326, Berlin Heiderberg New York: Springer, 1988.
- [6] S.P. Novikov: The method of algebraic topology from the viewpoint of cobordism theories (Russian), Izvestija Akademi Nauk SSSR, Serija Matematičeskaja 31 (1967), 855-951.
- [7] S. Ochanine: Sur les generes multiplicatifs definis par des integrales elliptiques. Topology 26 (1987), 143–151.
- [8] D. Quillen: On the formal group laws of unoriented and complex cobordism theory. Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
- [9] R. Stong: Notes on Cobordism Theory, Princeton, NJ:Princeton Univ. Press, 1968.
- [10] W.S. Wilson: Brown-Peterson Homology, an Introduction and Sampler. Regional Conference Series in Math., 48. AMS Providence Rhode Island, 1980.

Graduate School of Mathematics Kyushu University 01 Ropponmatsu Fukuoka 810 Japan