THE MULTIPLICATIVE GENUS ASSOCIATED WITH THE FORMAL GROUP LAW $(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$

Masayoshi KAMATA

(Received November 21, 1992)
(Revised January 25, 1993)

1. Introduction

The complex cobordism group $M U^{*}\left(C P^{\infty}\right)$ is isomorphic to the ring of formal power series $M U^{*}[[x]]$, where $x=e_{M U}(\eta)$ is the Euler class of the tautological line bundle over the infinite complex projective space $C P^{\infty}$. Since $M U^{*}\left(C P^{\infty} \times C P^{\infty}\right) \cong M U^{*}\left[\left[x_{1}, x_{2}\right]\right], x_{1}=e_{M U}(\eta \otimes \hat{\otimes} 1)$ and $x_{2}=$ $e_{M U}(1 \hat{\otimes} \eta)$, we can write

$$
e_{M U}(\eta \hat{\otimes} \eta)=\sum a_{i j}^{U} x_{1}^{i} x_{2}^{j} .
$$

The formal power series induces a formal group law over $M U^{*}$

$$
F_{M U}(x, y)=\sum a_{i j}^{U} x^{i} y^{j}
$$

The complex cobordism ring $M U^{*}$ with the formal group law $F_{M U}$ is isomorphic to Lazard's ring with the universal formal group law [8]. Given any formal group law $F(x, y)$ over a commutative ring R, there is a ring homomorphism $\varphi: M U^{*} \rightarrow R$ which is called a multiplicative genus. In this paper we study the multiplicative genus $\varphi_{a, b}: M U^{*} \rightarrow Q$ associated with the formal group law

$$
F(x, y)=\frac{x+y-2 a x y}{1-\left(a^{2}+b^{2}\right) x y}
$$

which is related to the following formal power series, called the logarithm for $F(x, y)$,

$$
l(z)=\int_{0}^{z} \frac{1}{1-2 a x+\left(a^{2}+b^{2}\right) x^{2}} d x
$$

which satisfies $l(F(x, y))=l(x)+l(y)$. The characteristic power series $Q(z)=z / l^{-1}(z)$ (cf. [3]) for the multiplicative genus is given by

$$
Q(z)=\frac{z(b+a \tan b z)}{\tan b z} .
$$

The cobordism classes of Milnor manifolds

$$
\begin{gathered}
H_{i j}=\left\{\left(\left[z_{0}, z_{1}, \cdots, z_{i}\right],\left[w_{0}, w_{2}, \cdots, w_{j}\right]\right) \mid z_{0} w_{0}+z_{1} w_{1}+\cdots+z_{i} w_{i}=0\right\} \\
\subset C P^{i} \times C P^{j}
\end{gathered}
$$

where $i \leq j$, and the complex projective spaces $C P^{n}$ generate $M U^{*}$. Let $H(x, y)=\Sigma\left[H_{i j}\right] x^{i} y^{j}$, and

$$
\log _{M U}(z)=\frac{\left[C P^{n}\right]}{n+1} z^{n+1}
$$

which is the logarithm for $F_{M U}(x, y)=\Sigma a_{i, j}^{U} x^{i} y^{j}$. Then relations on $a_{i j}^{U}$, [$H_{i j}$] and [$C P^{n}$] are given by the following [2]:

$$
H(x, y)=\frac{d \log _{M U}(x)}{d x} \frac{d \log _{M U}(y)}{d y} F_{M U}(x, y)
$$

We use the relations to calculate the multiplicative genus $\varphi_{a, b}: M U^{*} \rightarrow Q$ associated with the above formal group law for Milnor manifolds. The main theorem of this paper is the following.

Theorem 1.1. Let $\varphi_{a, b}: M U^{*} \rightarrow Q$ be the multiplicative genus associated with the formal group law $F(x, y)=(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$. The values of $\varphi_{a, b}$ for the Milnor manifolds $H_{s, k}, s \leq k$, are as follows:

$$
\varphi_{a, b}\left(\left[H_{s, k}\right]\right)=\left(\frac{\alpha^{s+1}-\beta^{s+1}}{\alpha-\beta}\right)\left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}\right)
$$

where $\alpha=a+b \sqrt{-1}$ and $\beta=a-b \sqrt{-1}$.
The paper is organized as follows. In Section 2 we study multiplicative idempotent natural transformations over the cobordism cohomology $M U^{*}(-) \otimes Q$ which induce multiplicative genera. In Section 3 we investigate the multiplicative genus $\varphi_{a, b}: M U^{*} \rightarrow Q$ and we give a proof of Theorem 1.1. In Section 4 we discuss multiplicative genus related to the logarithm given by the integral of $1 /\{$ a polynomial $\}$.

2. The decomposition of $M U^{*} \otimes Q$ and the multiplicative genus

Let $p\left(t_{1}, \cdots, t_{n}\right)$ be a symmetric polynomial, and let

$$
p\left(t_{1}, \cdots, t_{n}\right)=P\left(\sigma_{1}, \cdots, \sigma_{n}\right)
$$

where σ_{i} is the i-th elementary symmetric polynomial. For a complex vector bundle ξ over X with $\operatorname{dim}_{C} \xi=n$ we have

$$
P\left(c_{1}(\xi), \cdots, c_{n}(\xi)\right) \in M U^{*}(X)
$$

where $c_{i}(\xi)$ is the i-th complex cobordism Chern class, and

$$
S_{P}(\xi)=\Phi_{\xi}\left(P\left(c_{1}(\xi), \cdots, c_{n}(\xi)\right)\right) \in \widetilde{M U}^{*}(T(\xi))
$$

where $T(\xi)$ is the Thom complex of ξ and Φ_{ξ} is the Thom isomorphism. Let

$$
\begin{aligned}
& \alpha=\{h\} \in M U^{k}(X)=\lim _{n \rightarrow \infty}\left[S^{2 n-k} X^{+}, M U(n)\right]_{0} \\
& h: S^{2 n-k} X^{+} \rightarrow M U(n)=T\left(\gamma^{n}\right)
\end{aligned}
$$

where $\gamma^{n} \rightarrow B U(n)$ is the universal complex vector bundle over $B U(n)$. The complex cobordism cohomology operation $S_{P}: M U^{*}(X) \rightarrow M U^{*}(X)$ is given by

$$
S_{P}(\alpha)=\sigma^{k-2 n} h^{*}\left(S_{P}\left(\gamma^{n}\right)\right)
$$

where $\sigma^{k-2 n}$ denotes the ($k-2 n$)-fold suspension isomorphism. For any set $\omega=\left(i_{1}, \cdots, i_{q}\right)$ of positive integers, denote $S_{\omega}(t)$ the smallest symmetric
 write

$$
S_{\omega}(t)=P_{\omega}\left(\sigma_{1}, \cdots, \sigma_{n}\right)
$$

Then we have the Landweber-Novikov operation $S_{\omega}(\alpha)=S_{P_{\omega}}(\alpha)$ (cf. [6] and [4]).

Given a formal power series

$$
\begin{gathered}
\hat{f}(x)=1+v_{1} x+v_{2} x^{2}+\cdots \\
f(x)=x \hat{f}(x)
\end{gathered}
$$

where $v_{i} \in M U^{-2 i}$, we have a symmetric polynomial

$$
\hat{f}\left(t_{1}\right) \cdots \hat{f}\left(t_{n}\right)=P_{f}\left(\sigma_{1}, \cdots, \sigma_{n}\right)
$$

The multiplicative natural operation $S_{f}: M U^{*}(X) \rightarrow M U^{*}(X)$ given by

$$
S_{f}(\alpha)=S_{P_{f}}(\alpha)
$$

satisfies
(1) $S_{f}\left(g^{*}(\alpha)\right)=g^{*}\left(S_{f}(\alpha)\right)$, for any map $g: Y \rightarrow X$
(2) $S_{f}(\alpha \beta)=S_{f}(\alpha) S_{f}(\beta)$
(3) $\quad S_{f}\left(c_{1}\left(\gamma^{1}\right)\right)=f\left(c_{1}\left(\gamma^{1}\right)\right)$.

If $v_{i} \in M U^{*} \otimes Q$ then we similarly obtain the multiplicative natural operation $S_{f}: M U^{*}(-) \otimes Q \rightarrow M U^{*}(-) \otimes Q$. We now define

$$
\operatorname{mog}_{M U}^{f}(x)=\sum \frac{S_{f}\left(\left[C P^{n}\right]\right)}{n+1} x^{n+1} \in M U^{*} \hat{\otimes} Q[[x]] \text { (cf.[10]). }
$$

Since the logarithm $\log _{M U}(x)$ for the formal group law $F_{M U}(x, y)$ uniquely exists,

$$
S_{f}\left(\log _{M U}(x)\right)=\log _{M U}(x)
$$

and for $x=c_{1}\left(\gamma^{1}\right)$,

$$
\operatorname{mog}_{M U}^{f}(f(x))=\log _{M U}(x)
$$

$M U^{*} \otimes Q$ is the polynomial ring over Q generated by $\left\{\left[C P^{1}\right],\left[C P^{2}\right], \cdots\right.$, $\left.\left[C P^{n}\right], \cdots\right\}$. Given a formal power series

$$
g(x)=x+\frac{b_{1}}{2} x^{2}+\cdots+\frac{b_{n}}{n+1} x^{n+1}+\cdots
$$

in $M U^{*} \otimes Q[[x]], b_{i} \in M U^{-2 i} \otimes Q$, we can consider the ring homomorphism

$$
\psi_{g}: M U^{*} \otimes Q \rightarrow M U^{*} \otimes Q, \psi_{g}\left(\left[C P^{n}\right]\right)=b_{n}
$$

The formal power series $g(x)$ is said to be projective if ψ_{g} is the projection, namely $\psi_{g} \psi_{g}=\psi_{g}$.

Proposition 2.1. Suppose that $g(x)\left(\in M U^{*} \otimes Q[[x]]\right)$ is projective. Let

$$
f(x)=g^{-1}\left(\log _{M U}(x)\right)=x+v_{1} x^{2}+v_{2} x^{3}+\cdots+v_{n} x^{n+1}+\cdots
$$

Then the multiplicative operation $S_{f}: M U^{*}(-) \otimes Q \rightarrow M U^{*}(-) \otimes Q$ satisfies the following properties.
(1) $\quad S_{f}\left(S_{f}\left(c_{1}\left(\gamma^{1}\right)\right)\right)=S_{f}\left(c_{1}\left(\gamma^{1}\right)\right)$
(2) $S_{f}\left(v_{n}\right)=0$, for any $n \geq 1$.

Proof. Since $g(f(x))=\log _{M U}(x)=\operatorname{mog}_{M U}^{f}(f(x))$ for $x=c_{1}\left(\gamma^{1}\right)$, we have
$S_{f}\left(\left[C P^{n}\right]\right)=b_{n}$. Since the operation S_{f} on $M U^{*} \otimes Q$ coincides with ψ_{g} and $g(x)$ is projective, we get $S_{f}\left(S_{f}\left(\left[C P^{n}\right]\right)\right)=S_{f}\left(\left[C P^{n}\right]\right)$. Apply S_{f} to $\operatorname{mog}_{M U}^{f}\left(S_{f}(x)\right)=\log _{M U}(x), x=c_{1}\left(\gamma^{1}\right)$, to obtain

$$
\operatorname{mog}_{M U}^{f}\left(S_{f}\left(S_{f}(x)\right)\right)=\operatorname{mog}_{M U}^{f}\left(S_{f}(x)\right)
$$

Hence (1) follows. Apply S_{f} to $f(x)=x+v_{1} x^{2}+v_{2} x^{3}+\cdots+v_{n} x^{n+1}+\cdots$, $x=c_{1}\left(\gamma^{1}\right)$, to get

$$
f(x)=S_{f}\left(S_{f}(x)\right)=f(x)+S_{f}\left(v_{1}\right)(f(x))^{2}+S_{f}\left(v_{2}\right)(f(x))^{3}+\cdots
$$

and $S_{f}\left(v_{i}\right)=0, i>0$.
Suppose that $g(x)\left(\in M U^{*} \otimes Q[[x]]\right)$ is projective. Put

$$
f(x)=g^{-1}\left(\log _{M U}(x)\right)
$$

and

$$
f(x)=x+v_{1} x^{2}+v_{2} x^{3}+\cdots+v_{n} x^{n+1}+\cdots, v_{i} \in M U^{-2 i} \otimes Q .
$$

Then we have a natural transformation

$$
\begin{aligned}
& \varepsilon_{f}: M U^{*}(X) \otimes Q \rightarrow M U^{*}(X) \otimes Q, \\
& \varepsilon_{f}(\alpha)=\sum v_{1}^{r_{1} \cdots v_{k}^{r_{k}}} S_{r_{1}}^{1, \cdots, 1}, \cdots, \underbrace{k, \cdots, k}_{r_{k}})
\end{aligned}
$$

Theorem 2.2. The natural transformation ε_{f} satisfies the following:
(1) ε_{f} is multiplicative.
(2) $\varepsilon_{f} \varepsilon_{f}=\varepsilon_{f}$.
(3) $\varepsilon_{f}\left(M U^{*}(-) \otimes Q\right)$ is a generalized cohomology.

Proof. Let

$$
S^{r_{1}, \cdots, r_{k}}(\alpha)=S_{r_{1}}^{(\underbrace{1, \cdots, 1}_{r_{k}}}, \cdots, \underbrace{(\alpha)}_{\left.r^{k}, \cdots, k\right)}
$$

We then have

$$
S^{R}(\alpha \beta)=\sum_{R^{\prime}+R^{\prime \prime}=R} S^{R^{\prime}}(\alpha) S^{R^{\prime \prime}}(\beta)
$$

which completes the proof of (1). We can see that $\varepsilon_{f}(x)=f(x)$, for
$x=c_{1}\left(\gamma^{1}\right)$, and so $\varepsilon_{f}=S_{f}$. Therefore (2) is an immediate result of Proposition $3.1(2)$ and $\varepsilon_{f}\left(M U^{*}(-) \otimes Q\right)$ is a direct summand of $M U^{*}(-) \otimes Q$. (3) follows from (2).

Example. (1) (Brown-Peterson) The formal power series

$$
g(x)=\sum_{n=0}^{\infty} \frac{\left[C P^{p^{n}-1}\right]}{p^{n}} x^{p^{n}}
$$

is projective. Since the coefficients of $f(x)=g^{-1}\left(\log _{M U}(x)\right)$ exist in $M U^{*} \otimes Z_{(p)}$ (cf. [1] and [10]), we have a natural idempotent operation

$$
\varepsilon_{f}: M U^{*}(-) \otimes Z_{(p)} \rightarrow M U^{*}(-) \otimes Z_{(p)}
$$

and the Brown-Peterson cohomology $B P^{*}(-)=\varepsilon_{f}\left(M U^{*}(-) \otimes Z_{(p)}\right)$.
(2) (Ochanine) The formal power series

$$
g(x)=\int_{0}^{x} \frac{1}{\sqrt{1-2\left[C P^{2}\right] x^{2}+\left(3\left[C P^{2}\right]^{2}-2\left[C P^{4}\right]\right) x^{4}}} d x
$$

is projective. The multiplicative idempotent operation ε_{f} for $f(x)=$ $g^{-1}\left(\log _{M U}(x)\right)$ gives rise to a generalized cohomology $h^{*}(-)=\varepsilon_{f}\left(M U^{*}(-)\right.$ $\otimes Q)$ with $h^{*}($ a point $)=Q\left[\left[C P^{2}\right],\left[C P^{4}\right]\right]$ and the multiplicative genus

$$
\varphi=\varepsilon_{f}: M U^{*} \rightarrow Q\left[\left[C P^{2}\right],\left[C P^{4}\right]\right] .
$$

The Ochanine genus $\Phi: M U^{*} \rightarrow Q[\varepsilon, \delta]$ (cf.[7] and [5]) is the multiplicative genus associated with the formal group law $F(x, y)=l^{-1}(l(x)+l(y))$ with

$$
l(x)=\int_{0}^{x} \frac{1}{\sqrt{1-2 \delta x^{2}+\varepsilon x^{4}}} d x
$$

and $\Phi\left(\left[C P^{2}\right]\right)=\delta$ and $\Phi\left(\left[H_{3,2}\right]\right)=\varepsilon$ (cf. Proposition 3 of [7]). Thus the Ochanine multiplicative genus is represented as the following composite.
Φ

Here ψ is the ring homomorphism defined by

$$
\psi\left(\left[C P^{2}\right]\right)=\delta \text { and } \psi\left(\left[C P^{4}\right]\right)=\left(3 \delta^{2}-\varepsilon\right) / 2
$$

(3) The formal power series

$$
g(x)=\int_{0}^{x} \frac{1}{1-\left[C P^{1}\right] x+\left[C P^{1}\right]^{2} x^{2}} d x
$$

is projective. The multiplicative idempotent operation ε_{f} for $f(x)=$ $g^{-1}\left(\log _{M U}(x)\right)$ induces the multiplicative genus $\varepsilon_{f}: M U^{*} \rightarrow Q\left[\left[C P^{1}\right]\right]$. The values for complex projective spaces are as follows.

$$
\begin{aligned}
& \varepsilon_{f}\left(\left[C P^{3 n}\right]\right)=(-1)^{n}\left[C P^{1}\right]^{3 n}, \varepsilon_{f}\left(\left[C P^{3 n+1}\right]\right)=(-1)^{n}\left[C P^{1}\right]^{3 n+1} \\
& \varepsilon_{f}\left(\left[C P^{3 n+2}\right]\right)=0 .
\end{aligned}
$$

3. The genus associated with $(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$

Let $\varphi_{a, b}: M U^{*} \rightarrow Q$ be the multiplicative genus associated with the formal group law $F(x, y)=(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$ for rational numbers a and b. The logarithm of $\varphi_{a, b}$ is

$$
l(x)=\int_{0}^{x} \frac{1}{1-2 a x+\left(a^{2}+b^{2}\right) x^{2}} d x
$$

Consider the formal power series

$$
g(x)=\int_{0}^{x} \frac{1}{1-[C P] x+\left(\left[\mathrm{CP}^{1}\right]^{2}-\left[C P^{2}\right]\right) x^{2}} d x
$$

which is projective. By Theorem 2.2 it induces a multiplicative idempotent operation ε_{f} for $f(x)=g^{-1}\left(\log _{M U}(x)\right)$ which gives a generalized cohomology $h^{*}(-)=\varepsilon_{f}\left(M U^{*}(-) \otimes Q\right)$ with $h^{*}($ a point $)=Q\left[\left[C P^{1}\right],\left[C P^{2}\right]\right]$ and the multiplicative genus

$$
\varphi=\varepsilon_{f}: M U^{*} \rightarrow Q\left[\left[C P^{1}\right],\left[C P^{2}\right]\right] .
$$

The multiplicative genus $\varphi_{a, b}$ is represented as the following composite.

Here ψ is the ring homomorphism defined by $\psi\left(\left[C P^{1}\right]\right)=2 a$ and $\psi\left(\left[C P^{2}\right]\right)=3 a^{2}-b^{2}$.

The characteristic power series for the multiplicative genus $\varphi_{a, b}$ is given by $Q(z)=z / l^{-1}(z)$. Since

$$
l(x)=\frac{1}{b}\left(\arctan \left(\frac{a^{2}+b^{2}}{b}\left(x-\frac{a}{a^{2}+b^{2}}\right)\right)+\arctan \frac{a}{b}\right)
$$

it follows that

$$
Q(z)=\frac{z(b+a \tan b z)}{\tan b z}
$$

For rational numbers a and b, put

$$
h(x, y)=\frac{x+y-2 a x y}{1-\left(a^{2}+b^{2}\right) x y} \cdot \frac{1}{1-2 a x+\left(a^{2}+b^{2}\right) x^{2}} \cdot \frac{1}{1-2 a y+\left(a^{2}+b^{2}\right) y^{2}} .
$$

Then

$$
\begin{aligned}
& \left(1-\left(a^{2}+b^{2}\right) x y\right)\left(1-2 a x+\left(a^{2}+b^{2}\right) x^{2}\right)\left(1-2 a y+\left(a^{2}+b^{2}\right) y^{2}\right) h(x, y) \\
& =x+y-2 a x y
\end{aligned}
$$

and for $k \geq 3$

$$
\begin{aligned}
\frac{\partial^{k} h}{\partial y^{k}}(x, 0) & -k\left(2 a+\left(a^{2}+b^{2}\right) x\right) \frac{\partial^{k-1} h}{\partial y^{k-1}}(x, 0) \\
& +k(k-1)\left(a^{2}+b^{2}\right)(1+2 a x) \frac{\partial^{k-2} h}{\partial y^{k-2}}(x, 0) \\
& -k(k-1)(k-2)\left(a^{2}+b^{2}\right)^{2} x \frac{\partial^{k-3} h}{\partial y^{k-3}}(x, 0)=0 .
\end{aligned}
$$

Proposition 3.1. Let $\alpha=a+b \sqrt{-1}$ and $\beta=a-b \sqrt{-1}$. Then

$$
\frac{\partial^{k} h}{\partial y^{k}}(x, 0)=\frac{k!}{(1-\alpha x)(1-\beta x)}\left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}+\alpha^{k} \beta^{k} x^{k+1}\right)
$$

Proof. Put

$$
\begin{aligned}
& P_{k}=\frac{\partial^{k} h}{\partial y^{k}}(x, 0) \\
& \mathrm{Q}_{k}=P_{k}-2 a k P_{k-1}+k(k-1)\left(a^{2}+b^{2}\right) P_{k-2} .
\end{aligned}
$$

We then have

$$
Q_{k}-k\left(a^{2}+b^{2}\right) x Q_{k-1}=0
$$

and

$$
Q_{k}=\frac{k!}{2}\left(a^{2}+b^{2}\right)^{k-2} x^{k-2} Q_{2}
$$

Thus it follows that

$$
P_{k}-2 a k P_{k-1}+k(k-1)\left(a^{2}+b^{2}\right) P_{k-2}=\frac{k!}{2}\left(a^{2}+b^{2}\right)^{k-2} x^{k-2} Q_{2} .
$$

Let $\alpha=a+b \sqrt{-1}, \beta=a-b \sqrt{-1}$ and $R_{k}=P_{k}-k \alpha P_{k-1}$. Then we get

$$
R_{k}-k \beta R_{k-1}=(\alpha \beta x)^{k-\frac{2}{2}!} Q_{2}
$$

and

$$
R_{k}-\beta^{k-2} \frac{k!}{2} R_{2}=\frac{k!}{2} \beta^{k-2}\left(P_{2}-2(\alpha+\beta) P_{1}+2 \alpha \beta P_{0}\right) \sum_{i=1}^{k-2}(a x)^{i}
$$

Note that

$$
\begin{aligned}
& P_{0}=\frac{x}{(1-\alpha x)(1-\beta x)} \\
& P_{1}=\frac{1+\alpha \beta x^{2}}{(1-\alpha x)(1-\beta x)} \\
& P_{2}=\frac{2(\alpha+\beta)+2 \alpha^{2} \beta^{2} x^{3}}{(1-\alpha x)(1-\beta x)} .
\end{aligned}
$$

Then we get

$$
R^{k}=k!\beta^{k-1} \frac{1-(\alpha x)^{k}(1-\beta x)}{(1-\alpha x)(1-\beta x)}
$$

and

$$
P_{k}=\frac{k!}{(1-\alpha x)(1-\beta x)}\left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}+\alpha^{k} \beta^{k} x^{k+1}\right)
$$

We utilize Proposition 3.1 to obtain Theorem 1.1.

Proof of Theorem 1.1.

The $h(x, y)$ is described as

$$
h(x, y)=h(x, 0)+\frac{\partial h}{\partial y}(x, 0) y+\frac{1}{2!} \frac{\partial^{2} h}{\partial y^{2}}(x, 0) y^{2}+\cdots+\frac{1}{k!} \frac{\partial^{k} h}{\partial y^{k}}(x, 0) y^{k}+\cdots
$$

From Proposition 3.1 it follows that

$$
\frac{1}{k!} \frac{\partial^{k} h}{\partial y^{k}}(x, 0)=\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta} \sum_{s=0}^{\infty}\left(\sum_{i+j=s} \alpha^{i} \beta^{j}\right) x^{s}+\alpha^{k} \beta^{k} \sum_{s=0}^{\infty}\left(\sum_{i+j=s} \alpha^{i} \beta^{j}\right) x^{s+k+1}
$$

and the coefficient of $x^{s} y^{k}$ is

$$
\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta} \sum_{i+j=s} \alpha^{i} \beta^{j}=\left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}\right)\left(\frac{\alpha^{s+1}-\beta^{s+1}}{\alpha-\beta}\right)
$$

Remark. When $b=0$ in this theorem,

$$
\varphi_{a, 0}\left(\left[H_{s, k}\right]\right)=(s+1) k a^{s+k-1} .
$$

Especially $\varphi_{1,0}$ corresponds to the Euler characteristic and $\varphi_{0, b}$ is the Ochanine multiplicative genus of case $\delta=-b^{2}$ and $\varepsilon=b^{4}$.

Let ξ be the canonical line bundle over $C P^{2}$ and let $P(m, n)$ denote the projective space bundle associated with $\xi^{m} \oplus \xi^{n}$.

Proposition 3.2.

$$
[P(m, n)]=-\frac{(m-n)^{2}}{3}\left[H_{2,2}\right]+\frac{(m-n)^{2}+3}{3}\left[C P^{2}\right]\left[C P^{1}\right]
$$

Proof. Put

$$
[P(m, n)]=x\left[H_{2,2}\right]+y\left[C P^{2}\right]\left[C P^{1}\right]+z\left[C P^{1}\right]^{3}
$$

We can determine x, y and z by the facts that

$$
\begin{aligned}
& S_{(3)}(P(m, n))=2(m-n)^{2}, S_{(2,1)}(P(m, n))=6, S_{(1,1,1)}(P(m, n))=6, \\
& S_{(3)}\left(H_{2,2}\right)=-6, S_{(2,1)}\left(H_{2,2}\right)=6, S_{(1,1,1)}\left(H_{2,2}\right)=6, \\
& S_{(3)}\left(C P^{2} \times C P^{1}\right)=0, S_{(2,1)}\left(C P^{2} \times C P^{1}\right)=6, S_{(1,1,1)}\left(C P^{2} \times C P^{1}\right)=6, \\
& \left.S_{(3)}\left(\left(C P^{1}\right)^{3}\right)=0, S_{(2,1)}\left(C P^{1}\right)^{3}\right)=0, S_{(1,1,1)}\left(\left(C P^{1}\right)^{3}\right)=8 .
\end{aligned}
$$

To the formal group law $F(x, y)=(x+y-2 a x y) /\left(1-\left(a^{2}+b^{2}\right) x y\right)$ we apply

$$
a=\frac{\delta}{2} \quad \text { and } \quad b=\frac{\sqrt{3} \delta}{2}
$$

The logarithm is

$$
l(x)=\int_{0}^{x} \frac{1}{1-\delta x+\delta^{2} x^{2}} d x
$$

Let $\varphi_{\delta}: M U^{*} \rightarrow Q$ denote the multiplicative genus associated with the formal group law $F(x, y)=(x+y-\delta x y) /\left(1-\delta^{2} x y\right)$. Then we have the following.

Theorem 3.3. The ideal in $M U^{*} \otimes Q$ consisting of α with $\varphi_{\delta}(\alpha)=0$ for any δ is generated by cobordism classes of fibre bundles over $C P^{2}$.

Proof. Let $S_{(n)}(M)$ denote the characteristic number of M corresponding to the symmetric polynomial Σt_{i}^{n}. The characteristic number of the Milnor manifold (cf.[9]) is

$$
S_{(n+m-1)}\left(H_{n, m}\right)=-\binom{n+m}{n}, 2 \leq n \leq m
$$

We take a generating set $\left\{\left[C P^{1}\right],\left[C P^{2}\right],\left[H_{2, j}\right] \mid j \geq 2\right\}$ of the ring $M U^{*} \otimes Q$. We use Theorem 1.1 to get $\varphi_{\delta}\left(\left[C P^{1}\right]\right)=\delta, \varphi_{\delta}\left(\left[C P^{2}\right]\right)=0$ and $\varphi_{\delta}\left(\left[H_{2, j}\right]\right)=0, j \geq 2$. Therefore the kernel of φ_{δ} is generated by $\left\{\left[C P^{2}\right]\right.$, $\left.\left[H_{2, j}\right], j \geq 2\right\}$. If $j>2, H_{2, j}$ is a fibre bundle over $C P^{2}$ with the fibre $C P^{j-1}$. By using Proposition 3.3 we see that $\left[H_{2,2}\right.$] belongs to the ideal generated by cobordism classes of fibre bundles over $C P^{2}$.

4. Genera cancelling $\left[H_{2, j}\right], j>n$

We discuss the multiplicative genus associated with the formal group law $F(x, y)=l^{-1}(l(x)+l(y))$ with the logarithm $l(x)$ given by the integral
of $1 /\{$ a polynomial $\}$ which is a generalization of the logarithm for the multiplicative genus φ_{δ} in Section 3. For rational numbers $\delta_{1}, \delta_{2}, \cdots, \delta_{n}$, we consider a formal power series

$$
l(z)=\int_{0}^{z} \frac{1}{1+\delta_{1} x+\delta_{1}^{2} x^{2}+\delta_{2} x^{3}+\cdots+\delta_{n} x^{n+1}} d x
$$

and denote the multiplicative genus associated with the formal group law $F(x, y)=l^{-1}(l(x)+l(y))$ by

$$
\varphi_{\delta_{1}, \cdots, \delta_{n}}: M U^{*} \rightarrow Q
$$

We then have the following

Proposition 4.1.

$$
\begin{equation*}
\varphi_{\delta_{1}, \cdots, \delta_{n}}\left(\left[C P^{1}\right]\right)=-\delta_{1}, \varphi_{\delta_{1}, \cdots, \delta_{n}}\left(\left[C P^{2}\right]\right)=0, \varphi_{\delta_{1}, \cdots, \delta_{n}}\left(\left[H_{2,1}\right]\right)=\delta_{1}^{2} \tag{1}
\end{equation*}
$$

(2) $\quad \varphi_{\delta_{1}, \cdots, \delta_{n}}\left(\left[H_{2, j}\right]\right)=\left\{\begin{array}{lc}\frac{j+1}{2} \delta_{j}, & 2 \leq j \leq n \\ 0, & j>n\end{array}\right.$

Proof. The logarithm $l(x)$ for $F(x, y)$ is described as

$$
l(x)=\sum \frac{\varphi_{\delta_{1}, \cdots, \delta_{n}}\left(\left[C P^{n}\right]\right)}{n+1} x^{n+1}
$$

We obtain (1) by the facts that

$$
l(z)=z-\frac{\delta_{1}}{2} z^{2}+\text { higher terms of degree } \geq 4
$$

and $\left[H_{2,1}\right]=\left[C P^{1}\right]^{2}$. Consider the formal power series

$$
h(x, y)=\sum \varphi_{\delta_{1}, \cdots, \delta_{n}}\left(\left[H_{i, j}\right]\right) x^{i} y^{j} .
$$

The Buchstaber formula [2]

$$
H(x, y)=\left(\sum\left[C P^{n}\right] x^{n}\right)\left(\sum\left[C P^{n}\right] y^{n}\right) F_{M U}(x, y)
$$

implies

$$
\begin{aligned}
h(x, y) & =l^{\prime}(x) l^{\prime}(y) F(x, y) \\
& =\left(l^{\prime}(0)+\frac{l^{\prime \prime}(0)}{1!} x+\cdots+\frac{l^{(n+1)}(0)}{n!} x^{n}+\cdots\right) \cdot l^{\prime}(y)
\end{aligned}
$$

$$
\left(F(0, y)+\frac{1}{1!} \frac{\partial F}{\partial x}(0, y) x+\frac{1}{2!} \frac{\partial^{2} F}{\partial x^{2}}(0, y) x^{2}+\cdots+\frac{1}{n!} \frac{\partial^{n} F}{\partial x^{n}}(0, y) x^{n}+\cdots\right)
$$

Comparing the coefficients of x^{2}, we have

$$
\begin{aligned}
& h_{2,0}+h_{2,1} y+h_{2,2} y^{2}+\cdots+h_{2, n} y^{n}+\cdots \\
= & l^{\prime}(y) \cdot\left(\frac{l^{\prime}(0)}{2} \frac{\partial^{2} F}{\partial x^{2}}(0, y)+l^{\prime \prime}(0) \frac{\partial F}{\partial x}(0, y)+\frac{l^{(3)}(0)}{2} F(0, y)\right),
\end{aligned}
$$

where $h_{i, j}=\varphi_{\delta_{1}, \cdots, \delta_{n}}\left(\left[H_{i, j}\right]\right)$. Since $l(F(x, y))=l(x)+l(y)$, it follows that

$$
l^{\prime}(F(x, y)) \frac{\partial F}{\partial x}=l^{\prime}(x)
$$

and

$$
l^{\prime \prime}(F(x, y))\left(\frac{\partial F}{\partial x}\right)^{2}+l^{\prime}(F(x, y)) \frac{\partial^{2} F}{\partial x^{2}}=l^{\prime \prime}(x)
$$

From the facts that $l^{\prime}(0)=1, l^{\prime \prime}(0)=-\delta_{1}$ and $l^{(3)}(0)=0$, it follows that

$$
\begin{aligned}
& h_{2,0}+h_{2,1} y+h_{2,2} y^{2}+\cdots+h_{2, n} y^{n}+\cdots \\
= & -\delta_{1}+\delta_{1}^{2} y+\frac{3}{2} \delta_{2} y^{2}+\cdots+\frac{n+1}{2} \delta_{n} y^{n}
\end{aligned}
$$

and we complete the proof of (2).
We can take a generating set $\left\{\left[C P^{1}\right],\left[C P^{2}\right],\left[H_{2,2}\right], \cdots,\left[H_{2, n}\right], \cdots\right\}$ for the polynomial ring $M U^{*} \otimes Q$. Therefore it follows from Proposition 4.1 that

Theorem 4.2. $[M]\left(\in M U^{*} \otimes Q\right)$ belongs to the ideal generated by $\left\{\left[C P^{2}\right],\left[H_{2, j}\right](j>n)\right\}$ in $M U^{*} \otimes Q$ if and only if for any $\delta_{1}, \cdots, \delta_{n-1}$ and $\delta_{n}(\in Q)$

$$
\varphi_{\delta_{1}, \cdots, \delta_{n}}([M])=0
$$

References

[1] S. Araki: Typical formal groups in complex cobordism and K-theory, Lectures in Math., Dept. of Math., Kyoto Univ., Tokyo, Kinokuniya Book Store, 1973.
[2] V.M. Buchstaber: The Chern-Dold character in cobordisms. I. Math. USSR-Sbornik

12 (1970), 573-594.
[3] F. Hirzebruch: Topological Methods on Algebraic Geometry, Springer, Berlin, 1966.
[4] P.S. Landweber: Cobordism operations and Hopf algebras. Trans. Amer. Math. Soc. 129 (1967), 94-110.
[5] P.S. Landweber: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. vol 1326, Berlin Heiderberg New York: Springer, 1988.
[6] S.P. Novikov: The method of algebraic topology from the viewpoint of cobordism theories (Russian), Izvestija Akademi Nauk SSSR, Serija Matematičeskaja 31 (1967), 855-951.
[7] S. Ochanine: Sur les generes multiplicatifs definis par des integrales elliptiques. Topology 26 (1987), 143-151.
[8] D. Quillen: On the formal group laws of unoriented and complex cobordism theory. Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
[9] R. Stong: Notes on Cobordism Theory, Princeton, NJ:Princeton Univ. Press, 1968.
[10] W.S. Wilson: Brown-Peterson Homology, an Introduction and Sampler. Regional Conference Series in Math., 48. AMS Providence Rhode Island, 1980.

Graduate School of Mathematics Kyushu University 01 Ropponmatsu Fukuoka 810 Japan

