A GENERALIZATION OF A THEOREM OF MILNOR

Dedicated to Professor Seiya Sasao on his 60th birthday

Fumihiro USHITAKI

(Received October 29, 1992)

1. Introduction

We work in the smooth category with free actions by groups in the present paper. Let us recall Milnor's theorem:

Theorem 1.1 ([6; Corollary 12.13]). Any h-cobordism W between lens spaces L and L^{\prime} must be diffeomorphic to $L \times[0,1]$ if the dimension of L is greater than or equal to 5.

Let Z_{m} be the cyclic group of order m. Then we see that Theorem 1.1 is put in another way as follows:

Theorem 1.2. Let $S(V)$ and $S\left(V^{\prime}\right)$ be free linear Z_{m}-spheres of dimension $2 n-1 \geqq 5$. Then any Z_{m}-h-cobordism W between $S(V)$ and $S\left(V^{\prime}\right)$ must be $Z_{m^{-}}$-diffeomorphic to $S(V) \times I$, where $I=[0,1]$.

Let R be a ring with unit, G a finite group. Put $G L(R)=\underline{\varliminf} G L_{n}(R)$ and $E(R)=[G L(R), G L(R)]$ the commutator subgroup of $G L(R)$. Then $K_{1}(R)$ denotes the quotient group $G L(R) / E(R)$. Let Z be the ring of integers and Q the ring of rational munbers. Let $Z[G]$ and $Q[G]$ denote the group rings of G over \boldsymbol{Z} and \boldsymbol{Q}. The Whitehead group of \boldsymbol{G} is the quotient group

$$
W h(G)=K_{1}(Z[G]) /< \pm g: g \in G>.
$$

The natural inclusion map $i: G L(Z[G]) \rightarrow G L(Q[G])$ gives rise to a group homomorphism $i_{*}: K_{1}(Z[G]) \rightarrow K_{1}(Q[G])$. Then $S K_{1}(Z[G])$ is defined by setting

$$
S K_{1}(Z[G])=\operatorname{ker}\left[i_{*}: K_{1}(Z[G]) \rightarrow K_{1}(Q[G])\right] .
$$

In [15], C.T.C. Wall showed that $S K_{1}(Z[G])$ is isomorphic to the torsion
subgroup of $W h(G)$. We will apply the following algebraic result to extend Theorem 1.2.

Theorem A. Let G be a finite group which can act linearly and freely on spheres. Then $S K_{1}(Z[G])=0$ if and only if G is isomorphic to one of the following groups.
(1) A cyclic group.
(2) A group of type I in Appendix(a metacyclic group with certain condition).
(3) A quaternionic group $\mathbf{Q}(8 t)$ with generators B, R and relations $B^{4 t}=1, B^{2 t}=R^{2}=(B R)^{2}$, where $t \geqq 1$.
(4) A group $\mathbf{Q}\left(8 t, m_{1}, m_{2}\right)$ generated by A, B, R with relations $A^{m_{1} m_{2}}=B^{4 t}=1, B A B^{-1}=A^{-1}, R^{2}=B^{2 t}, R A R^{-1}=A^{l}, R B R^{-1}=$ B^{-1}, where $m_{1}, m_{2} \geqq 1, \quad m_{1} m_{2}>1, \quad\left(m_{1}, m_{2}\right)=1, \quad\left(2 t, m_{1} m_{2}\right)=1$, $l \equiv-1\left(m_{1}\right), l \equiv 1\left(m_{2}\right)$.
(5) The binary tetrahedral group \mathbf{T}^{*}.
(6) A generalized binary octahedral group $\mathrm{O}^{*}(48 t)$ generated by B, P, Q, R with relations $B^{3 t}=1, P^{2}=Q^{2}=(P Q)^{2}=R^{2}, B P B^{-1}=$ $Q, B Q B^{-1}=P Q, R P R^{-1}=Q P, R Q R^{-1}=Q^{-1}, R B R^{-1}=B^{-1}$, where t is odd.
(7) The binary icosahedral group $\mathrm{I}^{*}=S L(2,5)$.
(8) The group generated by $S L(2,5)$ and an element S, where $S^{2}=-1 \in S L(2,5), S L S^{-1}=\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right) L\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right)^{-1}$ for $L \in S L(2,5)$.

We obtain the following applications of Theorem A as generalizations of Theorem 1.2.

Example B. Let G be a finite group in Theorem A. Let X be a free G-homotopy sphere of dimension $2 n-1 \geqq 5$, and let $S(V)$ and $S\left(V^{\prime}\right)$ be free linear G-spheres of dimension $2 n-1 \geqq 5$. Then,
(1) Any G - h-cobordism W between X and itself must be G-diffeomorphic to $X \times I$.
(2) Any G - h-cobordism W between $S(V)$ and $S\left(V^{\prime}\right)$ must be G-diffeomorphic to $S(V) \times I$.

Example C. Let G be a finite group. Let X be a free G-homotopy sphere of dimension $4 n+1 \geqq 5$, and let $S(V)$ and $S\left(V^{\prime}\right)$ be free linear G-spheres of dimension $4 n+1 \geqq 5$. Then,
(1) Any G - h-cobordism W between X and itself must be G-diffeomorphic to $X \times I$.
(2) Any G-h-cobordism W between $S(V)$ and $S\left(V^{\prime}\right)$ must be G-diffeomorphic to $S(V) \times I$.

When G is a compact Lie group of positive dimension, a generalization of Theorem 1.2 is:

Theorem D. Let G be a compact Lie group of positive dimension which can act freely on spheres. Let X^{m} and $X^{\prime m}$ be free G-homotopy spheres of dimension m, and let $\left(W ; X, X^{\prime}\right)$ be a G-h-cobordism of a free G-action.
(1) If $G=S^{1}$ and $m=2 n-1 \geqq 7$, then W must be S^{1}-diffeomorphic to $X \times I$.
(2) If $G=N S^{1}$ and $m=4 n-1 \geqq 7$, then W must be $N S^{1}$-diffeomorphic to $X \times I$ where $N S^{1}$ is the normalizer of S^{1} in S^{3}.
(3) If $G=S^{3}$ and $m=4 n-1 \geqq 11$, then W must be S^{3}-diffeomorphic to $X \times I$.

This paper is organized as follws: Section 2 presents the proof of Theorem A. In section 3 we prove Examples B and C, and state some results on G - h-cobordisms between G-homotopy spheres. We prove Theorem D in section 4. Appendix is devoted to quoting the table of the finite solvable groups which can act linearly and freely on odd dimensional spheres from [16].

2. Proof of Theorem A

First, let G be a finite solvable group which can act linearly and freely on spheres. As in [16; Theorem 6.1.11], there are 4 types for such kinds of groups. For the convenience of the readers, the table of these groups are cited in Appendix. We now recall the structure of $S K_{1}(Z[G])$ of these groups G. We must prepare the following notations.

Let G_{1}, G_{2}, G_{3} and G_{4} denote the groups of type I, II, III and IV respectively mentioned in the table in Appendix. Let ($a_{1}, a_{2}, \cdots, a_{\lambda}$) denote the greatest common divisor of integers $\left\{a_{1}, a_{2}, \cdots, a_{\lambda}\right\}$, and let m, n, r, l, k, u, v and d be the integers appeared in the definition of G_{1}, G_{2}, G_{3} and G_{4}. For positive integers α, β, γ and δ, put

$$
\begin{aligned}
& M_{\beta}=\left(r^{\beta}-1, m\right) \\
& D(\alpha)=\{x \in N \mid x \text { is a divisor of } \alpha\} \\
& D(\alpha, \beta)=\{x \in D(\alpha) \mid x \text { can be divided by } \beta\}
\end{aligned}
$$

$$
\begin{aligned}
& D(\alpha)_{\gamma}^{\delta}=\{x \in D(\alpha) \mid x \gamma \equiv 0(\delta)\} \\
& D(\alpha, \beta)_{\gamma}^{\delta}=\{x \in D(\alpha, \beta) \mid x \gamma \equiv 0(\delta)\}
\end{aligned}
$$

If d is an even integer, we put $d^{\prime}=d / 2$, and put

$$
\begin{aligned}
t(2)= & \#\left\{(\alpha, \beta) \mid \beta \in D(v)_{k-1}^{v}, \alpha \in D\left(M_{2^{u} \beta}\right),\right. \\
& \left(\alpha+a M_{2^{u} \beta}\right)\left(l-1, r^{n / 4}-1\right) \equiv 0(m) \\
& \text { for some integer } \left.a \text { with } 0 \leqq a<m / M_{2^{u} \beta}\right\} \\
& -\# \bigcup_{\substack{0 \leq b<d \\
\lambda=0,1}} D(m)_{\left(l-1, r^{n / 4}-1, l^{2} r^{b}+1\right),}^{m} \\
t^{\prime}(2)= & \#(\alpha, \beta) \mid \beta \in D(v)_{k-1}^{v}, \alpha \in D\left(M_{2^{u} \beta}\right), \\
& \left(\alpha+a M_{2^{u} \beta}\right)\left(l-1, r^{n / 4}-1\right) \equiv 0(m) \text { or } \\
& \left(\alpha+a M_{2^{u} \beta}\right)\left(l r^{d^{\prime}}-1, r^{n / 4}-1\right) \equiv 0(m) \\
& \text { for some integer } \left.a \text { with } 0 \leqq a<m / M_{2^{u} \beta}\right\} \\
& -\# \bigcup_{\substack{0 \leq b<d \\
\lambda=0,1}}\left(D(m)_{\left(l-1, r^{n / 4}-1, l^{2} r^{b}+1\right)}^{m} \bigcup D(m)_{\left(l r^{\left.d^{\prime}-1, r^{n / 4}-1, l^{2} r^{b}+1\right)}\right)}^{m}\right), \\
t(3)= & \sum_{\beta \in D(n, 3)} \# D\left(M_{\beta}\right)-1, \\
t(4)= & \sum_{\beta \in D(n, 3)} \# D\left(M_{\beta}\right)-\sum_{\beta \in D(n, 3)_{k+1}^{n}} \# D\left(M_{\beta}\right)_{l+1}^{m} .
\end{aligned}
$$

Then we have:
Theorem 2.1 ([12; Theorem]). Let G_{1}, G_{2}, G_{3} and G_{4} denote the groups of type I, II, III and IV respectively.
(1) $S K_{1}\left(Z\left[G_{1}\right]\right)=0$.
(2) $S K_{1}\left(Z\left[G_{2}\right]\right) \cong Z_{2}^{t(2)}$ if d is an odd integer,
$S K_{1}\left(Z\left[G_{2}\right]\right) \cong \boldsymbol{Z}_{2}^{t^{\prime}(2)} \quad$ if d is an even integer.
(3) $S K_{1}\left(Z\left[G_{3}\right]\right) \cong Z_{2}^{t(3)}$.
(4) $\quad S K_{1}\left(Z\left[G_{4}\right]\right) \cong \boldsymbol{Z}_{2}^{(4)}$.

By Theorem 2.1, we get (1) and (2) of Theorem A. Let G_{2}^{1} be a group G_{2} such that d is odd. At first, we determine the group G_{2}^{1} satisfying $S K_{1}\left(Z\left[G_{2}^{1}\right]\right)=0$. Put

$$
\mathscr{T}_{+}=\left\{(\alpha, \beta) \mid \beta \in D(v)_{k-1}^{v}, \alpha \in D\left(M_{2^{u} \beta}\right),\right.
$$

$$
\left(\alpha+a M_{2^{u} \beta}\right)\left(l-1, r^{n / 4}-1\right) \equiv 0(m)
$$

$$
\text { for some integer } \left.a \text { with } 0 \leqq a<m / M_{2_{\beta} \beta}\right\} \text {, }
$$

and

$$
\mathscr{T}_{-}=\left\{(\alpha, v) \mid \alpha \in \bigcup_{\substack{0 \leq b<d \\ \lambda=0,1}} D(m)_{\left(l-1, r^{n / 4}-1, l^{\lambda} r^{b}+1\right)}^{m}\right\}
$$

By [12; §3], $t(2)$ the 2-rank of $S K_{1}\left(Z\left[G_{2}^{1}\right]\right)$ is calculated by

$$
t(2)=\# \mathscr{T}_{+}-\# \mathscr{T}_{-} .
$$

It is easy to see that \mathscr{T}_{-}is a subset of \mathscr{T}_{+}. Suppose that $t(2)=0$. Then it is necessary that $D(v)_{k-1}^{v}=\{v\}$. In fact, if there exists an element β of $D(v)_{k-1}^{v}$ which is different from v, we see that the ordered pair of numbers $\left(M_{2^{u_{\beta}}}, \beta\right)$ is in \mathscr{T}_{+}, but is not in \mathscr{T}_{-}. Hence, if β in $D(v)$ satisfies $\beta(k-1) \equiv 0(v)$, it must be equal to v. Thus we have $(k-1, v)=1$. Since $k^{2} \equiv 1 \quad(n)$ and $k \equiv-1 \quad\left(2^{u}\right)$, it holds that $k \equiv-1$ (n). Since d is a divisor of $k-1$ and d is odd , by [12; Observation 3.1] ($k-1, v$) is divisible by d. Hence we have $d=1$, thereby $r \equiv 1(m)$. By using $(n(r-1), m)=1$, we get $m=1$, that is, A is equal to the identity element of G_{2}^{1}. Thus if $S K_{1}\left(Z\left[G_{2}^{1}\right]\right)=0, G_{2}^{1}$ must be isomorphic to a group of order $2 n$ which is generated by the elements of the form B and R, and which has relations:

$$
B^{n}=1, R^{2}=B^{n / 2}, R B R^{-1}=B^{-1}
$$

where n is a number of the form $2^{u} v$ for some $u \geqq 2,(v, 2)=1$, $v \geqq 1$. Conversely, we can easily check that $S K_{1}$ for this group vanishes. By putting $t=n / 4$, we have (3) of Theorem A.

Let G_{2}^{0} be a group G_{2} such that d is even. Next, we determine the group G_{2}^{0} satisfying $S K_{1}\left(Z\left[G_{2}^{0}\right]\right)=0$. Since d is even, we have $m>1$. Put

$$
\begin{aligned}
\mathscr{T}_{+}^{\prime}=\{ & (\alpha, \beta) \mid \beta \in D(v)_{k-1}^{v}, \alpha \in D\left(M_{2^{u} \beta}\right), \\
& \left(\alpha+a M_{2^{u} \beta}\right)\left(l-1, r^{n / 4}-1\right) \equiv 0(m) \text { or } \\
& \left(\alpha+a M_{2^{u} \beta}\right)\left(l r^{d^{\prime}}-1, r^{n / 4}-1\right) \equiv 0(m) \\
& \text { for some integer } \left.a \text { with } 0 \leqq a<m / M_{2^{u} \beta}\right\},
\end{aligned}
$$

and

$$
\mathscr{T}_{-}^{\prime}=\left\{(\alpha, v) \mid \alpha \in \bigcup_{\substack{0 \leq b<d \\ \lambda=0,1}}\left(D(m)_{\left(l-1, r^{n / 4}-1, l^{\lambda} r^{b}+1\right)}^{m} \bigcup D(m)_{\left(l r^{\left.d^{\prime}-1, r^{n / 4}-1, l^{\lambda} b+1\right)}\right.}^{m}\right)\right\}
$$

By [12; §3], $t^{\prime}(2)$ the 2-rank of $S K_{1}\left(Z\left[G_{2}^{0}\right]\right)$ is calculated by

$$
t^{\prime}(2)=\# \mathscr{T}_{+}^{\prime}-\# \mathscr{T}_{-}^{\prime} .
$$

It is easy to see that \mathscr{T}_{-}^{\prime} is a subset of \mathscr{T}_{+}^{\prime}. Then by the same argument as before, we have $D(v)_{k-1}^{v}=\{v\}$ and $(k-1, v)=1$. Since $k^{2} \equiv 1(n)$ and $k+1 \equiv 0\left(2^{u}\right)$, it holds that $k \equiv-1(n)$. Since d is even, by [12; Observation 3.1], $d^{\prime}=d / 2$ is a divisor of $(k-1, v)$. Hence, we have $d=2$, thereby $r \not \equiv 1$ (m) and $r^{2} \equiv 1(m)$. Now we claim that $r \equiv-1(m)$. In fact, since $(r+1)$ $(r-1) \equiv 0(m)$ and $(r-1, m)=1$, it holds that $r+1 \equiv 0(m)$ or $m=1$. However, it must hold $r \equiv-1(m)$ because $m>1$. Therefore, we have

$$
\left(l r^{d^{\prime}}-1, r^{n / 4}-1\right)=\left(l+1,(-1)^{n / 4}-1\right)
$$

Thus, for $\# \mathscr{T}_{+}^{\prime}=\# \mathscr{T}_{-}^{\prime}$, it is necessary that

$$
\begin{aligned}
& \#\left\{\alpha \in D(m) \mid \alpha\left(l-1,(-1)^{n / 4}-1\right) \equiv 0(m)\right. \\
&\text { or } \left.\alpha\left(l+1,(-1)^{n / 4}-1\right) \equiv 0(m)\right\} \\
&= \bigcup_{\substack{b=0,1 \\
\lambda=0,1}}\left(D(m)_{\left(l-1,(-1)^{n / 4}-1,(-1)^{b} l^{\lambda}+1\right)}^{m} \bigcup D(m)_{\left(l+1,(-1)^{m / 4}-1,(-1)^{b} l+1\right)}^{m}\right) .
\end{aligned}
$$

However, we can easily check that this formula always holds. Thus, if $S K_{1}\left(Z\left[G_{2}^{0}\right]\right)=0, G_{2}^{0}$ must be isomorphic to a group of order $2 n$ which is generated by the elements of the form A, B and R, and which has relations:

$$
\begin{aligned}
& A^{m}=B^{n}=1, B A B^{-1}=A^{-1} \\
& R^{2}=B^{n / 2}, R A R^{-1}=A^{l}, R B R^{-1}=B^{-1}
\end{aligned}
$$

where m, n and l satisfy the following conditions:

$$
\begin{aligned}
& m>1,(n, m)=1, l^{2} \equiv 1(m) \\
& n=2^{u} v(u \geqq 2,(v, 2)=1, v \geqq 1)
\end{aligned}
$$

Conversely, we can easily check that $S K_{1}$ for this group vanishes. Now, we put $t=n / 4$. Since $l^{2} \equiv 1(m)$, there exist two integers m_{1} and m_{2} such that $m=m_{1} m_{2},\left(m_{1}, m_{2}\right)=1, l \equiv-1\left(m_{1}\right)$, and $l \equiv 1\left(m_{2}\right)$. Conversely if we write $m=m_{1} m_{2}$ where $\left(m_{1}, m_{2}\right)=1$, there exists an integer l uniquely modulo m such that $l \equiv-1\left(m_{1}\right)$ and $l \equiv 1\left(m_{2}\right)$. We denote this group by $\mathbf{Q}\left(8 t, m_{1}, m_{2}\right)$ (This notation is based on [11]). Thus we get (4) of

Theorem A.
Next, we determine the group G_{3} satisfying $S K_{1}\left(Z\left[G_{3}\right]\right)=0$. Assume that

$$
t(3)=\sum_{\beta \in D(n, 3)} \# D\left(M_{\beta}\right)-1=0
$$

Since $\# D\left(M_{\beta}\right) \geqq 1$ for every $\beta \in D(n, 3)$, it is necessary that $\# D(n, 3)=1$. Hence, n must be 3 , thereby d is 1 or 3 . However, if $d=3, n / d$ is not divisible by 3 . Hence d must be equal to 1 , thereby $r \equiv 1(m)$. By using ($n(r-1), m)=1$, we have $m=1$, that is, A is equal to the identity element of G_{3}. Thus, if $S K_{1}\left(Z\left[G_{3}\right]\right)=0, G_{3}$ must be isomorphic to a group of order 24 which is generated by the elements of the form B, P and Q, and which has relations:

$$
B^{3}=1, P^{2}=Q^{2}=(P Q)^{2}, B P B^{-1}=Q, B Q B^{-1}=P Q .
$$

This group is the binary tetrahedral group T*. Conversely, we can easily see that $S K_{1}\left(Z\left[\mathbf{T}^{*}\right]\right)=0$. This proves (5) of Theorem A.

Next, we determine the group G_{4} satisfying $S K_{1}\left(Z\left[G_{4}\right]\right)=0$. Suppose that

$$
t(4)=\sum_{\beta \in D(n, 3)} \# D\left(M_{\beta}\right)-\sum_{\beta \in D(n, 3)_{k+1}^{n}} \# D\left(M_{\beta}\right)_{l+1}^{m}=0
$$

Then it is necessary that $D(n, 3)=D(n, 3)_{k+1}^{n}$. In fact, if there exists an element β_{0} of $D(n, 3)-D(n, 3)_{k+1}^{n}$, since $\# D\left(M_{\beta_{0}}\right) \geqq 1$, we have $t(4) \neq 0$. Hence, for every element β in $D(n, 3)$, it must hold that $\beta(k+1) \equiv 0$ (n). In particular, we have $3(k+1) \equiv 0(n)$. Thus k must satisfy $k+1 \equiv 0(n / 3)$. We claim that $k \equiv-1(n)$. In fact, if k is congruent to $n / 3-1$ or $2 n / 3-1$ modulo n, the conditions $k+1 \equiv 0(3)$ and $n \equiv 0(3)$ imply $n \equiv 0$ (9), but it is a contradiction to the condition $k^{2} \equiv 1(n)$. Therefore we have

$$
r^{k-1} \equiv r^{n-2} \equiv r^{n} \equiv 1(m)
$$

which implies d is a divisor of $(n-2, n)$. Since a group G_{4} has odd n, we have $d=1$. By the same argument as above, we have $m=1$, that is, A is equal to the identity element of G_{4}. Thus if $S K_{1}\left(Z\left[G_{4}\right]\right)=0, G_{4}$ must be a group of order $16 n$ which is generated by the elements of the
form B, P, Q and R, and which has relations:

$$
\begin{aligned}
& B^{n}=1, P^{2}=Q^{2}=(P Q)^{2}=R^{2} \\
& B P B^{-1}=Q, B Q B^{-1}=P Q, R P R^{-1}=Q P \\
& R Q R^{-1}=Q^{-1}, R B R^{-1}=B^{-1}
\end{aligned}
$$

where n is divisible by 3 , but is not divisible by 2 . This group is the generalized binary octahedral group $\mathbf{O}^{*}(48 t)$. Conversely, we can easily check that $S K_{1}\left(Z\left[O^{*}(48 t)\right]\right)=0$. This proves (6) of Theorem A.

Next, we consider the case that G is non-solvable.
Lemma 2.2 ([16; 6.3.1 Theorem]). Let G be a finite non-solvable group. If G has a fixed point free representation, then G is one of the following two types.

Type V. $\quad G=K \times S L(2,5)$ where K is a solvable fixed point free group of type I in Appendix and order prime to 30.

Type VI. $G=<G_{5}, S>$ where $G_{5}=K \times S L(2,5)$ is a normal subgroup of index 2 and type $\mathrm{V}, S^{2}=-1 \in S L(2,5), S L S^{-1}=\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right) L\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right)^{-1}$ for $L \in S L(2,5)$, and S normalizes K.

Let G be a finite group of type V or VI. For an odd prime p, since p-Sylow subgroups of G are cyclic, $S K_{1}(Z[G])_{(p)}=0$. Hence by [7; Theorem 3], $S K_{1}(Z[G])$ is generated by induciton from 2-elementary subgroups of G, that is, $S K_{1}(Z[G])=0$ if and only if G has not a subgroup which is isomorphic to $\Gamma \times S_{2}$ where Γ is a cyclic group of order prime to 2 and S_{2} is a 2-group. In these cases, $S K_{1}(Z[G])=0$ if and only if G has not a subgroup of the form $\Gamma \times \mathbf{Q}_{8}$ (see [5]). Hence K must be $\{1\}$ which proves (7) and (8) of Theorem A.

3. G - h-cobordisms between G-homotopy spheres

Let $W h(G)$ be the Whitehead group of $G, L_{m}^{s}(G)$ and $L_{m}^{h}(G)$ the Wall groups (for the Wall groups, see [2], [14]). $Z[G]$ is the integral group ring with involution - defined by $\overline{\Sigma a_{g} g}=\Sigma a_{g} g^{-1}$ where $a_{g} \in Z$ and $g \in G$. For a matrix ($x_{i j}$) with coefficients in $\boldsymbol{Z}[G],\left(\overline{x_{i j}}\right)$ is defined by $\left(\overline{x_{j i}}\right)$. Then $W h(G)$ has the induced involution also denoted by -. We define a subgroup $\tilde{A}_{m}(G)$ of $W h(G)$ by

$$
\tilde{A}_{m}(G)=\left\{\tau \in W h(G) \mid \bar{\tau}=(-1)^{m} \tau\right\}
$$

and put

$$
A_{m}(G)=\tilde{A}_{m}(G) /\left\{\tau+(-1)^{m} \bar{\tau} \mid \tau \in W h(G)\right\} .
$$

Let $c: A_{2 n+1}(G) \rightarrow L_{2 n}^{s}(G)$ be the map in the Rothenberg exact sequence

$$
\cdots \rightarrow A_{2 n+1}(G) \xrightarrow{c} L_{2 n}^{s}(G) \xrightarrow{d} L_{2 n}^{h}(G) \rightarrow \cdots,
$$

and $\tilde{c}: \tilde{A}_{2 n+1}(G) \rightarrow L_{2 n}^{s}(G)$ the map determing c (for this exact sequence, see [8; Proposition 4.1]).

Proposition 3.1. Let G be a finite group such that $S K_{1}(Z[G])=0$. Then the following hold:
(1) If X is a free G-homotopy sphere of dimension $2 n-1 \geqq 5$, any G-h-cobordism W between X and itself must be G-diffeomorphic to $X \times I$.
(2) If $S(V)$ and $S\left(V^{\prime}\right)$ are free linear G-spheres of dimension $2 n-1 \geqq 5$, any G-h-cobordism W^{\prime} between $S(V)$ and $S\left(V^{\prime}\right)$ must be G-diffeomorphic to $S(V) \times I$.

Proof. (1) In the case $|G| \leqq 2$, since it holds that $W h(G)=0$, the conclusion follows from the s-cobordism theorem. Our proof will be done under $|G| \geqq 3$. Let W be a G - h-cobordism between X and itself, with $\operatorname{dim} W=2 n \geqq 6$. To distinguish the inclusions of X to W, we put $\partial W=X \amalg X^{\prime}$, where X^{\prime} is a copy of $X . \quad$ Let $i: X \rightarrow W$ and $i^{\prime}: X^{\prime} \rightarrow W$ be the natural inclusion maps. Let r be a G-homotopy inverse of i. Since the order of G is greater than or equal to 3 and G acts freely on a homotopy sphere X with $\operatorname{dim} X \geqq 5$, any G-self-homotopy equivalence of X is G-homotopic to the identity map. Hence, we have

$$
\tau\left(r \circ i^{\prime}\right)=\tau(i d)=0 .
$$

On the other hand,

$$
\begin{aligned}
\tau\left(r \circ i^{\prime}\right) & =\tau(r)+r_{*} \tau\left(i^{\prime}\right) \\
& =-r_{*} \tau(i)+r_{*} \tau\left(i^{\prime}\right) \\
& =r_{*}\left(\tau\left(i^{\prime}\right)-\tau(i)\right) .
\end{aligned}
$$

Thus we have $\tau\left(i^{\prime}\right)=\tau(i)$, that is,

$$
\tau(W, X)=\tau\left(W, X^{\prime}\right)
$$

By the duality theorem ([6; p. 394]), we also get

$$
\tau\left(W, X^{\prime}\right)=-\overline{\tau(W, X)}
$$

Hence by these formulae, we see that $\tau=-\bar{\tau}$, that is, τ is an element of $\tilde{A}_{2 n+1}(G)$.

Since G has periodic cohomolgy, $\tilde{A}_{2 n+1}(G)$ is isomorphic to $S K_{1}(Z[G])$ by [9; Theorem 3]. Hence we have $\tilde{A}_{2 n+1}(G)=0$, thereby $\tau=0$.
(2) Let C be a cyclic subgroup of G. By Theorem 1.2, $\operatorname{res}_{c} V=\operatorname{res}_{c} V^{\prime}$ as real C-modules. Thus $V=V^{\prime}$ as real G-modules, and then $S\left(V^{\prime}\right)$ is G-diffeomorphic to $S(V)$. Since $S K_{1}(Z[G])=0$, the conclusion now follows from (1) of this proposition.

Proof of Examples. Example B follows from Theorem A and Proposition 3.1 immediately. By [10], if a finite group G whose 2-Sylow subgroups are quaternionic acts freely on spheres, its dimension must be $4 n-1(n \in N)$. Hence, if a finite group G can act freely on spheres of dimension $4 n+1$, the 2 -Sylow subgroups of G are cyclic. Thus G must be of Type I in Appendix, thereby $S K_{1}(Z[G])=0$, which proves Example C.

In [13], we studied G - h-cobordisms between G-homotopy spheres and obtained the following results:

Theorem 3.2 ([13; Theorem A]). Let G be a finite group, and X a free G-homotopy sphere of dimension $2 n-1 \geqq 5$. Then the following (1) and (2) are equivalent.
(1) Any G-h-cobordism W between X and itself must be G-diffeomorphic to $X \times I$.
(2) $\operatorname{ker} \tilde{c}$ is trivial.

Corollary 3.3 ([13; Corollary B]). Suppose ker $\tilde{c}=0$. Let $S(V)$ and $S\left(V^{\prime}\right)$ be free linear G-spheres of dimension $2 n-1 \geqq 5$. Then a G-h-cobordism W between $S(V)$ and $S\left(V^{\prime}\right)$ must be G-diffeomorphic to $S(V) \times I$.

Theorem 3.2 is shown by using surgery theory. Corollary 3.3 is an immediate consequence of Theorem 3.2. Since by [9; Theorem 3] $S K_{1}(Z[G]) \cong \tilde{A}_{2 n+1}(G)$ for a periodic group G, Proposition 3.1 is a special case of Theorem 3.2 and Corollary 3.3. Moreover, as in [13], there exists a finite group G such that $S K_{1}(Z[G]) \neq 0$ and $\operatorname{ker} \tilde{c}=0$. For example, let p be an odd prime, q a prime such that $q \geqq 5$. Let G be $\mathbf{Q}_{8} \times \boldsymbol{Z}_{p}, \mathbf{T}^{*} \times \boldsymbol{Z}_{q}$, or $\mathbf{O}^{*} \times \boldsymbol{Z}_{q}$, where $\mathbf{Q}_{8}, \mathrm{~T}^{*}$, and \mathbf{O}^{*} denote the quaternionic group, the binary tetrahedral group, and the binary octahedral group
respectively. Then we see that $S K_{1}(Z[G]) \cong \boldsymbol{Z}_{2}$ and any G - h-cobordism W between a free G-homotopy sphere X of dimension $4 n-1 \geqq 7$ and itself must be G-diffeomorphic to $X \times I$, because $\operatorname{ker} \tilde{c}=0$.

4. Proof of Theorem D

Let G be a compact Lie group of positive dimension which can act freely on a sphere. Then by [3; p. 153, Theorem 8.5], G must be isomorphic to S^{1}, S^{3} or $N S^{1}$ the normalizer of S^{1} in S^{3}. If G is S^{1}, the dimension of a sphere on which G acts freely is $2 n-1(n \geqq 1)$. If G is $N S^{1}$ or S^{3}, it is $4 n-1(n \geqq 1)$ because G has a subgroup which is isomorphic to \mathbf{Q}_{8}. Now we recall the equivariant Whitehead group which is defined by S. Illman. By [4; Corollary 2,8],

$$
\begin{array}{lll}
W h_{S^{1}}\left(X^{m}\right) \cong W h(1)=0 & \text { where } & m=2 n-1 \geqq 7 \\
W h_{N S^{1}}\left(X^{m}\right) \cong W h\left(Z_{2}\right)=0 & \text { where } & m=4 n-1 \geqq 7, \\
W h_{S^{3}}\left(X^{m}\right) \cong W h(1)=0 & \text { where } & m=4 n-1 \geqq 11 .
\end{array}
$$

Thus ($W ; X, X^{\prime}$) is a G-s-cobordism in the sense of [1]. The conclusion now follows from the conditions about the dimension of the homotopy sphere by using[1; Theorem 1].

5. Appendix

Let G be a finite solvable group. Then G has a fixed point free complex representation if and only if G is of type I, II, III, IV below, with the additional condition: if d is the order of r in the multiplicative group of residues modulo m, of integers prime to m, then n / d is divisible by every prime divisor of d.

Type I. A group of order $m n$ that is generated by the elements of the from A and B, and that has relations:

$$
A^{m}=B^{n}=1, B A B^{-1}=A^{r}
$$

where m, n and r satisfy the following conditions:

$$
m \geq 1, n \geq 1,(n(r-1), m)=1, r^{n} \equiv 1(m)
$$

Type II. A group of order $2 m n$ that is generated by the elements of the form A, B and R, and that has relations:

$$
R^{2}=B^{n / 2}, R A R^{-1}=A^{l}, R B R^{-1}=B^{k}
$$

in addition to the relations in I, where m, n, r, l and k satisfy the following conditions:

$$
\begin{aligned}
& l^{2} \equiv r^{k-1} \equiv 1(m), k \equiv-1\left(2^{u}\right) \\
& n=2^{u} v(u \geqq 2,(v, 2)=1), k^{2} \equiv 1(n)
\end{aligned}
$$

in addition to the conditions in I.
Type III. A group of order $8 m n$ that is generated by the elements of the form A, B, P and Q, and that has relations:

$$
\begin{aligned}
& P^{2}=Q^{2}=(P Q)^{2}, A P=P A, A Q=Q A \\
& B P B^{-1}=Q, B Q B^{-1}=P Q
\end{aligned}
$$

in addition to the relations in I , where m, n and r satisfy the following conditions:

$$
n \equiv 1(2), n \equiv 0(3)
$$

in addition to the conditions in I.
Type IV. A group of order $16 m n$ that is generated by the elements of the form A, B, P, Q and R, and that has relations:

$$
\begin{aligned}
& R^{2}=P^{2}, R P R^{-1}=Q P, R Q R^{-1}=Q^{-1} \\
& R A R^{-1}=A^{l}, R B R^{-1}=B^{k}
\end{aligned}
$$

in addition to the relations in III, where m, n, r, k and l satisfy the following conditions:

$$
l^{2} \equiv r^{k-1} \equiv 1(m), k \equiv-1(3), k^{2} \equiv 1(n)
$$

in addition to the conditions in III.

References

[1] S. Araki and K. Kawakubo: Equivariant s-cobordism theorems, J. Math. Soc. Japan 40 (1988), 349-367.
[2] A. Bak: K-Theory of Forms, Annals of Mathematics Studies, Princeton University Press, 1981.
[3] G. E. Bredon: Introduction to compact transformation groups, Academic Press, 1972.
[4] S. Illman: Whitehead torsion and group actions, Ann. Acad. Sci. Fenn., Ser.AI

558 (1974), 1-45.
[5] E. Laitinen and I. Madsen: The L-theory of groups with periodic cohomology I, Aarhus Univ. Preprint Series 14 (1981/82).
[6] J. Milnor: Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
[7] R. Oliver: $S K_{1}$ for finite group rings III, Lecture Notes in Math. Springer Verlag 854 (1981), 299-337.
[8] J.L. Shaneson: Wall's surgery obstruction group for $\boldsymbol{G} \times \boldsymbol{Z}$, Ann. of Math. 90 (1969), 296-334.
[9] J. Sondow: Triviality of the involution on $S K_{1}$ for periodic groups, Lecture Notes in Math. Springer Verlag 1126 (1983), 271-276.
[10] R.Swan: The p-period of a finite group, Ill. J. Math. 4 (1960), 341-346.
[11] C.B.Thomas: Free actions by finite groups on S^{3}, Proc. of Symposia in Pure Math. 32 (1978), 125-130.
[12] F.Ushitaki: $S K_{1}(Z[G])$ of finite solvable groups which act linearly and freely on spheres, Osaka J. Math. 28 (1991), 117-127.
[13] F.Ushitaki: On G-h-cobordisms between G-homotopy spheres, to appear in Osaka J. Math.
[14] C.T.C Wall: Foundations of algebraic L-theory, Lecture Notes in Math. Springer Verlag 343 (1973), 266-300.
[15] C.T.C. Wall: Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974), 593-632.
[16] J.A.Wolf: Spaces of Constant Curvature, Publish or Perish, INC., 1974.

Department of Mathematics
Faculty of Science
Kyoto Sangyo University
Kita-ku, Kyoto, 603, Japan

