Sakai, K. Osaka J. Math. 31 (1994), 373–386

PSEUDO-ORBIT TRACING PROPERTY AND STRONG TRANSVERSALITY OF DIFFEOMORPHISMS ON CLOSED MANIFOLDS

KAZUHIRO SAKAI

(Received February 8, 1993)

1. Introduction

We are interested in the dynamical property of a diffeomorphism f having the pseudo-orbit tracing property of a closed manifold M. Let d be a metric for M. A sequence of points $\{x_i\}_{i\in\mathbb{Z}}$ of M is called a δ -pseudo-orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for $i \in \mathbb{Z}$. A sequence $\{x_i\}_{i\in\mathbb{Z}}$ is said to be f- ε -traced by $y \in M$ if $d(f^i(y), x_i) < \varepsilon$ for $i \in \mathbb{Z}$.

We say that f has the pseudo-orbit tracing property (abbrev. **POTP**) if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of f can be f- ε -traced by some point.

In [5] Robinson proved that every Axiom A diffeomorphism satisfying strong transversality has **POTP**. Thus it will be natural to ask whether **POTP** implies Axiom A and strong transversality. For this problem we have partial results that are answered in [4] for dim M=2 and in [7] for dim M=3. However we have no answer for higher dimensions.

Our aim is to prove the following

Theorem. The C^1 interior of all diffeomorphisms having **POTP** of a closed manifold M, $\mathcal{P}(M)$, coincides with the set of all Axiom A diffeomorphisms satisfying strong transversality.

We say that f has the C^1 uniform pseudo-orbit tracing property (abbrev. C^1 -**UPOTP**) if there is a C^1 neighborhood $\mathscr{U}(f)$ of f with the property that for $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of $g \in \mathscr{U}(f)$ is g- ε -traced by some point. Since every Axiom A diffeomorphism satisfying strong transversality has C^1 -**UPOTP** (see [6, Theorem]), if we establish our theorem, then the following corollary is obtained.

Corollary. The set of all diffeomorphism having C^1 -**UPOTP** is characterized as the set of all Axiom A diffeomorphisms satisfying strong transversality.

It was proved in [4] that all periodic points of $f \in \mathscr{P}(M)$ are hyperbolic. From this we can prove that each f belonging to $\mathscr{P}(M)$ satisfies Axiom A with no-cycle. Recently it was shown in general by Aoki [1]. Therefore, to conclude our theorem it remains only to prove the following proposition.

Proposition. Every $f \in \mathcal{P}(M)$ satisfies strong transversality.

Unfortunately this can not be proved by the techinques mentioned in [4] and [7]. Thus we need a new technique for the proof of the proposition.

2. Proof of Proposition

Let Diff(M) denote the set of all diffeomorphisms of M endowed with C^1 topology, and let $p=f^n(p)$ (n>0) be a hyperbolic periodic point of $f \in \text{Diff}(M)$. Even if p is hyperbolic, when dim $M \ge 3$, it is not easy to construct an f^n -invariant foliation in a neighborhood of p that is compatible with the local stable manifold (i.e. the leaf passing through p is the local stable manifold of p). In this paper, by using Franks's lemma we make a new diffeomorphism $g(g^n(p)=p)$, arbitrarily near to fin C^1 topology, which has a g^n -invariant compatible foliation in a neighborhood of p (see lemmas 1 and 2). This foliation will play an essential role in the proof of the proposition.

Let $f \in \text{Diff}(M)$ satisfy Axiom A with no-cycle. The non-wandering set $\Omega(f)$ of f is expressed as a finite disjoint union of basic sets $\{\Lambda_i(f)\}$, and for a sufficiently small $\varepsilon_0 > 0$ and $x \in \Omega(f)$ there are a local stable manifold $W^s_{\varepsilon_0}(x, f)$ and a local unstable manifold $W^u_{\varepsilon_0}(x, f)$. Let $\Lambda(f)$ be a basic set of f. Since dim $W^s_{\varepsilon_0}(x, f) = \dim W^s_{\varepsilon_0}(y, f)$ $(x, y \in \Lambda(f))$, we denote by Ind $\Lambda(f)$ the dimension of $W^s_{\varepsilon_0}(x, f)$ for $x \in \Lambda(f)$. If $g \in \text{Diff}(M)$ is C^1 close to f, then the number of basic sets $\{\Lambda_i(g)\}$ of g coincides with that of basic sets $\{\Lambda_i(f)\}$ since f is Ω -stable.

Put $B_{\varepsilon}(x) = \{y \in M | d(x, y) \le \varepsilon\}$ for $\varepsilon > 0$ and let ρ be a usual C^1 metric of Diff (M). Then we have the following

Lemma 1. Let $\varepsilon_0 > 0$ be as above and let $\Lambda(f)$ be a basic set such that $1 \leq \text{Ind } \Lambda(f) \leq \dim M - 1$. Then, for a periodic point $p \in \Lambda(f)$ $(f^n(p) = p, n > 0)$, a neighborhood $\mathcal{U}(f) \subset \text{Diff } (M)$ and a number $\gamma > 0$ there are $0 < \varepsilon_1 < \varepsilon_0/2$, $g \in \mathcal{U}(f)$ and a basic set $\Lambda(g)$ for g such that

(i) $B_{4\epsilon_1}(f^i(p)) \bigcap B_{4\epsilon_1}(f^j(p)) = \phi \text{ for } 0 \le i \ne j \le n-1,$

(ii)
$$g(x) = \begin{cases} \exp_{f^{i+1}(p)} \circ D_{f^{i}(p)} f \circ \exp_{f^{i}(p)}^{-1}(x) \\ & \text{if } x \in B_{\epsilon_{1}}(f^{i}(p)) \text{ for } 0 \le i \le n-1, \\ & f(x) & \text{if } x \notin \bigcup_{i=0}^{n-1} B_{4\epsilon_{1}}(f^{i}(p)), \end{cases}$$

(iii) $g^n(p) = p \in \Lambda(g)$ and $\rho(W^{\sigma}_{\varepsilon_0}(p, f), W^{\sigma}_{\varepsilon_0}(p, g)) < \gamma$ for $\sigma = s$, u (i.e. there is a C^1 diffeomorphism ξ^{σ} : $W^{\sigma}_{\varepsilon_0}(p, f) \to W^{\sigma}_{\varepsilon_0}(p, g)$ such that $\rho(\xi^{\sigma}, id) < \gamma (\sigma = s, u)$).

Proof. Since $\Lambda(f)$ is hyperbolic, there is e > 0 such that $d(f^n(x), f^n(y)) \le e$ $(x, y \in \Lambda(f) \text{ and } n \in \mathbb{Z})$ implies x = y (see [5]). By Ω -stability theorem, there exists a neighborhood $\mathcal{U}_0(f) \subset \mathcal{U}(f)$ of f such that for every $g \in \mathcal{U}_0(f)$ there is a homeomorphism h_g , which maps $\Omega(f)$ onto the non-wandering set $\Omega(g)$ of g, satisfying

$$\begin{split} g \circ h_g &= h_g \circ f, \\ d(h_g, id_{|\Omega(f)}) < e, \\ \rho(W^{\sigma}_{\varepsilon_0}(p, f), W^{\sigma}_{\varepsilon_0}(h_g(p), g)) < \gamma \text{ for } \sigma = s, u. \end{split}$$

By Franks's lemma [2, lemma 1.1], we can find $g \in \mathcal{U}_0(f)$ and $0 < \varepsilon_1 < \varepsilon_0/2$ such that

$$B_{4\epsilon_{1}}(f^{i}(p)) \bigcap B_{4\epsilon_{1}}(f^{j}(p)) = \phi \ (0 \le i \ne j \le n-1) \text{ and}$$

$$g(x) = \begin{cases} \exp_{f^{i+1}(p)} \circ D_{f^{i}(p)} f \circ \exp_{f^{i}(p)}^{-1}(x) \\ & \text{if } x \in B_{\epsilon_{1}}(f^{i}(p)) \text{ for } 0 \le i \le n-1, \\ & f(x) \quad \text{if } x \notin \bigcup_{i=0}^{n-1} B_{4\epsilon_{1}}(f^{i}(p)), \end{cases}$$

We write $\Lambda(g) = h_g(\Lambda(f))$ for simplicity. Then $h_g(p) \in \Lambda(g)$ and $\operatorname{Ind} \Lambda(f) = \operatorname{Ind} \Lambda(g)$. Clearly $g(f^i(p)) = \exp_{f^{i+1}(p)} \circ D_{f^i(p)} f \circ \exp_{f^i(p)}^{-1} (f^i(p)) = f^{i+1}(p)$ for $0 \le i \le n-1$ and so g(p) = f(p), $g^2(p) = f^2(p), \dots, g^n(p) = f^n(p) = p$. Since

$$d(f^{i}(h_{g}^{-1}(p)), f^{i}(p)) = d(h_{g}^{-1}(g^{i}(p)), f^{i}(p))$$

= $d(h_{g}^{-1}(f^{i}(p)), f^{i}(p)) < e \ (i \in \mathbb{Z}),$

we have $h_g(p) = p$. Therefore $\rho(W^{\sigma}_{\varepsilon_0}(p, f), W^{\sigma}_{\varepsilon_0}(p, g)) < \gamma \ (\sigma = s, u)$ and $p \in \Lambda(g)$.

Since f satisfies Axiom A, by definition there is a Df-invariant continuous splitting $T_{\Omega(f)}M = E^s \bigoplus E^u$ and a constant $0 < \lambda < 1$ such that

 $\|Df_{|E^s}^m\| \le \lambda^m$ and $\|Df_{|E^u}^{-m}\| \le \lambda^m$ for m > 0. We denote by E_x^{σ} a fiber of E^{σ} at $x \in \Omega(f)$ ($\sigma = s$, u), and put $E_x^{\sigma}(\varepsilon) = \{v \in E_x^{\sigma} \mid \|v\| \le \varepsilon\}$ for $\varepsilon > 0$.

Let $g \in \text{Diff}(M)$, $p = g^n(p) \in \Lambda(g)$ (n > 0) and $\varepsilon_1 > 0$ be as in lemma 1. Then it is easily checked that for $0 < \varepsilon \le \varepsilon_1$, we have $\exp_p(E_p^{\sigma}(\varepsilon)) = W_{\varepsilon_0}^{\sigma}(p, g)$ and dim $\exp_p(E_p^{\sigma}(\varepsilon)) = \dim W_{\varepsilon_0}^{\sigma}(p, g)$ $(\sigma = s, u)$. Fix ε_2 with $0 < \varepsilon_2 = \varepsilon_2(g, n) < \varepsilon_1$ such that $x \in B_{\varepsilon_2}(p)$ implies $g^i(x) \in B_{\varepsilon_1}(g^i(p))$ for $0 \le i \le n-1$, and define

$$\tilde{W}_{\varepsilon_2}^{s}(x, g) = \exp_p \left(E_p^{s}(\varepsilon_2) + \exp_p^{-1}(x) \right)$$

for $x \in \exp_p(E_p^u(\varepsilon_2))$. Then, since $\bigcup_{v \in E_p^u(\varepsilon_2)} (E_p^s(\varepsilon_2) + v)$ is a foliation defined in a neighborhood of $O_p \in T_p M$ and since \exp_p is a local diffeomorphism, we have that $\{\tilde{W}_{\varepsilon_2}^s(x, g): x \in \exp_p(E_p^u(\varepsilon_2))\}$ is a foliation defined in a neighborhood of p in M such that $\tilde{W}_{\varepsilon_2}^s(p, g) = W_{\varepsilon_2}^s(p, g)$.

Lemma 2.

(i)
$$\tilde{W}^{s}_{\epsilon_{2}}(x, g)$$
 is a C^{1} manifold and dim $\tilde{W}^{s}_{\epsilon_{2}}(x, g) = \dim \tilde{W}^{s}_{\epsilon_{2}}(p, g)$,

(ii) $g^n(\tilde{W}^s_{\varepsilon_2}(x, g)) \subset \tilde{W}^s_{\varepsilon_2}(g^n(x), g)$ for $x \in \exp_p(E^u_p(\varepsilon_2)) \cap g^{-n}(\exp_p(E^u_p(\varepsilon_2)))$,

(iii) there exists C>0 such that if $\{x, g^n(x), \dots, g^{nk}(x)\} \subset \exp_p(E_p^u(\varepsilon_2))$ for some k>0, then $d(g^{nk}(x), g^{nk}(y)) \leq C\lambda^{nk}d(x,y)$ for $y \in \tilde{W}_{\varepsilon_2}^s(x, g)$,

Proof. Assertion (i) is clear, and (ii) is easily obtained. To show (iii) put $T_p(\varepsilon_2) = \{v \in T_pM \mid ||v|| \le \varepsilon_2\}$. Since $\exp_p: T_p(\varepsilon_2) \to M$ and $\exp_p^{-1}: B_{\varepsilon_2}(p) \to T_pM$ are into diffeomorphisms there is K > 0 such that

$$d(\exp_{p}(v), \exp_{p}(w)) \leq K ||v-w|| \quad (v, \ w \in T_{p}(\varepsilon_{2})),$$
$$\|\exp_{p}^{-1}(x) - \exp_{p}^{-1}(y)\| \leq K d(x, \ y) \quad (x, \ y \in B_{\varepsilon_{2}}(p)).$$

If $\{x, g^n(x), \dots, g^{nk}(x)\} \subset \exp_p(E_p^u(\varepsilon_2))$ for some k > 0, then for $y \in \tilde{W}_{\varepsilon_2}^s(x, g)$ there is $v_y \in E_p^s(\varepsilon_2)$ such that $y = \exp_p(v_y + \exp_p^{-1}(x))$. Thus we have

$$g^{n}(y) = \exp_{p}\left(D_{p}f^{n}(v_{y}) + \exp_{p}^{-1}(g^{n}(x))\right)$$

(since $D_p f^n(\exp_p^{-1}(x)) = \exp_p^{-1}(g^n(x)))$, and so

$$\left(D_{p}f^{n} \circ \exp_{p}^{-1} \circ g^{n}\right)(y) = D_{p}f^{2n}(v_{y}) + D_{p}f^{n}(\exp_{p}^{-1}(g^{n}(x))),$$

from which

$$g^{2n}(y) = \exp\left(D_p f^{2n}(v_y) + D_p f(\exp_p^{-1}(g^{2n}(x)))\right).$$

Since $g^n(x) \in B_{\varepsilon_2}(p)$, we have $\left(\exp_p \circ D_p f^n \circ \exp_p^{-1}\right) (g^n(x)) = g^{2n}(x)$; i.e. $D_p f^n(\exp^{-1}(g^n(x))) = \exp_p^{-1}(g^{2n}(x))$. Thus $g^{2n}(y) = \exp_p(D_p f^{2n}(v_y) + \exp_p^{-1}(g^{2n}(x)))$. By repetition we have

$$g^{nk}(y) = \exp_p (D_p f^{nk}(v_y) + \exp_p^{-1}(g^{nk}(x))).$$

from which

$$d(g^{nk}(x), g^{nk}(y)) \le K \| \exp_p^{-1}(g^{nk}(x)) - \exp_p^{-1}(g^{nk}(y)) \|$$

= $K \| D_p f^{nk}(v_y) \|$
 $\le K \lambda^{nk} \| v_y \|.$

Clearly, $||v_y|| = ||\exp_p^{-1}(x) - \exp_p^{-1}(y)|| \le Kd(x, y)$ since $\exp_p^{-1}(y) = v_y + \exp_p^{-1}(x)$. Therefore, $d(g^{nk}(x), g^{nk}(y)) \le K^2 \lambda^{nk} d(x, y)$. Assertion (iii) was proved.

Let f be as before, and denote by $W^{s}(x, f)$ the stable manifold and by $W^{u}(x, f)$ the unstable manifold for $x \in \Omega(f)$ respectively.

Lemma 3. Let $\Lambda_1(f)$ and $\Lambda_2(f)$ be two distinct basic sets for f. Suppose that there are $p = f^n(p) \in \Lambda_1(f)$ (n > 0), $q \in \Lambda_2(f)$ and $x \in M \setminus \Omega(f)$ such that $x \in W^s(p, f) \cap W^u(q, f)$. Then, for neighborhood $\mathcal{U}(f) \subset \text{Diff}(M)$ there are $0 < \varepsilon_1 < \varepsilon_0/2$, $g \in \mathcal{U}(f)$ and two distinct basic sets $\Lambda_1(g)$ and $\Lambda_2(g)$ for g such that

$$\begin{array}{ll} \text{(I)} & B_{4\epsilon_{2}}(f^{i}(p)) \bigcap B_{4\epsilon_{2}}(f^{j}(p)) = \phi \ \text{for} \ 0 \leq i \neq j \leq n-1, \\ \\ \text{(II)} & g(z) = \begin{cases} \exp_{f^{i+1}(p)} \circ D_{f^{i}(p)} f \circ \exp_{f^{i}(p)}^{-1}(z) \\ & \text{if} \ z \in B_{\epsilon_{1}}(f^{i}(p)) \ \text{for} \ 0 \leq i \leq n-1, \\ \\ & f(z) \ \text{if} \ z \notin \bigcup_{i=0}^{n-1} B_{4\epsilon_{1}}(f^{i}(p)), \\ \\ & \text{(III)} \end{cases} \begin{cases} p = g^{n}(p) \in \Lambda_{1}(g), \ q \in \Lambda_{2}(g), \\ & x \in W^{s}(p, \ g) \cap W^{u}(q, \ g), \end{cases}$$

$$T_x W^{s}(p, g) = T_x W^{s}(p, f) \text{ and } T_x W^{u}(q, g) = T_x W^{u}(q, f).$$

Proof. Fix $\mathscr{U}(f) \subset$ Diff (M). By lemma 1, for any $\gamma > 0$ there are

 $0 < \varepsilon_1 < \varepsilon_0/2$, $g \in \mathcal{U}(f)$ and a basic set $\Lambda_1(g)$ satisfying properties (i), (ii) and (iii) of lemma 1. Put $\Lambda_2(g) = \Lambda_2(f)$. Then $q \in \Lambda_2(g)$. Since γ is arbitrarily small, by (iii) there are a new diffeomorphism $\tilde{g} \in \mathcal{U}(f)$ and a small neighborhood U(x) of x such that $\tilde{g}(y) = g(y)$ for all $y \notin U(x)$ and such that

$$\begin{cases} x \in W^{s}(p, \tilde{g}) \cap W^{u}(q, \tilde{g}), \\ T_{x}W^{s}(p, \tilde{g}) = T_{x}W^{s}(p, f), \\ T_{x}W^{s}(q, \tilde{g}) = T_{x}W^{s}(q, f), \end{cases}$$

For simplicity we identify \tilde{g} with g. Thus (I), (II) and (III) are concluded.

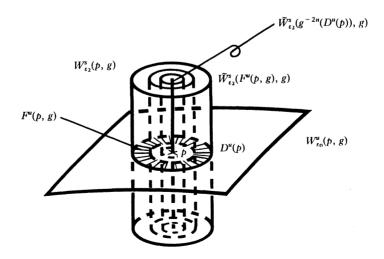
Let $g \in \mathcal{U}(f)$, $p = g^n(p) \in \Lambda_1(g)$ and $\varepsilon_1 > 0$ be as in lemma 3 and suppose that dim M-Ind $\Lambda_1(f) \ge 2$. Take $0 < \varepsilon_2 \le \varepsilon_1$ be as in lemma 2, and fix $\alpha > 0$ such that $D_p f_{|E_p^u|}^{2n}(E_p^u(\alpha)) \subset E_p^u(\varepsilon_2)$. Put $D^u(p) = \exp_p(E_p^u(\alpha))$. Then we have

$$d(\tilde{W}^{s}_{\varepsilon_{2}}(g^{2n}(F^{u}(p, g)), g), \tilde{W}^{s}_{\varepsilon_{2}}(F^{u}(p, g), g)) > 0, d(\tilde{W}^{s}_{\varepsilon_{2}}(F^{u}(p, g), g), \tilde{W}^{s}_{\varepsilon_{2}}(g^{-2n}(D^{u}(p)), g)) > 0$$

where

(1)
$$F^{u}(p, g) = \overline{D^{u}(p) \setminus g^{-n}(D^{u}(p))}$$

is a fundamental domain of $W^{u}_{\varepsilon_{2}}(p, g)$ (recall that $\exp_{p}(E^{u}_{p}(\varepsilon)) = W^{u}_{\varepsilon}(p, g)$ for $0 < \varepsilon \leq \varepsilon_{2}$).



Let G be a linear subspace of E_p^u such that $1 \le \dim G < \dim E_p^u$ and write $B_r^u(E) = B_r(E) \cap \exp_p(E_p^u(\varepsilon_2))$ for a subset E of M. Then we can find $0 < r_0 < \varepsilon_2$ such that

(2)
$$F^{u}(p, g) \setminus B^{u}_{r_{0}}(\exp_{p}(G \bigcap E^{u}_{p}(\varepsilon_{2})) \cap F^{u}(p, g)) \neq \phi$$

for every G. Since

$$\begin{aligned} r'_{0} &= d(\tilde{W}^{s}_{\varepsilon_{2}}(g^{2n}(F^{u}(p, g)), g), \ \tilde{W}^{s}_{\varepsilon_{2}}(F^{u}(p, g), g)) > 0, \\ r''_{0} &= d(\tilde{W}^{s}_{\varepsilon_{2}}(F^{u}(p, g), g), \ \tilde{W}^{s}_{\varepsilon_{2}}(g^{-2n}(D^{u}(p)), g)) > 0, \end{aligned}$$

we define a positive number $r_1 = \frac{1}{4} \min\{r_0, r'_0, r''_0\}$. Put

$$\Gamma(p) = \bigcup_{y \in \exp_p(E^u_p(\varepsilon_2))} \tilde{W}^s_{\varepsilon_2}(y,$$

Then, for any $z \in \Gamma(p)$, we can find only one point $y \in \exp_p(E_p^u(\varepsilon_2))$ such that $z \in \tilde{W}_{\varepsilon_2}^s(y, g)$, and so we write

g).

$$\pi(z) = y.$$

Then $\pi: \Gamma(p) \to \exp_p(E_p^u(\varepsilon_2))$ is differentiable and which plays an essential role in the proof of the proposition. For $z \in \Gamma(p) \setminus W_{\varepsilon_2}^s(p, g)$, there is an integer $N_z > 0$ such that $g^{ni}(\pi(z)) \in D^u(p)$ for $0 \le i \le N_z$ (especially $g^{nN_z}(\pi(z)) \in F^u(p, g)$) and $g^{n(N_z+1)}(\pi(z)) \notin D^u(p)$.

Lemma 4. Under the above notations, there is $0 < \varepsilon_3 < r_1$ such that diam $\pi(B_{\varepsilon_3}(g^{nN_z}(z))) < r_1$ for every $z \in \left(\bigcup_{y \in W^u_{\varepsilon_3}(p,g)} \tilde{W}^s_{\varepsilon_3}(y, g)\right) \setminus W^s_{\varepsilon_3}(p, g)$.

Proof. If this is false, for k > 0 there are

$$z_{k} \in \left(\bigcup_{\substack{y \in W_{1}^{u}(p,g)\\k}} \tilde{W}_{\frac{1}{k}}^{s}(y, g)\right) \setminus W_{\frac{1}{k}}^{s}(p, g)$$

and $N_k = N_{z_k} > 0$ such that diam $\pi(B_{\frac{1}{k}}(g^{nN_k}(z_k))) \ge r_1$. Since $z_k \in \widetilde{W}_{\frac{1}{k}}^s(\pi(z_k), g)$, we have $N_k \to \infty$ as $k \to \infty$ (because of $\pi(z_k) \in W_{\frac{1}{k}}^u(p, g)$). From $g^{ni}(\pi(z_k)) \in D^u(p) \subset \exp_p(E_p^u(\varepsilon_2))$ for $0 \le i \le N_k$, we have

$$d(g^{nN_k}(\pi(z_k)), g^{nN_k}(z_k)) \leq C\lambda^{nN_k} d(\pi(z_k), z_k) \rightarrow 0 \text{ as } k \rightarrow \infty$$

by lemma 2 (iii).

For k > 0 there are w_k , $w'_k \in \exp_p(E^u_p(\varepsilon_2))$, $v_k \in \tilde{W}^s_{\varepsilon_2}(w_k, g) \cap B_1(g^{nN_k}(z_k))$ and $v'_k \in \tilde{W}^s_{\varepsilon_2}(w'_k, g) \cap B_1(g^{nN_k}(z_k))$ such that $d(w_k, w'_k) \ge r_1$. If $w_k \to w$ and $w'_k \to w'$ $(k \to \infty)$, then $w, w' \in \exp_p(E^u_p(\varepsilon_2))$ and $d(w, w') \ge r_1$. When $v_k \to v$ and $v'_k \to v'$ as $k \to \infty$, we have $v = v' \in \exp_p(E^u_p(\varepsilon_2))$ by the properties

$$g^{nN_{k}}(\pi(z_{k})) \in \exp_{p}(E_{p}^{u}(\varepsilon_{2})),$$

$$d(g^{nN_{k}}(\pi(z_{k})), g^{nN_{k}}(z_{k})) \to 0 \text{ as } k \to \infty,$$

$$d(v_{k}, g^{nN_{k}}(z_{k})) < \frac{1}{k} \text{ and } d(v_{k}', g^{nN_{k}}(z_{k})) < \frac{1}{k}.$$

Since $\tilde{W}^{s}_{\varepsilon_{2}}(y, g)$ $(y \in \exp_{p}(E^{u}_{p}(\varepsilon_{2})))$ is continuous with respect to y, we have $v \in \tilde{W}^{s}_{\varepsilon_{2}}(w, g)$. Thus v = w since $\tilde{W}^{s}_{\varepsilon_{2}}(w, g) \cap \exp_{p}(E^{u}_{p}(\varepsilon_{2}))$ is a single point and $v, w \in \exp_{p}(E^{u}_{p}(\varepsilon_{2}))$. In this way we get w = v = v' = w', thus contradicting.

We are in a position to prove the proposition. Hereafter let dim $M \ge 4$ and $f \in \mathscr{P}(M)$. Notice that f satisfies Axiom A with no-cycle.

Fix $x \in M \setminus \Omega(f)$. Then there are distinct basic sets $\Lambda_i(f)$ (i=1, 2) such that $x \in W^s(\Lambda_1(f), f) \cap W^u(\Lambda_2(f), f)$. If $\operatorname{Ind} \Lambda_1(f) = \dim M$ or $\dim M - 1$, then by the proof of [4, Theorem 2] we have $T_x M = T_x W^s(x, f) + T_x W^u(x, f)$. Thus it is enough to prove the above equality for the case when $1 \leq \operatorname{Ind} \Lambda_1(f) \leq \dim M - 2$.

Since $\Omega(f) = \overline{P(f)}$, there is $f' \in \mathscr{P}(M)$ arbitrarily near to f in a C^1 topology satisfying

(a) f(y) = f'(y) for all y outside of a small neighborhood of x,

(b) there are $p = f'^n(p) \in \Lambda_1(f)$ for some n > 0 and $q \in \Lambda_2(f)$ such that $x \in W^s(p, f') \cap W^u(q, f')$, $T_x W^s(p, f') = T_x W^s(x, f)$ and $T_x W^u(q, f') = T_x W^u(x, f)$.

By (a) there are basic sets $\Lambda_i(f')$ (i=1, 2) for f' such that $\Lambda_i(f') = \Lambda_i(f)$ (i=1, 2) since f is Ω -stable. We shall prove that $T_x M = T_x W^s(p, f')$ $+ T_x W^u(q, f')$ for the case when $1 \leq \text{Ind } \Lambda_1(f) \leq \dim M - 2$. For simplicity we identify f' with f.

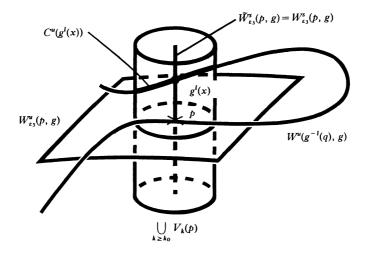
Let $\mathscr{U}(f)$ be a small neighborhood of f such that $\mathscr{U}(f) \subset \mathscr{P}(M)$. Then, by lemma 3 there are $g \in \mathscr{U}(f)$ and basic sets $\Lambda_i(g)$ (i=1, 2) satisfying lemma 3 (I), (II) and (III). Thus $T_x W^s(p, g) = T_x W^s(x, f)$ and $T_x W^u(q, g)$ $= T_x W^u(x, f)$. Let $\varepsilon_3 > 0$ be as in lemma 4 and define

$$V_k(p) = \bigcup_{y \in g^{-nk}(F^u(p,g))} \tilde{W}^s_{\varepsilon_3}(y, g) \text{ for } k \ge 0$$

where $F^{u}(p, g)$ is the fundamental domain of $W^{u}_{\epsilon_{2}}(p, g)$ (see (1)). Notice that $V_{k}(p) \subset \Gamma(p)$ for $k \ge 0$ and that $V_{k}(p) \to \tilde{W}^{s}_{\epsilon_{3}}(p, g) = W^{s}_{\epsilon_{3}}(p, g)$ as $k \to \infty$ since $g^{-nk}(F^{u}(p, g)) \to \{p\}$ as $k \to \infty$. Thus there is $k_{0} > 0$ such that

$$V_{k_0}(p) \subset \bigcup_{y \in W^u_{\varepsilon_3}(p,g)} \tilde{W}^s_{\varepsilon_3}(y, g).$$

Obviously $\bigcup_{k \ge k_0} V_k(p)$ is a neighborhood of p in M.



Pick l > 0 such that $g^{l}(x) \in \operatorname{int} \left(\bigcup_{k \ge k_{0}} V_{k}(p) \right)$ and $g^{-l}(x) \in W^{u}_{\varepsilon_{0}/2}(g^{-l}(q), g)$, and denote by $C^{u}(g^{l}(x))$ the connected component of $g^{l}(x)$ in $W^{u}(g^{l}(q), g)$ $\cap \left(\bigcup_{k \ge k_{0}} V_{k}(p) \right)$. Clearly, $\exp_{p}^{-1}(C^{u}(g^{l}(x))) \subset T_{p}M$.

For a linear subspace E of T_pM and v > 0 we write

$$E_{v}(g^{l}(x)) = \{v + \exp_{p}^{-1}(g^{l}(x)) \mid v \in E \text{ with } \|v\| \le v\}.$$

Then there are a linear subspace E' of T_pM and a number $0\!<\!v_0\!\leq\!\varepsilon_3$ such that

(4)
$$T_{g^{l}(x)} \exp_{p}(E'_{v}(g^{l}(x))) = T_{g^{l}(x)}C^{u}(g^{l}(x))$$

and $\exp_p(E'_v(g^l(x))) \subset \bigcup_{k \ge k_0} V_k(p)$ for $0 < v \le v_0$.

Since $g^{l}(x) \notin \Omega(g)$, there exists $0 < v_{1} \le v_{0}$ such that $B_{v_{1}}(g^{l}(x)) \cap g^{i}(B_{v_{1}}(g^{l}(x))) = \phi$ for $i \in \mathbb{Z} \setminus \{0\}$. Let $\mathscr{U}(g)$ be a neighborhood of g such that $\mathscr{U}(g) \subset \mathscr{U}(f)$. By (4) there are $0 < v_{2} < v_{1}$ and $\varphi \in \text{Diff}(M)$ such that

$$\begin{split} \varphi_{|(B_{v_2}(g^l(x)))^c} &= \mathrm{id}, \\ \varphi(g^l(x)) &= g^l(x), \\ \varphi(\exp_p(E'_{v_2}(g^l(x)))) \subset C^u(g^l(x)), \\ \dim \ \varphi(\exp_p(E'_{v_2}(g^l(x)))) &= \dim \ C^u(g^l(x)), \\ g' \in \mathscr{U}(g) \ \text{where} \ g' &= \varphi^{-1} \circ g. \end{split}$$

We denote $\exp_p(E'_{v_2}(g^l(x)))$ by $\exp_p(E'_{v_2}(g'^l(x)))$ because of $g'^l(x) = g^l(x)$.

It is clear that there are two distinct basic sets $\Lambda_i(g')$ (i=1, 2) such that $\Lambda_i(g') = \Lambda_i(g)$ (i=1, 2) since g is Ω -stable, and that

$$\begin{split} W^{\sigma}_{\varepsilon_0}(p, g') &= W^{\sigma}_{\varepsilon_0}(p, g), \\ W^{\sigma}_{\varepsilon_0}(q, g') &= W^{\sigma}_{\varepsilon_0}(q, g), \\ T_x W^{\sigma}(x, g') &= T_x W^{\sigma}(x, g) \ (\sigma = s, u), \\ \exp_p(E'_{v_2}(g'^l(x))) &\subset W^u(g'^l(q), g') \cap \Gamma(p), \\ \dim \, \exp_p(E'_{v_2}(g'^l(x))) &= \dim \ W^u(q, g') &= \dim \ C^u(g^l(x)). \end{split}$$

Lemma 5. Under the above notations, $\exp_p(E'_{v_2}(g'^l(x)))$ meets transversely $W^s_{\varepsilon_3}(p, g')$ at $g'^l(x)$.

Proof. Let $\varepsilon_2 > 0$ be as in lemma 2. Since $W^s_{\varepsilon_3}(p, g') \subset \exp_p(E^s_p(\varepsilon_2))$ and $W^s_{\varepsilon_3}(p, g') \subset \exp_p(E^u_p(\varepsilon_2))$, to get the conclusion it is enough to prove

$$\dim \pi(\exp_p(E'_{\nu_2}(g'^l(x)))) \ge \dim W^s_{\varepsilon_3}(p, g').$$

Here $\pi: \Gamma(p) \to \exp_p(E_p^u(\varepsilon_2))$ is the map defined as in (3).

Assume that dim $\pi(\exp_p(E'_{v_2}(g'^l(x)))) < \dim W^u_{\varepsilon_3}(p, g')$ and put $C^u_{\varepsilon}(g'^l(x)) = B_{\varepsilon}(g'^l(x)) \cap g'^{2l}(W^u_{\varepsilon_0}(g'^{-l}(q), g'))$ for $\varepsilon > 0$. Take $0 < \varepsilon < v_2$ such that $C^u_{\varepsilon}(g'^l(x))$ is the connected component of $g'^l(x)$ in $B_{\widetilde{\varepsilon}}(g'^l(x)) \cap g'^{2l}(W^u_{\varepsilon_0}(g'^{-l}(q), g'))$ for $0 < \varepsilon \le \widetilde{\varepsilon}$, and such that $B_{\widetilde{\varepsilon}}(g'^l(x)) \cap g'^{2l}(W^u_{\varepsilon_0}(g'^{-l}(q), g'))$.

Claim 1. Let $0 < \varepsilon \leq \tilde{\varepsilon}$. If $d(g'^{-i}(g'^{l}(x)), g'^{-i}(w)) < \varepsilon$ for $i \geq 0$, then $w \in C^{u}_{\varepsilon}(g'^{l}(x))$.

It is clear that $d(g'^{-1-i}(x), g'^{-2l-i}(w)) < \varepsilon \le \varepsilon_0/2$ for all $i \ge 0$. On the other hand, since $d(g'^{-1-i}(x), g'^{-1-i}(q)) < \varepsilon_0/2$ $(i \ge 0)$,

$$d(g'^{-2l-i}(w), g'^{-l-i}(q)) \le d(g'^{-2l-i}(w), g'^{-l-i}(x)) + d(g'^{-l-i}(x), g'^{-l-i}(q)) < \varepsilon_0$$

for all $i \ge 0$, and so $g'^{-2l}(w) \in W^u_{\varepsilon_0}(g'^{-l}(q), g')$. Thus $w \in C^u_{\varepsilon}(g'^l(x)) = B_{\varepsilon}(g'^l(x)) \cap g'^{2l}(W^u_{\varepsilon_0}(g'^{-l}(q), g'))$ since $d(g'^l(x), w) < \varepsilon$.

We divide the proof of this lemma into two cases:

```
Case 1. C^{\mathbf{u}}_{\tilde{\epsilon}}(g'^{l}(x)) \subset W^{s}_{\varepsilon_{3}}(p, g'),
Case 2. C^{\mathbf{u}}_{\tilde{\epsilon}}(g'^{l}(x)) \not \subset W^{s}_{\varepsilon_{3}}(p, g'),
```

For case 1, put $\varepsilon = \tilde{\varepsilon}/2$ and let $0 < \delta = \delta(\varepsilon, g') < \varepsilon$ be the number in the definition of **POTP** of g'. Recall that $F^{u}(p, g') = F^{u}(p, g)$ and fix $y \in \bigcup_{k \ge k_0} g'^{-nk}(F^{u}(p, g)) \setminus \{p\}$ such that $\tilde{W}^{s}_{\varepsilon_3}(y, g') \cap B_{\delta}(g'^{l}(x)) \neq \phi$. For $z \in \tilde{W}^{s}_{\varepsilon_3}(y, g') \cap B_{\delta}(g'^{l}(x))$,

$$\{\cdots, g'^{-1}(x), x, g'(x), \cdots, \\ g'^{l-1}(x), z, g'(z), g'^{2}(z), \cdots\}$$

is a δ -pseudo-orbit of g'. Thus there exists $w \in M$ such that $d(g'^i(w), g'^i(z)) < \varepsilon$ $(i \ge 0)$ and $d(g'^{-i}(w), g'^{-i}(g'^i(x))) < \varepsilon$ $(i \ge 1)$. Since $d(w, z) < \varepsilon$ and $d(z, g'^i(x)) < \delta < \tilde{\varepsilon}/2$, we have $d(g'^i(x), w) < \tilde{\varepsilon}$. Therefore $d(g'^{-i}(w), g'^{-i}(g'^i(x))) < \tilde{\varepsilon}$ for all $i \ge 0$, and so $w \in C^{u}_{\tilde{\varepsilon}}(g'^i(x))$ by claim 1.

Obviously, there is $\tilde{k} = \tilde{k}(z) > 0$ such that $g'^{n\tilde{k}}(z) \in V_0(p) = \bigcup_{y \in F^u(p,g')} \tilde{W}^s_{\varepsilon_3}(y, g')$. By the choice of ε and by the definition of $F^u(p, g)$ we have $B_{\varepsilon}(g'^{n\tilde{k}}(z)) \cap W^s_{\varepsilon_3}(p, g') = \phi$. However, $w \in C^u_{\tilde{\varepsilon}}(g'^{l}(x)) \subset W^s_{\varepsilon_3}(p, g')$ implies $(g'^{n\tilde{k}}(w) \in W^s_{\varepsilon_3}(p, g'))$. Thus $g'^{n\tilde{k}}(w) \in B_{\varepsilon}(g'^{n\tilde{k}}(z)) \cap W^s_{\varepsilon_3}(p, g') \neq \phi$ (since $d(g'^{n\tilde{k}}(z), g'^{n\tilde{k}}(w)) < \varepsilon$). This is a contradiction and so the lemma is proved for case 1.

For case 2, take k_1k_0 such that $k \ge k_1$ implies $C^{u}_{\tilde{\epsilon}}(g'^{l}(x)) \cap V_k(p) \neq \phi$. By the choice of $\tilde{\epsilon}$,

$$\pi \left(B_{\tilde{\varepsilon}}(g'^{n\tilde{k}}(C^{u}_{\tilde{\varepsilon}}(g'^{l}(x)) \cap V_{k}(p))) \right) \neq F^{u}(p, g')$$

for all $k \ge k_1$ since dim $\pi(C^u_{\hat{\epsilon}}(g'^l(x))) < \dim W^u_{\epsilon_3}(p, g')$ (see (2)). To simplify we write

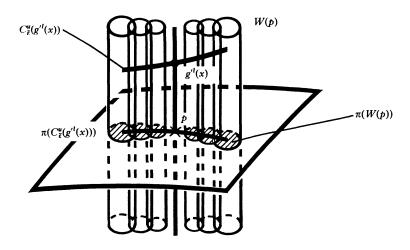
$$W_{k}(p) = \bigcup_{y \in g'^{-nk}(\pi(B_{\tilde{\varepsilon}}(g'^{nk}(C_{\tilde{\varepsilon}}^{u}(g'^{l}(x)) \cap V_{k}(p)))))} \tilde{W}_{\varepsilon_{3}}^{s}(y, g'),$$

$$W(p) = \left(\bigcup_{k \ge k_1} W_k(p)\right) \cup W^s_{\varepsilon_3}(p, g').$$

Then $W(p) \subset \Gamma(p)$ and

$$\pi(W(p)) = \left(\bigcup_{k \ge k_1} \pi(W_k(p))\right) \cup \{p\}$$
$$= \left(\bigcup_{k \ge k_1} g'^{-nk} \left(\pi(B_{\tilde{\varepsilon}}(g'^{nk}(C^u_{\tilde{\varepsilon}}(g'^l(x)) \cap V_k(p))))\right) \cup \{p\}$$

is not a neighborhood of p in $W^{u}_{\varepsilon_3}(p, g')$.



Claim 2. Put $\varepsilon = \tilde{\varepsilon}/2$ and let $\delta = \delta(\varepsilon, g') < \varepsilon$ be the number in the definition of **POTP** of g'. Then we have $B_{\delta}(g'^{l}(x)) \subset W(p)$.

For every $z \in B_{\delta}(g'^{l}(x)) \setminus W^{s}_{\varepsilon_{0}}(p, g)$, there exists $w \in M$ such that $d(g'^{i}(w), g'^{i}(z)) < \varepsilon$ and $d(g'^{-i-1}(w), g'^{-i-1}(g'^{l}(x))) < \varepsilon$ for all $i \ge 0$ since

$$\{\cdots, g'^{-1}(x), x, g'(x), \cdots, \\ g'^{l-1}(x), z, g'(z), g'^{2}(z), \cdots\}$$

is a δ -pseudo-orbit of g'. Thus $d(g'^{-i}(w), g'^{-i}(g'^{l}(x))) < \tilde{\epsilon}$ for all $i \ge 0$ (since $d(g'^{l}(x), w) \le d(g'^{l}(x), z) + d(z, w) < \epsilon + \delta < \tilde{\epsilon}$), and so $w \in C^{u}_{\tilde{\epsilon}}(g'^{l}(x))$ by claim 1. Fix $\tilde{k} = \tilde{k}(w) \ge k_{1}$ such that $w \in V_{\tilde{k}}(p) \cap C^{u}_{\tilde{\epsilon}}(g'^{l}(x))$. Then $g'^{n\tilde{k}}(z) \in B_{\epsilon}(V_{0}(p) \cap g'^{n\tilde{k}}(C^{u}_{\tilde{\epsilon}}(g'^{l}(x))))$ since $d(g'^{n\tilde{k}}(w), g'^{n\tilde{k}}(z)) < \epsilon$. Thus we have $z \in W_{\tilde{k}}(p) \subset W(p)$.

By claim 2 we have $\pi(B_{\delta}(g'^{l}(x))) \subset \pi(W(p))$. If we establish that $\pi(B_{\delta}(g'^{l}(x)))$ is a neighborhood of p in $W^{u}_{\varepsilon_{3}}(p, g')$, then we get a contradiction and therefore the proof of this lemma is completed.

If $\pi(B_{\delta}(g'^{l}(x)))$ is not a neighborhood of p in $W^{u}_{\varepsilon_{3}}(p, g)$, then for every i > 0 there is $y_{i} \in W^{u}_{\varepsilon_{3}}(p, g')$ such that $y_{i} \notin \pi(B_{\delta}(g'^{l}(x)))$ and $d(y_{i}, p) < \frac{1}{i}$. Since $\widetilde{W}^{s}_{\varepsilon_{3}}(y_{i}, g') \to W^{s}_{\varepsilon_{3}}(p, g')$ as $i \to \infty$,

$$\tilde{W}^{s}_{\varepsilon_{3}}(y_{i}, g') \cap B_{\delta}(g'^{l}(x)) \neq \phi$$

for sufficiently large *i* and thus $y_i \in \pi(B_{\delta}(g'^l(x)))$. This is a contradiction and so $\pi(W(p))$ is a neighborhood of *p* in $W^u_{\varepsilon_3}(p, g')$. For any case lemma 5 was proved.

The proof of the transversality at x for case $1 \leq \text{Ind } \Lambda_1(f) \leq \dim M - 2$ follows from lemma 5. Indeed, since $\exp_p(E'_{v_2}(g'_l(x)))$ meets transversely $W^s_{\varepsilon_3}(p, g')$ at $g'^l(x)$, we have

$$T_{g'^{l}(x)}M = T_{g'^{l}(x)}\exp_{p}(E'_{v_{2}}(g'^{l}(x))) + T_{g'^{l}(x)}W^{s}_{\varepsilon_{3}}(p, g')$$
$$= T_{g'^{l}(x)}W^{u}(g'^{l}(q), g') + T_{g'^{l}(x)}W^{s}_{\varepsilon_{3}}(p, g')$$

by (4). Thus

$$\begin{split} T_{x}M &= T_{x}W^{s}(p, g') + T_{x}W^{u}(q, g') \\ &= T_{x}W^{s}(x, g) + T_{x}W^{u}(x, g) \\ &= T_{x}W^{s}(x, f) + T_{x}W^{u}(x, f). \end{split}$$

Therefore the proof of the proposition is completed.

References

- [1] N. Aoki: The set of Axiom A diffeomorphisms with no cycle, Bol. Soc. Bras. Mat. 23-New Series (1992), 21-65.
- [2] J. Franks: Necessary conditions for stability of diffeomorphisms, Trans. A.M.S. 158 (1971), 301–308.
- [3] M. Hirsch and C. Pugh: Stable manifold and hyperbolic sets, in Global Analysis, Proc. Sympos. Pure Math., A.M.S. 14 (1970), 133-163.
- [4] K. Moriyasu: The topological stability of diffeomorphisms, Nagoya Math. J. 123 (1991), 91-102.
- [5] C. Robinson: Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), 425–437.
- [6] K. Sakai: The C¹ uniform pseudo-orbit tracing property, Tokyo J. Math. 15 (1992), 99–109.
- [7] K. Sakai: Diffeomorphisms with pseudo orbit tracing property, Nagoya Math. J. 126 (1992), 125–140.
- [8] S. Smale: The Ω-stability theorem, in Global Analysis Proc. A.M.S. 14 (1970), 289-297.

Department of Mathematics Kanagawa University Rokkakubashi, Kanagawa-ku Yokohama 221, Japan