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Introduction

Let G=GLn(C) be the group of linear transformations of the w-dimensional
C-vector space FM. Let V* be the dual space of Vn and let ViN'M):=VfN®
(F?) Θ M be the (AT, M)-mixed tensor power of Vn. We denote the represen-
tation of G on Vψ'M) by φ(N>MK The decomposition of φ(* M) into a sum of
irreducible representations of G is given in [8] and [13]. This result also indi-
cates the structure of the centralizer algebra of Φ(Λr'M)(G).

On the other hand, Jimbo [5, 6] showed that the centralizer algebra of the
natural representation of the quantum algebra Uq(gl(n, C)) on Vψ'Q) is isomor-
phic to the Iwahori Hecke algebra if n>N and q^C is generic.

In the present paper we introduce a generalization Hn

NM{q) of the Iwahori
Hecke algebra of type A, which is defined by generators and relations. (See
Section 2.) Our main result says that the algebra Hn

NfM{q) is semisimple and
is isomorphic to the centralizer algebra Cψ-M\q) of the natural representation
of Uq(gl(n, C)) on ViN'M\ if n>N+M and q is generic. (See Theorem 6.7).

To prove the above fact, we construct all the irreducible representations of
HN.M(q) in Section 4, using the Bratteli diagram of the inclusions C^Hιt0(q)d
#Ϊ.Ό(ϊ)C ••• aHn

Nt0(q)c:Hn

Ntl(q)c::. aHn

NtM(q) as in [3,16]. We also give Markov
traces of these algebras, which are related to the HOMFLY polynomial of knots
and links as in [14]. (See [9].) In the special case N=M or Λf±l, the algebra
H(

n

N>M\q) is also studied in [2] from a different view point. Some results of this
paper have been announced in [9].

The authors would line to thank Professor Noriaki Kawanaka for his useful
advice and kind encouragement. They also thank Professor Kazuhiko Koike
who informed results of [8] and suggested us to construct actual representations
oiCψ'M\q).

1. Graph ΓVfM

Let λ=(λi, λ2, •••> λΛ) be an integer sequence, and define | λ | = λ i + λ 2 H —
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+λ«. We call a partition of N if the sequence is nonnegative, weakly decreas-
ing, and I \ | =JV. Two partitions (λi, λ2, •••, λΛ) and (\ly λ2, •••, λn, 0) are con-
sidered to be the same. The length /(λ) of λ is the number of nonzero terms in
λ. Let φ be the partition of 0.

Let 7=(7i, 72>
 m"jΎn) be an integer sequence in which γ 1 > γ 2 ^ ^ r)V

We will refer to such objects as staircases of height n. There are two standard
ways in indexing staircases of height w. One is to index them by the pairs (r, λ)
of r G Z and partitions λ with l(\)<n; the staircase corresponding to (r, λ) is
(λi+r, \2+

r9 •"> λ n + r ) if λ=(λi, λ2, •••, λn). The other is to index them by
the ordered pairs [or, β]n of partitions with l(a)+l(β)<n; the staircase cor-
responding to [α, β]n is (aly a2, •••, •••, — β2, —A) if cc=(al9 α2, •••) and β =

(A,A, )
EXAMPLE 1.1. If n=7, α=(3, 2,1) and β=(2, 2,1), then <γ=[a, β]n=

(3,2,1,0,-1,-2,-2).

Staircases of height n are partially ordered by defining yΏδ if and only if
y1<δ1,y2<S2y-yyn<8n.

DEFINITION 1.2. Let N and M be nonnegative integers with JV+M>1.
Let n be a fixed integer such that n>N+M. An w/> *foα;/z tableau of type (JV, M)
αrai ί A ^ 7 is a sequence φ=γ<°>, γ^>, •••, γ(^+^)=γ of staircases of height n in
Which 7(0 3 7 «-l>, I γCO I - I γ(ί-i) I = 1 (if i<ΛΓ), γ(0e γC'-D, | 7<0 | - | γC-1) | = - 1
(if i>N). (Note that the notion of up down tableaux of type (ΛΓ, M) and shape
y is essentially independent of the choice of n>N+M.)

DEFINITION 1.3. A standard tableau of shape λ with | λ | =N is a sequence
of ΛΓ+1 nested partitions, φ - λ ( 0 ) C λ ^ c . . . c \ W = χ , in which |χco| _ |χ(ί-i)|
= 1 for ί<i<N. We denote b y / λ the number of standard tableaux of shape
λ. In other words, / λ is the dimension of the irreducible character %λ of the
symmetric group Sn in n letters.

In this paper we consider tableaux of type (N, M) for a fixed (ΛΓ, M). So,
in the following, the terminology *'tableaux" always means "up down tableaux
of type (iV, M)". All the tableaux are conveniently described using the graph
TNtM defined below. Vertices of I V M are assigned to ΛΓ+M+1 floors. The
vertices in the ί-th floor (0<i<N-\-M) of TNtM are indexed by the staircases
which appear in a tableau (γ(0), γ ( 1 ), •••, y(N+M>) as the (z+l)-th coordinate γ ( lλ
Two vertices indexed by y and y' are joined by an edge if and only if there ex-
ists a tableau which has both y and y' as successive coordinates. If i<N, the
number of vertices on the z-th floor is the same as the number of partitions of /
with length less than or equal to n.

Let Λ(iV, M) be a set of staircases of height n defined by
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minCir,Jβ

Λ(iV, M) = Π {[<*> β]n a, β partitions, | a | = N— m> | /? | = M—m} .
IM = 0

We can easily see that the vertices on the (iV+M)-th floor are indexed by the
elements of Λ(iV, M).

EXAMPLE 1.4. When N=3, M=2 and n>M+Ny the graph TNfM is:

[Dm m] [cm g] [fp mj [ p gj [Π mj tp gj [ m π ] tgD] [ πφ]

We can get any tableau of shape γ from the graph ΓVtM as an ascending
path from the bottom vertex φ to the top vertex 7. Conversely, any ascending
path from the bottom vertex φ to a top vertex 7 expresses some tableau. We
identify each of these paths with the corresponding tableau. Let 7 be a stair-
case of height n and let cy

NfM denote the number of up down tableaux of shape
γ and type (iV, M). We have an explicit formula for cΊ

N M(see Proposition 4.8
in [13]):

Proposition 1.5. Let γ=[a, β\n be a staircase of height n. We assume
\N\-\a\ = \M\ — \β\ >0. {Otherwisecy

Ntiί=0.) Then

m m

wherem=N—\a\=M—\β\.

Let Ω,—Ω,NtM denote the set of tableaux on I \ f M . Let KΩ be the ^-vector
space with basis Ω over fi a fied K. We define an algebra A=ANM^Έ,ndκ(KΩί)
as follows. Let R={(ξ, o?)GΩxΩ; shape of £=shape of -η}. For (£, -η)^R,
define Γ^GEnd^ίΓΩ) by T^ ω=S(V) ω) ξ (ωGίl). Let A be the i^-linear



478 M. KOSUDA AND J. MURAKAMI

span of {Ttv (f, rj)SΞR} in End^iOl). Since

(1.6) TuTiW

and l = Σ $ e Q Tξj, A is a subalgebra of End^XΏ). For γeΛ(ΛΓ, M) set Ω γ =
{£eΩ; shape of ξ=y} so that Ω=ΠγeΛ(Λr,Λ/) Ω7(disjoint union). It follows from
the multiplication law (1.6) for the TξtV that ^4v=span{71

p>ϊ7; (£, 97)eΩγxΩy}
is an ideal of 4̂ and A= © γ 4̂Y (γeΛ(iV, M)). Since there exists a natural iso-
morphicm ^ β E n d ^ J O l * ) , we have ^=Θ7€=ΛGNΓ,M) ^ Y — θγeΛ(^.M)
Note that the minimal central idempotents in A have the form ^γ=

Lenna 1.7. L«?£ ΛΓ αwrf M be nonnegative integers. Then

Σ (w!)2 ( ) ( ) (W-w)! (M-m)\ =

Proof. Consider the group SN+M of permutations of N+M letters {1,2, •••,

N, T, 2, .-, fit}, For 0<m<min (ΛΓ, M), let S & = { σ G S M ; Card (<r({l, 2,

-., ΛΓ}) n {Γ, 2, -., M})=m}. Then SN+M= U S?ino(^Λ/) 5 ^ M (disjoint). Now

the lemma follows by observing that

Card(S^V) = {m\)2 (N\ΊM)2 (N-m)l (M-tn)\.

Corollary 1.8. The dimension of the algebra A=ANtM is (N+M)l.

Proof. Using Proposition 1.5, we have

dim , 4 = Σ

- Σ
, / Af \2 / Ά/ί \2

= Σ Σ Σ (^O2!^) ( M ) (/β)2(/p)2

= Σ (w!)2( i V ) f M ) (N-m)l(M-m)l
»=o \ m I V w /

= (ΛΓ+M)!,

where we have used the well known formula Σ\*\=r(f<*)2==r"

2. Algebra Hn

NtM(q)

We are going to define a generalization of the Iwahori Hecke algebra of
type A (see, e.g. [4]). For an indeterminate q, we define the q-integer [i] by
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Similarly for nay qo&K\{O}, [i]qQ is defined by

In particular we have [i]i=ί. Note that [0]=[0],0=0 and [ l ]=[l]^ 0 =l for any

?o

DEFINITION 2.1. Let K be an arbitrary field and q an indeterminate over
K. For integers N, M>0 and n>N+M, we define Hn

NtM{q) to be the associa-
tive ^(#)-algebra with unit presented by

generators:

E (if

Γf, Γ f , - , T£-i (if

and

relations:

(l.a) (T{—q)(Ti+q-1)

(l.b) Γ, Γ, = T. T{

.C) 1 i 1 ί + 1 1 i — 1 < +

(2.a) (Γf—j)(Γf+f-

(2.b) Γ* Γf = Γf Tf

(2.c) Γf Γ*+1 Γf = Γf+1 Γf Γf+1 (1

(3) E2=[n]E9

(4.a) Tt Tf = Tf Ti

(4.b) E Γ, = Γf. £

(4.c) ET*=TfE

(5) ETN^E=qnEy

(6) ETfE=q"Ey

(7) £ Γiίl

(8) (r*-r

Note that ΓΓ1=Γ<—(g—j"1) by (La). A monomial in HN.M(9) *S a product
%!•••%,, where X. e ί Γ f 1 , •», Γj^ii, £, Γf, - , ΓJ_i}, l £ * £ * . '

Proposition 2.2. dimx ( ί) Hn

NιM(q) < (N+ M)!.

The proof of this proposition will occupy the remainder of this section.
We shall prove it by defining monomials in normal form in H%tM(q), which will
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eventually shown to form a basis of H #,M(?) as a vector space over K(q). (See
Corollary 4.13.) Consider the following sets of monomials.

S2 = {1, Tϊ\ Tϊ1
 ΓΓ1} ,

•
S, = {1, Tj\ Tj1 TTiz, •-, Tr1

 ZTJI ΓΓ1} ,
O M 71-1 ψ-l ψ-l m rp-1 7 ~1 ,ψ~l\

Note that Vi^Sf implies Tjli Vi^Si+1. We shall say that MQ=Uι U2^'UN^1

is a monomial in normal form in i/^>0(?), if U^Si for ί = l , 2, •••, iV—1. There

are iVΊ of monomials in normal form in H%t0(q). As is shown in [4], we have

Lemma 2.3. 77i£ monomials in normal form in H^^q) generate Hx^q)
as a vector space over K(q).

Next, we define monomials in normal form in HoM(q) Consider the fol-
lowing sets of monomials.

st ={

Sf ={l,Tf,TfTγ},

S* = {Ί, Tt, TΫ Tt-u -, Tf

six = {i, n.lt n-i n-i, - , n.i n-2-m.
We shall say that MQ=Uf Uf' -U$_ι is a monomial in normal form in HN,o(q)f

if Uf^Sf for i=l, 2, ••-, M—ί. There are M! of monomials in normal form
in Ho>M(q) Similarly to Lemma 2.3, we have

Lemma 2.4. The monomials in normal form in HftM(q) generate HotM(q)
as a vector space over K(q).

Now we define monomials in normal form in HltM{q) for general N and M.
We shall say that Mo is a monomial in normal form in Hn

NtM{q) if

Mo = Mx Tfx Tξ-i Γf E Tnlx Tjil2-Tjϊ Tf2 Γf .-r-Γf E T^ TnU-Tj^

for some m (0<m<τnin(NJ M)), where Mx is a monomial in normal form in
^5r.o(?)> ^ * is a monomial in normal form in HltM{q)> and 0</ 1 </ 2 < </ m <
M—1, ϊ<j1<j2<"'<jm<]Sί. Here we understand that Γξ Γ f ^ l if ^ = 0 ,
and that Γiϊίi Γ Γ ^ l if jm=N. Note that if w = 0 then M 0 = M ! Mf. The
number of monomials in normal form in H%tM{q) is



CENTRALIZER ALGEBRAS OF MIXED TENSOR REPR. 481

MX ( N ) (M) ="• Σ " W (N)ΊM) (N-»)l (M-m)\,

which is equal to (N-\-M)\ by Lemma 1.7.

Lemma 2.5.

(1) If M>k>i^j^l>\ then

( Γ * ± i } ( Γ * TU-Tf) = (Tt Tt-i

(T* Tt-vΊj) (Tt TU-'Tf) = (Tf Tt-i -Tf) (Tf+1 Tf-Tf+i).

(2) IfN>i>k>l>j^lthen
(Tj1

 TTII-TJ1) (Tt1) = (ϊΐii) (TT1 TTii-Tj1),
(TT1 TTli-Tj1)^1 Γί ii ΓΓ1) = (Γrii Tΐi2-ττii)(Tτι ττir τjι).

(3) ETϊUE=q-E.

(4) (Tf Tt-i-TΫ E Tjl! TaU-'Tj1) (Tf TU-n E)
= (TN.,)(TU Tt-z'-TtETsU Tjil2-Tjι)(Tt TU-TfE).

(5) IfN~r^jthen

(ETϊU TϋU-TsLr)(Tf Tt-ι-Tt E)(TϋU TήU' Tj1)
= (E TήU TjiU-Tj1) (Tf Tt-v n E) (Tjilr TnL2-Tjilr+1) (Tf-1).

Proof. The first two identities follow from Definition 2.1 (l.b), (l.c), (2.b)
and (2.c). The identity (3) follows from 2.1 (3), (5). The rests follow from
(1), (2) and 2.1 (4a, b, c), (7), (8).

Now we show that monomials in normal form in Hn

NM(q) generate HNIM(<J)

as a vector space over K(q). This will imply Proposition 2.2.

L e m m a 2.6. If Mo is a monomial in normal form in H"NtM(<ί), then T* Mo

can be written as a linear combination of monomials in normal form in H%iM(q).

Proof. We first consider:
Case 1. im+l<i.

Tt Mo = (Tt) Mx T*-Tf E TjU-Tjϊ'Tt-TtE TΰU-Tj1 Mf

= M, Ttr Tt E Tjtlr TJΪ'Tt-Tf E T^-Tj^Tt) Mf.

Since Tt Mf can be written as a linear combination of monomials in normal
form in HQM, we get the lemma in Case 1. Next we consider:

Case 2. ik +1 < i < i k + 1 + 1 for some k (0<,k<m— 1). We understand that
ίo-f-l=O. We further divide this case into 3 cases.

Case 2.1. 4 + l < ί = = 4 + 1 + l (<>ik+2 if k<,m—2).

TtM0=T*t+1+1M0

= Mι Tt, Ttt-i 'Tf E Γjfi, TjLΛ Tτϊ >'
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If ί = ί Λ + 1 + 1 <CίA+2 or k=m— 1 then the right hand side is a monomial in normal
form. If ί = t i + 1 + 1 =i* + 2 then

Tf Mo = Mx 7% Tf.-x-Tt E Talt TϋU-Tj?-

= M, τtx Γf -i Γf E τaiι T^

by (4) of Lemma 2.5. Using (2) of Lemma 2.5 repeatedly, the above monomials
is equal to Mx(TN-(k+1)) Tt-Tf E TjiU-Tjϊ-TT.-Tt E TϋU-Tj* Mf.
Since M1 TN-(k+i) can be written as a linear combination of monomials in normal
form in HN,o(q), we get the lemma in Case 2.1.

Case 2.2. ik-\-l<i=ik+1 for some k.

TtMΰ=Tft+1M0

= M, Tf, Tfri-TΫ E Tali TaU-'Tj^"

aiι= M, T* T^-TΪ E τai

= (q-q-*)M0

TtM'"T7ί» "Ttm~T7Ϊ Mt.

Since ik<h+i~~^> the second term is also a monomial in normal form. There-
fore Tf Mo can be written in a desired form.

Case 2.3. tk+l<i<ik+1. By using (1) of Lemma 2.5 repeatedly, we get

Tf Mo = Mx Ttr-T7Ϊ-{Tt) TfM-Tj;+l-TtM-T£ Mf

Since Tf+m-k Mf can be expressed as a linear combination of monomials in
normal form, so can Tf Mo.

This completes the proof of Lemma 2.6.

Lemma 2.7. If Mo is a monomial in normal form in H%M{q)J then E Mo

can be written as a linear combination of monomials in normal form.

Proof. We write

M0 = M1 τtr τf E τaii" τj^.'Tfm'"Tt E τaii'»τj* m,
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where Mι (resp Mt) is a monomial in normal form in H% 0(q) (resp. HS,M(Q))

Note that M1 involves T#ii at most once. We divide the proof into 4 cases.
Case 1. Mx has no T^-x and ^ = 0 (i.e. T\ Γ* _Γ•• 7? = 1). Then E M o =

MxE
2 Tali-Tj? Ttz-Tjl Mf=[n] Mo. Therefore, EM0=[n] Mo.
Case 2. Mx has one Γjϊii and ix=0. We write M1==Mi TϋU Γ^i 2—T^l r .

EM0 = EM{ Tzli Tjjl2~.TϊLr E TτlvTj* Mt

= Mί(E m , E) TjiU-Tjilr TjiU'-Tj: Mf

- q- Mi TΰL2-Tϊlr E Tzli-TjJ; Mt.

Since q~* M{ Tjii.2 ' T^].r can be written as a linear combination of monomials
in normal form in Hf/,o(q), so can E Mo in H%ιM(q).

Case 3. Mλ has no Γ^ii and ίjΦO.

% Tf^-Tf TΫ E T^-Tj^ ffl

= Mx T* T*-ι-Tf(E Tf E) Tair-TjJ; Mf

= q" Mx Ύ\ Tfx-χ'-Tt E Tzlv-TJΪ Mt

= qn Tfι Tf^v Tt Mx E TJUV-TJI Mt.

Since Mx E TNLX TJ^ Mt is a monomial in normal form, iterative use of the
previous lemma prove that E Mo can be written in a desired form.

Case 4. Mx has one T]jlx and ^ = 0 . This case is rather complicated in
comparison with the above 3 cases. We write MX=M{ T^-i TKLZ TN]./ By
Lemma 2.5 (5), we have

EM0 = EMI Tϋix TzLvTzLr T* Tf^-Tf ETjUv-Tj^

-Tfn Tf.-r-Tt E TϊlvTjϊ Mt

= MjETjjl1 Tϋit-Talr-T^ Tξ-i-TΫ E Tgli-TJΪ

f E Tj,lx-T-* Mt

(Γξ Tΐt-1.. Tt)ETϊlι>»Tτϊ~'TTm Ttm-v T{ETjj\x...Tj* Mt

M'1ETjl1-T-l

1 Tfr Tt E TzU -Tjlr+r Tfi-Tj

MiETaU TaU'.-Tj? Tζ-Tΐ E nu-T-;

Tf^ TtETjiU-Tjilr^Tt-1) T% T%.vTfm-Tγm T*-1 Mt

T%..-Tf ET^lv Tjilr,2.-nm-Tj^T*z\)Tt-1 Mt
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= M[ET Jϊii . Γy-1 Tt^'TtETt-x'-Tji"-

T%_χ-Tt E Tϊly Tj; Tfk-Tt E TϋLi"'

Here Tt-lt-i) 71*Z(

14_2) Γ*~1.Mjj< can be written as a linear combination of
monomials in normal form. If there exists a k(Q<ik<,r) such that

(2.8) jk<N-r+k<jk+1 (put j m + 1 = N,jβ = 0),

then E Mo can also be written as a linear combination of monomials in normal
form. If there exists no k satisfying (2.8), i.e. N—r+i is always equal to or
more than/ ί + 1 for i=0, 1, •••, r, then

MίE TjilvTjt Tft "Tt E Tjii1" Tj9

1-'Ttr.ι

 τ7r

Tΐ, Γff-i-Γf E Ttr+1Tj+1^-'Tt ETjjlv Tj^

q«MίE Talv-Tjϊ Ttr Tΐ E TΪU .TJΪ-

Trr_r>Tt E Γjjii-Γj,1 T*-Tγ(Tfr+1 ~Tf) E Tjjli" Tjr\r'

ETnLv TJΪ Tt1-Tji

1-(Tfm-Tf)ETϊlι-Tτι!;

m-r.ι Γ?r+1+._r_I.. Γ*_Γ+i) Γ ί ^ - i , T*£r-ty 'T*-1 Mt

= q"MίE TzU-TJΪ Tγr-Tt»>TJΪ Tfm'"Tt E T T,lv Tj^

Since Tf~+

x

1+m-r Γf^J+w-r+i T1*""1 Mf can be written as a linear combination
of monomials in normal form in Ho>M(q), E Mo can be written in a desired form.

Proof of Proposition 2.2. Let Mo be a monomial in normal form in H%tM(q).
Then, by Lemma 2.6, Lemma 2.7 and the definition of monomials in normal
form, we see that EMOy Tf MOi (ί<i<M-l) and Tj1 M0(ί<j<N-ί) are all
written as linear combinations of monomials in normal forms. Thus we have
shown that monomials in normal form generate HχtM(q) as a vector space.
Hence we get the desired inequality.

3. Weights

We introduce the weights of vertices on TNtM. For any γ ε Z Λ , let aΊ(xlf
X2> •"> xn) denote the monomial antisymmetric function corresponding to γ :
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aΊ(xly x2i . - , xn) = det [xV] = Σ (sgn w) xwy .

DEFINITION 3.1. Let γ be a staircase of height n. The Schur function Sγ

is defined by i Y (^, #2, •••, xn)=ai+B(xlf x2i •••, xn)laδ(xlf x2, •••,#«) where δ de-

notes the vector (Λ—-1, w—2, •••, 1, 0).

Proposition 3.2. Ltfί α #/&*/ /3 be staircases of height n. Then the follow-

ing identities hold.

(a) (X!+X2-i Vxn) S*iXl> X2> — , Xn) = β Σ ^ ( # 1 , Λ?2> —> ^ ) -

101-1*1=1

(b) {xTι+xϊι-\ Vxή1) sΛ{xly x2, •-, ̂ Λ) = Σ sβ(xl9 x2, —, Λ?Λ).

Proof. From the definition of 0 r t + θ, we have

{xx+x2-\ \-xn) α Λ + δ = Σ

( Λ ? Γ 1 + ^ F 1 H — h ^ 1 ) tf*+δ = Σ ,

where £f = ( 0 , 0, •••, 0, 1, 0, •••, 0) (only the ί-th corodinate is 1). If a+S{ (resp.

cc—Si) is not a staircase, then the coordinates of the vector α + δ + £ , (resp.

a+S—Si) are not distinct and hence 0 - + e + f / = O (resp. tfΛ+δ_8.=0). Hence (a)

and (b) follow.

Let Λ*(iV, M) denote the set of staircases corresponding to the vertices on

the fc-th floor of i y M . In particular Λ(iV, M)=AN+M(N, M). For each γ e

Ak(N, M), we define its weight wk{j) by zok(
rγ)=(ίl[n]k) s^(q'n+1, q~n+z, •••, qn~ι).

Note that even if the staircase γ of height n is not contained in Ak(N, M), wk(y)

can also be defined. Putting x.—q-"*2'-1 in Proposition 3.2 we get:

Proposition 3.3. For k<N+M and β^Ak(N, M)3 wk(β) =

where y runs over Ak+\N, M) connected to β in the graph TNtM.

By the definition of αγ, ai+(ltlt...tl)(xly x2y '">xn)=x1 x2~ xn ay(xlf x2, •••, xn) and

tf7-(l,l,".l>(*l> X2> -•> Xn) = χϊλ X^—Xή1 a^Xl9 X2> ~',Xn). Sθ Λγ±(i.i...,i)(?""+1, ?" Λ + 3 ,

•••> ? n " 1 ) = β y(?"*n+1> ϊ " n + 3 , —, q11"1)- Therefore the following lemma holds.

L e m m a 3.4. Let a=(au a2i •••, an) and β=(βu β2> ..., βn) be staircases

of height n. If (alfa2, —, a»)=(βi+r, β2+r, —yβn+r) for some r<^Z, then

wk(a)=wk(β).

L e m m a 3.5. Let 7 = ( θ Ί , y2, •••, yn) be a staircase. If we put γv'=(—γn,

—Ύn-i> - > —7i) then wk{y)=wk{y^).

Proof. We have only to show that ay+s(q~n+1, q~n+3, •••, qn~1)=af +8(q~n+1,

?~n+3> • # , ? n " 1 ) . From the definition we have aγ+^q-"*1, q~~n+z, •••, qn~1) =
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det [?(-»+2'*-1>0V+•-<>] = det [jC- + ^ W - O ] Π y - i q('n+2j'1)n = det [ ? ( ]
While Λ ^ + β ( g - * + S ϊ - ^, ••^j«- 1)=det[2<-*+ 2 /- 1><- γ -ί+i+ l |- |">]. Reversing t h e order
of columns and rows, we have α f + β ( ί ~ " + 1 , ? " Λ + 3 , •••, qM"1)=det [j(-«+2'-1)(-Tf+>"-1)]
= Π " - i ?c«-2/+i)(-i) d e t [ ^ - v + 1 ^ - ^ + ί ) ] = det[β< - v + 1 κ - ^ + ί > ] . T h u s t h e l e m m a
holds .

F r o m t h e previous two lemmas we get t h e following proposi t ion.

Proposition 3.6. Let y=(yu γ2} •••%,) be a staircase. If λ = {7—(r, r3 •••_,

r ) } ' then wk{j)=wk{\).

Now we assume that λ is a partition with l(\)<n. Then λ is identified
with the set {(i}j)^Z\ 1 <j < λ f } , which may be viewed as a collection of boxes
called Young diagram. Let λf be the number of boxes in the y-th column of
λ, i.e. λf=Card{/; X,>y}. The hook-length of λ at (i,j)&\ is defined to be

Lemma 3.7. Let Xbe a partition, then

The proof is easy, so we omit it.

Proposition 3.8. Let λ be a partition with \ λ | =iV. Then

Π fe
Proof. By Example 1 in [11], ρ.9 the following identity holds.

Putting t=qz we have

Moreover putting λ = φ , we get

(3.10) Π ( W ( - + y ) ) = Π** Π"'(l-β*0

We note that

= det [ j-

= Π j-ί
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o Π (f^i+n'j) (1—
»=i ί<y

and

*«(?~ft+1> rn+\ •••> Ϊ - 1 ) = π j - * - 1 * - ' ) π ?2(n-

So, using (3.9) and (3.10) and Lemma 3.7.

= π -r-1* π

= Π ff"(""X) Π β2** j'.V-^'+i (1—g 2 ' )

0\/;>€=λ (ί,»eλ Cίi)

This completes the proof.

Let ί=(τ°, 71, •••, 7(*"X), 7(Λ), <γ(k+1\ ...) be a tableau. In case k<N we put
γ(*-1)=Vy γk=μ and 7^ + 1 )=χ. In case k>N we put z/= {T^"^—(r, r, •••, r)}^,
M= {7(Λ)-(r, r, .-, r)}^ and χ = {γ<*+1>-(r, r, - , r)K, where r=γ(

1

ft-1)(see Propo-
sition 3.6 for the notation \/) . Under the above notation we define an integer
d{tyk) as follows:

where (rh ct) and (rOT, cm) are the coordinate of the box μ\v and X\A6 respec-
tively. For iGZ\{0}, we put ad(q)=^/[d].

The following proposition, which is a version of Proposition 3.3 in [16],
will be used in Section 4 to construct irreducible representations of HχtM(q) and
in Section 5 to get Markov traces.

Proposition 3.11. Let α G Λ * " 1 ^ , M) and β^K\N} M). If we assume
that a and β are connected in TNMi then

[n]

Here y runs over all the vertices on the {k-\-V)-th floor which are connected to the
vertex β, and t(y) is a tableau whose k-th, (k-\-\)-th and (k-\-2)-th coordinates
are a, β and y respectively.
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To prove this, we first show the following two lemmas by using Proposition
3.3.

Lemma 3.12. Let μ be a Young diagram with l(μ)<n and X1, X2, •••, XPm,
λ,'=(λ{, χ'2) ..., χl) (1=1, 2, •• ,p(μ)) be all the Young diagrams obtained from μ
by adding a box (r,, c,) (1=1, 2, —,p(μ)). Then.

Proof. Observe that x'rι = μrι+ί, (x'*)cι = (μ*)cι+l, Xlj=μj (jΦr,) and
(\'*)j=(μ*)j(j^ci) ^o t n e hook-lengths at (i,j) are the same in X1 and in μ

and j Φc,. From Proposition 3.3 we obtain

(3.13)
'=i Wk(μ)

_ Φ

C Uhjrhj)] V
M [ A ^ ) + 1 ] "^i [»] M [A^r,,j)+1] " Mi, c,)+1] "

For any partition λ=(λi , λ2, •••, λΛ) we define X to be (λi, λ2, •••, Xa, 0). Then

we have »»(X)=(l/[»+l]*) Πo>>)eχ[»+l-*+Λ/[Aχ(*>;)] and

Hence by (3.13), Σ3
1.

Lemma 3.14. Let μ and X1 (1=1,2, •• ,p(μ)) be Young diagram as in
Lemma 3.12 and v a Young diagram obtained from μ by removing one box. Then

Z7 w Λ tableau whose k-th, (k+l)-th and (k-\-2)-th coordinates are v, μ, X1

respectively.

Proof. Let λ=(λi , λ2, •••, λn) be a partition with the length /(λ) and let
ίoeiV, 1 < / O ^ ( λ ) . We will modify λ so that the lemma can be reduced to the
special case of Proposition 3.3. We define the Young diagram λ(z'o) such that
λ(/0)ι=λ l + l for i<i0 and λ(z0),—λt +i for *>*o From this definition we find
λ(*Ό)f=λ?—1 for i<\io and λ(4)*=λf-i for i>λ ί o . Let hλ(ij) and hλUo)(hj)
denote the hook lengths corresponding to the box (i,j) in λ and λ(/0) respective-
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ly. It follows from the above remarks that hλ(i,j)—hλ(iQ)(i,j+l) for i<t0 and
j>\io, and hλ(ij)=hλ(io)(i—lj) for i>i0. If i<ί0 and j<Xh then hλ(i,j)=
Kdofa J) Consider wk+ι{Xι)lwk{μ) and wk+i(Xι(io))l™k(μ(h)) From the proof of
the previous lemma

«V»(λ') _ [n-

where λ ; —μ=i(r h £/)}. Note that "the first factor" of wk+ι{\ι)jwk(μ) is
[w—rj+cillln]. On the other hand, since Xι(to)—μ(tQ)= i(rh £/+l)} (if h<rι) or
i(rt—l,c,)} (if ^>rj), the first factor of wk+1(Xι(to))lwk(μ(io)) is [w—r +cj/fn].
From the consideration of hook lengths in μ and μ(t0), the remaining factors of
wk+i(X!)lwk(μ) a n < i Wk+i(Xι(h))lwk(μ>(h)) differ only by the factor belonging either
to (r^μ^+l) in wk^{Xι{ίQ))lwk{μ{ί0)) (if r7<O0) or to (rh μh) in wk+ι{Xι)lwk{μ)
(if zo<r/). Hence

r,] wk{μ)

and so

__Pg
1 ^

i=ι Wk(μ(t0)) /=i Wk{μ) [n-

Taking i0 so that μ—v=i(i0, μio)}, we find cι--μio+to—rι=d(tι

y k). Hence the
lemma follows.

Proof of Proposition 3.11. From the definition of d=d(t,k) and Proposi-
tion 3.6, we have only to consider the case a, β and γ are partitions. So we
use the same notation as in the previous two lemmas. Lemma 3.12 and Lemma
3.14 say that

t + l + ] _ [ + ] ^
[n—r,+c,] [n]

ί ί wt{μ) [n-

where d(t', k)=Cι—μio+io—r,. We can check that

[io-μio-n-2] [ή-r

[h-μi.-n] [n-rl+ct+l][d(t,k)-ϊ\_[d(f2ktll
[d(f,k)]

using d(t', k)=c,—μio+to—r,. Therefore
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k+1(X') [d{t',k)-τ\ = fo-^-w-Z] [»+l] Λ [ιό-M<t-n]
wk{μ) [d(t',k)] [i0-μh-n-ί] [n] [/„-μh-n-l]

- Γ 2 1

Hence we have

Hence

4. Representations of HN,M(Q) on iΓ(9) Ω

We are now going to construct the irreducible representations of Hn

NtM(q).
For γGΛ(iV, M) let Ωv be the set of all tableaux of shape 7 and let Ω be
ΠY€ΞΛ(N,M)ΩY as in Section 1. Let Vy be the if(#)-vector space with basis
{vt; ίGΩ γ}. We now define endomorphisms zr^T,-), πy(Tf) and πγ(E) (i=l, 2,
...,ΛΓ-1), ( ; = 1 , 2 , . . . ,M-1) of V\ For each tableau ί=(γ<°>=φ,y<1>,-,

) = γ ) ) w e h a v e t o d e f i n e ^(y.) V ί ( / = 1 ) 2 , ..., JV-1), τrγ(Γf) ^ ( - l , 2, - ,

Definition of π^Ti) vt and π-t(Tf) vt.

As for π-fiTf) vty our definition is almost the same as the one given in [3, 16].
Let i e { l , 2 , « ,iV— 1} (resp.je{l, 2, -- ,M—1}). The partition 7^+1^ (resp.
γ(i\r+;-i)̂  i s obtained from y^'^ (fresp. γC^^'-1)) in one of the following three
ways:

(a) By adding two boxes to (resp. removing two boxes from) the same row
of γtf-1) (resp. γ^^- 1 ) ) . In this case π^Tg) vt=qvt (resp. πΊ{T*) vt=qvt).

(b) By adding two boxes to (resp. removing two boxes from) the same col-
umn of γV-V (resp. γ^^- 1 ) ) . In this case πy(Ti) vt=—q"1 vt(vesp. π^Tf) vt=
-q-ιvt).

(c) By adding (resp. removing) boxes in different rows and columns.
There is precisely one tableau which differs from t only in its (/+l)-th (resp.
(JV+;+l)-th) coordinate. We call this tableau i. Define

where d=d(t, i) (resp. d=d(t, N+j)).
Definition of πγ(E) υt.

In case γW+Vφγi*-1), we define π^E)=0. In case «y(Λr+i)=7(Λr-»)| it is
necessarily a partition. So we put cy(x+1)=cy(N-1)=μ and γ<JV>=\1. Let p(μ)—1
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be the number of tableaux t?y f, •••, £ w which differ from t=t1 only in their
(ΛΓ-f l)-th coordinates. We denote their (iV+l)-th coordinates by λ2, λ3, •••,

respectively. Define

One can verify that πf(T{)9 π-f(Tf) and π^(E) satisfy the relations (l)a, b,
(2)a,b, (3) and (4) in Definition 2.1. (Use Σ f Λ » ^ ) K . i ( / * ) = l for (3).)
We have to verify that they also satisfy (l)c, (2)c, (5), (6) and (7), (8) in Defi-
nition 2.1.

Proposition 4.1.

(1) π^T4) π,(Ti+1) π,(Tf) =

(2) πy(Tf) πi(Tf+1) πy(Tf) = π

These relations are proved by modifying the argument in [16], pp. 361-
364 and we omit it.

Proposition 4.2.

(1)

(2)

Proof. Let tl=(y(°\ ••., y(»-2>=v, γ^'\ γ W = λ 1 , Ύ(N+1\ Ύ(N+2\ •••) be a
staircase. If γ ^ - ^ φ γ W , then π^E) ^, i=0. So both (1) and (2) hold. We
assume that ^N-^=y^N+1^=μ. Let ίj, ίj, •• ,ίί(μ') be distinct tableaux which
have the same ί-th coordinates as ίί for any z'ΦΛΓ-j-1 and which have λ2, λ3, •••,
XpW respectively as the (ΛΓ+l)-th coordinates. Let Xι\μ=i(rι,cι)}, μ\v=
{(r0, c0)} and rf,=έ/(ίί, N—1)=^—r,—(co--ro). I f w e w r i t e

+άdι v^, then

^ ) [n]

n]*Σ

= [n] fj ^ψ- aMtN^ πi(E) vtί
/ = 1 W{μ)

= qn π-f(E) vti (Proposition 3.11).

Hence (1) holds. Similarly we obtain
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We have to show

_ H
jT^r
[»]

The (ΛΓ+3)-th coordinates of *ί (/=1, 2, •• ,/>(μ)) are γ<*+2>, which is either the
partition v' or the staircase of the form μ—(0, 0, •••, 0, 1).

If γ<"+2> is the partition 1/' with μ\v'=i(r'θ9 cQ}9 then i(ίί,

(rf—r5)=rf(Φ, JV—1). Hence we have

is the staircase of the form μ—(0, 0, •••, 0, 1), then d(t[, N-\-ί)=
Cj—rj+n. If we put v=μ+(l91, —, 1, 0), μ=μ+(l, 1, •••, 1, 1) and %!=\'+
(1, 1, •••, 1, 1) (/=1, 2, "-yp(μ)) and apply Proposition 3.11 to the sequence

v/ (1=19 2, * ,p(μ)), then we have

qΛ+Cf' rf q

Using the definition of wk(y) and Lemma 3.4 we have

Hence

^"i £0#(\ ) (f cι~~rι

Since d(tl, N+ί)=cι—rι+n9

Thus we have shown (4.3). Hence (2) is proved.

Proposition 4.4.

(1) «4E) w^Γj i,) *^Γf) ^(^) (^Γ^-O-^Γf)) = 0.

= o.
Before proving this we shall show the following lemma.

Lemma 4.5. Let ί = ( τ « , •», γ W - ί y ^ γ w y w ) ^ ^ . . . . ) be a

tableau. If -y(""2) Φ Ύ(N+2) or γ<JV"1ί Φ 7^+ 1> then
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Proof. If γ(^-i)φγ(^+1) then the claim is obvious. We assume that
l) = Ύ(N+1) = μ09 Ύ(N) ^ λ<>,l a n ( J ^ - 2 ) = Jfφγ(ΛΓ+2)β L e t tj={^\ " , V, μ\

λ° ', /Λ <y<"+2\ •••)> 0 = 1 , 2, - , ί ( / * 0 ) ) be tableaux, where λ° ', 0 = 1 , 2, - , j>(/*0))
are all the partitions obtained from μ° by adding one box. Moreover let tj=
(Ύ(0), - , P, μj, XΌj, μ\ <y<"+2\ •••)> ̂  = ( 7 ^ , - , *, μ°, λ°'y, £>, <y<"+2\ - ) • ί y / / =

(γ ( 0 ), •••, z/, /x,y, X0>y, βJ, γ(n+2\ •••), where /x,y is the partition obtained from v by-
adding the box λ°'y\^° instead of μ°\v and βJ'=\0j—(0, •••, 0, 1). Even if there
does not exist μ1 we define μ\ t'h t'" formally. Note that μ'^β' for anyj and
μ°3=βi. For brevity, we write v. for vtJ and v'h v", v'/' denote sy., vtr{, vt>» re-
spectively. And we write ajk for ad{tjtk). Since π^(E) Vj=πy(E) v'/=πi(E) v"f

= 0 for any y, we have

From the definition of d{t,k), d{tpN—l)—d{tpN-\-\) is determined only by
z/, /A0 and 7^+2) and they do not depend on j . Since μJ^β\ d(t.,N—\)—
d{tp JV+1)ΦO. So ρ=(l/(?-^ 1)) tf«J'»-ι>-'«r»*η[d(tJ9 N-l)-d(tp N+l)])
also does not depend on j . We can easily check that the following identity:
(?—ί̂ Mtfy.jmδ+fl/.AΓ-iίl—Q))=<*j.N+ι<*j.N-i> F^om this, Proposition 3.11
and (4.3), we have

Hence π 7(£) πΊ{TN-x) π^Tf) π^E) v^q—q-1) q" π^(E) vt. Finally, using Propo-
sition 4.3(2) we have

= πi(E) π^T^) π^Tf) π,(E) vf-(q~q-1) πΊ{E) π,(Tf) πΊ{E) vt

= (q-q-1) q" *&) v-{q-q-
1) q" π,{E) vt

= 0.

Lemma 4.6. Let to>j(j=l,2, •• ,p(μ°)) be tableaux whose coordinates are
given by (<y<°>, •», ̂ -^)JV> μ\ χ*.Jt μ\ v> . . .), where X°-} 0 = 1 , 2, -,ρ(μ°)) are
all the partitions obtained from μ° by adding one box. Let μ' be the partition 6b-
taii>edfrom v by adding the box X0J\μ°, instead of μ°\v. Even if μ' is not a par-
tition, we define it formally and define a>#-i(/*'') to be zero for the μ'. Then
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and

[d.f wN-2{v)

where d.=^d(tOtP N-\)=d(tOtj) N+l).

Proof. If λ0>; is obtained from v by adding two boxes in the same row or
column, then we cannot get another tableau by changing the order of adding
these boxes. This means wN~1(μi)=0. On the other hand [rf, + l ] [dy—1] a l s o

becomes zero. So in this case the upper identity holds.
We assume that X0'' is obtained from v by adding two boxes in different

rows and columns. Let χ°'j\μ0=μi\v={(rj)Cj)} and XOJ\μi='μo\v=i(rO) c0)}.
Then

K{rp co)+l== hμfi(rJy c0) (if c.>c0)

-(K(r<» Cj)+1) = --Aμo(ro, c.) (if co<c.)

In case Cj>c0 we have

p c0) = Av(ry, co)+1 (k = c0)

Hence in this case we obtain

_[»-r,+c,]'C Vh*rJtk)] y [h^k,Cj

[n]

Similarly, in case co>cf we obtain the same identity. Using the above conse-
quence we have

1-
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J=o WN.2{v)

y=o ^ _ 2 ( i / ) y-i zυN-2(v)

L e m m a 4.7. Ltfί μ/ be the previous ones. Let tjtk=(rγ(0)

ί •••, ry(N~2)=v,

μ), V'k, μj, vs •••) &̂  tableaux, where V'tk (k=l, 2, ~,p(μj)) are all the partitions

obtained from μi by adding one box. We label them so that Xjtl becomes X0J for

each j . Then

0Λ = [nf Σ Σ ^ ,.k

J=o k=i WN-2(v)

Proof. We write dj and vjtk for d(tOtj,N—l) and vjtk respectively. We

can easily check that

Hence

[^•+1][^-13^^(V)

M

( pa*0) 7n (-\0,k\ pw°) pcμ h 7I1 (^j,k\ )

Σ ^ y ^ % * + Σ Σ ̂ Vv\-.*
*=i wN-2(v) y=i *=i wN-2(v) )

Proof of Proposition 4.4 (1). Let ί = ( , r ( w - 2 ) , r ^ " 1 ' , 7<JV>,

•) be a tableau. Put f ' = ( , γ ^ " 2 ' , γ ^ " 1 ' , γ<w>, ^ + 1 > , γ ^ 2 ' , •••) and t
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Ύ(N+i) a n d 7(*-2>cf (tf-^cyW, ^-i)φΎ(iv-i). Note that if there exists such a

o r (̂ΛΓ-1) j t jg u niqUely determined. Even if there does not exist such a
or ^c*-1), we define the tableaux f' and f" formally.

If 7 ( ^ 2 ) φ 7 ( ^ 2 ) t h e n > b y L e m m a 4.5, π^E)π^T]il1)π^Tγ)π^E)υt=O
for v~vtyvt', and #,//. Since πt(Tf)υt is contained in K(q)vt®K(q)v't and

V O ι># is in JC(?) *,©*:(?) zy, we have τry(£) a r ^ - i ) π^Tf) π^E) (π

We assume that cy(x+2)=cy(x-2)=v and γ W = \ . There are at most four
possibilities which tableaux satisfying the above assumption can take. We clas-
sify them and label them as follows: f1=( , y(N-2)=v, μ, λ, μ, v, •••), t2=( ' y

y(«-*>=Vf μ, x, ^ ', ,, ...), ί 3 = ( - . , 7 ( Λ r - a ) =^, /*', λ, μ, vy . - ) , ί 4 =(. . , <y<"-2>=r/,
μ',\> μ',v, -••), where μ^μ'. We write z;,. for ©,. ( i = l , 2,3,4). Since
^(Γf) υx=tfl[d]) vx+([d+ϊ\l[dl) υ2 and ^
for suitable ίί, and since

(4.8) «rY(£:) 7iΊ{TjtU) π,(Tf) πΊ(E) v2=m{E) πJTϊlx) π^Tf) πΊ{E) v3 = 0 ,

we have

)) Vι = 0 ,

-π^T^)) vA = 0 .

Now we shall show the same identity for υ2. Since πy(Tf) v2=(q~ij[—c[\) vt-\-
([d-ί]l[d]) vlt X^TM) vi=(ιfl[d\) v2+{[d-l]l[d]) υ4 for suitable d, using (4.8)
we find it is sufficient to show

πΊ{E) xύTϋlt) n^Tt) πΊ{E) vx = π,(E) x^TϋU) πy(Tt) πy(E) v4.

But by Lemma 4.7 the above identity holds. So we have

π,{E) πΊ{TN^) xJTf) π,(E) W Γ f J - ^ U v2 = 0 .

Similarly we have the same idnetity for v3. This completes the proof of (1).

Proof of Proposition 4.4 (2). By Lemma 4.5 we can assume a tableau
t=tQΛ is the following form: ί O f l =(.- , j(<N~2)=Vy μ°, λM, μ°, v, •••). Using the
notation of Lemma 4.7, we have

πy(E) πΊ{T-NU) πy(Tf) πy(E) υ0Λ = [n/ξϊ *ξ? ?»<Ά Ό .

For a tableau ί y t J k =(-., i;, ^', λy *, ̂ ', y, •••) we put *<*=(..•, v , ^ , \>-k

y μ>\ Vy

•••). If there exist such tjιk, it is unique. Otherwise we put t< k=tjk. We
write Vjtk for u^ . Using these notations, we have
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-Nl,) πy(Tf) π
2 i.k wN-2(v)

We can easily check π^T^) (v^+vl^π^Tf) (vjrk+v<,k). Hence 4.4 (2)
follows.

Finally we show that the representation πy is irreducible and Hn

NM(q) is
semisimple. The following facts will be important in the proof of this. Ob-
serve that if M=0, then the map ί=(γ(°), ..., γ^- 1 ) , γ W = λ ) H ί / = ( γ ( ° ) , ».,
γ(N-i)\ defines a bijection between Ω,χ 0 and U Ω#-i o, and that if M > 1 ,

then the map *=(7 ( 0 \ - , 7( iV+M-1}, 7^+ M )=λ)h->ί'-(γ(0>, ..., γ C ^ - 1 ) ) defines
a bijection between Ωy

N M and U Ώft M-I The case M=0 is treated in
β(=ΔCff\J£ l)

[16]. So we concentrate on the case M > 1 . In this case,

(4.9) K(q) Ω,y

NtM = θ K(q) Ω&fΛr_i. (as i£(?)-vector spaces)
/3eΔCiyJfi)

from the above argument. K(q) ΩΛΓ.M is an H% M(q)-mod\ύe and this decom-
position is compatible with the action of the subalgebra Hn

NtM~i{q) of H%tM(q)-
So we have

(4.10) πy\ ^ θ πβ.

Using this, we can show the following theorem.

Theorem 4.11. Let yeΛ(iV, M) be a staircase. Then πΊ is an irreducible
representation of H%M(q) on K(q) ίl&.M If fγ^A(N, M)y then πy is isomorphic to
πy if and only if 7 = 7 . The map π: x^Hn

NtM(q) h-» θyeΔ(^,M) π-i{x) define a faith-
ful representation of Hn

NtM(q). In particular, the algebra Hn

NtM(q) is semisimple.

Before proving this theorem we shall show the following lemma, which is
the extended version of Lemma 2.11(b) in [16]. Consider the graph TNtM whose
vertices are parametrized by the multiset U A-!ΌMΛ*(ΛΓ, M). Let 7, 7 ' be stair-
cases, we call 7 ' is a substaircase of 7 if there exists a tableau such that /=(7 ( 0 ) ,

Lemma 4.12. (1) Let λ and λ be two distinct partitions with \ λ | = | \\ =
N,N>3. Then at least one of them has a subpartition μ with \μ\ =N—1 which
is not a subpartition of the other one.

(2) Let 7=[a, β]n, 7=[<2,/§]„ be two distinct staircases with | γ | = |«y| =
N—M and |α |<iV, \&\<N. Suppose that M>\s N>1. Then at least one
of them has a substaircase 7' with \γ'\ =N— (M— 1) which is not a substaircase
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of the other one.

Proof. The proof of (1) is given in [16]. We show (2) in similar way to

the proof of Lemma 2.11(b) in [16]. Let 7=(7i, 72, •••» Ύn)
 a n d l e t 7=(7i> ?2>

•••, 7Λ). Let ί be the largest index for which 72Φ7S. We may assume 7,<7S.

If s3=n, take 7' to be 7'=(7i, —, 7,, 7s+i+l> •••%,)• If *=», take 7' to be 7 ' =

(7i+l> 72> •"•> %*)• These 7's have desired property.

Proof of Theorem 4.11. As is well known (see, e.g. [16]), H%tQ(q) is a
semisimple algebra. We assume that i/^,M-i(?) is a semisimple algebra with
minimal central idempotent zβ labeled by staircases β^A(N, M— 1). Let OΦ
Wci£(#)Ω&,Λ/ be an Hn

NtM{q) submodule. As K(q)Ω&ιM decomposes as an
Hn

NtM-\{q) module into the direct sum of irreducible modules K(q) Ω$i$M-ι by
(4.10), there exists a βeΛ(iV, M—1) such that β^y and K(q) Ω%.M-IC-W.

Let jS Φ/3 be another staircase in Λ(iV, M— 1) such that β 2 7 . There is exactly
one αGΛ(iV, M—2) (resp. α e Λ ( i V - l , 0) if M=\) connected to both β and β.
Let ί=(7 ( 0 ) , 7(1), —, γ(N+M)=γ) be a tableau such that yW-ι)=β and
= α . Then ^ γ(^ ?) ̂ Γ ί - i ) v, = ([d+ l)l[d]) v} (resp. πy(Zβ) πy(E) vt =
Wtf-i(α)) ©?), where rf=έ/(ί, ΛΓ+M-1) and ?=(7 ( 0 ), 7(1), — «iS, 7). Hence the
irreducible Hn

NtM-\(q) module K(q) fl^tM-ι is contained in W. Since /S was arbi-
trary,

Next we shall show that K(q) Ω&>Λf s are mutually non isomorphic H%tM(q)
modules. We write Ύ=[oc, β]n and <γ=[δί, β]n and assume that 7Φ7. If
\a\<N and \ct\<N then, by (4.10) and the previous lemma, K(q)Ώ* and
K(q) Ωv already differ as H%,M-ι(q) modules. If \a\ <N and \a\ =N or aΦa
with | α | = |o?| =N9 then we can get a substaircase of 7 by removing one box
from the partition β, which never become a substaircase of 7. So we have
TΓŷ TΓγ again by (4.10). If a=a with \a\ = \a\=N then we apply the same
argument with respect to β and β as in [16] using Lemma 4.12 (1).

Finnaly we can show the representation π is faithful. In fact, by Proposi-
tion 2.2 and Corollary 1.8, dimκ(q) H%,M(q)<(N+M)\ and dimκ(q) H%tM(q)>
dim (θVeΛ(tf,M) πi(Hn

N,M(q)))=ΣlyeΛ(N.M)dim (K(q) Ω?)2=(N+M)L Therefore,
we have dim^) ^ , M ( ^ ) = ΣYSA(ΛΓ,M) dim(K(q) Ωγ)2, and π is faithful.

The above equality and Lemma 2.6 implies the following.

Corollay 4.13. The monomials in normal form defined in section 2 form a

basis of K(q)Hn

NtM(q).

If we take qo^K\{O} so that [n]?oΦ0, then we can define i^-algebra HN,M(9O)

taking j0"for q. Moreover if [N+M+ri\qo\ = [N+M+n]qo[N+M+n— i ] i 0 —
[l] ί oΦ0, then π-f is also defined for Hn

NtM(q) taking q0 for q. So we have the
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following theorem.

Theorem 4.14. If [N+M+n]<0! ΦO, then Hn

NtM(q0)^Hn

N>M(q).

REMARK 4.15. If we take algebraically closed field as underlying field of

Hn

NtM{q). (e.g. K(q)), then we can define πy as follows:

This means that τrγ is expressed as symmetric matrices.

REMARK 4.16. The mapping πΊ defined in the beginning of this section

also defines an irreducible representation of Hn

NtM{q) in the case n<N-\-M.

However, the mapping π in Theorem 4.11 is no longer injective.

5. Markov trace

Let M be a finite dimensional split semisimple jK>algebra. A trace on M

is a linear map Tr: M->K such that tr(xy)=tr(yx) for all xyy^M. Let M be

written as M= ©f.i z{ M with the central minimal idempotents zt (i=ί, 2, ••-,;«).

To a given trace tr, we associate the vector w=(tr(<pf))1^f ^m, where pt is a mini-

mal idempotent in Zj M. Conversely, the vector w^Km determines a unique

trace:

tr, - Σ v>i K ,
ί = l

where %*' is the diagonal sum on the full matrix ring #,. M. A trace tr on M

is faithful if and only if the associated vector w has no zero entries. If we as-

sociate the vector w==(wN+M(rγ))yeA(N+M) on ANtM in Section 1, then we have the

tract TrC" M> on Hn

N>M(q):

Any element Λ;Giί^tM-i(^) (resp. x^HN-i,o(q)) can be considered as an element

in HN,M(q) (resp. HN,o(q))- Proposition 3.11 asserts that there is the following

relation between T r ^ M> and T r ^ "-1) (resp. Tr<"'°> and Tr^-1-0)). (See Propo-

sition 2.5.1 of [3]).

L e m m a 5.1.

(a) Ifx^Hn

N>M^(q) (M>1), then Ύr^^'^x) = Ύr(N M\x).

(b) If x<=Hu

N_lt0(q) (M> 1), then Ύr<»-ι-°\x) =--
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For the proof of this lemma, see for example [3]. The next proposition

characterizes Tv(NtMK

Proposition 5.2. Let T r = T r ^ M> be the trace defined above, then Tr has

the following properties,

(1) Tr(l) = l.

(2) Ύx(ab) = Ύi(ba) for Vα, Vδeiϊ£,,w(?).

(3) Ifx<=*lgiTu T2,..-, Γ4_J ( 0 < ί * - l < i V - l ) , then Tr(*Γ4) = tf/[n]) Tτ(x).

(4) // x e a l g Ή , T2, - , T^}, then Ύx{xE) = (l/[»]) Tr(x).

(5) //*ealg{7\, T2, •-, TN.U E, Tί, - , TtJφKk-KM-l), thenΎr(xTf)

=(ί*/W) Tr(*)

Proof. By the definition of Tr and the previous lemma, (1) and (2) are

clear. For the proof of (3), (4) and (5), we can prove them in similar way to [16],

So we shall prove only (4). In the following proof, we use the representation

of H%M(q) on ΩNtM constructed in Section 4. Let t^ΩNtM be a tableau. We

can define the unique minimal idempotent pt^Hn

NtM{q) by π(pt)=

(K(q)Ω). (For Ttt see Section 1.) Note that if ί G Ω ^ . j , then

by the definition. We can also consider pt as an element of Hn

NtM(q) by pt=

Σ ί PSJ where s runs over all the tableaux in Ω,NfM obtained from t by adding its

(ΛΓ-j-M)-th coordinate. As ΣteQjr,oPt=zl> the property (4) is equivalent to

Ύr(x Ept)=(lj[n\) Tr(xpt) for all t(=ΩNt0 and for all x^Hn

N)0(q). Since pt is a

minimal projection in H^t0(q)y there is an a(x) GK(q) such that ptxpt=a(x)pt.

So if f=(7<°>, —, γ C " - 1 ) ^ , 7W=λ), then we have

(5.3) Tτ(xpt) = α(x)wN(\).

Let zλ be the central minimal idempotent in Hn

Nf{){q) indexed by λ and let

£=(γ(°>, . . . ,γ( i ί - 1 )= j t t ,7W=χ, γC^+^μ) . We write A = Σ « A as we noted.

Considering the action of π(zλ Ept) on Ω ^ we obtain

zλEpt = ̂ λ £ Σ A = [n] -

Hence we have

pt x Ept = zλpt x Ept =ptxzλ Ept = [n]pt xpt

= [n] α(x) ̂ ψ-ptpt = [n] α{x)

It follows TΓ(Λ; £ Ά ) = W - ^ ^ - α(x) zoN+1(μ)=(ll[ή]) α(x) zoN(\). Comparing
wN-ι(μ)

with (5.3) we obtain Tr(E xpt)=(l/[ή]) Ύr(x,pt) as desired.

Proposition 5.4. If α trcαe tr on H%tM(q) satisfies the properties (l)-(5)



CENTRALIZΈR ALGEBRAS OF MIXED TENSOR REPR. 501

in Proposition 5.2, then it coincides with Tr.

Proof. It is sufficient to prove that, for any x^Hn

NtM(q), tτ(x) is uniquely
determined using the properties (l)-(5) in Proposition 5.2. We can assume
that x is a monomial in normal form. If x=a^K(q) then tr(#)=tr(α l ) =
a tr(l)=a by the property (1).

If x(Ξalg{Tly —, Tk} (l<k<N-ί) and x involves Tj\ then x is of the
form yx Tjιy2(y1,y2ςΞUgiT1, - , TΛ-ά). Hence tr(x)=tτ(yi 21ϊ1

Λ)=(g-/W)
tr(y2 jj). By the induction on &, tr(j>2 j^) is uniquely determined. So is tr(#).

•, TN-ly £} and * involves E, then Λ? is of the form Mι E Γ j i i
- , Ϊ W ) . Hence t r i M ^ r ^ I x Γτi2 Γ71

1)=(l/[n])
tr(2*Ii Γ5I2—ϊ1^1 Mx). By the previous argument trίΓ^Ii Γ ^ Γy,1 Λf2) is
uniquely determined. So is tr(#).

Assume that A? is in alg{Γj, —, 2VX, JS1, Γf, —, Γ?} and Λ? involves Tf. If
we write x=M1 T\-Tt E Tjlv TTf-Tf.-TΫ E Ά-Tj* Mfy then Tf is
in Mt or Γjf = TfM or both. If Γf is not in Mi or TfΦTfm, then we can write
x=yi Tfy2(yl9y2^lg {Tl9 -., T -̂x, £, Γf, - Γ t i } ) . So we have tr(*) =
tr(^j Γ ί ^ ^ ί ^ / W ί ^ ί ^ ^ i ) - Again by the induction on k> we can uniquely
determine tr(#).

Finally consider the case Mf involves Γ* and Tfm= Tf. Using the relation
of Tf> we can write Mf=T* Tf+v Tf Mf for some monomial in normal form
Mt in alg{Γf, Γί, - , Tί^}. Hence we have either x=Mx Tf-Tf E Γ^ii —
T£xT*-Tt Mf orx^yoETϊU-Tĵ TΪ. .Tΐ ETJU-TJXT* T*+l-Tt
Mf) (yQeύgiTu .-, Γ^^, £, Γf, - , Γti}).

Case 1. If x is of the first form, then

tr(*) =

Since Γf Γf M* ϊ 1* « Γf can be written as a linear combination of monomi-
als in normal form. We can reduce the number of Tf to one. Using (2), (5)
and the induction on k we can determine tr(#).

Case 2.1. If x is of the second form and $>1, then

*+1-Tf Mf)

T* T*+vTt)y* (Λ,Λealg{2\, •», Γw- l f£, Γf,

Similarly to Case 1 we can determine tτ{x).
Case 2.2. If * is of the second form and ί = 1, then

* = y0E Talr-Tj^ Tf-Tf E Tulv-Tj^Tf Tf-Tf

= y<)Tt-TfETj;l1 TtETf Tjlt- TJΪ-! Γ ^ Γjj Tf-Tt Mf

= y0 Tt-Tt E Tϋli Tf E T5L1 TKLI-TJ^ Γjϊii Γjj Ίf'"Tt Mf
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= yΛ Tt-n n Tt-Tty, (Λ.ΛealgΉ, - , Tκ.lt E Γf, - , Π-i»

Similarly to Case 1 we can determine tr(#). The proof is completed.

We call the property (l)-(5) in Proposition 5.2 Markov property, and if a
trace has Markov property then we call it a Markov trace.

REMARK 5.5. In the case n<N+M, we can define a trace Tr of H%tM{q)
satisfying the properties (l)-(5) in Proposition 5.2. However, this trace is not
faithful, i.e. there is x^Hn

NtM{q) such that Tr(#, y)=0 for all

6. Centralizer algebra

In this section we shall give a representation of H%tM(q) acting on the mix-
ed tensor space, and we shall show that it is naturally isomorphic the centralizer
algebra of Uq(gl(n, C)) on the mixed tensor space. In the classical case q=ly

such centralizer algebra is studied in Section 1 of [8]. In this section we put

We define Uq(gl(n, C)) to be the associative algebra over C(q) generated
by the symbols q±2i, Xiy Y, {\<i<n— 1) under the following relations:

cfi q-zt = q~z* q*i = 1, (£*•<£' = q^j q** ,

Xj if otherwise, ( Y. if otherwise,

[ , , y ] l V i ,

x, Xj = Xj xt, Y, γί = Yj y, , (ii-ji

X] Xt±ι-(q+q-1) X, Xi±1 X,+Xi±ι X\ = 0 (1 ̂ i , t ± 1 <:«-1),

H Yt±ι-{q+rι) Yι Yt±i Yi+ Yi±ι Yΐ = o 0- ^> *'

We put qffi=q*i~*i+i. We have an algebra homomorphism

Uq (ΛΓ-fold) such that

Δ ( Λ r )(?± f ') = 5 ± f ί®

- Σ 1® ®1®y

and an algebra antihomomorphism S: Uq->Uq such that

S(X{) = -q-»< Xt, S( Yt) = - Yt q»<, Stf) = ? - β ,

The Lie algebra gl(n, C) naturally acts on VH=C*. This representation,
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called the vector representation of gl(n, C), can be deformed into the vector re-
presentation (φ, Vn®C(q)) of Uq as follows:

φ : Xt h-> Eiti+1, Y{ H> Ei+lti, q*i h-> qE<.i,

where Eitj denotes the matrix unit.
Let Vt be the dual space of Vn. We can define the contragradient rep-

resentation φ* on Vf®C(q) by φ*=*φoS. Using φ, φ* and Δ (*+ M ) "we can de-
fine the mixed tensor representation φ(*+M> on F ( / + M ) by Φ<*+M>=(φ®"<g)φ*®M)
oΔ(JV+M). The generators X, , F, and f±f. are mapped into End (ViN M))^
End(Fn)®ΛΓ®End(F*)®M by Φ as follows:

where J^; denotes qEi,i~Ei+i,i+i.

DEFINTION 6.1. Let F be a vector space over a field i£ and let i be a
subalgebra of End^(F). Then we define A' by

A' = End^(F) = {&GEnd^(F); ba==ab for all

We consider the subalgebra

CiN'M\q) = {^eEnd(n^' M ) ); x Φ(g) = Φ(^) Λ for any g(Ξ Uq} .

of End(F(/'M))> the centralizer algebra of Uq on F ( / ' M )

Proposition 6,2. 77*£ following linear map σ defines a homomorphism from

σ{T{) = 1® ®1®Γ®1® ®1 (l^i

where T=.q± EM®EJ,i+ JJ ^,»®^».y+(?-?-1) Σ Eltj®EkJk

Xr+i-1



504 M. KOSUDA AND J. MURAKAMI

where Γ* =

σ{E) =

Moreover ofn>N-\-M, then σ is injective.

Proof. It is easy to check that σ defines a representation of H%>M{q) and
that σ(Γ,), σ{Tj) and σ{E) commute with Φ(X, )> Φ( Yf ) and Φ(q*ή. We show
that if n>N-{-M, then σ is faithful. To prove this, we have only to define the
linear map T: C(

H

N M)(q)t->C(q) such that Tr(x)=τ(σ(x)). In fact, if there exists
such a T, then by the faithfulness of Tr, σ has no kernel. From the uniqueness
of the Markov trace on ANtM the proof of this proposition attributes to the fol-
lowing lemma.

Lemma 6.3. Let Xk be the diagonal sum on Mat(n, C(#))0*, and put d=
diag(ί"Λ+1, ?"n+3, q~n+5> •••J}*

rl). If we define the linear map r on σ(H%tM(q))
by T: Λ?h->(1/[»]AΓ+M) XN+M(d®-- ®d®d~1® ®d~1 x), then τ°σ satisfies the
Markov property.

Proof. We can easily check that τ°σ satisfies the Markov property (1),
(3), (4) and (5) by direct calculation. Note that d®" ®d®d~1®" ®d~1 is
the element of Φ{Uq) and that Φ(Uq) and <r(H%tM(q)) commutes each other.
Hence

τ(<r(a b)) XN+M(d® ' ®d®d~1®" ®d~1 σ(a) σ(b))

= —^^XN+M(d® - ®d®d-1®- ®d-1σ(b)σ(a)) = τ(σ(b a)) .

This implies that τ°σ satisfies the Markov property (2).

Corollary 6.4. Let q0 be a complex number. Under the notation of Pro-
position 6.2, if n>N+M and [ΛΓ+M+w]9o!φO then σ defines the faithful re-
presentation of H%tM(q0) into C(

n

N'M\q0).

Finally we shall show that in case n>N+M, σ maps Hn

N)M{q) onto C(

n

N'M\q).
Hence H%tM(q) and Cψ>M)(q) are isomorphic to each other. Since the irreduci-
ble rational representations of GLn(C) is indexed by staircases of height n (see,
e.g. Propostion 2.1 in [13]), we can label each of them by pΊ using the cor-
responding staircase γ of height n. The following lemma is combinatorially
proved and is essential for the following theorem. (See [8] or Corollary 4.7 in
[13]).

Lemma 6.5. Let γ be a staircase of height n and let ρy denote the irreducible
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rational representation of GLn{C) corresponding to γ. Then the multiplicity of pΊ

in the decomposition of ViN'M) is c^fM.

This lemma implies that the dimension of centralizer algebra of GLn(C) on
y(N,M) j s e q U a j t o 2] 7 e Λ (^ > M ) 2 , where Λ denotes the set of all the staircases of
height n. If n>N-\-M, then using Proposition 1.5 and Corollary 1.8 we have

Σ ( ί , , ) 2 = Σ { ( ) (

We can easily ckeck that the centralizer algebra of GLn(C) on the mixed tensor
and that of gl(n, C) (hence that of U(gl(nyC))) coincide. If n>N+M, then
by the faithfulness of <τ, we have the following theorem.

Theorem 6.6. // n>N+M, then the centralizer algebra Cψ-M\\) is
isomorphic to the generalized Heche algebra Hn

NtM{\).

We extend this result to the case when the parameter q takes a generic
complex value.

Theorem 6.7. Assume n>N+M. Then CίN'M\q0)^Hn

NtM(q0) far generic
qQ^C, i.e., there exists a finite subset S of C such that C(

n

N'M\q0)^H%tM(qQ) holds
forq0t=C\S.

Proof. Define the C(g)-subalgebras B and G of Έndc(q)(V{

n

N'M)) by B=
<τ{HnN,M{q)) and G=Φ(Uq(gl(ny C))). For a complex number qo^C\{O}y we can
define C-algebras H(qo)=σ(H»NtM(qo)) and G(qo)=Φ(Uqo(gl(nf C))). In particular
H(ί)=σ(Hn

NιM(ί)) and G(ί)=Φ(U(gl(ny C))). Let H(q0)' be the centralizer
algebra of i%>) in Endc(ViN'M)). Corollary 6.4 implies G(qo)c:H(qo)'. Since
H(q0) is semisimple under the condition [n-{-N-\-M]qo! Φθ, we have only to show
dimc G(qo)=dimc H(q0)'.

We consider B'={XtΞΈndc(q)(nN'M)); XY=YX ίor all YΪΞB}.

First we show that for an arbitrary complex number J 0 G C \ { 0 } ,

(6.8) dimc G(^ 0)<dim c ( ί) G .

In fact, if we take a C(?)-basis of G, {X^q)}^^ then % ) = Σ C I ; . ( } 0 ) .
Moreover the value of q0 which makes {Xj(q0)} linearly dependent can be pre-
sented as the zeros of some polynomials. It follows that the equality holds in
(6.8) for any generic number q0.

Next we show that for an arbitary complex number qo^C\{O}9

(6.9) dim c ( ί ) β'<dimc(q)(H(q0))' .

In fact, if we write X<=Έnd(V(

n

N>M)) as X=Σ XI,J ^ Θ ® ^ ® * * ® — ®e*M

(XItj£ΞC(q)y I=(ily .-, iN)J=(jly -Ju)) using the natural basis of Έnd(V<u

N-M)),
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the condition X^ϊl' can be expressed by linear equations with C(gf)-coefficients.
The condition I6( ί f ( f f l )) ' can be expressed by the same set of equations, taking
q0 instead of q. The rank of this system of linear equations reduces only in the
case that q takes some values which make some nonzero minors zero. It follows
that the equality holds in (6.9) for any generic number q0.

Sice GaB', we have dimcG(q0)<dimC(q)G<dimC(q) S'<dimc(H(q0))f.
Take qo= 1. Then, since dimc G(l)=dimc(H(l))\ we get dimC(β) G=dimC(q) H'.
It follows that if q0 is generic, then dimc G(qo)=dimC(q) G—dimC(q) β'=dimc

(H(q0))'. This completes the proof of Theorem 6.7.

REMARK 6.10. In the case of n<N+My Theorem 6.7 does not hold.
However, as in [10], the representation theory for finite dimensional irreducible
representations of Uq(gl(n, C)) is similar to that of gl(n, C) and so C(

H

N'M)(q) is
isomorphic to CψtM\\) if q is generic. By using this and representation theory
of gl(rt, C), we can show that the mapping σ in Proposition 6.2 is factored by
π in Remark 4.16 and C{

n

NtM)(q) is isomorphic to the image π(HN
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