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Introduction

Let G=GL,(C) be the group of linear transformations of the #-dimensional
C-vector space V,. Let V¥ be the dual space of V, and let V¥ :=V8¥Q
(V¥)®™ be the (N, M)-mixed tensor power of V,. We denote the represen-
tation of G on V{V™ by ®W-™, The decomposition of ®W:* into a sum of
irreducible representations of G is given in [8] and [13]. This result also indi-
cates the structure of the centralizer algebra of ®@-M)(G).

On the other hand, Jimbo [5, 6] showed that the centralizer algebra of the
natural representation of the quantum algebra U, (gl(n, C)) on V{® is isomor-
phic to the Iwahori Hecke algebra if #>N and ¢=C is generic.

In the present paper we introduce a generalization H% y(q) of the Iwahori
Hecke algebra of type A, which is defined by generators and relations. (See
Section 2.) Our main result says that the algebra HY% s(g) is semisimple and
is isomorphic to the centralizer algebra C{¥+*’(q) of the natural representation
of Uy(gl(n, C)) on V{¥*, if n>N+M and q is generic. (See Theorem 6.7).

To prove the above fact, we construct all the irreducible representations of
H} u(g) in Section 4, using the Bratteli diagram of the inclusions C S H7 o(q)C
H3 o(q)C - CHy,o(q)CHY 1(9)C -+ CH% u(g) as in [3, 16]. We also give Markov
traces of these algebras, which are related to the HOMFLY polynomial of knots
and links as in [14]. (See [9].) In the special case N=M or M+-1, the algebra
H{M(q) is also studied in [2] from a different view point. Some results of this
paper have been announced in [9].

The authors would line to thank Professor Noriaki Kawanaka for his useful
advice and kind encouragement. They also thank Professor Kazuhiko Koike
who informed results of [8] and suggested us to construct actual representations
of C{V"(q).

1. Graph Ty
Let A=Ay, Ay **» Ay) be an integer sequence, and define | A | =N+ A+ -+
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+N,. We call a partition of N if the sequence is nonnegative, weakly decreas-
ing, and |A|=N. Two partitions (A;, Ay, ***, Ay) and (Ag, Az, ***5 Ay, 0) are con-
sidered to be the same. The length I(\) of A is the number of nonzero terms in
A. Let ¢ be the partition of 0.

Let v=(1, Y2, ***, ¥») be an integer sequence in which q;>4,>--->7,.
We will refer to such objects as staircases of height n. There are two standard
ways in indexing staircases of height #. One is to index them by the pairs (r, \)
of r&Z and partitions A with /(\)<n; the staircase corresponding to (7, \) is
(M7, A7, ooy A7) i A=(Ap Ag ++*5 A,).  The other is to index them by
the ordered pairs [, B], of partitions with I(a)+I(B)<mn; the staircase cor-
responding to [a, B], is (ay, &y, «*+, *++y, — By, —B1) if a=(ay, ay +++) and B=

By, B2y *+*)-

Examrre 1.1. If n=7, a=(3,2,1) and B8=(2,2,1), then y=[a, Bl,=
3,2,1,0, —1, —2, —2).

Staircases of height » are partially ordered by defining v 28 if and only if
N8, V20, ***, V< 0y

DerINITION 1.2. Let N and M be nonnegative integers with N4+M>1.
Let n be a fixed integer such that n>N-M. An up down tableau of type (N, M)
and shape v is a sequence p=9O, y® ... yW+M—eq of staircases of height z in
which y®Dq6- |g® | — |q6-D| =1 (if i <N), yO S eyG-D, | y®| — | y=D| =—1
(if >N). (Note that the notion of up down tableaux of type (NN, M) and shape
7 is essentially independent of the choice of n>N-1M.)

DEeFINITION 1.3. A standard tableau of shape )\ with |\|=N is a sequence
of N+1 nested partitions, p=AO AN C ... CAM =), in which |A®|—|A¢-D|
=1 for 1<i<N. We denote by f* the number of standard tableaux of shape
M. In other words, f* is the dimension of the irreducible character X* of the
symmetric group S, in 7 letters.

In this paper we consider tableaux of type (NN, M) for a fixed (N, M). So,
in the following, the terminology ‘‘tableaux’ always means ‘“‘up down tableaux
of type (N, M)”. All the tableaux are conveniently described using the graph
T'y.u defined below. Vertices of T'y 5 are assigned to N4+ M+-1 floors. The
vertices in the i-th floor (0<{<N-+M) of Ty, ) are indexed by the staircases
which appear in a tableau (Y@, y®, ... y®¥+M) a5 the (i+1)-th coordinate y®.
Two vertices indexed by ¢ and o’ are joined by an edge if and only if there ex-
ists a tableau which has both  and 7’ as successive coordinates. If z<N, the
number of vertices on the z-th floor is the same as the number of partitions of 7
with length less than or equal to #.

Let A(N, M) be a set of staircases of height # defined by
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AN, M) = "’“’fj:"’{[a, Bl.; @, @ partitions, || = N—m, | 8| = M—m} .

We can easily see that the vertices on the (N4 M)-th floor are indexed by the
elements of A(N, M).

ExampLE 1.4. When N=3, M=2 and n>M+N, the graph T'y , is:
[ o] (B H1 [ 591 15 H] [@ tH] [@ HI [ 0] [HO] [B4]

(o o] [H U] [E O] (ol [Hol

N\
N
|

¢

We can get any tableau of shape v from the graph Ty , as an ascending
path from the bottom vertex ¢ to the top vertex . Conversely, any ascending
path from the bottom vertex ¢ to a top vertex 7y expresses some tableau. We
identify each of these paths with the corresponding tableau. Let ¥ be a stair-
case of height # and let ¢} » denote the number of up down tableaux of shape
v and type (N, M). We have an explicit formula for ¢} y (see Proposition 4.8
in [13]):

g

Proposttion 1.5. Let y=[a, B8], be a staircase of height n. We assume
IN|—|a|=|M|—|B|=0. (Otherwise c} »=0.) Then

= (¥) (4)rr

where m=N— |a|=M—|B].

Let Q=Qy i denote the set of tableaux on T'y . Let KQ be the K-vector
space with basis Q over fi afied K. We define an algebra A=A, , SEndg(KQ)
as follows. Let R={(£, n)€QXQ; shape of E=shape of »}. For (§, y)ER,
define T;,€Endg(KQ) by T¢, 0=38(n, ) £ (tEQ). Let A4 be the K-linear
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span of {T%,; (&, n)ER} in Endg(KQ). Since
(16) TE.?) Tf’,'tr’ = 3(n, &) Tf.ﬂ'

and 1=33¢cq T ¢, 4 is a subalgebra of Endg(KQ). For yEA(N, M) set Q'=
{£€=Q; shape of E=9} so that Q=TI yeav,1 Q" (disjoint union). It follows from
the multiplication law (1.6) for the T}, that AY=span{T,,; (&, »)EQ*"XQ}
is an ideal of 4 and A=@y A" (yeA(N, M)). Since there exists a natural iso-
morphicm A?=Endg(KQ"), we have A= Dyerwy,m 472 Byenty,w Endx(KQ).
Note that the minimal central idempotents in 4 have the form zy=2>3¢cq Tt ¢.

Lenna 1.7. Let N and M be nonnegative integers. Then
min(V,a0)

b3 (m!)"’( Z )2 ( ]":)z (N—m)! (M—m)! = (N+M)! .

m=0
Proof. Consider the group Sy, of permutations of N+ M letters {1, 2, «--,
N, 1,2, ..., M}, For 0<m<min (N, M), let S{"u={c ESy+x; Card (a({1, 2,
«NNA{L, 2, -, M})=m}. Then Sy u=UDa¥ (M, (disjoint). Now
the lemma follows by observing that

Card(S{y) = (m!)? ( Jn‘: )2 (M )2 (N—m)! (M—m)! .

m

Corollary 1.8. The dimension of the algebra A=Ay y is (N+M)!.

Proof. Using Proposition 1.5, we have

dimA= 3 dim(KQ

YENN, M)

B () G )1}
:min(ElV.lD 3 > (m!)2< J"Y )2 ( ]:)2 (F*) (f#)?

m=0 |&|=N-m |Bl=M-m
min(V,H)

="y (N (MY vy (41—

m=0

= (N+M)!,

where we have used the well known formula 33,,,(f*)*=r!.

2. Algebra Hy y(q)

We are going to define a generalization of the Iwahori Hecke algebra of
type A (see, e.g. [4]). For an indeterminate ¢, we define the g-integer [i] by

[{] = Qq:qQ:l = gl g e g
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Similarly for nay g,& K\ {0}, [],, is defined by
[ley = 67"+~ ++q5" .

In particular we have [{],=7. Note that [0]=[0],,=0 and [1]=[1],,=1 for any
Qo-
DeriNITION 2.1.  Let K be an arbitrary field and ¢ an indeterminate over

K. For integers N, M >0 and n>N-+M, we define Hy x(q) to be the associa-
tive K(g)-algebra with unit presented by

generators:
T, Ty, -y Ty
E (if M=1)
T¥, T%, -, TH., (f M>2)

and

relations:
(La) (Ty—g)(Trtq™) =0 (1<i<N-1),
1b) T;T,=T;T; (1<:,j<N—1, |i—j| =2),
(Ie) T;TinT;,=TinT; Ty (1<i<N-2),
(2a) (TF—q) (TF+¢™ =0 (1<i<M-1),
(2b) T¥T¥=T¥T¥ (1<, j<M—1, |i—j| =2),
2c) T¥FT¥F.T¥=TF'T¥TY, (1<i<M-2),
) E=[ME,
(4a) T;T¥=T*T, (1<i<N—-1,1<j<M-1),
(4b) ET;=T;E (1<i<N-2),
(4c) ET¥=T¥E 2Li<M-1),
(%) ETy,E=qFE,
(6) ET¥E=4q"E,
@) ET3 L THE(Ty-+—TH =0,
(8) (Ty-r—THETRL TFE=0.

Note that T'7'=T;—(¢g—q") by (1.a). A monomial in H} y(q) is a product
Xi+++X,, where X, € {T1", -++, T5Ly, E, TT, -+, Thioi}, 1<i<p.

Proposition 2.2. dimg,) Hy u(q) <(N+M)!.

The proof of this proposition will occupy the remainder of this section.
We shall prove it by defining monomials in normal form in HY w(q), which will
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eventually shown to form a basis of H } x(q) as a vector space over K(q). (See
Corollary 4.13.) Consider the following sets of monomials.

Sl = {1’ Tl—l} )
Sz == {1’ Té_l, 1-'2_1 T'l-1 >

S, ={, T, T3 T, -, T T4 T7Y},

Sy-1= {1, TxLi, T3~ T¥%s, -+, Txty TleeT1'} .

Note that V;ES; implies T7}, V;E€S;;;,. We shall say that My=U, U,---Uy_,
is a monomial in normal form in Hy o(q), if U;ES; for i=1, 2, .-, N—1. There
are N! of monomials in normal form in Hy o(g). As is shown in [4], we have

Lemma 2.3. The monomials in normal form in HY% o(q) generate HY% o(q)
as a vector space over K(q).

Next, we define monomials in normal form in Hj 4(g). Consider the fol-
lowing sets of monomials.

S¥ ={1,T¥},

Sik = '{1) Tik’ Tik T:'k—l) % T:k T,ik—l'“Tik} ’

S;‘l‘{—l = ‘{1, lek!—-l, Tfl—l T*-z, °tt T;tkl—l Tikl-z"‘T;k} .

We shall say that My=U¥ U¥---U%_, is a monomial in normal form in H (q),
if U¥e S¥ for i=1, 2, .-, M—1. 'There are M! of monomials in normal form
in Hj y(g). Similarly to Lemma 2.3, we have

Lemma 2.4. The monomials in normal form in HE (q) generate HG yu(q)
as a vector space over K(q).

Now we define monomials in normal form in H3 »(q) for general N and M.
We shall say that M, is a monomial in normal form in Hy 4(q) if

My = M, T% T%_,-T% E Tl ity T5 TE TH oo TH E TR, Titper T3
o T¥ T¥ - T¥ETRL TRkeeT5) M¥

for some m (0<m<min(N, M)), where M, is a monomial in normal form in

%.0(q), M#¥ is a monomial in normal form in Hf y(q), and 0<4,<t,<::- <7, <
M—1,1<5<j,<-<ju<N. Here we understand that T¥-.-T¥=1 if =0,
and that T'3L,--T;}=1if j,=N. Note that if m=0 then M,=M, M¥. The
number of monomials in normal form in H% »(q) is
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SN Z ) () ="y ]"‘z’ ) ( M) V—m —m),

m=>0 m m=0
which is equal to (N+M)! by Lemma 1.7.

Lemma 2.5.

1) If M>k>i>j>1>1 then

(TF28) (TF Thorr-TH) = (TF ThoaoeTH (T4

(T# Th.1weT) (T Thaor-TH) = (TF Ty TH) (Tha THTH).
2) IfN>i>k>l>j>l then

(T7' T _1) (T#") = (Ti2) (T7" T2y T57),

(T7' T2y T7Y) (TR Tae - T7Y) = (Ti2y Tiloo T2 (T3 Ty T7Y).
3) ET3LE=q"E.
4) (TFTE.,-T¥ETR:L TR, T7Y) (T% T,_l -T¥E) :

= (Ty-y) (T:'k—l T¥,T¥E TN-I TLeT7Y (T TE,--TY E).
) IfN~r>j then

(E TR TRl TRL,) (TF Ty TY E) (TL: TieT5Y)

= (ETvk TN— TN (T¥ TE,-TY E) (TR TN 2o Takean) (T¥).

Proof. The first two identities follow from Definition 2.1 (1.b), (1.c), (2.b)
and (2.c). The identity (3) follows from 2.1 (3), (5). The rests follow from
(1), (2) and 2.1 (4a, b, c), (7), (8).

Now we show that monomials in normal form in H% x(g) generate H} 1(q)
as a vector space over K(g). This will imply Proposition 2.2.

Lemma 2.6. If M, is a monomial in normal form in H% 4(q), then TF¥ M,
can be written as a linear combination of monomials in normal form in Hy »(q).

Proof. We first consider:
Casel. i,4+1<:.

TF M, —(T*)M T T¥ET3L,T;'-T¥--TYETyL-T;} M¥
= M, T}--T¥ ETyL,---T5'-T¥,--T¥ E T3L,---Tj)(T¥) M¥.

Since T% M¥ can be written as a linear combination of monomials in normal
form in Hj 4, we get the lemma in Case 1. Next we consider:

Case 2. 1,+1<i<iy,+1 for some R (0<k<m—1). We understand that
7+1=0. We further divide this case into 3 cases.

Case 2.1. i+ 1<i=tp+1 (Zipy if k<m—2).

Tik M° = Tiekn’*'l MO
= M, T, T¥_ .- T¥ ETRL, Tylo T3t
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T*

Th+2

T¥E Tz, T;}!

Tk+2

(T%, «) T¥, - T¥E TR, T3}

LI T3 Tk+1
T:l‘m T¥E T;l_l...T;: M¥ .
If i=i,,,+ 1<Cé4, or k=m—1 then the right hand side is a monomial in normal
fOl‘m. If i: ih+l+ 1=ik+2 then

T*¥My= M, T T¥_,---T¥ E T3, Tty T5)
T;"Hz...T’ll‘ E Tz_vf-l”'T}—,,lH T;!‘k“...T’ll‘ E Tﬁl—l'"Ti—;yl\uz"'

=M T¥ T¥ +-T¥E TR, Tty T3}
(Ty-)) T* -+ TFET3 - T7. T% ...T¥ETy., T}

PR+l Jke1 T Jpa2’ Tk+2

by (4) of Lemma 2.5. Using (2) of Lemma 2.5 repeatedly, the above monomials
is equal to M(Ty-g4p) TE:T¥ETRL, - T5 - T¥, - T¥E T3, --- T, M¥.
Since M, T'y-+p can be written as a linear combination of monomials in normal
form in H% (q), we get the lemma in Case 2.1.
Case 2.2. i+ 1<<i=i,, for some k.
T¥M,=T%,, M,
= M, T} TH - T¥ E T3L, TRLy- T3}
(T:!‘“l 2 T;“Hl_l... T¥E T;}_l...Talﬂ...T:!‘m...T;": M¥
=M T¥ T -y THE T3, Tyl T3}
{(g—¢ ") TH, +1} TF 1+ T¥ ETRL,- T - T7} M¥

ipe1 Jks1”
=(q—q ) M,
M TR T3 T T3 T, T T,

T* ..T:1 T;’;T;": M¥ .

tpe2’ L pag’

Since 7,<<#;4;—1, the second term is also a monomial in normal form. There-
fore T M, can be written in a desired form.
Case 2.3. 7,+1<i<i#4;. By using (1) of Lemma 2.5 repeatedly, we get

TF My = M, T¥--T5! - (T¥) T, - T5. - T¥ - T35 M¥

Tk+1 Tk+1

— M, T T7h e T, o T5HT¥, i) M¥ .

Since T%, ._x M¥ can be expressed as a linear combination of monomials in
normal form, so can TF M,.
This completes the proof of Lemma 2.6.

Lemma 2.7. If M, is a monomial in normal form in H% u(q), then E M,
can be written as a linear combination of monomials in normal form.

Proof. We write

M, = M, T}--T¥ E T3%y-T7 o T¥, - TH E T3y T7) M¥,
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where M, (resp M¥) is a monomial in normal form in H} o(g) (resp. Hi u(q)).
Note that M, involves Ty1, at most once. We divide the proof into 4 cases.

Case 1. M, hasno T51, and 4=0 (i.e. T¥ T#_;---T¥=1). Then E M,=
M, E? TRty T3} T T3} Mf=[n] M,. Therefore, E My=[n] M,.

Case 2. M, hasone Ty, and ;,=0. We write M,=M/{ Ty%, T3z Tx%,.

EM,= EM{ T3 T3z TRL, E TRk, T5) M¥
= M{(E T;;l1 E) Tﬁl_z"Tﬁ.l_,» TITILI"’T,_’: M;k
= ¢ " M{ T3%:--Ty., E T3, T} M¥ .
Since ¢=* M{ T'yL.---Ty., can be written as a linear combination of monomials
in normal form in HY o(q), so can E M, in H% ,(q).
Case 3. M, has no T'3%, and ,=0.
EM,=EM,T¥ T¥_,---T¥ T¥ E T3*,---T;} M¥
= M, T} T#_,--THE Tt E) T3~ T} M¥
= q" M, T;kl T?;_1"‘T§k E TE.I.l"'T,T': M¥
=q" T TE T ME TRL, - T5) M¥ .
Since M, E Tx3L,---T;} M¥ is a monomial in normal form, iterative use of the
previous lemma prove that E M, can be written in a desired form.

Case 4. M, has one T'yl, and 7,=0. This case is rather complicated in
comparison with the above 3 cases. We write My=M{ Ty., Tx'.---T5%,” By
Lemma 2.5 (5), we have
EM,= E M| Ty% Tyl Ty, T T - T¥ E T3.,---T7}

o T¥ T¥ oo TF E TLye T3} M
= M{E Ty Tyl TRL, - TH T¥ - T¥ E TyLy--T7)
o T¥ T* - T¥E T3, T5 M¥
= M{ETx%y-T7! - TH T¥_1--T¥ E Tyl T3L,0(TF)
(T¥ T% - T¥) E Tty T3 T}, T¥ 1o T{ E Ty TS} M

12—

= M{ETyL, - T;! T}---T¥ ET3., - TyLn TH-T7XT% ) M¥
= M{ET3., Tyt T7 T¥--T¥E TyLy-- T3}

TH..TEE TiM 1o TRL o TE) TH Thoyr T - T7) TE™ M
= M{ET3.T; T --T¥ETRL- T3}

THT¥ETF TRl pwee TH - T 0(THZ) T M¥
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=M,ET 1771_1--°T,~_11 T'.*I...T';?E T;'vl_l...T;'z‘...
T* ...T;"E TJ—N;-I—I"'T;: T'fk...T’f E T;‘_l...T}‘Gi’,_‘.k

ik-1
1 —1 —1 -1 -1 -1
T:.kk+l.”T;'k E TN—*"'TJ';,H"'T:'km‘”Ti,.(Tﬁ—(k-l)) T¥ -2y TH™ M¥ .

Here T#-l—1y T%li2y-T*~' M¥ can be written as a linear combination of
monomials in normal form. If there exists a £ (0<k<r) such that

(2.8) I<N—r+k<jinn (put jmn=N,jo=0),

then E M, can also be written as a linear combination of monomials in normal
form. If there exists no k satisfying (2.8), i.e. N—r-: is always equal to or
more than j;4, for =0, 1, .-, 7, then

EMy=M{ET3T57 T¥-T¥ET3,-T7}-T¥ T}
THET} A TYETE, T 1 TYETRLT7,
Tk T Tkl Thlgy - T M¥
=q"M{E T;,l_l...TjTll T;?‘l...:["lk E T)Trix"‘T,T;“'
T;l"_l...T;l‘ E T}Vll"'Tfrl T’.’l:...T;k(T;!"H...T;") E TK"I'I."TJTrl-u“.
=q¢"M{E T;,‘_l---T,Tl‘ T?el“'TTzl"‘T?‘,_l“'Tﬁl

T¥-T¥E Tyt T5: (TF, - TH) (TE - THE T T}

Jraa\t frs1 fri2 Jre2

(Tiﬂ:_”-i—m—r—l T.‘ﬂ:+1+m—r—2’“Tﬁ—r+l) Tﬁ:(lr-l) Ti:(lr—Z)"'Tﬁ—l M;k
= ¢" M{E T3 - T5) THeoo TH T T¥ o T¥ E T 5Ly T3

-1 -1 -1
T:'l‘,+1+m—r T:'I:,+l+m—r+1'“Ti M;“ .

Since T}‘:‘lm_, T¥ imersrTH™' M¥ can be written as a linear combination
of monomials in normal form in H§ x(q), E M, can be written in a desired form.

Proof of Proposition 2.2. Let M, be a monomial in normal form in H¥ »(q).
Then, by Lemma 2.6, Lemma 2.7 and the definition of monomials in normal
form, we see that E M, TF M,, (1<i<M—1) and T7' My(1<j<N—1) are all
written as linear combinations of monomials in normal forms. Thus we have
shown that monomials in normal form generate HY ,(g) as a vector space.
Hence we get the desired inequality.

3. Weights

We introduce the weights of vertices on I'y . For any yeZ”, let ay(x,,
Xy, =+, x,) denote the monomial antisymmetric function corresponding to 7:
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Ay(%y, X3 oo+, x,) = det [x)1] = ZS (sgn w) x*7 .
YESy

DeFINITION 3.1.  Let o be a staircase of height #n. The Schur function sy
is defined by sy(%y, %p, **+, 2,)=ays5(%1, Xy, =+, X,)/@s(%1, X5, **+, ¥,) Where & de-
notes the vector (n—1,n—2, .-+, 1, 0).

Proposition 3.2. Let a and 8 be staircases of height n. Then the follow-
ing identities hold.
(a) (xl+x2+"'+xn) sv(xlx Xy **% xn) = p%» sﬁ(xly Xy **°y xu)'
1BI= @l =1
(b) (xrl+x;l+"'+x;]) sd(xb Xay *** xu) = %l sﬂ(xl) Xy °*% xn)-

1Bl-loo)=~-1

Proof. From the definition of a,.; we have

(x1+x2+ ot X,) Agis = '2; Ay+3+e;

(47 27 o F257) Gurs = 3 Burame,

where §;=(0, 0, ---, 0, 1, 0, -+, 0) (only the z-th corodinate is 1). If a+¢&; (resp.
a—¢&;) is not a staircase, then the coordinates of the vector a+38+&; (resp.
a-+8—¢;) are not distinct and hence @,s+e,=0 (resp. @,+3-,,=0). Hence (a)
and (b) follow.

Let A¥(N, M) denote the set of staircases corresponding to the vertices on
the k-th floor of T'y . In particular A(N, M)=AN*¥(N, M). For each y&
A¥N, M), we define its weight w,(7) by wi(v)=(1/[n]*) sy(g~"**, g~**3, -++, ¢*Y).
Note that even if the staircase ¢ of height # is not contained in A*¥N, M), w,(v)
can also be defined. Putting x;=¢~**%-! in Proposition 3.2 we get:

Proposition 3.3. For k<N+M and BEA*(N, M), wy(B)= 2y wp+1(7),
where v runs over A**(IN, M) connected to B in the graph Ty .

By the definition of @y, @y.q,1,...0(%1, %5, *++, X,) =% Xpe++ X, Ay(Xy, Xy, +++, %,) and
-1 =1 -1 - -
Aym(1,1,-, DXy Kgy *%5 X)) =XT " X7 202Xy Ay(X1, Xy, ***, X,). SO Ayrr1,0(g™", g7,
oy " N=ay(g~**, ¢~**3, +++, ¢*Y). Therefore the following lemma holds.

Lemma 3.4. Let a=(a;, ay, -, a,) and B=(By, By, ***, B,) be staircases
of height n. If (ay, oy, ++, &,)=(By+7, Bot7, «+, By+7) for some rEZ, then
wi (@) =wi(B).

Lemma 3.5. Let y=(71, %, ***, V4) be a staircase. If we put v"=(—rv,,
—Vn-15 """ _’71) then wk('),):wk('yv)-

Proof. We have only to show that ay,s(g="*, ¢~**3, -+, ¢" N=ay 45(¢"**,
g~**% .., ¢*Y). From the definition we have ay.3(g~**, ¢ **3, oo, ¢* )=
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det [g-*+¥-D0i+a=0] = det [¢¢-++%-D0=D] [[7., gC-*+¥-D% = det [g-*+2+D0i-d],
While ay 1 5(g~"*, g7**3, -+, g* ) =det [¢¢#*¥ D(Ya—ira+#-D] Reversing the order
of columns and rows, we have ay ., s(g~**!, g=**3, -+, g")=det [¢(~*+¥-D(=%+i-1]
= [T} ¢*~#DED det [q*-#HD(-%+D] = det [¢*~2+D(=%*D]. Thus the lemma
holds.

From the previous two lemmas we get the following proposition.

Proposition 3.6. Let y=(v,, 7, ***7,) be a staircase. If x={y—(r,7, -,
)} then wi(v)=w,(\).

Now we assume that )\ is a partition with /(A)<#. Then A is identified
with the set {(,j)€Z; 1<j <\;}, which may be viewed as a collection of boxes
called Young diagram. Let A¥ be the number of boxes in the j-th column of
A, ie. A¥=Card {i; ;=>j}. The hook-length of \ at (i,j)E\ is defined to be
(G, ) =N+ Nf—i—j+1.

Lemma 3.7. Let \ be a partition, then

C TR
e )= X (@+j—1)
The proof is easy, so we omit it.
Proposition 3.8. Let A be a partition with |\|=N. Then
1 [n—i+j]
[n]* w:per [y, 7))
Proof. By Example 1 in [11], p.9 the following identity holds.

w(N) =

II(1—thi+) = IL>, I}/ (1—7)
i< TTa, pex(1—229)

Putting t=¢* we have

3.9 H 1—g#N=Aj=i=i)) — I H,:{’ (1—¢° )
( ) ( —q ) [[(g J)EA(I qZh)\l(x J))

Moreover putting A=¢, we get

(3.10) O(—g ) =

+n-
i l =

"1—g.

1

<,

We note that

a +8(q n+l —n+3’ ee, qn-l)
= det [q( n+2f—l)()\.~+n—i)]ls‘_'jsn
= det [q—(n—l)(A,.+n—-i) ,qz(j-l)()\‘-+n—i)]

— ﬁ q—(n—l)(x,-+n—i) H(QZ(Aj+n—j)_q2(A,-+n-i))
=1 i<j
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= I"II g ] PO (1 @=Aymi)
and <
ayq ", g, e, g = ,Ij, g~ =D .<H, PO (1— =+ |
So, using (3.9) and (3.10) and Lemma 3.7.

s)\(q—n-i-l q—n+3 e, n—l)

n-1 1 *
= H q (n=1)N; 'I<]; qz ((1 %;2(—,‘”))

= II ¢ I & Mo T30 (1—¢7)

;=A; —x+1))

(i,j)EA i<j H(‘ ,)e)‘(l qz”:\(‘ 1))
— g-»-b T ge-v 1 - Hn—itj]
o‘..oex GEN G :)eA q"x(' 1)[};}‘(1 NI
- [n—i+j]

T anen (i, )]
This completes the proof.

Let t=(9% o', «++, y* D, o® o+ ...} be a tableau. In case k<N we put
y*D=p ort=y and y**V=)\. In case k>N we put v={y*D—(r,7, .-, 7)}",
p={y®—(r,r, -, r)}" and A= {y*D—(7,7, ---,7)}", where r=ry{¥~1(see Propo-
sition 3.6 for the notation \/). Under the above notation we define an integer
d(t, k) as follows:

l—hA(rm (,‘,) (lf L‘,<C,,,)
b1y cw)—1  (if ¢;=cp)

d(t, ) = (cu—t)—(c1—1) = {

where (7, ¢;) and (7,, ¢,,) are the coordinate of the box p\v and A\u respec-
tively. For deZ\ {0}, we put a,(¢)=¢*/[d].

The following proposition, which is a version of Proposition 3.3 in [16],
will be used in Section 4 to construct irreducible representations of H¥ ,(q) and
in Section 5 to get Markov traces.

Proposition 3.11. Let acA* (N, M) and B AN, M). If we assume
that o and B are connected in Ty 5, then

Wer1(Y) — q

wi(8) Qi) 1) (9 [n] .
Here v runs over all the vertices on the (k-+1)-th floor which are connected to the
vertex (3, and t(7) is a tableau whose k-th, (k-+1)-th and (k+2)-th coordinates
are a, B and vy respectively.
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To prove this, we first show the following two lemmas by using Proposition

3.3.

Lemma 3.12. Let y be a Young diagram with l(u)<<n and A', A%, -+, \2®),
NM=L, AL, oo, M) (=1, 2, -+, p(u)) be all the Young diagrams obtained from u
by adding a box (ry, ¢;) (I=1, 2, -, p(u)). Then.

p%? Wen(\) [n—7,+¢+1] _ [n41] .
=w(p)  [p—ritel] [n]

Proof. Observe that A;,= p,+1, \'*), = (u*),+1, Mi=p; (jFr;) and
(M), =(u*); (j*#¢;). So the hook-lengths at (7, j) are the same in A’ and in p
if {7, and j#¢;. From Proposition 3.3 we obtain

(3.13) 1 =57 ()
1= wy(w)
_ "‘Z“"’ (11 I, pexr(In—i+51/[Au(, 5)])
=1 (1[*) g, pel[n—i+51/[hu(z, 5)])
R n—rte] T Dwrn )] G, ¢)]
2T D) 11 Dl e) 1]
For any partition A=(\;, Ay, ***, \,,) We define X to be (Ay, Ay, ==+, Ay, 0). Then
we have wy(X)=(1/[n+1]*) I, per[n+1—i+j1/[A( j)] and

1=’(2'L)wk+1(xl)="(z“}’ [n+1—r4e] T [ha(rn )] 5 [P, )] .
A w@ = [nr1] 5 [bu(rng) 1] = [BG, e) 1]
Hence by (3.13), S&@in(M)fwi()) (r—71+et in—ri+e) () [n+1D)=

1.

Lemma 3.14. Let p and N (I=1,2, -+, p(n)) be Young diagram as in
Lemma 3.12 and v a Young diagram obtained from p by removing one box. Then

’(z‘? W (N) [n—7+c,+1] [d(#, ) —1] _ 1
=owy(w)  [perte] [ R) ’

where t' is a tableau whose k-th, (k-+1)-th and (k+2)-th coordinates are v, u, !
respectively.

Proof. Let A=(A\y, Ay ***, A,,) be a partition with the length /() and let
L,EN, 1<4,<I(A\). We will modify \ so that the lemma can be reduced to the
special case of Proposition 3.3. We define the Young diagram A(z) such that
Mip)i=nN;+1 for i<<iy and N(%);=N;41 for i>7,. From this definition we find
Mig)F=n¥—1 for i<\;, and N(i)f=n}1 for i>N,;. Let Ay(7,7) and k(2 f)
denote the hook lengths corresponding to the box (7,) in A and A(z) respective-
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ly. It follows from the above remarks that A,(%, j)=h,y (%, j4-1) for i<é, and
J>Nig and Ay(4, j)=hy(i—1,5) for i>4. If i<i, and j<\,;, then A(Z,5)=
hyi(2,7).  Consider wy (M)/wy(p) and wy (N (%)) /ws(1(%)).  From the proof of
the previous lemma

@) _ [1—rta] §_Tulro D] _Thate)]
wy(u) W] = Dl 1T (A, ) +1]

where A —pu={(r;, ¢;)}. Note that “the first factor” of wj.,(\)/w,(r) is
[n—7,4c]/[n]. On the other hand, since M (%) — u(io)={(7;, c;+1)} (if f<r;) or
{(ri—1, ¢))} (if 7>r,), the first factor of wy. (N (%)) /wi(u(i)) is [n—7;-+ci]/[n].
From the consideration of hook lengths in g and u(%), the remaining factors of
Wit (M) w(p) and @y (N (5))/wi( (%)) differ only by the factor belonging either
to (', wi,+1) in (N (%)/wi(n(h)) (f 7,<w) or to (ry, piy) in wena(N)/wy(n)
(if 7,<<r;). Hence

r =i

W41 (N (7)) — [n—r14c+1] [e— piy+i—71— 1] wea(V)
(%)) [n—r+ci] [ei—pigtio—r]  wi(p) ’

and so

_ 2% Wi (M (R) 2 (W) [n—rit-¢+1] [6— piy+o—71—1]

= wy(uli) =1 wy(p)  [p—ritcl] [e1— piytio—11]

Taking 7, so that p—v=1{(%, u;)}, we find ¢;— u; +i—7r,=d(t', k). Hence the
lemma follows.

Proof of Proposition 3.11. From the definition of d=d(¢, k) and Proposi-
tion 3.6, we have only to consider the case @, 8 and 7 are partitions. So we
use the same notation as in the previous two lemmas. Lemma 3.12 and Lemma
3.14 say that

’%’ wpn(N) [n—r4e+1] _ [n+1]

=ow(p) [l [
%’ Wpn(\) [n—r+e+-1][d(#, R)—1] _ 4
=ow(p)  [perta] [ R)] ’

where d(¢, k)=c¢;— p;,+i—r;. We can check that
[io_ﬂio‘”_z]_[”_’l‘l“l‘l‘l]
[fo— piy—n— 1] [n—71+4c]
llo—pi,—n]  [n—rite+11[d(#, k) —1] _ [d(#, k)—1]
lo—mi—n—11 [—rte] @@ B] (A 0]

using d(#, k)=c¢;— p;,+i—7;. Therefore
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”CE“) wpn(M) [d(#, R)—1] - [to—piy—n—2] [n+1] + [fo— i,—1]
=ow(p)  [AE R [—p—n—1] [B] [l p—n—1]

1] 1]
A

%) Wess (V) <q_ 8w ) — (q——[q;l%> .

Hence we have

=t wy(p) [d(#, R)]
Hence
1 20, (M) ’ _ g .
A ) 0

4. Representations of H} ,(2) on K(2) Q

We are now going to construct the irreducible representations of H¥, u(q).
For yeA(N, M) let Q" be the set of all tableaux of shape ¢ and let Q be
yeaw.Q? as in Section 1. Let V? be the K(g)-vector space with basis
{v,;t€Q%. We now define endomorphisms zy(T}), zy(T¥) and z4(E) (:=1, 2,
o, N—1), (j=1,2, -, M—1) of V*. For each tableau t=(y@=¢, y®, ...,
y(N+M)—¢), we have to define zy(T;) v, (=1, 2, =+, N—1), z(T¥) v, (j=1, 2, -+,
M—1) and z4(E) v,.

Definition of zy(T};) v, and zy(T¥) v,.

As for zy(T;) vy, our definition is almost the same as the one given in [3, 16].
Let :{1, 2, -, N—1} (resp. j€{1, 2, -, M—1}). 'The partition y¢*+D (resp.
y(N+i-1)) is obtained from =D (fresp. y¥+/-D) in one of the following three
ways:

(a) By adding two boxes to (resp. removing two boxes from) the same row
of =D (resp. y¥+i-b). In this case zy(T;) v,=qv, (resp. my(T¥) v,=qv,).

(b) By adding two boxes to (resp. removing two boxes from) the same col-
umn of y¢-Y (resp. yW+/-Y), 1In this case my(T;) v,=—q ! v,(resp. my(T¥) v,=
—q7' o))

(¢) By adding (resp. removing) boxes in different rows and columns.
There is precisely one tableau which differs from ¢ only in its (i+1)-th (resp.
(N+-j+1)-th) coordinate. We call this tableau #. Define

wy(T;) vy = i zz,—l—[d—_l]- v, (resp. 7y(T¥) v, = i—v,—}-ﬂﬂ v’;) ,

[] [] [] []
where d=d(t, ?) (resp. d=d(t, N+j)).
Definition of 7y(E) v,.

In case YN q®-D  we define my(E)=0. In case yW@D=qW-D it is
necessarily a partition. So we put YV =g®W-D=, and yM=>7 . Let p(u)—1
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be the number of tableaux #, £, ---, #® which differ fiom #=# only in their
(N+1)-th coordinates. We denote their (N+4-1)-th coordinates by AZ A3, -+,
A® respectively. Define

woE) v, = ]S ) o
= wy-y(p)

One can verify that zy(T;), zy(T¥) and zy(E) satisfy the relations (1)a, b,
(2)a, b, (3) and (4) in Definition 2.1. (Use 3% wy(\)/wy-1()=1 for (3).)
We have to verify that they also satisfy (1)c, (2)c, (5), (6) and (7), (8) in Defi-
nition 2.1.

Proposition 4.1.

(1) 7‘1(Ti) 7o Ti1) moTy) = 7o Ti41) ”y(T ;) wo( Tiva)
(2) ”1(T?<) 7 T;k+ 1) ﬂv(T?) = ”v(T;ﬁ 1) ”v(T?) 7 T?‘H) .

These relations are proved by modifying the argument in [16], pp. 361-
364 and we omit it.

Proposition 4.2.

(1) 2o E) mo Ty-1) 7o E) = ¢" no(E),
() my(E) my(T¥) ny(E) = ¢" zyE) .

Proof. Let ty=(Y®, ---, yW D=y, W=D oy =1 oy(N+D) oy(N+2) ...} be a
staircase. If y®¥-D=y@¥*D then zy(E) v,;=0. So both (1) and (2) hold. We
assume that yW-D=gW+D—,  Tet 7 3 ... 2™ be distinct tableaux which
have the same i-th coordinates as ¢, for any i==N+1 and which have A% A3, -,
AP® respectively as the (N+1)-th coordinates. Let AM\p={(r;, ¢))}, p\v=
{(ro, co)} and dy=d(t;, N—-1)=c;—r;—(co—1,). If we write zy(Ty-,) V=04, vy
+dy, v,i, then

A E) mo Ty -1) o(E) 1y = mo(E) o Ty -1) 1] t(él) ;)()NN—(:(\’I’Z) o

2 4
= B 2 ) (@ 0+, )
N-1

D w 7\.’
D) 4w o E) v

= ’g‘ Wy-1(p)

= ¢" my(E) vy (Proposition 3.11).

Hence (1) holds. Similarly we obtain

A B) wTH) o) = ) 7 220, g el )
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We have to show

& wy(\) _q
(4.3) ,‘E‘{‘ Dy-() Aa(h, N+1) = ] .

The (N+-3)-th coordinates of t} (I=1, 2, -+, p(u)) are y®*, which is either the
partition »’ or the staircase of the form p—(0, 0, -+, 0, 1).

If y(¥+2 i the partition »’ with u\v'={(r{, ¢§)}, then d(t;, N+1)=c¢;—r'—
(c6—r§)=d(t,, N—1). Hence we have

y12] 1 D) ! ”
wy(\) wy(A') Catymen = L.
=1 wy_y(p) =t wy(p) [n]

If 9+ s the staircase of the form p—(0, 0, -+, 0, 1), then d(¢!, N+1)=
a—ri+n. If we put s=p+(1,1, -, 1,0), i=p+(1, 1, ---, 1,1) and N=N"+
1,1,-,1,1)(I=1,2, -+, p(p)) and apply Proposition 3.11 to the sequence
pCECN (I=1, 2, -+, p(u)), then we have

Aa(h,N-1) =

PC) u.”_'_N(Xl) qn+c,-r, qﬂ

=1 Wy y-1(B) [n+c—1] B [n]

Using the definition of w,(v) and Lemma 3.4 we have

Warn(N) _ wy(X) _ wy(N) )
Wosn-1(B)  Wy-1(F)  wy-i(p)

Hence

FIC2] wN(),') qn+c,-r, q"

= wya(p) [p+e—r]  [n
Since d(#,, N+1)=¢;—r,+n,

D w 7\'t ”
P v(2) A4(t], N+1) = 7_.
=t wy_(w) [n]

Thus we have shown (4.3). Hence (2) is proved.

Proposition 4.4,
(1) 7o E) mo T21) mo TY) o E) (o Tiy-1)—m4(T¥)) = 0.
2) (@A Ty-1)—7ATY)) o E) o T21) o TY) o E) = 0.
Before proving this we shall show the following lemma.

Lemma 4.5. Let = (f)l(o), e, fy(N"Z), ty(N'l), fY(N), ry(N‘H), ry(N‘*‘z)’ ...) be a
tableau. If y®-D=EqW+2) oy (N =Dk oy(N+1) ghep

7(E) mo Tw2n) mo TY) my(E) v, = 0.
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Proof. If o¢W-Dzg®*D then the claim is obvious. We assume that
YNV =W D=, g® =2 and ¢V =py@*, Let #;=(vO, -+, , p’,
A, wl, y @D, ), (=1, 2, -+, p(u°)) be tableaux, where A%/, (j=1, 2, -+, p(u))
are all the partitions obtained from ux° by adding one box. Moreover let /=
(,),(0)’ AT 4 IL]’ 7\'0,]7 Il-’O’ 7(N+z)a "')’ t_;’:('y(o)y AT 2 ”'0, xo,"’ Bj, 'Y(N+2)7 '")’ t§“:
(YO, -+, v, pd, A, B, @D, ...), where u/ is the partition obtained from » by
adding the box 7\,° \p® instead of px°\v and B'=n%'—(0, --+, 0, 1). Even if there
does not exist u’ we define y/, t}, ¢}/ formally. Note that x/= 8’ for any j and

p'+G’. For brevity, we write v; for v,; and v}, v}’, v}’ denote v,;, Dyyls Uy T
spectively. And we write a; , for a,; . Since my(E) v;=my(E) v} —7r-,(E) v}’
=0 for any j, we have

AB) AT e TH) A E) 0 = ol B) e Tu) ol T8 55 200D,
p(lh°) w (7»° ;) _p(ﬂ-) w (7\,0 )
=B wy (e et miB) o =20 0

a; N+18j,N-1 wy(E) v, .

From the definition of d(¢, &), d(t;, N—1)—d(t;, N+1) is determined only by
v, p° and y¥+» and they do not depend on j. Since p'=#g’, d(t;, N—1)—
d(t,, N+1)#0. So O=(1/(q—q) (g N-H=40 N0 [d(t,, N—1)—d(z,, N+1)])
also does not depend on j. We can easily check that the following identity:
(g—97") (@;,y+1 O+a;,u-1(1—0))=a; y41 a; y-. From this, Proposition 3.11
and (4.3), we have

pcﬁ}) ZUN(XO ]0)) a; N+18jN-1 = (g— q-l) 2 wN(x ,) {a jrN+1 Q+af'N_1(1_Q)}

=t wyy(p = wy oy (u°)

= gL
[n]

Hence wy(E) o Ty-1) my(T¥) wy(E) v,=(q—q") ¢" %4(E) v;. Finally, using Propo-
sition 4.3(2) we have

7y(E) ﬂv(TzT/!—x) ny(TT) my(E) v,
= 2y(E) my(Ty-1) 2 TT) 2y(E) 0,—(9—q7") mo E) o T¥) 7o(E) v,
= (g—97") ¢" 7y(E) v,—(9—q7") ¢" ny(E) v,
=0.

Lemma 4.6. Let t,; (j=1,2, .-+, p(p°)) be tableaux whose coordinates are
given by (y©®, -, y¥= 2’—11 BN, p v, ), where A (j=1, 2, -+, p(u°)) are
all the partitions obtained from u° by adding one box. Let u’ be the partition ob-
tained from v by adding the box N\ °, instead of u"\v. Ewven if u’ is not a par-
tition, we define it formally and define wy (/') to be zero for the u’. Then
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wy(A) [d;+1][d,—1] _ wni(w)

wy-1(1°) [d j]z Wy-2(v)

and

2D wN(No'j). 1 sz_l(pP)

oy () [4F  wy-)’

where d,=d(t, ;, N—1)=d(%, ;, N+1).

Proof. If A%’ is obtained from » by adding two boxes in the same row or
column, then we cannot get another tableau by changing the order of adding
these boxes. This means wy-,(x’)=0. On the other hand [d;4-1] [d;—1] also
becomes zero. So in this case the upper identity holds.

We assume that A%/ is obtained from » by adding two boxes in different
rows and columns. Let A"\p'=p\v=A{(7;, ¢;)} and A" \p/=p*\v={(7, co)}.
Then

d; = c;—1;—(co—10) = (c;—Co)+(ro—7;)
_ { (7, €o)+1 = hus(r , <o) (if ¢;>c))
— (e ) +1) = —hs(re ;) (i co<c;)
In case ¢;>c, we have
{hl"o(rj) ) = Iy(r;, co)+1 (k=)
huo(r ;, B) == hy(r;, k) (R * ¢).
Hence in this case we obtain
w (A%) .[d,.—f—l] [d;—1]
wy-1(1) [d;]*
— [n—r;+c)] cﬁl [2uo(r;, R)] i [he(k, cj)]
W] a5 sy, B+1] 2 (R, ¢)+1]
[hl“’(rj’ ) +1] . [h,,(r,., )]
(7, )] [P c0)+-1]
_ [n—r;+c;] cﬁl [hy(rs R)] i [hy(k, ;)]
[n] &= [hy(r;, B)+1] #=1 [Ay(k, c;)+1]
_ wWy-1(1’)
Wy -5(¥)

Similarly, in case ¢,>c, we obtain the same identity. Using the above conse-
quence we have

= oy (p) [T = wyo(p)

PG wy(A) 1 l_paw) wy(A) (1_ 1 >
[4;F
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g () g0 wy() [d 1[4, 1)
=0 wy(v) T wy-(k) [d;]*
A o) w()
%0 wy-(v) 3T wy_o(v)
. wy-1(1°) ]
Wy-o(v)
Lemma 4.7. Let p? be the previous omes. Let t;,=(y®, -, y¥ D=y,
W, Nk i, v, o) be tableaux, where \* (k=1, 2, .-, P(p,")) are all the partitions

obtained from y’ by adding one box. We label them so that N\’ becomes N>/ for
eachj. Then

»c.u°) p(l‘-’)w ()J )

7w E) mof Twza) e TH) mo(E) w0, = [ 2 5 o)

Proof. We write d; and v;, for d(t,,, N—1) and 9, , respectively. We
can easily check that

7 E) o Tnt1) 2o T¥) 7o E) 0o,

S w (A7) [dj—}— 1][d;—1]
=PI {w o B) O ) )
Hence
o E) o Tx21) e TF) mo( E) 05,1
B zpc#") wy(?\f’ ;) 2O o) (7\’0 k)
O S aF B ™

+

[d;+1][d;,—1] 7D wy (M) }
[d T k=L Wy- 1(#’) Ok

[nz] {pm% wN(K" :) 1 2% gy (7\‘0 k)
=1 wy(u) [4; 1= wy o (u)

,§>w ¥(A) [d;+1][d;—1] »§>w vOH) }

Yo,k

Aoy @F H oy
s () D O D () 7 V)
I R A R ey 5 o)
PO 0,k p89 pepdy ik
nl? wy(A* ) wy(NF) .
= {” =1 Wy (v ) i1 k=L Wy (v) ‘v’k}

p<#°> PO wy(N
= [} >) _(_)
i=0 k 1 wN-z(V)
Proof of Proposition 4.4 (1). Let t=(--+, yW=2, oyN=D (W) cy(N+1) "oy (N+2)
.:) be a tableau. Put #/=(:++, YWD, W=D o) G+ (N +2) ...} and /=
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(vor, Y= GO-D_ p(M) W4 yN42) ) where M) DYWHD D@42 G+ 4
g+ and yW-DCHIN-H C) GN-DLyW-1  Note that if there exists such a
PNHD or W=D jt is uniquely determined. Even if there does not exist such a
YW+ or 4= we define the tableaux ¢’ and ¢/ formally.

If yW+DLoyW=2 then, by Lemma 4.5, ny(E) zy(Tx11) 2y(T¥) y(E) v,=0
for v=v,, vy, and vp». Since zy(T¥)v, is contained in K(q) v,PK(q) vi and
o Ty-1) v is in K(q) 2, K(q) vy, We have my(E) mo( Tn21) mo TY) 2o E) (e TT)
—my(Ty-1)) v,=0.

We assume that yW¥*)=qW-2—=y and ¢ =), There are at most four
possibilities which tableaux satisfying the above assumption can take. We clas-
sify them and label them as follows: #,=(:++, Y& D=uw, y, N, u, v, ***), L=_""",
«y(N—Z)___,,, Lo Ny s 0y o), = (e, YV D=p p' s N, o, v, o), By=(e+, YN D=y,
w's N p'sv, e0), where p*p’. We write v; for v, (1=1,2,3,4). Since
w(TE) 0,=(q [d]) 01+ ([d+ 1) [d]) v, and o Ty—1) ,—=(g*/[d]) o1+ ([d—11/[d]) s

for suitable d, and since
(4.8) wyE) my(TwL1) my(TF) my(E) v;=ny(E) o T511) wo T¥) mo(E) v3 =0,
we have
o E) my(Tx21) o TY) 2o E) (o TF) — 729 Ty-1)) 21 =0,
7y E) m Tii21) mo TE) ey E) (ey(TE) —9(Tn-1)) o = 0.,
Now we shall show the same identity for v,. Since zy(T%¥) v,=(¢"¢/[—d]) v,+

([d—1]/[d]) v1, wy(Ty-1) v,=(¢°/[d]) v+ ([d—1]/[d]) v, for suitable d, using (4.8)
we find it is sufficient to show

my(E) my(Tx11) ey(TF) my(E) v, = o E) my( Tiks) 2o TH) my(E) 0, .
But by Lemma 4.7 the above identity holds. So we have
7y E) o Ty-1) wx(TF) 2y E) (e TY) =7 Tiy-1)) v, = 0 .
Similarly we have the same idnetity for v;. This completes the proof of (1).

Proof of Proposition 4.4 (2). By Lemma 4.5 we can assume a tableau
t=t,, is the following form: #,,=(-++, YV D=p, % A", u° », --). Using the
notation of Lemma 4.7, we have

p(;&“) pc )w (7\.’ )

f°"‘w1vz(”)

y(E) wy Ti21) o TY) my( E) 00, = [n)" 2 ok
For a tableau ¢ ,=(-+, v, w/, M}, p/, v, -++) we put #},=(-+, », w N,
-+). If there exist such #},, it is unique. Otherwise we put #j,=t;,. We
write vj ; for 4, . Using these notations, we have
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2 .k
7 E) o Tia) o TE) my(E) w0y = L 798V (4t ).
2 Tk wy_o(v)
We can easily check zy(Ty-1) (v} 8)=ny(TTF) (v;4+v}4). Hence 4.4 (2)
follows.

Finally we show that the representation =, is irreducible and H% x(q) is
semisimple. The following facts will be important in the proof of this. Ob-
serve that if M=0, then the map t=(y©®, ... yW¥-D M=) t'=(y®, ---,

y@=D) defines a bijection between Qy o and}\ szv Q}‘,’_l,o, and that if M>1,
/EACN -1,0)

NGA
then the map #=(y©®, «+-, yW M= WM =3\ t'—=(y®, +.. yN+M-D) defines

a bijection between Q) and U Qf u—1. The case M=0 is treated in
BEN(N ,M-1)

Bcy
[16]. So we concentrate on the case M >1. In this case,

4.9 K(q) Q% .u = @  K(g9) Q% n-1. (as K(g)-vector spaces)

EAWN, M ~-1)
Bgy
from the above argument. K(q) Q¥ is an Hf y(g)-module and this decom-
position is compatible with the action of the subalgebra HY -1(q) of H¥ m(q).
So we have

(4.10) 7y |

= D g .
Hy 19 peava-1 ©

Bcy

Using this, we can show the following theorem.

Theorem 4.11. Let y A(N, M) be a staircase. Then my is an irreducible
representation of HY u(q) on K(q) Q¥ ». If YEA(N, M), then =5 is isomorphic to
my if and only if y=9. Themap n: xEH% 1(q) — DByeniw, ) 7y(x) define a faith-
ful representation of HY y(q). In particular, the algebra HY y(q) is semisimple.

Before proving this theorem we shall show the following lemma, which is
the extended version of L.emma 2.11(b) in [16]. Consider the graph Ty , whose
vertices are parametrized by the multiset U} A*(IN, M). Let v, v’ be stair-
cases, we call ¢’ is a substaircase of v if there exists a tableau such that t=(y®,

e, yO=ry’ oo ty(j):_ry’ ey ry(N"'M)) (ISZ<]SN+M)

Lemma 4.12. (1) Let A and X be two distinct partitions with |\|=|\| =
N, N>3. Then at least one of them has a subpartition y with | u|=N—1 which
is not a subpartition of the other one.

(2) Let y=[a, Bl., 7=[a&, B1, be two distinct staircases with |y|=|5|=
N—M and |a| <N, |&| <N. Suppose that M>1, N>1. Then at least one
of them has a substaircase v' with |v'|=N—(M—1) which is not a substaircase
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of the other one.

Proof. 'The proof of (1) is given in [16]. We show (2) in similar way to
the proof of Lemma 2.11(b) in [16]. Let y=(7,, 7, ***, 7,) and let ¥=(%,, ¥,
.-, %,). Let s be the largest index for which 4,%%,. We may assume v,<#,.
If s==n, take v’ to be ' =(9y, ***, ¥, Fsr1+1, **¥,). If s=n, take 7’ to be y'=
(71+1, 7z =+, 74). These o’s have desired property.

Proof of Theorem 4.11. As is well known (see, e.g. [16]), Hu o(q) is a
semisimple algebra. We assume that HYy »_-1(q) is a semisimple algebra with
minimal central idempotent 2, labeled by staircases S€A(N, M—1). Let 0
W S K(q) Q% » be an H} y(q) submodule. As K(q) Q¥ » decomposes as an
H% y-1(g) module into the direct sum of irreducible modules K(g) Q% »_1 by
(4.10), there exists a B€A(N, M—1) such that 82y and K(q) Q¥ »_1CW.
Let =3 be another staircase in A(N, M—1) such that 82y. There is exactly
one a € A(N, M—2) (resp. e A(N—1, 0) if M=1) connected to both 8 and .
Let t=(y@, y®, «.., y®*M—q) be a tableau such that y¥+¥-D=@3 and yW+M-2)
—a. Then my(z5) m(TH-1) vy = ([d+1)/[d]) v (resp. zo(57) 74(E) v,= (wy(B)]
wy-1(@)) v;), where d=d(t, N+ M—1) and F=(y®, y®, ...aB, v). Hence the
irreducible H}% y-1(q) module K(q) Q% y-. is contaired in W. Since 8 was arbi-
trary, Wo @  K(q) O u—-1=K(q) Q¥ .m.

ﬁEAZj';'.pﬂ—l)

Next we shall show that K(q) Q% ys are mutually non isomorphic Hy s(q)
modules. We write y=[a, 8], and §=[a&, B], and assume that y=§. If
|| <N and |&| <N then, by (4.10) and the previous lemma, K(g) Q" and
K{(q) Q" already differ as H} y-1(¢) modules. If |a|<N and |@|=N or a+a
with |a|=]|a&| =N, then we can get a substaircase of y by removing one box
from the partition B, which never become a substaircase of 4. So we have
7wy ey again by (4.10). If o=@ with |a|=|a&|=N then we apply the same
argument with respect to 8 and 8 as in [16] using Lemma 4.12 (1).

Finnaly we can show the representation 7 is faithful. In fact, by Proposi-
tion 2.2 and Corollary 1.8, dimg(, H¥ x(q) <(N+M)! and dimy,) H¥ m(q)>
dim (Bryeaw,m 73(Hi,1(9)))= Zyeaw,m dim (K(g) Q")*=(N+M)!. Therefore,
we have dimg) H¥ u(q)=yerwy,m dim(K(q) Q%)% and 7 is faithful.

The above equality and Lemma 2.6 implies the following.

Corollay 4.13. The monomials in normal form defined in section 2 form a
basis of K(q) H¥ m(9)-

If we take g,& K\ {0} so that [n], =0, then we can define K-algebra H% ()
taking ¢, for g. Moreover if [N-+M+-n], !=[N+M+n], [N+-M-+n—1],
[1],,7#0, then 7y is also defined for HY x(g) taking ¢, for g. So we have the
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following theorem.
Theorem 4.14. If [N+M+n], =0, then H¥ 1(g0)==H% u(q).

ReEMARK 4.15. If we take algebraically closed field as underlying field of
H% u(q). (e.g. K(q)), then we can define 7y as follows:

ﬂy(Ti) ‘Ut . id_—i)t—f— [d—i——l][d:]-]v?, ”Y(Tj(.) 'Z)t = ivt—}— M_[E_] -vf ,

[] [T (4] [T
my(E) v, = 2 Q/E}N—%i):ﬁll) Vg .

This means that zy is expressed as symmetric matrices.

REMARK 4.16. The mapping 7y defined in the beginning of this section
also defines an irreducible representation of H% u(¢q) in the case n<<N-+M.
However, the mapping = in Theorem 4.11 is no longer injective.

5. Markov trace

Let M be a finite dimensional split semisimple K-algebra. A trace on M
is a linear map Tr: M — K such that tr(xy)=tr(yx) for all x,y&M. Let M be
written as M= @7., z; M with the central minimal idempotents 2; (/=1, 2, :--, m).
To a given trace tr, we associate the vector w=(tr(p;))i<i<», Where p; is a mini-
mal idempotent in 2; M. Conversely, the vector w K" determines a unique
trace:

m .
tr, = 2 W; X ’
i=1

where X’ is the diagonal sum on the full matrix ring 2; M. A trace tr on M
is faithful if and only if the associated vector w has no zero entries. If we as-
sociate the vector w=(Wy.+u(7))yerv+m O Ay i in Section 1, then we have the
tract Tr¥™ on H} 1(q):

TV = tryor = 31 wWyyp(Y) XVomy .
YEA 10

Any element x& HY y-1(q) (resp. ¥ H?%_1,0(q)) can be considered as an element
in H% u(q) (resp. H¥,0o(q)). Proposition 3.11 asserts that there is the following
relation between Tr®:*) and Tr®-¥-b (resp. Tr®¥» and Tr¥-19). (See Propo-
sition 2.5.1 of [3]).

Lemma 5.1.
(@) If x€Hy y-1(q) (M =>1), then Tr®-M-D(x) = Tr®-M)(x).
(b) If x€Hy_1,0(q) (M=1), then Tr¥-10(x) = Tr-9(x).
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For the proof of this lemma, see for example [3]. The next proposition
characterizes Tr(-*),

Proposition 5.2. Let Tr=Tr®™:™ be the trace defined above, then Tt has
the following properties.
(1) Tr(1l)=1.
(2) Tr(ab) = Tr(ba) for Ya,YbeH} n(q).
3) If xsalg{T, T, -+, Tp-i} (0<k—1<N—1), then Tr(xT}) = (¢"/[n]) Tr(x).
4) If x<alg{T,, T,, -+-, Ty-1}, then Tr(xE) = (1/[n]) Tr(x).
(5) Ifxealg{l,, T,, -+, Ty-1, E, T¥, -+, TE }(0<k—1<M—1), then Tr(xT%)
—(q"/n]) Tx(3).

Proof. By the definition of Tr and the previous lemma, (1) and (2) are
clear. For the proof of (3), (4) and (5), we can prove them in similar way to [16].
So we shall prove only (4). In the following proof, we use the representation
of HY u(q) on Qy 5 constructed in Section 4. Let t&Qy y be a tableau. We
can define the unique minimal idempotent p,€ H% u(q) by =(p,)="T};,EEndy(,
(K(q) Q). (For T, see Section 1.) Note that if tEQy -1, then p,EHY 1-1(q)
by the definition. We can also consider p, as an element of H¥ x(q) by p,=
3% P, where s runs over all the tableaux in Qy ,, obtained from ¢ by adding its
(N+M)-th coordinate. As X,cqy,p:=1, the property (4) is equivalent to
Tr(x E p,)=(1/[n]) Tr(x p,) for all tEQy , and for all x€HY o(g). Since p, is a
minimal projection in H}y o(g), there is an a(x)= K(q) such that p, x p,=a(x) p,.
So if t=(y©®, «-+, yW D=y, ¢M=)), then we have

(5.3) Tr(x p;) = a(x) wy(N) -

Let 2, be the central minimal idempotent in H o(q¢) indexed by A and let
P=(y®, voo, gDz oy =n, ¥ +D =) We write p,=3) p, as we noted.
Considering the action of z(2, E p,) on Qy,; We obtain

S Ep =5 B p =[] 2. gy — ) 22y, gy

Wy~ 1( ) Wy~ x( )
Hence we have
PixEp, =20 xEp, =p,x2, Ep, = [n]p,xp; N(?))P‘
— [] () NN(IZ‘))p, i = [n] () Zj’VNf(”))m
1t follows Tr(x E p;)=[n] ”’N(M) (%) Wy i) =(1/[n]) (x) wu(r). Comparing
N 1\

with (5.3) we obtain Tr(E x p,)=(1/[n]) Tr(x, p,) as desired.
Proposition 5.4. If a trcae tr on H} y(q) satisfies the properties (1)-(5)
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in Proposition 5.2, then it coincides with T'r.

Proof. It is sufficient to prove that, for any x& H% u(q), tr(x) is uniquely
determined using the properties (1)-(5) in Proposition 5.2. We can assume
that x is a monomial in normal form. If x=a&K(g) then tr(x)=tr(a-1)=
a tr(1)=a by the property (1).

If xsalg{Ty, ---, T}} (1<k<N-—1) and « involves T3!, then x is of the
form y, Ti' 3, (y1, y.€alg{T}, -+, Ty-1}). Hence tr(x)=tr(y, T#* y,)=(q"*/[n])
tr(y,y,). By the induction on &, tr(y,y,) is uniquely determined. So is tr(x).

If xalg{T}, -+, Ty-1, E} and x involves E, then « is of the form M, E T'3%,

wizT7 (My€alg{T,, -+, Ty_,}). Hence tr(M, E Tx1, T71z--T7)=(1/[n])
tr(Tx%1 Ttz T3 My). By the previous argument tr(Tx1, Trize-- T3 M) is
uniquely determined. So is tr(x).

Assume that x is in alg{T}, +++, Ty-y, E, T¥, --+, T¥} and x involves T¥. If
we write x=M,; T% .- T¥ E Tyl T} TE - T¥ E TyLy-- T3, M¥, then T# is
in M¥ or T#=T% or both. If T% is not in M¥ or T¥=T¥ , then we can write
2=y Ty, (0, y.€alg {Ty, +++, Ty-y, E, T¥, ---T#¥.1}). So we have tr(x)=
tr(y, TF v,)=(¢"/[n]) tr (¥, ). Again by the induction on k, we can uniquely
determine tr(x).

Finally consider the case M¥ involves T¥ and T =T%#. Using the relation
of T¥, we can write M§¥=T% T¥, ,---T¥ M¥ for some monomial in normal form
M¥ in alg{T¥#, T%, -+, T¥..}. Hence we have either x=M, T¥.--T¥ E Tx.,---
TiiX T#*-T¥ M¥ or x=y, E T3L---T5) .y T¥--T¥ E TL1- T5NT% T¥..---T¥
M¥) (yo€alg{Ty, =+, Ty-1, E, T¥, -+, T¥ 1}).

Case 1. If x is of the first form, then

tr(x) = tr(M, T+ T¥ E Tl T3} T T M¥)
= to(M, T*---T¥ M¥ T#-T¥ E Tt T5Y).

Im

Since T%...T% M¥ T%¥.--T¥ can be written as a linear combination of monomi-
als in normal form. We can reduce the number of T¥ to one. Using (2), (5)
and the induction on & we can determine tr(x).

Case 2.1. If x is of the second form and s>1, then

X =.’VoE TlTl_l.l”'T;’:_l Tt'“Tik E T[T]l_l"'T;,:(T;k Tik_.,l"‘T;f M;k)
:yl(T;l:"'Tik T;k T:‘*"'l'"T;?k)yz (yz)ylealg{Tlv °tty TN—h E: T;'" °*% T;ek—-l}‘) .

Similarly to Case 1 we can determine tr(x).
Case 2.2. If x is of the second form and s=1, then

%= yo E Tty Tyy T TH E Ttyoo T3 (TH TH-TF ME)
=% Ti""-TE" E Tﬁl_l Tik E T’lk Tﬁl_z“'T;:_.l TITII—I’”T}'_,: T;“"'Tf M?ik
=% T¢{-T¥ETR. T¥E T3 T;Il_z'"T,'-;:_1 TFIll"'T}: T§..-T¥ M¥
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=0 TETETETE Ty, (yu3,Salg{Ty, -+, Tyt ETY, -+, TEa}) -
Similarly to Case 1 we can determine tr(x). The proof is completed.

We call the property (1)-(5) in Proposition 5.2 Markov property, and if a
trace has Markov property then we call it a Markov trace.

REMARK 5.5. In the case n<<N-M, we can define a trace Tr of Hy x(q)
satisfying the properties (1)-(5) in Proposition 5.2. However, this trace is not
faithful, i.e. there is x&H}% 1(q) such that Tr(x, y)=0 for all ye H¥ u(q).

6. Centralizer algebra

In this section we shall give a representation of H} »(g) acting on the mix-
ed tensor space, and we shall show that it is naturally isomorphic the centralizer
algebra of U, (gl(n, C)) on the mixed tensor space. In the classical case g=1,
such centralizer algebra is studied in Section 1 of [8]. In this section we put
K=cC.

We define U,(gl(n,C)) to be the associative algebra over C(q) generated
by the symbols ¢*%, X, Y; (1<i<n—1) under the following relations:

giqi=q g =1, ¢i-q"i=q%i-q%,
qX; if j=1, ¢y, if j=1,
X, =4¢X; ifj=i-1, ¢"Y,g=1 qY; if j=i-1,
X, if otherwise, Y, if otherwise,
i1 — g%t n
[X,-, Yj] = 8:‘,‘ 9 q_q__l

XX, =X,X, V,Y,=Y,Y, (li—jl=2),
XiXim— Q) X X X+ X X1 =0 (1<i,i+1<n—-1),
ViViu—(q+9 )Y Vi Vit Vi Yi=0 (1< ik1<n—-1).

We put ¢#i=g%~%+1. We have an algebra homomorphism A™: U,-»U,Q:®Q
U, (N-fold) such that

AM(g*) = ¢*Q - g™ ,
AM(X,) = éqﬂi®-"®q”f®Xi®l®"'®1 ,
AM(Y) = 3118 B1Q V0 #®- Q¢
and an algebra antihomomorphism S: U,— U, such that
S(Xy) = —q " X;, S(Y)=—Y:iq%, S(@¥)=q7"%,

The Lie algebra gl(n, C) naturally acts on V,=C". This representation,
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called the vector representation of gl(n, C), can be deformed into the vector re-
presentation (¢, V,QC(q)) of U, as follows:

¢: X Eipn, Y By, ¢fie g,

where E; ; denotes the matrix unit.

Let V¥ be the dual space of V,. We can define the contragradient rep-
resentation ¢* on VFQC(q) by ¢*=*¢oS. Using ¢, ¢p* and A¥+™ we can de-
fine the mixed tensor representation @+ on VM+M) by GW+M)— (BN Qp*&M)
o AWM, The generators X;, ¥; and ¢*% are mapped into End (V§"*)=

3

End(V,)®¥QEnd(V¥)®" by @ as follows:

D(X;) = é {<-'®"‘®Ki®Ei,i+1®1®"‘®1
i

+ i K@ @K,@K'® @K Q(—¢) Ein, Q10+ ®1,
AL e A N

Jj-1 M-j

d)(Y‘-) = i 1®"'®1®E;’+1,i®K;—l®"'®K71®Ki®"'®Ki

v <7 i

+ i 1Q-®1Q(—q) E; ;i11QK; Q- QK;,
j=1 ~———

N+j-1 M-j

q)(qi!'.) — qiE,-,,-®,,,®nt,-’,-®q¥E,-,,-®...®q$£,-',- ,
ﬁ R

M

where K; denotes g&ii~Ei+1i+1,

DerINTION 6.1. Let IV be a vector space over a field K and let 4 be a
subalgebra of Endg(¥). Then we define 4’ by

A’ = End,(V) = {b€Endg(V); ba—ab forall acd}.
We consider the subalgebra
CPHM(g) = {x€End(V{™); x &(g) = ®(g)x forany geUy}.
of End(V{¥+™), the centralizer algebra of U, on V{'*.

Proposition 6.2. The following linear map o defines a homomorphism from
Hulg) to CS¥0(g):

o(T)=1Q-RI1RTRIR--Rl (1<i<N-1),

N+M-i-1

where T = q ?‘_,;E,-,j(Z)Ej,j-!- E E;\QE, ;+(q—q7) %E:’,i®E’hk ;
d(TH=10--RIRT*R1IQ Q1 (1<i<M-1),
———— —_—

N+i-1 M-i-1
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where T* = qZ}E ;OE; i+ EEJ yQE, ;+(9—q ‘)EEJ QB4 s
o(E)=1Q:- ®1®(Z‘q"’”" YEWQE; )Q1RQ--®1.

N-1 M-1

Moreover of n>N+M, then o is injective.

Proof. Itis easy to check that & defines a representation of H% u(q) and
that o(T}), o(T¥) and o(E) commute with &(X;), ®(Y;) and &(¢%). We show
that if n> N+ M, then ¢ is faithful. To prove this, we have only to define the
linear map 7: C{"*)(q)—C(q) such that Tr(x)=7(a(x)). In fact, if there exists
such a 7, then by the faithfulness of Tr, ¢ has no kernel. From the uniqueness
of the Markov trace on Ay , the proof of this proposition attributes to the fol-
lowing lemma.

Lemma 6.3. Let X, be the diagonal sum on Mat(n, C(q))®*, and put d=
diag(g="*, g3, ¢7*5, «oo, q*7Y).  If we define the linear map v on o(Hy u(g))
by 11 x> (1[]¥M) Xyin(d Q- QAQRA'R - QRd " x), then Toc satisfies the
Markov property.

Proof. We can easily check that roo satisfies the Markov property (1),
(3), (4) and (5) by direct calculation. Note that d@:-QIRQd'Q--Rd™! is
the element of ®(U,) and that ®(U,) and o(H}% u(g)) commutes each other.
Hence

m(o(a b)) —mr [ ]N+M Xyiu(@® - QIRQd @ Qd ™ o(a) a(b))
T In ]11V+M Xyiu(d®-RdQA™'Q - @d™ o(b) o(a)) = 7(o(b a)) -

This implies that 7o satisfies the Markov property (2).

Corollary 6.4. Let q, be a complex number. Under the notation of Pro-
position 6.2, if n>N+M and [N+M+n), !0 then o defines the faithful re-
presentation of H¥ 1(qo) into C{¥*(q,).

Finally we shall show that in case n>N+M, o maps H} u(q) onto C{V-*(q).
Hence H% u(q) and C{¥™)(q) are isomorphic to each other. Since the irreduci-
ble rational representations of GL,(C) is indexed by staircases of height #z (see,
e.g. Propostion 2.1 in [13]), we can label each of them by py using the cor-
responding staircase v of height #. The following lemma is combinatorially
proved and is essential for the following theorem. (See [8] or Corollary 4.7 in

[13]).

Lemma 6.5. Let 7y be a staircase of height n and let py denote the irreducible
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rational representation of GL,(C) corresponding to «v. Then the multiplicity of py
in the decomposition of V'™ is i u.

This lemma implies that the dimension of centralizer algebra of GL,(C) on
V¥ is equal to Shea(ck.u)?, where A denotes the set of all the staircases of
height n. If >N+ M, then using Proposition 1.5 and Corollary 1.8 we have

N\ (M 2
y N2 ! @ 8l !
B =3, () () r) = o

We can easily ckeck that the centralizer algebra of GL,(C) on the mixed tensor
and that of gl(n, C) (hence that of U(gl(n,C))) coincide. If n>N-M, then
by the faithfulness of o, we have the following theorem.

Theorem 6.6. If n>N-M, then the centralizer algebra C{-*’(1) is
1somorphic to the generalized Hecke algebra HY y(1).

We extend this result to the case when the parameter g takes a generic
complex value.

Theorem 6.7. Assume n>N-+M. Then CS¥*(q)==H% u(q,) for generic
9@ <C, i.e., there exists a finite subset S of C such that C"-")(q))==H7 u(q,) holds
for g;=C\S.

Proof. Define the C(g)-subalgebras H and G of Endgy(V{¥ ) by H=
o(H% u(g)) and G=®(U (gl(n, C))). For a complex number g,&C\ {0}, we can
define C-algebras H(q,)=o(H¥, u(g)) and G(go)=D(U,,(gl(n, C))). In particular
H(l)=o(H% u(1)) and G(1)=®(U(gl(n,C))). Let H(g,)' be the centralizer
algebra of H(gq,) in Endg(V{¥*). Corollary 6.4 implies G(g,) CH(g,)’. Since
H(qy) is semisimple under the condition [n+N-M],, !0, we have only to show
dim¢ G(go)=dim¢ H(g,)".

We consider H'={X €End¢(V{"*); XY=YX for all Y€ H}.

First we show that for an arbitrary complex number g,&C\ {0},

(6.8) dim¢ G(g,) <dimep G .

In fact, if we take a C(g)-basis of G, {X {@}1<j<r then G(g)=3 C X (qo)-
Moreover the value of g, which makes {X,(g,)} linearly dependent can be pre-
sented as the zeros of some polynomials. It follows that the equality holds in
(6.8) for any generic number g,.

Next we show that for an arbitary complex number g,&C\ {0},

(6.9) dime(p H' <dimee(H(g0))’ -

In fact, if we write X€End(V{"") as X=31 X, ; ¢, @ ®e;, QeF Q-+ e,
(X1.,€€(q), I=(3y, ***, in), J=( ***, ju)) using the natural basis of End(V{¥+*),
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the condition X €H’ can be expressed by linear equations with C(g)-coefficients.
The condition X €(H(g,))’ can be expressed by the same set of equations, taking
¢, instead of g. 'The rank of this system of linear equations reduces only in the
case that g takes some values which make some nonzero minors zero. It follows
that the equality holds in (6.9) for any generic number g,.

Sice GC H’, we have dim¢ G(gp) <dimey G<dime(y A’ <dime(H(q0))"-
Take g;=1. Then, since dim¢ G(1)=dim(H (1))’, we get dimgp G=dim¢(g .
It follows that if g, is generic, then dimg G(go)=dimg(,y G=dimg(,y H'=dim¢
(H(g))’. This completes the proof of Theorem 6.7. '

REMARK 6.10. In the case of n<<N-+M, Theorem 6.7 does not hold.
However, as in [10], the representation theory for finite dimensional irreducible
representations of U, (gl(n, C)) is similar to that of gl(n, C) and so C{"-*)(q) is
isomorphic to C{¥*(1) if g is generic. By using this and representation theory
of gl(n, C), we can show that the mapping o in Proposition 6.2 is factored by
7 in Remark 4.16 and C{"-*(g) is isomorphic to the image z(H¥,ux(q)).
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