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1. Introduction

This paper deals with viscosity solutions of nonlinear degenerate elliptic
partial differential equations (PDEs) involving nonlocal operators.

To begin with, we show model problems. Let Ω,dRN be a bounded do-
main.
Model I. (Integro-differential equation with obstacle)

τnax{Lu—fy u—φ} = 0 in Ω ,
(1.1)

u(x)=[ u(y)Q{dy,x) for
JQ

where L is an integro-differential operator of the form:

Lu{x) = - Σ^(*) «„(*)+«(*) u(x)+X(x) \ (u(x)-u(y)) Q(dy, x),\
JΩ

and ζ)( , x) is a probability measure in Ω for Λ G Π .
Model II. (Second order elliptic PDE with implicit obstacle)

ί max{Lz/—/, u—Mu} = 0 in Ω ,

1 max{w—g, u—Mu} = 0 on 9Ω ,

where L denotes the following linear (possibly degenerate) second order ellip-
tic operator:

Lu(x) = -Έaij(x)uXiXj(x)+ ^bi(x)ux.(x)+c(x)u(x)

and Mu is a nonlocal term defined by

Mu(x) = inf ik(ξ)+u(x+ξ)\ξ<Ξ(R+)N, x+ξ(=Π} .

Model I is derived from the optimal stopping problem for piecewise-deter-
ministic(PD) processes. S.M. Lenhart-Y.C. Liao [8] discussed the optimal
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stopping for PD processes and characterized a WltO° solution of (1.1) as the
minimal cost function of it. S.M. Lenhart [6] proved the uniqueness and exi-
stence of viscosity solutions of (1.1). Her existence result was obtained by an
iterative approximation scheme. S.M. Lenhart-the second author [9] showed
that Perron's method can be used for general integro-differential equations in-
cluding (1.1). In the case Ω,=RN, the similar results were obtained in [8] and
[6].

Model II is the dynamic programming equation arising in the impulse con-
trol problem for diffusion processes. See A. Bensoussan-J.L. Lions [3] for
more backgrounds. In Perthame [11] the existence and uniqueness of visco-
sity solutions of (1.2) were obtained and the solution was represented as the
optimal cost function for the associated impulse control problem. His existence
result was also based upon an iterative approximation scheme. The first author
[5] extended the result of [11] to the case where the principal part of (1.2) is a
degenerate elliptic operator. When Ω—RN> G. Barles [1] and B. Perthame [10]
treated the impulse control problem and G. Barles [2] discussed the existence
and uniqueness of viscosity solutions of (1.2) in a general first order operator
case.

As explained above, Models I and II have been considered as separate prob-
lems. In this paper we shall unify these two models from the view point of
viscosity solution. More precisely, we shall get the comparison principle and
existence of viscosity solutions for the boundary value problems of the general
form:

Γ F(x, uy Du, D2 u, u-Mu) = 0 in Ω,

^ 1 B(x, u, u—Mu) = 0 on 9Ω ,

where Duf D2u are, respectively, the gradient and Hessian matrix of u and M
is a nonlocal operator line in Models I and II.

This paper is organized as follows. In Section 2 we state our assumptions
and recall the definitions of viscosity solutions. In Section 3 we establish the
comparison principle and existence of viscosity solutions for the problem (1.3).
As to the fundamental arguments, see M.G. Crandall-H. Ishii-P.L. Lions [4].
Our methods are essentially based upon them. Section 4 is devoted to treating
the case Ω—RN. In Section 5 we mention Models I and II precisely.

Finally we refer the reader to S.M. Lenhart [7] which discussed the unique-
ness and existence of viscosity solutions of nonlinear PDEs involving the ope-
rators in Models I and II.

2. Assumptions and Definitions

In this section we state our assumptions and recall the notion of viscosity
solutions. We set Γ = Ω X R X R N X S N X R and Σ = 3 Ω x R x R , where SN de-
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notes the set of all NxN real symmetric matrices. For a topological space Ty

we denote by USC(T), LSC(T) and C(T), respectively, the set of all real valued
upper semi-, lower semi- and continuous functions defined on T. We make the
following assumptions on F.

(D) ΩaRN is a bounded domain.
(F.I) .FeO(Γ) and satisfies the degenerate ellipticity condition, that is,

F(x, r, py X+ y, m)^F(xy r, py Xy m)

for all (xy r,p, J,m)GΓ and Y&SN such that Y^O.
(F.2) There exists α^C^K*) with ωi(0)=0, such that if X, Y^SN, a>\ and

(I O\ (X O \ (I -I\

then

F(y, ry a{x—y)y Y, m)—F(xy r, a(x—y), X, m)

for all x j E Ω , r,
(F.3) There exists ω 2eC(Λ+) with α>2(0)=-0 such that

\F(x,r,pfXytn)-F(xyryq>Yym)\^ω2(\p-q\+\\X-Y\\)

for all (xy rypy Xy w)GΓ, q^RN and Y^SN

y where | |X|| is the operator
norm o f j G S ^ a s a self-adjoint operator.

(F.4) For each 0<μfSl, there exist functions σx{xy μ)y <r2(
x> /A)GC(ΠX(O, 1]),

and constants aχ>Oy α 2 ^ 0 satisfying

F(xy rypy Xy m)-Fv{xy sypy Xy n)

^msx {a1(r—s)+σ1(xy 1—μ),

a2{r—s+cr2(xy \—μ))+β{x){m—n)} ,

lki( > ^)IIC(Q)) IkaC * /^)IIC(Q) -* 0 (μ -> 0),

/3(*)>0 for Λ G Ω

for all (xy rypy Xym)^T and syn^R such that r ^ ί , where

ί1^, ry py Xy m) = μF (xy ̂ -, A ^ , -£
> μ μ μ μ

REMARK 2.1. The assumption (F.4) includes the monotonicity of F. Tak-

ing μ=l9 we have

^(Λ?, rypy Xy m)-F(xy sypy Xy rc)^max {a^r-s), a2(r-s)+β(x) (m-n)} .

Then we see that F is nondecreasing in m and that
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F is strictly increasing in r if a2>0 (e.g., Medel I (1.1)),

F is nondecreasing in r if a2=0 (e.g., Model II (1.2)).

Next we mention the assumptions on the nonlocal operator M. Let u, v be
bounded functions on Ω.

(M.I) M: USO(Π) -> USC(Ώ) and M: LSC(Π) -> LSO(Π).
(M.2) u(z)—v(z)^Mu(z)—Mv(z) for all # e Π such that u(z)—v(z)=

(M.3) For each 0 < μ ^ l , there exists kμ.^0 satisfying

l-μ) U) (x)^(ί-μ) Mu(x)+kμ .

We make the following assumptions on B.

(B.I)
(B.2) For each 0 < μ ^ l , there exist function σ3(x, μ)eC(9Ωx(0, 1]) and con-

stants 7i^0, 7 2 = 0 s u c n t n a t Ύi+72^0) satisfying

B(x, r, m)—Bμ.(x, s, n)

^y1 max{(r—s)+σ3(x> 1—μ), m—n}+j2(m~n),

Ik3( , μ)\\c(da) -* 0 (μ "* 0) >

for all (xy r>m)€z^ a nd s,nG=R such that r ^ s and m^n> where

r my

c, r, m) =
μ A*

REMARK 2.2. As in Remark 2.1, B is monotone with respect to r, m, res-
pectively.

We conclude this section by recalling the notion of viscosity solutions. We
prepare some notations. For the function u: Ω-^Λ, we define the upper semi-
continuous (u.s.c) envelope w* and lower semicontinuous (l.s.c.) envelope u*
ofu by

u*(x) = lim sup {u{y) \y^Ώ, | y—x\ <r}, u*{x) = —(—u)*(x).

We observe easily that u^^u^u* on Ω and that &* and u* are, respectively,
u.s.c, l.s.c. on Ω with values in ΛU {it 0 0}-

DEFINITION 2.1. Let ube a bounded function defined on Ω.
(1) We call u a viscosity subsolution of (1.3) provided that for each

ifu*—φ has a local maximum at Λ?OGΩ, then

F(xoy u*(xQ), Dφ(x0), D2φ(x0), u*(xo)-Mu*(xo))^O .
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(2) We call u a viscosity supersolution of (1.3) provided that for each

ifu*—φ has a local minimum at # o ef2, then

F(x0, u*(x0), Dφ(xo)y

(3) We call u a viscosity solution of (1.3) // u is a viscosity sub- and supersolution

In the following we surpress the term "viscosity" since we are concerned
mainly with viscosity sub-, super- and solutions.

To prove the comparison principle, it will be convenient for us to have at
hand certain alternative definitions. For the function u:£l->Ry J2t+ u(x) de-
notes the super 2-jet at

u{x) = {(p, X)(ΞRNxSN\u(y)^u(x)+<p,y-x>

+j-<X(y-x)9y-x>+o(\y-x\2) as

where < , •> is the Euclidian inner product in RN. We denote by J2t+ u{x)
the "graph closure" of J2'* u(x):

J2>+ u(x) = i(p, X)(ΞR»xS»\3(*β>PnyXn)(ΞΩxRNXSN

such that (pn, Xn) e J2>+ u(xn) and

(xu, u(xn\ pn, Xn) -» (Λ?, U(X), p,X) as n -> + oo} ,

We define the sub 2-jet/2'" u(x) of u at x and its closure J2'~~ u(x) by similar
way. It is easily seen that the following propositions hold.

Proposition 2.2. Let u be a bounded function on Π. Then u is a subsolution
of {hZ) if and only if

F(x, u*(x)9ρ, X, u*(x)-Mu*(x))^0

for all x G a and (py X ) e / ' +
 U*(X).

Proposition 2.3. Let u be a bounded function on Ω. Suppose that F is
continuous on Γ and nondecreasing in the variable m and that M satisfies (M.I).
Then u is a subsolution of (1.3) if and only if

F(x, u*{x)yp, X9 u*(x)-Mu*(x))^0

for all ̂ GΩ, (p, X)e=J2-+ u*(x).

As to the supersolutions of (1.3), we can get the equivalent propositions
similar to the above ones. (See [4, Section 2].)

3. Uniqueness and existence of solutions

In this section we establish the comparison principle and existence of solu-
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tions of (1.3).

Theorem 3.1. Assume (D), (F.1)-(F.4), (M.1)-(M.3) and (B.1)-(B.2)
hold. Moreover assume either (3.1) or (3.2) holds:

(3.1) When or2=0 in (F.4), kμ>Q (0</*<l) AoMr tn (M.3).
(3.2) When a2>0 in (F.4), z/ the maximum of the function u—v is attained only

on 8Ω, then we have in (M.2)

u(z)—v(z)>Mu(z)—Mv(z)

for all z^dΩ such that U(Z)—V(Z)=SUPQ(U—V).

Let u and v bey respectively, a subsolution and a super solution of (1.3). If
u, v satisfy

(3.3) 5(#,tt*,tt*-Mtt*)^0 and B{x,v*,v*—Mv*)^Q on 8Ω,

then u*^,v% on Π.

Proof. We may assume u^USC(Π) and v^LSC(Π) because, if other-
wise, we replace u and v with M* and v*y respectively. We suppose supα(#—v)
=20>O and shall get a contradiction.

For each weiV, we set um—(l — llm) u. Since (p, X)&J2>+ um(x) implies
(m'p> m'X)G:J2'+ u(x), where mf=mj(m—l)f and u is a subsolution of (1.3),
we have

F(xf u(x)y m'p, m'Xy u(x)—

By (M.3) we obtain

u(x)—Mu(x) = m\um(x)-{\—m-1) Mu(x))

Thus from the monotonicity of F and the definition of Fm' we get

(3.4) FUm,(x, um(x),p9 X, um{x)-Mum{x)+kυm)^ .

Similarly, using (M.3) and (B.2) we obtain

(3.5) Bl/m,(x,umyum-Mum+k1/m)^0 on 6Ω.

Now, let ^fGΩbe a maximum point of the function um—v on Ω. Since
um(z)—v(z)->2θ as m-» + oo, we have um(z)—v(z)^θ for sufficiently large
m&N. Consider the case z&dΩ and (um—v) (x)<(um—v) (z) for x^Ω. In
this case we obtain by (3.3), (3.5) and (B.2),

(3.6) 0^B(z, v(z), v(z)-Mv(z))

zy um{z), um{z)-Mum(z)+kUm)



NONLINEAR P D E S INVOLVING NONLOCAL OPERATORS 445

£yι max {v(z)-um(z)+σ3(z, nΓ1),

v{z)-Mv{z)-um{z)+Mum{z)-kUm}

+y2(v(z)-Mv(z)-um(z)+Mum(z)-kυm).

If (3.1) holds, then by using (M.2) we get

max {-θ+σz{zy nΓ% -k1/m} -y2 k1/m<0

for sufficiently large m^N. Hence we have a contradiction. If (3.2) holds,
then we get

yι max {—θ+σ 3(z, nΓ1), v(z)-Mv{z)-um{z)+Mum(z)}

+y2(v(z)-Mv(z)-um(z)+Mum(z))<0 .

Combining this with (3.6), we obtain a contradiction. Therefore we can see
that there exists a maximum point siGΩ of um—v. Then, for any α > l , we
define the function Φ(x9 y) on Ω X Ω by

Φ(x,y) = uJx)-υ{y)-£. \χ-y\*-\y-z\*

and let (£, j?)eΩxΩ be a maximum point of Φ(x,y). By the usual calculation
we obtain the behaviors of 51, y, um(X), v(y) as a-^ +oo

Z,y-*z, ««(*) ~* «•(*), v(5) -* v(z), a\x-y\2 -> 0 .

Then we apply the maximum principle for semicontinuous functions to obtain
X, Y<=SN satisfying

(a(χ -y),X)<Ξj2 +um(χ), (a(χ-y), Y)<=P -(v(y)+\ j>-*|«),

-A/ / O\ (X

(As to the above arguments, see M.G. Crandall-H. Ishii-P.L. Lions [4, Section
3].) Furthermore, we get

(a^-y^p, Y-Z)tΞp ~ v(y),

where ρ=\\y—z\\y—z) and Z=4\y—z\21+8(y—z)®(y—z). Thus using
(3.4) and the fact that v is a supersolution of (1.3), we have

F(y, v{y\ a(x-y)-p, Y-Z, v(y)-

Remarking that um(x)>v(y), we observe from the above inequalities, (F.2) and
(F.3) that



446 K. ISHII AND N. YAMADA

^F(y, v(y), a(x-y)-p, Y-Z, v(y)-Mv(y))

-Fιlm,{3c, um(x), a(x-y), X, um(x)-Mum(χ)+k1/m)

+max {α1(ϊ;(5>)-Mw(»))+σ1(x( »-»), alv(y)+um{x)+σ4x, nr1))

+/3(x) (v(y)-Mv(y)-um(Sc)+Mum(x)-k1/m)} .

Noting that

lim ωi(a\5c-y\2+\x-y\) = lim ω2{\p\+\\Z\\) = 0,

lim sup (v(y)-Mv(y)-um(x)+Mum(x))

and letting α~>+oo, we have

(3.7) O^max {—ax θ+σ^z, nr1), a2(—θ+σ2{z, m"1))

+β(z) (v(z)-MΌ(z)-um(z)+MuM(z)-k1/m)} .

If tf2=0, by (3.1) and β(z)>0, we get

β(z)(v(z)-Mυ(z)-uM(z)+Mum(z)-k1/M)<0 for large tnt=N.

Thus taking tn&N sufficiently large in (3.7), we obtain a contradiction. In the
case α2>0, we also have a contradiction. Therefore the proof is complete. I

The existence result is stated as follows. It is proved by Perron's method.

Theorem 3.2. Let Ω, F, My and B as in Theorem 3.1. In addition, assume
(M.4) M is monotone, that is, ifu^v on Π, then Mu^Mv on Π.

Assume there exist a u,s.c. subsolution u and a Ls.c. supersolution U of (1.3)
satisfying

(3.8) B(x, u, u—Mu)^0 and B(x, U, U—Mu)^0 on 9Ω .

Then there exists a solution u of (1.3) satisfying B(x, u, u—Mu*)^0 on 3Ω.

Proof. Let S and u be defined by

S = {v: subsolution of (1.3) |

B(x,v,υ—Mv*)^0 on dΩ, and v^U on Ω} (Φ0),

u(χ) = sup {v(x)\υ^S}

We note by the definition of u and Theorem 3.1 that u^u^U on Ω. In order
to obtain the assertion we shall prove the following properties hold:

(3.9)
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(3.10) If v^S is not a supersolution of (1.3), there exist a function w&S and
a pointyGΩ such that w(y)>v(y).

First we show the property (3.9). Fix ^Gί l and (p, X)^J2>+ u*(x). The
definition of u.s.c. envelope and the function u imply that there exist (xny un)tΞ
ΩxS such that

(#«, u*(xn)) -> (x9 I**(*)) as n -> + oo .

Hence we can find by [4, Proposition 4.3] i Λ E Ω and (pny Xn)<=J2>+ u*(&n)
satisfying

(*Λ,u*(*n),pU9Xn)-+(x,u*(x),p,X) as n - > + o o .

Since #n(ΞcS, we have

„ ύί(JtΛ)9pn9 XU9 ύt(Au)-

It follows from the definition of u and (M.4) that Mui^Mu* on Ω. Moreover
using the monotonicity of F with respect to m, we obtain

(3.11) F(ta, u*{&n),pn, Xn, «*( i ,)-M«*(i .))^0 .

Since Mu*&USC(Ώ) by (M.I) and {Mu*(xn)} is bounded, we can find a subse-
quence {Mw*(#Λjt)} satisfying

lim Mu*{xnΛ = lim sup Mu*(xn)^Mu*(x).

Hence substituting n=nk in (3.11) and letting to &-> + oo, we obtain

F(x, u*(x), p, Xy u*(x)-

Let x^dΩ be fixed. Choose {un} dS such that un{x)->u(x) as n->+oo. Using
Muϊ^Mu*, we have J5(ΛJ, WΛ(Λ?), un(x)—Mu*(x))^0. Sending n->-j-co, we have
JB(#, M(Λ ), Φ ) - M M * ( Λ ; ) ) ^ 0 . Hence we get u^S.

Next, we prove the property (3.10). Suppose VEΞS is not a supersolution
of (1.3). Then there exist ^ G ί l and (py X)^J2>~ v*{z) satisfying

F(z, υ*(z),p9 X, v*(z)-Mυ*(z))<0 .

We claim v*(z)<U(z). If v*(z)=π(z), we get (p, X)^J2'~ U(z). Noting
on Π, we have

F{z9 v*(z)yp, X, υ*(z)-Mv*(z))^F(z, U(z)yp, X, u(z)-

because U is a l.s.c. supersolution of (1.3). This is a contradiction. Thus we
obtain the claim. Since Mv* is l.s.c. on Ω, there exists a function
such that ψ^Mv^ on Ω and y]r(z)=Mv*(z). Thus we have
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We set

Then by the same method as in [4, Section 4] we obtain, for small r, δ, y>0,
that v&ty(x)<U*(x) on Br{z) and vBy is a classical solution of

(3.12) F(x, u, Du, Z)2 u, u—ψ)<;0 in B r(*),

where Br(z)={x£zRN: \x—z\<r}. We note that vSy is also a subsolution of
(3.12) since F is degenerate elliptic. It is easily seen that, taking δ=r 2 γ/8,
v(x)>vBty(x) when r/2^ \x—z\ ^ r . Hence we define the function w by

m3x{v(x), Vfiy(x)} for x&B(z, r),

v(x) otherwise.

and then we see Mv*ί^Mv*^Mw* on Π. Therefore we get

B(x, zu, w—MZU*)^0 on 9Ω

since W = Ϊ ; on 3ί2 and v&S. By the similar proof to that of the property (3.9)
we obtain zo&S. Since v8ty(z)=v*(z)-r-8, there exists a point y 6 Ω such that

As to the boundary condition, we know only B(x,u>u—Mu*)^0 on 9Ω
in the above proof. By the following corollary, we can show that u is a unique
solution of (1.3) and satisfies the boundary codnition.

Corollary 3.3. Let the assumptions in Theorem 3.2 hold. Let u be a so-
lution o/(1.3) constructed in Theorem 3.2. Ifu satisfies both B{x} u*, u*—Mw*)^0
and B(xy u%, u*—Mu*)^:0 on 9Ω, then u is a unique solution of (1.3). Moreover
u is continuous on Π and satisfies the boundary condition.

Proof. Let v be any solution of (1.3) satisfying B{x> v*y v*—Mv*)^0 and
B(x, v%y v%—Mv^)^0 on 9Ω. Theorem 3.1 implies ί/=?)GC(Π), It is easily
seen that u satisfies the boundary condition. •

4. The case Ω=RN

We devote this section to establish the comparison principle and existence
of solutions of the following problems:

(4.1) F{x,u,Du,D2uiu-Mύ) = 0 on RN,

where F is continuous on RNxRxRNxSNxR.
Let u and v be bounded functions on RN and T=RNxRxRNxSNχR.



NONLINEAR P D E S INVOLVING NONLOCAL OPERATORS 449

(F.2)' There exist ω3(=O(R+) with ω3(0)=0 and functions σ
") and constants α 3 >0, α 4 ^ 0 satisfying

F(y, r, a{x-y)+p, Y+Z, m)-Fμ(x, s, a(x-y), X, n)
-y\2+ \x-y\ + \p\ +\\Z\\)

-y\i+ \x-y\ + \p\ +\\Z\\)
+r-s+σ3(l-μ))+β(x)(m-n)} ,

β(x)>0 for χ(=RN and \\β\\c(B

]!r)< + 00

for all x,y(=RN, r,s€=R,p<=RN, X, Y,Z(=SN, m,n(=R and a>\ such that
and

-HOIHO-YPH-I / ) '
where Fμ is defined in (F.4).

(M.2)' For any η>0, and z&RN such that supRjr(u—v)—η^u(z)—v(z),

We give the definition of sub-, super- and solutions of (4.1) as in Defini-
t ion. 1 with Ω=RN. Then we have the similar propositions to those in Section
2. Our main results in this section are stated as follows.

Theorem 4.1. Assume (F.I), (F.2)', (M.I), (M.2)' and (M.3) hold. More-
over assume (4.2) holds.
(4.2) Ifcc4=0 in (F.2)', then it holds kμ.>0 ( 0 < μ < l ) in (M.3).

Let u and v be, respectively> a subsolution and a supersolution of (4.1). Then

Theorem 4.2. Let F and M be as in Theorem 4.1. Assume (M.4) in
Theorem 3.2 holds with £l=RN. Assume there exist a u.s.c. subsolution u and
a l.s.c. supersolution U of (4.1). Then there exists a {unique) solution u of (4.1).
Moreover u e C(RN).

If we admit Theorem 4.1 holds, we can get Theorem 4.2 by Perron's method
as in the proof of Theorem 3.2. So we show only Theorem 4.1.

Proof of Theorem 4.1. Since the proof is similar to that of Theorem 3.1,
we point out the differences. We may assume ut= USC(RN) and υ^LSC(RN).
We suppose supR^(u—v)=2θ>0 and get a contradiction.

Let um=(l — l/m)u. Since u is bounded in RN, we have
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sup (um—v)^θ for large
R*

Moreover, for any o?^(0, 0), we can find z^RN such that

0<SUp (Um — v) — η^Um(z) — v(z) .
R*

We remark that the function um satisfies

(4.3) FUu,(x9 umyp, X, um-Mum+k1/m)^0 .

for all x€ΞRN and (p, X)(=J2 + ujx).
For each a> 1, Let the function Φ on RN X RN be as in the proof of Theo-

rem 3.1. Then Φ attains its maximum because ΦG USC(RNxRN) and

Φ(#, z)>0 and Φ(#, 3;) -> — 00 (|#|~|_|j/|-_>-|_oo).

Let (x, y)^RNxRN be a maximum point of Φ. By Φ(#, #)^Φ(£, y) we obtain

^μ-y | 2 +|j-^l 4 ^2( |M|+iH|) (IN) = sup κ*) | ) ,

and so {y}Λ>ιdRN is bounded and |^—y\ ->0 as α->+oo. Then we may con-
sider that x and jp converge to some zo^RN as α-^ + 00 by taking subsequence
if necessary. By the semicontinuity of um and v we get

(4.4) um(z) -v(z)^ um(z0) - v (z0),

(4.5) lim sup (a\x-y\2+\y-z\*)^v .

Moreover we note that um(5l)-*um(z0) and v(y)-*v(z0) as a-*+oo. As in the
proof of Theorem 3.1, using the maximum principle, we have the following
inequalities:

F(y, υ(y), a{χ-y)-p, Y-Z, v(y)-

where^>=4|y-z\\y-z) and Z=4\y-z\21+8(y-z)®{y-z). By (F.2)' the
same calculation as in the proof of Theorem 3.1 implies

, v(y), a(χ-y)+p, Y+Z, v{y)-Mv{y))

-FUm,{x, ua(Sc), a(x-y), X, um(*)-Mum(*)+k1/m)

(a\Sl-y\2+ \x-y\ + \p\ +\\Z\\)-ct3θ+σ3(m-1),

+β(x) {v{y)-Mv{y)-um(x)+Mum{x)-kUm)} .

Letting a—>+°°, we obtain
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(4.6) O^max {

+β(*o)(v~k1/m)}

since (M.2)' is satisfied at z0 from (4.4). We suppose α 4 >0. Using (F.2)',

(M.3) and letting v->0, we get

O^max {~

Taking sufficiently large raeiV, we obtain a contradiction because of (F.2)'.

Next we suppose aA=0. Sending η->0 in (4.6), we also have a contradiction

for sufficiently large m^N by (4.2). •

5. Model problems I and II

In this section we mention Models I and II precisely. In the following

we consider only the case ΩdRN is a bounded domain and assume that dΩ is

sufficiently smooth.

First we consider Model I. Then we make the following assumptions on

Q and the coefficients of (1.1):

(I.I) For all

Mlzι(α> for some C n > 0 .

(1.2) The function

is continuous in the variable xGΩ, uniformly for

(1.3) Λ e= ^ ~(Ω) ( i=l , . - , N), a, λ,/, φ^C(Π).

(1.4) a*ta0 on Ω for some aQ>0 and λ > 0 in Ω.

(1.5) gi(x)Pi(x)>0 for x^dΩ, where v(x)=(vι(x)y "',vN(x)) denotes the out-

ward unit normal at #

(1.6) ί φ(y)Q(dy,x)^φ(x) for

Under thsee conditions we see (F.1)-(F.4), (M.1)-(M.3) and (B.1)-(B.2) hold.

Thus we can apply Thoerem 3.1 to obtain the comparison principle of solutions

of (1.1). Since u=—C and U=C on Ω are, respectively, a subsolution and a

supersolution of (1.1) satisfying

u(x)^[ u(y)Q(dy,x) and U(x)^[ U(y)Q(dy,x) for all x<=dΩ
Jo JQ ~

for sufficiently large C>0, Theorem 3.2 holds for (1.1). We prepare the fol-
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lowing lemma to apply Corollary 3.3.

Lemma 5.1. Assume (I.l)-(1.6) hold. Let u be the function defined as in
the proof of Theorem 3.2. Then u satisfies

u*(y)Q(dy,x) and u*(x)^\ u*{y)Q{dy,x) for all * e 9 Ω .
JQ

Proof. To prove the first inequality, we suppose that there exists

such that u*(xo)>\ u*(y) Q(dyy xQ) and shall get a contradiction. As in the
JQ

proof of Theorem 3.2, we can find (xn, un)^ΠxS satisfying (xn, un(xn))-+
(xOy u*(x0)) as n~»+ oo. Noting (1.2), there exists δ > 0 such that

u*(y)Q(dy,x) for

Using the facts that un^u on Π and un^S, we get, for all

un is a subsolution of

Lu-Λ(u*(xo)-δ)-f=O in

on B(x0, δ) Π 9Ω ,

un^U on Π ,

where Lu— — Σf«i£i w *,.+(#+λ) u. It is easily seen that from (1.5) that there

exist S0&(0, δ) and ψ G φ ^ , ίo)ΠΩ) (Ί C(J5(JC0, f0) ΠΩ) satisfying

in B(xn, £

on i?(^0,

on 9B(# 0 ,£ 0 )nΏ.

By the standard comparison argument we have

on B(xOy So) ΠΩ for all

By the way, there exists no&N such that xn^B(x0, £0) f|Ω for all n>n0. Thus
we obtain un(xn)^y]r(xn) for such weiV. Letting w->+ oo, we get

which is a contradiction.
Next we show the second inequality. As the above argument, we suppose

w*0*o)<\ u*(y) Q(dy, x0) for some # o e9Ω and shall get a contradiction. We

remark ##(#<))<9)( *Ό) holds from (1.6). By (1.2) and (1.3), there exists δ > 0
such that



NONLINEAR P D E S INVOLVING NONLOCAL OPERATORS 453

u*(y) Q{dy, x), <p(x)} for » e % δ) nΠ .

It is easily seen from (1.5) that there exist £oe(0, δ) and ψ^C\B(xQy £0) Γ)Ω) Π

O(B(x0960)nΩ) satisfying

max{Lψ—f, ψ—φ}^0 in B(x0> £ 0)ΠΩ,

(x)^\ u*(y)Q(dy,x) for

on
on aB(*o,£o)nΠ,

u

where /(#)=/(*)—λ(#) 1 u%(y) Q(dy9 x). We define the function w by
Jo

{ max {u(x)y ΛJr(x)} x&B(x0, £0) f] Ω ,

u(x) otherwise.

Then it is easily verified that w(x)^\ w*(y)Q(dy,x) for #e9Ω. Therefore

by similar argument to the proof of (3.10), we get a contradiction. •

Hence, using Corollary 3.3 we can see that the solution u of (1.1) is unique
and satisfies the boundary condition. Besides S.M. Lenhart-the second author
[9, Section 2] proved by another method that the solution u of (1.1) satisfies the
boundary condition.

REMARK 5.1. We can also treat a second order equation:

max { Σ a{. ux.XJ-{-Lu—f, u—φ} = 0 in Ω ,

where the matrix (cti^x)) satisfies <(#,-/#)) ξ, ?>^0 for all # e Π and

Next we mention Model II. We assume the following:

(II.l) There exists P:Πχ(R+)N->(R+)N satisfying

x+P(xf ξ)(=Π for any Λ G Π , ξ<Ξ(R+)N ,

P(x,ξ) = ξ if

P( , ξ) is continuous on Π for each

), &(£)^&0

 o n ( Λ + ) " f o r s o m e o
(II.3) For the matrix (tffi(,*0), there exists a nonnegative matrix (σo(Λ?)) such

that

(**/) = V,v) W with σ # / e Ϊ P -(Ω) (f,7 - 1, .-, N),

where '-4 is the transposed matrix of A.
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(11.5) *,(*) φ)<0 on {*eΞ9Ω|Σ?,y-i «„(*) *,(*) */*)=<>}
where v(x)=(vι(x), •••, *>#(#)) is the outward unit normal to Ω, at

(11.6) ί ^ c 0 on Π for some co>O.

By the assumptions (II. 1), (II.2) it is seen that the operator M maps USC(Ω)
into itself, (cf. A. Bensoussan-J.L. Lions [3, Chapter 4, Lemma 1.6] or the first
author [5, Proposition 2.3].) From (II.1)-(Π.6) we can check that (F.1)-(F.4),
(M.1)-(M.3) and (B.1)-(B.2) hold. Thus we get the comparison principle of
solutions of (1.2) by Theorem 3.1. Moreover, using the barrier argument, we
can apply Corollary 3.3 to obtain the existence of a unique solution of (1.2)
satisying the boundary condition, (cf. The first author [5, Section 4].)
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