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ON ELLIPTIC SYSTEMS IN L!
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Introduction and basic notation

It is the aim of this paper to study regular elliptic problems in the framework
of L!. We are interested in existence and regularity of solutions and in esti-
mates depending on a parameter leading to results of generation of analytic semi-
groups.

We start by considering what (in our knowledge) already exists on this
subject.

In [2] the authors prove the accretiveness of certain realizations of
Dirichlet and Neumann problems with homogeneous boundary conditions for
second order elliptic equations in variational form, in cases where a maximum
principle is available.

In [1] H. Amann takes advantage of some results of Stewart [14] for elliptic
problems in spaces of continuous functions and of certain duality arguments
to obtain some results of generation of semigroups in L! space again for realiza-
tions of second order elliptic problems in variational form. The same basic idea
is used in Pazy’s short treatment of Dirichlet problem for operators of arbitrary
order (see [10]).

In the book [16] H. Tanabe, using ideas of R. Beals and L. Homander,
estimates the kernels of (4,—\)~! and exp(z4,), where A4, is the realization in
L*(Q) of a certain elliptic operator with certain homogeneous boundary con-
ditions and exp(¢4,) is the semigroup generated by it. Then, a semigroup G(¢)
in L}(Q) is defined by

G0N @): =[G xnf
Q
where G(t, x, y) is the kernel of exp(24,) which is of course independent of p.
Finally, the L! realization A, of the elliptic operator is defined as the infinitesi-
mal generator of G(¢). These results require however the existence of a dual
problem of the same type (in other words of a Green’s formula) and so a varia-
tional formulation or a certain regularity of the coefficients (for a statement of
the needed assumptions in a western language see also [11]). Moreover, only
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the case of equations is considered.

Instead, we are interested in problems for elliptic systems in nonvariational
form and in results requiring minimal assumptions of regularity of the coefficients.

We recall also that the Dirichlet problem for second order elliptic systems
in nonvariational form is treated in [18], who proves, in this particular case, a
result of generation of analytic semigroups under assumptions similar to ours,
using again a duality argument. However, the solution is only intended in a
so called ‘“‘ultraweak’ sense and no attempt is made to study its properties
and regularity more precisely.

We go now to explain the organization of the paper; the first paragraph
contains the study of elliptic systems in R". The main result is contained in
1.7 (generation of analytic semigroups in LY(R")¥ by elliptic operators with
holder continuous coefficients). The solution is constructed using the classi-
cal method of Levi.

In corollary 1.9 it is stated and proved that, if uB{"(R")¥ and A(x, 0)u
eLY(R")", all the derivatives of order not overcoming 2m—1 of u are regular
distribution in the variable x,, and so admit a sectional trace #(-, x,) for any
x,E R (we say that vE9)'(R") is regular in the variable x, if there exist V&

C(R; 9'(R"Y)) such that for any p= D(R") u(d)):s {V(x,), d(, x,)> dx,; it is

R

natural to identify V(c) with the sectional trace of v in the hyperplane x,=c). The
paragraph ends with some results (in the constant coefficient case and for equa-
tions) showing that the same precise information concerning the regularity of the
solution as in case p>>1 cannot be expected. For results of analogous type in
spaces of continuous functions, even in the case of nonconstant coefficients see
[13], where the author promises analogous considerations for L!. Ours are
simply intended as examples and, due to their simplicity, give some insight into
the difference between the two cases p=1 and 1<p<<+ oo.

The second paragraph is rather technical in its content and deals with ellip-
tic boundary value problems in half spaces. It is essentially directed to the
proof of the key result, contained in the statement of 2.16. Here, too, the basic
technique is a variant of Levi’s method (see for a discussion the notes following
2.6).

The third paragraph contains the main result of the paper, in 3.3. Essen-
tially, a result of generation of an analytic semigroup by a certain realization
of an elliptic problem in LY(Q)" is given, for nonvariational problems under
“minimal regularity’’ assumptions on the coefficients.

The fourth and final paragraph contains some results concerning Besov
spaces which are used here and there in the paper. We refer without comment
to this paragraph for the basic definitions and properties.

Now we introduce some notation: let X be an open subset of R”, E a local-
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ly convex Hausdorff space; then, C(X, E) is the space of continuous functions
from X to E; if jEN, C/(X, E) is the set of functions from X to E with all par-
tial derivatives of order less than or equal to m continuous; C*(X, E) stands for
the intersection of all the spaces C/(X, E); if >0, a=j+@8, with j&N or j=0
and 0<pB<1, C%X, E) is the set of elements of C/(X, E) such that for any
multiindex 7 of weight j, for any continuous seminorm p in E, there exists
C>0, depending on j and p such that p(8” f(x)—08" f(y))<C|x—y|? for any
x,yeX. BC/(X, E) will be the subspace of C/(X, E) whose elements have all
the derivatives of order not exceeding j bounded. An analogous meaning will
have BC* X, E). If E is dropped in these notations, we shall always assume
E=C. Here and there we shall consider also the case where X is substituted
by its topological closure X. We shall mean the subset of elements of the cor-
responding space continuously extendable together with their derivatives to X.

Oy will indicate the space of functions which are C* in R" such that for any
multiindex « there exists m(c) real such that 8% u=0(|x|™®) (| x| =4 o).

Let & R. We set BC5(R"):={f||x|*fL>(R")}.

If A=(a;;)1<i<m,1<;<a 1S an m X n matrix, ||A||=max;c;cm,1<;<q| ;] -

If usS'(R"), r>0, 7R, we set (r—A) w:=F~Y(r+ |£|?" Fu), where F
is the Fourier tranform and F-! is its invevse Fourier tranform.

(5 ) and (¢, +),, (0<0<1, 1<g<+ o0) are the complex and real inter-
polation functors.

The notations “C”’ and “‘const’’ will mean constants (which may be different
in each case) which we are not interested to precise. C(a, 8,7, +++) will mean
a constant depending on &, B, «-. If a € R, [«] is the largest integer not larger
than «, [a]" the largest integer strictly less than «, [a|=a—[a], {a} =a—[a]".

If X is a Banach space, ||+||x will stand for the norm in the space X.

If R>0, By, is the open ball with center 0 and radius R, B} is the subset of
elements of B, with the last coordinate positive.

{+, +> stands for the duality between a certain locally convex space X and its
dual space X’'. If f is a function of certain distinguished arguments 0% f will
be the derivative with respect to the j-th argument. If 1<r<n, e, is the r-th
element of the canonical basis of R". If 1<p<+ oo, ||+||, will indicate the
norm in the space L?(R").

For alternative notations (with the same meaning) in the case of Besov spa-
ces see the fourth section of the paper.

1. Problems in R"

The next proposition will be crucial in the following:

Proposition 1.1. Let meC>(R"),scR. Assume that VaE N} there exists
C(a) >0 such that |3*m(E)| <C(a) (1+ |E]|)=*""*. We set K=F*m. Then,
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(a) KEBji.(R").

(b) K| gm € C=(R"\{0}) and is rapidly decreasing together with all its derivatives
at infinity.

(c) If s<n, for any £>0 there exists C(£) >0 such that

|K(5)| <C(8) |#]*=*, Ve R\{0} .
(d) If s>n, KEC(R".

Proof. (a) We put m'(§)=(1+|E|%)*2m(E). Then, by [4], m’ is a Fou-
rier multiplier for the space BC*(R") (0<<a<<1). This implies (see [15] 2, th. 2)
that F-'m'€B] .(R"). From 4.5 one has the result.
(b) If a, BENS, with |B|—|a| <s—n, then E—~0%&* m(§))=L}(R"). This
implies that x—>x* 8® K(x) is continuous and bounded in R", which proves (b).

(c) Assume n—1<s<n. Then, for j=1, ., n, 0, meL(R"). As jai m(&)
dE=0, one has, for 0<a<1: 7

(—in) K() = (2m) | [(exp (in-8)—1] | 2-&1 = |-£1" 0, m(E) dE

R
which implies, using the inequality |[(exp (ix-&)—1]|x-&| %] <C,

|, K@) <Clal* | €110, m(E)| dE<+o0
R
if a<s+1—mn. So (c) is proved if n—1<<s<n.
If n—2<s<n—1, for j=1, -+, n, —ix;K(x)=F"%(0, m) (x) satisfies

|%; K(x)| <C(&)| 2|17

V&> 0, x R"\ {0}, for j=1, .-, n. Iterating the method, one obtains the gen-
eral result.
(d) follows from the fact that me LY(R").

ReMARKk 1.2.  All the constants appearing in the statement of 1.1 depend on
SUp tep® 1ui<u(141E])+1*1| 0% m(E) | with M suitably large.

Let A(x, 8)=(4;;(%, 0)hi<isna<;j<n be a differential operator valued matrix
(x= R"). We assume that
(h1) V(i, ) the order of A;;(x, 0) does not exceed 2m (mEN).
(h2) The coefficients of A, (x, 0) are of class BCP(R") (8>>0).

We set B’:=min {G, 1}.

Next, we indicate with 4% (x, ) the part of order 2m of 4, (, 8), A¥(x, 0)=
(AYj(x, ))i<i<nisjsne Let 0E[—n/2, z[2]. We assume:
(h3) For any xE R", for any (§,r)€ R" X [0, +o[\{(0, 0)} the matrix A¥(x, iE)
—7*™ exp(i0) is invertible and | det(A¥(x, iE)—7r*" exp (i0))| >c(|E| +7)*"¥, with c
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positive and independent of x, E, r.
Now we set (for a fixed §€[—7=/2, =/2]),
K(+,9,7) = (Kjs(*, 9 "hisjsnasisw = F( ANy, i) —7"" exp (i6)) ™)

(r>0). As (£,r)—>A¥y, iE)—r"™ exp(if) is positively homogeneous of degree
2m, we have for r>1, a €N}

(1 [[08(A¥(y, £-)—r*" exp (i0)) | < C(ex) (r+ | E]) 2"~
so that from 1.1 and 1.2 we have easily:

Proposition 1.3. Under the assumptions (h1) and (h2) one has for 1<i<N,
1<j<N:
(a) Vr>0,VyeR"
y—K;.(+,y,r)EBCP’R", Bi"(R")) and ||K (-, , 7|5z, (g <C, independent of
r>1, yeR";
(b) For any X C=(R"), such that \(&€)=0 in a neighbourhood of 0, X(£)=1 for
|E| large, for any r>0, y—=X(-) K;i(+,y,r)ECP(R", S(R"))
(c) If a,yEN§, 2m—|a|<n, |v|<B, VE>O0 there exists C(a, & 1)>0, such
that

[183 0% K(x, 3, )| <C(ax, & 1) |x|?m-1¥1--¢ Vxe= R"\ {0} ;

moreover, if |v|=[g],

[|8% 8y K (x, y1, 7)—0% 8 K (%, 35, )| < C(a, &, 7) | x|*m-121-n=%|y,—y, | ®) Vx= R"
\{0}, 1, € R".
(d) If a,yeN;2m—|a|>n, |v| <B, there exists C(a, &, r)>0, such that
||8% 8} K(x, y, r)||<C(a,7), for any y= R", r>0,
[10% 0} K(x, 1, r)—8%7 8} K(x, y,,r)[|<C(a, &, 7) | y1—.| ®, Vas R"\ {0}, y,, y,€
R".
(e) If aeNg, r>0,07 K(x,y,r)=r**1%1-2m 57 K(rx, y, 1).
&) If la| <2m—1,1<i,j<N,

182 Kji(+, 3, Dllrgm=r"*1"" |07 K;i(+, ¥, Dllrrem-

Lemma 1.4. Let =LY (R")N. Ifr>0, we set

T, ¢(x) = | Kr—y,9, 0 6 dy .
Pt
Then,
(a) T,EL(L{R")Y; Bin(R")Y).
(b) If 0<j<2m—1, ||T,|| cL:®R"* ; wir(R"") < Cri=?, with C>0 independent
of r>1.
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(c) If 0<s<2m ||T,)|_c(L(R"™ ; Bi =(R")¥)< Cr*=2m.

Proof. From 1.3 (f) one has that T,&_L(LYR")N; WY R")¥) if j<2m—1
and it is easily seen that
T || c(r®r?yF ; win(RmyH)<C SUP,egn,1<;,i<N, lal<; 1102 Kji(=, 3, P)lLicgm < Cri=2m .

Analogously, using directly the definition of Bi".(R")" in 4.1, one can show
(c) in case s=2m. The proof of (c) in case 0<<s<<2m follows by interpolation
(see 4.8).

Lemma 1.4. For any r>0, =L} R")V
(2) [A(wx, 8)—7r*™exp(i0)] T, ¢(x)
= ¢(x)+$ [A(x, 8,)— Ay, 0.)] K(x—y,y,7) () dy .

P

Proof. First of all, by (h2), 1.4 and 4.6, [A(+, 8)—7*" exp(i6)] T, ¢ is well
defined and belongs to B} ..(R")Y. Assume that the coefficients of the system
are of class C*. We indicate with A(x, 8)7 the dual system. One has for
YeJ(R")N:

<A@, )7 exp (O] T, , ¥> = (| K(x—3,, 1) $(9) dy). [A(x, 87—

r*™ exp (10)] ¥(x) dx = B" R*
[ (§ K327 6(9)+ T4, 07— exp (i0)] W(x) d) dy
R" R

As [A(x, 9,)—7r"" exp (10)] K(x—y, y, r) = 8(x—y) Iy
+[A(x, 0.,)—AXy, 8.)] K(x—y, 3, 7),

(Iy is the N X N identity matrix) the result follows.

If the coefficients are not C=, they can be approximated in BC*(R") by BC=
coefficients for any B’'<<@ and the result follows from the convergence of the
corresponding terms of (2) in the sense of distributions.

Corollary 1.6. (a) For any r>0, Vo= LY(R")¥
[A(-, 0)—7*" exp(i6)] T, pE L(R")"
Proof. The proof follows immediately from 1.5, (h2) and 1.3(c).

Theorem 1.7. Assume that the asssumption (h3) is satisfied V& [—x/2,
7|2). We consider the following operator:
D(A4) = {usBi".(R")": A(x, 0) uc L\(R")"}, Au = A(x, 0) u (us D(A4)) .
Then, A is the infinitesimal generator of an analytic semigroup in L*(R™)V.
Proof. By 4.9 p(A) contains {z&C|Rez>0, |z| >R} for R>0 suitably



ON ErL1ipTIC SYSTEMS IN L1 403

large. Further, it is clear that D(4) is dense in LY R")¥ because it contains
WL(R")N. It remains to show that V@& [—=/2, /2]

[I(A—7"" exp (16)) || czxR"y™) = O@~*") (r—>+0) .

We consider the equation Au—r*" exp (:0) u=f(f L} R")¥). We try to
write the unique solution #&Bi".(R")¥ of this problem (with # large enough)
in the form

u(w) = | K(r—y, 3,1 8(2) dy

with & LY R
From 1.5 one has that
) $e)+] e 00— 44, 0.0 Kx—y, 5,7 $(3) dy =f(x)

R"

If ¢ = L(R™)" one has

[ 1§ A 00 —2%, 001 K(e—y, 5,1 $(») dyld<

R” R"

SUDyeg",1<i, j,I<N ”[A.'j('v 0.)—AY(y, 0)] Kﬂ( =29 Nlleiem 1l iem s
<Cr*' il cam”

owing to (h2) and (c), (e) and (f) in 1.3.

This implies that if 7 is large enough (*) has a unique solution in L} R")¥
and ||¢|| g ¥ < C|| fllLigm* with C>0 independent of  and f. So the desired
estimate follows from 1.4 (b).

In view of the treatment of boundary value problems, we are going to con-
sider the existence of sectional traces on x,=const of T, ¢ and of some of its
derivatives (p= L} R")¥). We start with the following

Lemma 1.8. Assume BE N3, 1<j,1<N.
(a) For any r>0, for any §>0, (x,, y)—=>0% K;i(+, x,,y,r)EC((]—, —8]U[S,
oo x R"; S(R").
(b) I 181<2m—1, sup,cpn eremo 1102 Kyi(+, 0, 3, 7)l| spnzibi-sgn-n<C(r).

Proof. (a) follows immediately from 1.3(b).
(b) follows from 1.3 (a), 4.5 and 4.13 if || <2m—2 or |B|=2m—1 and B
0, -+, 2m—1). Assume B8=(0, -:-, 2m—1). One has, for x,& R\ {0}:

F@" " K(+, %y, 3, 7)) (') = Fg ((GE, )" [AXGE', &y, y, 1) —7"" exp (i0)] ) (%) -

Each element of the matric [A¥iE', i€, y, r)—7r*™ exp (0)] ! is of the type
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a(E', Epy, 1)
det ([A%:E', iE,, y, r)—7"" exp (i6)])

with (-, +,y, -) homogeneous polynomial of order 2m(N—1), y—a(§', &,,y,7)E
CP(R")V(¢',E,, 7). Moreover,

det(AY:E', iE,, y, r)—r*" exp (10)) = gl’,(f', y,7) &

with Py(-,y, ) homogeneous polynomial of order 2mN—I, y—=>P(¢',y,r)E
BCP®(R"), for any &', r. It follows that, for a fixed X& C>(R), such that X(t)=0
in a neighbourhood of 0, X(¢#)=1 for |#| large, each element of the matrix

(&, [AYGE', 3K, y, r)—r™ exp (10)]
is of the type

a(y) X(E,) E-' - Q(E', Eny 35 7)
with a€BCP(R"), y—0(+, -, 9, -)EBCH(R", C=(R"x [0, + [\ {(0, 0)})),
Opt Q(E', +, 3, 1)=0(&;**) (|1 E,| >+ 0) Ve NU {0}. Therefore we have from
1.1 that, for any x,€ R\ {0}, 1<i,j<N,
F@i" " Kyy(+, %4, 3, 7)) (8') = H(x,) A(y)+D(E', %0y 3, 7)

(H is the Heaviside function)

with x,—>®E’, %, y, 1) EB o(R), (&', 1)=>®(E', -, 9, 1) EC=(R*X [0, -+ o[
\{(0, 0)}); B} (R)) for any y& R", y—>&(&’, -, 3, 7) EBCHR", B o( R)) for any
(', r)ER**X R*. As B}_.(R)is imbedded in BC(R), one has

| D', x4, v, 7)| <C(E',y,7) forany «x,ER.
Moreover, it is easily seen that
F(m"=" K(+, % 3, 7)) (£)
= F(0:" " K(+, x, (18" 1*+7)"2, p, r(1&" [*+7) 7)) (1€ |*+7*) " £7)
which implies
D', %4y 3, 7) = O((1E'1*+7) 28, x, (1€ P+, 3, (1|2 +17) ),
from which the estimate

I, 9, Nllw = ID((|E"1*+7) R E, -, 3, (| E"|*+7)B)|l.
<C (if [&']24r>0)
follows. So,
[IF(82"* K(+, x,,y,7)) (E")[|<C, independent of x,(F0),y,7, &
with |&'|*4+7*>0.
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If «'€N2~!, one has

OO K, 3, 7) (€)= (2m)™ | expin, £) (6" 0F [44GE', iEw,7)
—r*™ exp(6)]7?) dE, R
from which
ll6g F(8i"=* K (-, %,, 3, 7)) BN C(@) (141 E])7"
This, together with 1.1, implies (b).

Corollary 1.9. For any ¢<LY(R")Y, for any r>0, for any a €N}y with
|a| <2m—1, 0*T, ¢ is a distribution which is regular in the variable x,. If
|| <2m—2, 9°T, (-, ) B 19 (R*-Y; if || =2m—1, 0°T, (-, 0)€
Neso BTo(R V.

Proof. Owing to 1.8(b) and 4.5, if |a|<2m—1, for any +>0, for any
%, €R\{0}, 1<i,j <N,

(PP—A»)"" 07 Kji(+, %y, ¥, r)ELYR*') and
1(r*—Aw)™" 02 Kji(+, %, 3, )| 2gr-07 < C(r,7)

so that it follows easily from Fubini’s theorem that for any >0
(r*—A)"" 0% T, ¢ is regular in x,, with traces in L} R*~")¥. Its trace in x,=c
is of course

* = S (r*—=Ax) 7" 0 K (2" =y, c=Yu 9, 7) $() dy
R’l
The belonging of 8*T, ¢(+,0) to Bi" '~1#{(R*-!) in case |a| <2m—2 follows
from 4.13.

We conclude this paragraph showing that, if #>2, there is no hope to obtain
optimal regularity results comparable with those available in case 1<<p<<- o (see,
for example [3]). For simplicity we shall consider only equations with con-
stant coefficients. We recall that a partial differential operator A4(d) of order
2m is strongly elliptic if Re A¥:£)>0 for any £ R"\{0}. We start with the
following

Lemma 1.10. Let m&C>=(R"). Assume that there exists myc C=(R"\{0}),
positively homogeneous of degree 0 and >0 such that for any a € N}

0%(m—my) (£) = O(|&|~*1*N) (|E| > +0) .
Then m is a Fourier multiplier for L*(R") if and only if my is a constant function.

Proof. First of all, we fix X&C=(R"), such that X(£)=0if |£| <1, X(§)=
1if |E| =>2. We have m=Xm+(1—X)m. (1—X)mcD(R") and so m is a
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Fourier multiplier if and only if Xm is a Fourier multiplier. We have Xm=Xm,
+X(m—my). Owing to 1.1, F}X(m—m,))EB;.(R"). So, m is a Fourier
multiplier if and only if Xm, is a Fourier multiplier. This happens if and only
if F-(Xmy,) is a finite Borel measure (see [8] th. 1.4). Let f, f,, f; be, respective-
ly, the restrictions of F~'(Xmy), F~'my F*((X—1)m,) to R™\{0}. Then,
f=fitfi. So feC=(R"\{0}), because f, and f; are elements of C=(R"\{0})
(owing, respectively, to [9] th. 7.1.18 and the fact that (X—1)m, has compact
support). Now, if F-YXm,) is a finite Borel measure, f is necessarily in
LYR™\{0}); in particular f€L}B,). But of course fycL{R,). This implies
that f,& LY(B,). However, f, is homogeneous of degree —n (see ([9] th. 7.1.16)
which means that f, has to be equal to 0. Therefore, the support of F-!m, is
contained in {0} and so m, is necessarily a homogeneous polynomial function of
degree 0.
So the “only if” part is proved. The “if”” part follows easily from 1.1.

In [12] the author constructs a function # whose laplacian is in L}(R"), but
such that, for any a€Nj; with |a|=20*¢L(R"). Here we have, more
generally

Proposition 1.11. Let n>2, A(9) a strongly elliptic differential operator of
order 2m in R" with constant coefficients. Set D(A)={ucsLR")|A(d)uc
LYR")}, Au=A(@)u. Then D(A) contains properly W?™Y R"). More precisely,
there exists us D(A) such that 0% uec L} R") Va € N such that |a| =2m.

Proof. Fix AyEC, such that A(iE)=+, for any E€R". It is easily seen
that n,Ep(4) and, for any fe L (R"), (A—A4) f=FY(ne—A(IE)) Ff). We
start by showing that, if || =2m, there exists u& D(4) such that 3% ue L'( R").
Assume, by contradiction, that, for some o € N, u€ D(A) implies 8% u< L(R").
This implies that m(&)=(i€)*(N,—A((€))~* is a Fourier multiplier for L}(R").
However, m satisfies the assumptions of 1.10 with my(§)=—E&* A¥&)~, which
cannot be constant if #>2. Now, define X,:={ucD(4)|0*usL(R")} and
set (for uEX,) |[ully: ==|lullpcay+110% #|[L2(gm. With this norm X, is a Banach
space continuouly imbedded in D(A4) and not coinciding with it. It follows
from the open mapping theorem that X, is of the first category as a subset of
D(A4). So, also the union of all the X, with |a|=2m is of the first category in
D(A) and this proves the result.

Proposition 1.12. Let A(0), B(0) strongly elliptic differential operators of
order 2m with constant coefficients in R"; put D(A)={us L (R")| A(d) uc L*(R")},
Au=A0)u, D(B)={usL(R")|B(d)uc LY R")}, Bu=B(8)u. Then, D(A)=
D(B) if and only if there exists cEC such tha BYE)=cAXE) for any E€ R".

Proof. We show the “if”’ part. LetuesD(4). Then, B(0) u=cAu+B,(0)u
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—cA,(0)u, where A,(0)=A4(8)—A¥9), B,(0)=B(8)—B¥9). So, owing to the
inclusion D(4)S Bi".(R"), B(d)us LY(R"). The opposite inclusion follows from
the fact that, clearly, c==0.

On the other hand, assume D(4)=D(B). Fix a&EC, such that a,—A(E)
+0 VE€R". Then )Ep(4) and B(r,—A4) ' L(L(R")), which implies that
m(E)=DB(E) (No—A(i€))~" is a Fourier miltiplier for L}(R"). So we can apply
1.10 with my(E)=—B¥E&) AYE)~.

Remark 1.13. In 1.12 we have in fact proved something more than what
declared in the statement; more precisely, we have shown that, if A% and B*
are not proportional, there is no type of inclusion between D(4) and D(B).

2. Boundary value problems in a half-space.

We continue to consider a system A(x, 0) satisfying the assumptions (hl),
(h2), (h3) and we couple to it another system of partial differential operators
B(x, 3)=(B,,(%, 0))icrsmn,1<;<n- We assume that the following conditions are
satisfied:

(h4) for any (N, j) B,,(x, 0) is an operator of order less than or equal to o, <2m—1
with coefficients in BC*"~°A~#(R");
we indicate with Bf ;(x,d) the part of order o, of B,, Bi(x,08)=
(BY, /(% 0))i<rsmw,1sj<n- We assume that the following complementary condition
is satisfied:
(h5) forany (x', &', r)ER* X R*'X [0, + o[, &, 7 not both 0, the O.D.E. prob-
lem
AYx',0,1E', 8,) v(t)—7r*" exp (10) v(t)=0in R,
BYx',0,i8",0)v(0) =g,
v bounded in R*

has a unique solution t—Q(E',t,x',7r) g for any geC™V;

finally,

(h6) if |x'| is large enough, the coefficients of A¥x’, 0,8) and B¥x', 0) depend
only on x'[|x'|.

From the uniqueness of the solution one has
3) QE, p 1, %', pr) = Q™ B 1, 27, 7) S(p) -

with Sy(p)=8w p #(1<\, p<mN, pE R*). Moreover, from the representation
of the solution in [19], suppl., th. 2 and (hZ2), (h4), (h6), it follows that the map-
ping ¥’ —>Q (-, «, &, +) is in

BCP(R*, C=({(', t, r)E R*'X [0, +oo[ X [0, +oo[: (£’,7)=%(0, 0)}))
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Next, we have:

Lemma 2.1. There exists §>0 such that for any a N3, (',r)E R* X
[0, + oo, (&', 7)#(0, 0), £>0, 1<j <N, 1<A<mN, Vx'€ R*1,

1) (8)* Qu\(E', t, &', 1) | SC () exp(—8(IE'| +7) 8) (|E'| +7)*~1 1=

Proof. Again by [19] supplement, th. 2, if |E'|+r=1, |(8¢)* (8,)* Q,,
(&', t,x',r)| <C(ax) exp(—38t), with §>0, independnent of x’. So the result
follows from (3).

Now, let r€ R. We put
Hjx (x,y xn)yla r) = Fs—;l((’l_{_ ,EIIZ)—TIZ Qj)\(gl: xmy') f)) (x') .
Lemma 2.2. Let 1<A<mN,1<j<N,vrR. Then,

(2) ¥'—Hp(, -, ¥, NEBCH(R*Y; C(RY)) Vr>0;

(b) Let ¢=C=(R), such that ¢(t)=0 if —oo<t<$§, p(t)=1 if t>28,86>0.
Then y'—((x', x,)>$(x,) H\o(x'; x,, ', 7)) EBCP(R**; S(R")).

(c) If aeNjand |a| Zo,+7+1—n, for any £>0, there esists C(€,7)=>0 such
that |02 Hppo(, ¥, )| SC(8, 7) || 1=wontr=1e1-t;

(d) IfaeNjand || <oyt+7+1—n, |07 H;\(x,y",7)| <C(a,7);

(e) Vx,=0H, (-, %,y ,7r)EBIN"(R*") and
SUp;, >0yt 1H jpa(*, %, 37, r)“a;’,’;:"(x"‘l)gc(r);

() if oyt7>—1, V>0, H,\ (-, 5, 1) EBH(R");

(8) Vr>0H,u(x, y',r)=r~"-"x+"L H, (rx, y', 1);

(B) i oy br>—1, €Ny j<a, 7L, [H -, 3, Pllwiacany < Cr=oa¥,
IH (-1, PP < Cr-* V0.

Proof. (a) and (b) are direct consequences of 2.1. For what concerns (c),
one has for a €N}, a=(a’, a,), x,>0
02 H po(%, 3", 7) = F ((GE")* (P4 |E'|?) "7 0% Q (£, %0, ', 7)) (%) .
One has for any B N;™!
|08 (P+ | E'|D)"2 0% Qu(E, %4, ', )|
<C(a, 7, B) exp(—8'(|E'| 47) x,) (|E'| +r)i=1=A-"-181
So, by 1.1,
Ia: H-M(x,y', 7)| SC(E, r)IxII 1=p+0)\+T— || -8 .

J
Moreover,

102 (', )| SC [ (181401757 exp(—3(1'| +7) dE

R
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We distinguish three cases: if |a| —o,—7>0, (J&'| +7)*-2"<C(|E'|1#1-A7
Fr-n=) i 1—n< || —7—0, <0, (&' 7)o | £ |11,
In each case we obtain

18% H jpo(x, ¥", )| S C(&, 7) | x, | 1= 2+on+7-1a1

If |@| —r—o,=1—n, from (|&'| +7)*1="A "< C(r, ) (| £’ | +7)'*1-"2="** for any
positive o, one is reduced again to the second case.

The proof of (d) is similar to the proof of (c). (e) follows immediately from
2.1 and 1.1.

We prove (f); assume o,+7>—1. From 2.1 and (c) one has that
H,.(-,y',r)ELYRY). Derivating, it is also easily seen that, if o, +-7>m(me N,),
H,o(-,y', r)EW™Y(RY). These facts remain true if we substitute to = any
complex number with real part equal to . We consider, just for simplicity, the
case —1<o,+7<0. Fix 7, such that —1<7y+o,<7+0, and set 1,=7+1,

F(z) (x', x,,) = Fe_,l((rz_f_ | EII 2)[(2—1)"0":"'1]/2 Qik(g” xmy’: T)) (x/) (0_<_Re ZSI) .

By complex interpolation (see 4.8 and 4.12) it follows H (-, y’, r)E(L}(RY),
WYY RS))tr-rd S (BT1(RY), BiR'(RY))tr-rg=Bi70%(R%) for any £>0. From
the arbitrarity of 7, and € the result follows.

(g) is an immediate consequence of (3).

(h) Extend H (-, y’, 7) to R" with the reflexion method described in [17] 2.9.2
(step 3). Then apply directly the definition of Bi*}™*!-*(R") given in 4.1 (f)

and (g).

In the following lemmas we shall study some properties of

4) uw) = | Hplw'—y', %5, 1) (") dy’
R'I—l

with ywELY(R* ), 7€R, o,+7>—1.
Lemma 2.3. u€C>(R%) and Va =N}
o uw) = | 0% 0% Hylw'—y', 0, ', 1) (') Ay

Rn—l
Proof. It is an almost immediate consequence of 2.2 (b).

Lemma 2.4. Assume o,+7>—1. Then u€ N4 B (RY). More-
over, if jEN,, j<o,+7+1,

[l agny < Cr="= 272 ||y | 11y
”u”(lr.}‘:;’.':—esc"—! [l z2gn-» VE>0.

Proof. If o,+7>—1, one has
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[1ll21gn) <supyegn-1 [[H jpo(+5 3"y 1)lliver) [l 225
SCr ™2 el gy -

by 2.2 (h). Analogously one can treat the case of j<<o,+7-+1. Extending
(for example) H,,, to R" with the reflection method of [17] 2.9.2, step 3 and
using directly the definition in 4.1, one has

|27 " < C supy [1H o+, ', DI " Il tern-s
and the result follows from 2.2(h).

Lemma 2.5. Assume o,~+71>—1, the coefficients of A(x, d) and B(x, d) in
BCYR"). Then, VOE]0, 1 [if pEB} o(R*™), uE N5 BP0 RY).

Proof. Assume €W R*"!). From 2.2 (a) and (b) one has, for ', y’ in

R*' H,,.(x'—y, x,,,y r)=H . (x'—y', x,, %', 1)+ 2 0% H o (x'—y', x5, %', 7)
(yr X )+R(x —y xmy x’ r)
One has, for §€[0, 1],

'v(x) = S Hjxf(x’~yl’ Xns x,: r) "!"(y’) dy, = S ij"+3(x,_y,l X xl: r)

Rn-—l Rn-—l
(=AY Y(y') dy’
With the same method of 2.4, applying 4.3, one can show that
lol| 2zt 1= < C(&, 1) (" — A)*2 |l ien-n < C(E, 7) [l lwrrcpr) -
Moreover, if r& {1, «--,n—1}
=9, 05 Hypo(y', 2, &', 7) = —i 05 FG' 0 (P + [ E7[?) 77 Qu(E", %4, ', 7)) (¥') -
From 2.1 and 1.1, if we set

ww) = | For Hylw'—y', 00, #',1) (=) W) &',

n~1

R

we obtain

[0l =" < C(&, 7) Illscgn- -

Finally, setting

s@)i = | Ra'—y', a0y, 0,7 W) by,
Rn-l

using the fact that, for example,
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Re R(x'—y', %,, 5", ', 1) = —Re 3} (7)) FA(% 81 Ol %,+0('—), 7))
(' —y") (0<6<1),

in an analogous way one can show that z& N, B]*!"**~*(R}). Therefore
the result follows by interpolation.

Lemma 2.6. Assume yL'(R*"). Then YVaEN}§ 0% has a sectional
trace on O R’ belong to N ¢5o BYA™1*1-%(R*"Y),

Proof. By lemma 2.4, if o,+7>0 u has a sectional trace belonging to
Neso B2 *(RY) and

u(w', 0) = | Hpols'—y', 0,5,) 9(y') dy’
Rn—l
(the integral has a meaning owing to 2.2 (c)). Assume o,+7<0. Then, for
any >0, x,>0,
u(s, x,) = (P— A (P—A) 2 u(-, x,) .

However,

(rz“Ax’)_sﬂ u(-, x,) (x") = S Hj)\r+8(x’—y” xmy,’ 7) ‘P'(y’) dy’.
Rn—l
This implies what we want if =0 (using 4.3).

Analogous arguments give the result for general a.
After these preliminaries we pass to construct a solution of the problem

A(x, 0) u—r*" exp(i0)u = f in R ,
©)

v(B(-,d)u) =g on OR" .
with feLY(R})", g in a certain subspace of S’(R*"!)"¥ that we shall make
precise and ¢ the trace operator on x,=0.

To this aim, we introduce the following notation: again we put B’':=min

{8, 1}, fix y2m—1—pB’, 2m—1] and set, for aA=1, .-, mN, 7,=p—oa,.
Next, we put

H(xly Xy y,7 7‘) = (H,'M-)‘(x,) Xy y', r))lSjSN,lSASmN

and look for a solution of the form

©  uw) = Ke—s5.990) &+ | Ha—y', 503, 1) 90" &'
R’ r*!

= o(x)+w(x)
with € LY RV, pELY (R )"V,
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Owing to 2.3, one has (if we indicate with 2 the set of the two first arguments
of H)

[A(x, 8)—7*" exp (i0)] S H(x'—y', % y', 1) ¥(¥") dy’

Rn-l
= [ 146 0)—r exp (0] Hx'—y', 500", ) W(3')
Rn-l
= [ 14 00— 2, 0, 0 Hx'—', 50 3/, ) 0 B
Rn—l

as [4¥y’, 0, 8,)—r*™ exp (:0)] H(x'—y’, x,,y’,7)=0 for x,>0. Moreover, by 1.9,
if |a| <2m—1, 8% has sectional traces in the space (N 5o Bi% 1*I=1"%(R*"Y))V,
so that by 4.6 y(B(-, 0) v) is well defined. For what concerns y(B(+, 8) w) we
start by introducing the following notation: let p& R*; we put Thu(p)=p™ &
(1=, p=<mN), T(p)=(Tou(p))1srsmn 1<12mn-

One has the following

Lemma 2.7. (B(+,9)w) (x') = T((r* exp (10)— A7) %) Ur(x")
+ S [B(x",0,8,)—BXy", 0,8,)] H(x'—y", 0, ", 1) y(y") dy" .

B!
Proof. First of all, by 2.2 (c), the integral in the statement of 2.7 has a mean-

ing. Next, by 2.3, if »,>0,

B(x,0) w(x', %) = | B(x, 0 H&'—y', 5,5, 1) () &'

= [ B 0)—By', 0,00 Hx'—', 30 ', 1) () &Y
+ | B, 0,0) H' 5, 20 3, 1) 90) dy” = i) () + ) ()

(2 = (x", x,))
It is easily seen, using the regularity of the coefficients and 2.2(c), that &i(x,)
tends to S [B(x’,0,08,)—B¥y’, 0,0,)] Hx'—y", 0, y", ) Yo(y') dy" in L} R*~1)™¥,

Bn—l
Next, fix §>0 sufficiently large, in such a way that each term of the matrix

(rz_Ax’)—s B’(y” O’ 6:) H( ‘ _y” X y,’ 7‘)
= B’(y,» 0, 6,) (TZ‘AS’)—s H(' Y5 Xns ylv r)

converges to the corresponding term of B¥(y’, 0, 3,) (P—A,)"* H(-—y',0,y’,7)
in LY(R*") (the existence of such a & follows from 2.2(e)). However,
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B‘(yl: 0, a:) (rZ_“Ax’)-s H(' _.y” 0, y,’ r) = (’2_Ax’)_6 F‘f—'l T((rz+ !‘EIIZ)_l/z)
(-—y)
so that {,(x,) converges to T((r* exp(10)—A,’)"?) ) in S'(R*-1)"¥,
Now we make precise what kind of data g we shall consider. Owing to the

type of solutions we have in mind, a natural choice is the following: if »>0,
we set

Z,: = {gES'(R*Y)™: T((r* exp (i0)— Ay)"?) g€ LR )"V}

with its natural norm.
Now we impose that « (of the form (6)) is a solution of (5); so, owing to 1.5
and 2.7, it should be

B+ | [4@ 8)— 4, )] K(v—, 3, 7) $(9) dy

+ | 1465 00— 20,0, 001 Hx'—', 50 ¥/, N 90 &' = f(2), € BY,
(D) ) +TE exp(i0)— 5" (| B, 0,00 K('—5', = 3,7) $(3) dy)

+T((* exp(8)— A7) | B, 0,8)—By',0,0)] Hx'~y', 0,5, )

7=1

R
V(') dy' = T((* exp(i6)— As)iP) g, ¥’ € R*.
With S B(x',0,0,) K(x'"—y'y, —y,, ¥, 7) $(y) dy we mean of course the trace of
R,
= | B, 0 Ky, 2,—30,1) $3) dy .
R
In the following we shall study system (7). For convenience, we set X:=
LYR%)N, Y:=LYR*")",
We start by putting, for p= X, >0
Tur) $(3): = | [4Gx, 8)— A%y, 8)] K(x—, 3, 7) $(3) dy .
R,
From the proof of 1.7 we have the following

Lemma 2.8. Let B':=min{B, 1}. For any r>0 Ty(r)EL(X) and, for
r21, || Tyl cx)<Cr*.

But we have also:

Lemma 2.9. Assume the coefficients of A(x,d) of class BCA(R"). Then,
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Vr>0 Ty(r)e-L(X, Bi »(R)Y).
Proof. We have
To(r) d(x) = | (4%, 0)— 4%, 0] K(x—, 5,7) () dy
RY
+ | 146, 0)— 4%, 001 K-, 5,7) 9(3) dy
Owing to 1.7, th:stecond addend belongs to Bi (R%)¥.
Next, we have

A‘(x’ a)_A’(y’ 6) = 5;,: (xj"yj) ajA'(x) 6)+R(x: Y 9),

where the coefficients of R are O(|x—y]|?) (y—x) uniformly for x& R". If
je{l, .-+, n}, |a|=2m, one has that

x,;0% K(+,y,r) = const F~Y(&" 0¢,(A¥X(y, i&)—r~*" exp(0))™),
so that, by 1.1, if 1<j,i<N,
SUpP,ep?, r>1 ”x, a? K( 5 r)”B}',‘,(R")< oo

Therefore, it follows that

1] =) 8 K, 3, 7) $(9) Bl car < CC) Il -
R
Finally, it is easily seen that, in the sense of distributions,

0., | REx, 3,00 K(x—3,5,1)8(3) dy) = [ 0.1 R(3, 3, 00) K(x—, 3, 1) $(9) dy

R R",
+ S R(x,y,0,) 0.; K(x—y,y,7) $(y) dyE X,
R,

so that the result follows from the inclusion W} R%)¥ C Bi ..(R%)Y.
Next, if >0, »€Y, we put

Tolr) ¥(x): = | [A(, 0)— 4%, 0, 0)] H(x'—y', % ¥', 1) (¥ by’
Rn—l

We have

Lemma 2.10. For any r>0 Ty(r)eL(Y, X) and there exists C>0 such
that Vr>1 ”le(’)”.L’(Y,X)SCrz""l“”‘-ﬁ'_

Proof. It is easily seen that
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IT ()l 0v. 1)< 5upreqr-s | [, 8)— 4y, 0, 0] H(x'—y, %y, ', 1) d
R
SSup/ERn—IS lI[A(x, 8,)—A¥x, 8,)] H(x'—y’, x,,y', r)|| dx
R
+sup,repn-1 S |I[A¥x, 8,)—AY¥y’, 0, 8,)] H(x'—y’, x,, y', 7)|| dx .
R

For any y'€ R*! one has

[ Eacs, 00—, 001 Hx'—y', 2, ', 1)l

<c 3 g 1162 H(x'—y", %,, ', 7)]| dx< Crm-n-2
|®l<2m—-1
R

as a consequence of 2.2 (f).
Analogously, one has, for any y' € R*,

[ E4r, 09— 45,0, 0] Hw'—', 3 ', 1) e
R

<C3 (a1 40 102 H& —y', 200", )l d

la|=2m
R
<Crm-1#" (applying 2.2(c) and (g)).

Lemma 2.11. Assume that the coefficients of A(x, d) are of class BC(R")
and the coefficients of B,; are of class BC*™="»**(R*Y); then if r>0, Ty(r)E
LY, Neso BEZT"Y(RL)Y).

Proof. One has

Tulr) (%) = | [, 8)— AN, 0, 8)] H(x' ', %0y’ 7) (¥’ dy"
R
+ § 14G, 80—, ) H 3, 20, 7', 1) (5 dy' = wi(@) o)

R
”%“B{"}.?‘”‘"(R”:)N

<C||¥|ly max,<;<y,1sr<my SUPycpm-1 HH,-m(',y’, ’)lls{ﬁt,‘“'(n’i,)”gc(r)
by 2.2(f). Moreover, if |a|=2m, we have
A®)— Ay, 0) = T (54=31) 0 (¥, 0+, 0, Au(y', 0)+Ru(x,5"),

with [|R,(x, y)I < C(|*'—y'| +#,)* and, for k=1, .-, n, 3., R.(x, y")l|
<C(|%"—=y"| +x,)-
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If 1<k<n—1,1<j<N, 1<A<mN, |a|=2m one has

%3 0%H jyo\(%, y', 7) = (@) F (0, [£°(*+ | E'|*) ™" 037 Q0(E', %, 3", 7))]) (&)

0% Hjprp(%, y", 7) = o) FE(E*( + | &'|%) ™™ 2, 830 Q (&', %40 ', 7))]) ()
and

%, 0% H (%, ¥’ 1) = c(ct) FEH(EX(r"+ | E'1?) "2 &, 03" Q (&', %40 ¥, T))]) (%)
The same argument of 2.2(f) implies that, for 1<k<n,

Supy’ER"—l ”xk 0 Hj)(r)‘( %y y” r)”Bf:;z'z’”"(R:_)NS C(r) ’

so that
-1
1] 3 B0 0 4,5, 0)+2,0, 4(5', 0)
R,
0°H(x'—y, %, ¥', 7) Yr(¥") @) 5t r2-2m-ecpm sV
S-C'( > SUpy/egn-1 ”xk a” Hj}\‘r)‘( *y y’) r)”Bf"t,z_z"'_!(R'_"_)) ”"I’”Y

Il =2m,1<k<n,1<F <N ,1SASmN

Finally, the terms of R,(-,y)0*H(-,y’,r) are bounded in W(R%), which
implies our result.

Let p= X, r>0. We set
Tu(r) $(x"): = T((r"— Ax)'?) S B(-,0,0,) K(+—y's —yu ¥'s7) $() &y)

R

One has:

Lemma 2.12. For any r>0 Ty(r)€L(X, Y) and, for r>1, || Ty(r)|| £(x,Y)
< Cyite-2m,

Proof. One has
NTaullcx,v)<C SUD,eR” 1<A<mN,1<j,iSN
”(rz_As’)T)‘,z[B)‘j( *y O’ ax) Kji(' _y’a s Pt r)]”Ll(R"") .

So we have to estimate ||(r*—A,/)¥*[B,(+, 0, 8,) K;i(* =", —¥u 3, ")]llL2rr-0-
We remark, first of all, that, owing to 1.3(a), 4.13, 4.3 one has that

(P—A) VI By(+, 0,0,) Kji(- =", =y 3, )]EBITH (R ) S LY R"Y).
Moreover,

(P—A)M[Byy(+, 0, 8,) Kji(*—5", =¥ 3 Dll 2o
S”(rz—"Ax’)‘r)‘n{[BAj(U 0, 6,)—Bf\,~(y', 0, 6,)] Kii(' _y,’ —JVnd> )}HIzg-v
+”(72—'Ax’)f)‘/2 Bi‘\i(y’> O: az) Kji( ° "_y's —VYmw D) r))”Ll(R"'l) .
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Now observe that
(=AM By, 0,8,) Kji(-—y's —Ym 35 7)
=i By 0,0,) [(1—A) Ve K] (r(-—y"), —19m 35 1)
which implies
(= A )2 BY (5", 0, 8,) Kji(+ =", —Ym 3 7)llzgr-n S Crii=2m.
To estimate [|(P—Ay )32 {[B,;(+, 0, 8,)—B(¥', 0, 8,)] Kji(* —Y's —Vns ¥,

7)1} |z gn-1), we shall distinguish the two cases o,=2m—1 and ¢, <2m—2.
Assume o,=2m—1. Then 7,<0. For g&L}(R*"?) sufficiently regular

1 —A )" gllpcgn-n S IIF ZH(r*+ 1 €' 1%) M| s1gn-n |l gl stmn-n < Cr' || gll2eme-n
as Fi((r'+ | &'|%)%) (x")=r""""2 FgX((1+ | §'|"%) (rx").  So,
I(FP—A)"*{[B\{(+, 0, 8,)—B{i(¥", 0, 8,)] Kji(+ —¥"s =¥ ¥s ")} 'mr-
SCr||[By(+5 0, 8,)—Bi(y", 0, 8,)] Kii(* ="y =Y ¥s DIl kmn-1)
<onp 5 1y 102K =y, —ym ¥ )] d

@] =2m—1
7 =1

R

jw|<em-2 S |0z Ki"(x,_yl’ _ymy" )| dxl]sc’ﬂ-)‘“1 .
P

owing to 1.3(e).
Next, assume o, <2m—2, which implies 7,>>0. Let geL(R*"'). Then,
one has for §>0 and g sufficiently regular

(" — A ) gl 1gn-1 < C [P — A )N gll g oan—) -
As, for any aeNg™!
[08((r*+ | &' |2) 2 (r"a4-(14 | E'7)V") ) | < C(et)

(independent of £'€ R*"!, r >1), from 4.5 it follows

(" —A)" 2153 umr- 0 < C [ || gll5g oirr-»1 118 s 17aR"-0] -
So, we have to estimate

”[ij(" 0, 6:)_-3:’\1'(3’,: 0, az)] Kii(' —y" YV Y» r)”Bf,w(R”'l) .
Let €€]0, 1[. By interpolation

“[Bxi(.’ O’ 6,)-3?\,'(.’)”, 0! 6:)] Ki'(' _yl! VY Y r)”Bf,wSC {“[B)\,'(" Ov 81)
—Bii(y,’ O) ax)] Kl'l'( * ‘y') ) y) r)”LI(R"_l)} 1-¢ {“[B)‘,(' ) 0, az)
_Bif(y,’ 0, az)] KJ'"(' —J"» Y Ys r)”W“(R"")}! .
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One has
[I[By;(+5 0, 8,)—BRi(¥", 0, 8,)] Kji(* =", —¥us ¥ NHlrkmr-1

<C( 2 x'=y'| |87 Kyi(x' =y, —ym y',7)| dx’
A

1

la KJ'(x _—y ’ ymy,s r)l dx')SCr"A-z’" .

L
|

I¢IS"' -1
1

Differentiating under the integral, one can analogously show that

I[Byj(+> 0, 8)—BYi(y’ 0,8,)] Kji(* —¥", — Y 35 llwracer-n < Criati=ie,
So we have

[By(+5 0, 8)—BRi(¥", 0, 8)] Ks(* =", =Y > 1)llptmr-n S Croate2m
With the same arguments, if 0<<€<(1, one has

By (<5 0, 8,)—B3i(¥", 0, 8,)] Kji(+ =¥y =¥ ¥, 7)llsgrancpe-n < Critt=2m
With this the statement is completely proved.

Lemma 2.13. For any r>0, VE>0 Ty(r) € L(X, Bi"“ " 1-(R*)m¥).
Moreover, if < B} .(R%), for some §&€]0, B[, Ty(r) pEBiI"T l"“(R" )

Proof. The first statement can be proved simply remarking that, if §<
2m— y,—l,

(" —A) W DRBY(+, 0, 8,) Kju(- =y, =Y 3> Mllzge-n<C(r) .

and using 4.3. For what concerns the second statement, it is a simple conse-
quence of 4.9.

We set, if r>0, €Y
Tolr) ¥r: = T(("— D)) { S [B(,0,8,)—BXy",0,0,)] H(-—y", 0, 5", 7)
Y(y)dy'} . L
We have:

Lemma 2.14. For any r>0 Ty(r)=L(Y) and there exists C>0 such that
Vr>1

1Tzl £xr)<Crt.
Proof. Analogous to the proof of 2.12, using 2.2.
Lemma 2.15. For any r>0 Ty(r)€-L(Y, Bio(R*")"¥) for any £>0.
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Proof. Analogous to 1.13.
So we have the following

Proposition 2.16. Let feL (R})",g€Z,. Let 0€[—=/[2, =|2) and as-
sume that the assumptions (h1)-(h6) are satisfied. Then problem (5) has, for r>0
and sufficiently large, a unique solution of the form

uw) = | K=y, 5,90 dy+ | H&'—y' 509, ) w0)

=1

R™ R

with g LY RY)Y, yELY (RN,  Moreover,
(8) el 22y ® < Cr=?" || fll 2wy ¥+ | 2ll2,)

and ues n >0 B{l"tol—'(.R:_)N.
Finally, for jeN, j<p—+1,

llullwingn)® <Cr(r=* || fllomy @+ 1gllz,)
and for any €>0
[l g c2-2gny® S CPH=2 =2 || fllL1cgmyw 4777 | gll2,) -

Proof. The existence and the unicity of a unique solution of the form de-
clared follows from 2.8, 2.10, 2.12, 2.14 and the contraction mapping principle.
Next, remark that there exists C>0 such that for any 7 large enough,

191l < fllxA-Cr® NIl x4-rm=1-4 ||aplly) ,
[l <llgllz,+Cr > lIllx+7~" [llly)

so that, if 7 is large enough,

Bllx <CUIfllx+7"* |gllz,)s [llly<C @2 || fllx+llgllz,) -

So, (8) follows from 1.4 (b) and 2.4.
The final statement is again a consequence of 2.4.

Lemma 2.17. Assume that (h1)-(h6) are satisfied. There exists p>1
such that, if fEL}(RUYNLN(RLY and ge I Wn-or-2"2 (R Z,, ue
A=1
W2 (RN and is the only solution in this space of problem (5).

Proof. Owing to Agmon’s estimates (see [3]) problem (3) has, for any p&
11, +oo[, for any >0 sufficiently large, at most one solution % in the space

W2mH(RE)Y for any f € LA(RL)Y, g :ff Wen=ox=1"t0( Rr-1)
=1
Now assume first that the coefficients of A(x, 8) are of class BC*(R"), the
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coefficients of B(x',8) are of class BC*"~"x*?, f& B} (R%)", with 0<8<p’,
ge ﬁB%?‘:‘-"rl(R“'l). Then, by 4.5, T((P—A.)¥?)geBinss-b-1( Ra-1ym
and so g€2Z,. Then, by 2.9 and 2.11, ¢="Ty(r) ¢+ Ty,(r) ¥+f =BY.(R})",
for some 8'>0, which implies, by 4.12 and 4.9, that x— S K(x—y,y,7) ¢(y)

R’ ,
dyeBi"*(R%)Y. Moreover, by 2.13 and 2.15, Ty(r) & Mg BirH-1¥-¢
(R*)™N and Tp(r) Y E N B = (R* )™, so that, by 2.5,

2= | H6'—y' 35,1 9(0) dy' € 0 o BRI H(RY)

%=1

R
if 8’ is sufficiently small.

Now one has that, by Sobolev theorem (see [17] 2.7) B} (R%)Y S L*(R%)¥
if 1<p<n(n—38')~! so that uc W*™?(R5)¥ if 1< p<m(n—38')~*. Now take f,
(veN)EBY .(R%)Y such that f,— f in L*(R%)¥ N LY(R")".

Let g ﬁ Wen-ox-2"ho( RN Z,. If g,—g%w,(w, is the usual mollifier),

A=1
&g in)f[v Wem-ox-2""2(R*-Y) Z,. Indicate with u, the solution of (5) with
=1

data f,, g,; then u,—u in X N W?™?(R%)" and so the result is proved if the coef-
ficients are regular.
The general case follows by approximation.

REMARK 2.18. From 2.17 one draws the fact that the solution of (3) in form
(4) does not depend on the choice of u, at least if g is sufficiently regular.

3. Boundary value problems in a domain

In the following Q will be a fixed bounded open subset of R” with the
boundary 8Q which is a submanifold of R" of dimension n—1 and class
C*n+8(8>0) and Q lying on one side of 8Q.

We want to study the following problem:

9) r’mexp(10) u—A(x,0) u=f inQ,
'Y(B(xx 6) u) =0 ’

(7 is the trace operator on 3Q2), with >0, —z/2 <6 <z /2 under the following as-
sumptions:

(I1) for any x€Q A(x, 8)=(A,;}(%, 8))i<i<n,1<;<n With coefficients in CPQ) satis-
fies (b1), (h3) (8>0);

(I2) B(x, 0)=(B,j(*, 0)i<r<mn,1<j<n, with order of B,; not exceeding o\(0<
0,<2m—1) and coefficients in C*"~"x**(Q2): we indicate with BY, ; the part of order
o, of BA;‘J B‘=(B§, j)lSASmN,lSjSN
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(I3) (complementing condition) for any x'€0Q, for any r>0, for any &'
T,./(0Q), r and E’ not both O, for any 6 €[—=/[2, =|2] the O.D.E. problem

[2™ 0 — A¥x', it +o(x") 9)] w(t) = 0 in R,
BY(x', i +v(x") 8,) w(0) = g

w bounded in R*

has a unique solution for any g&C™ (have v(x) is the inward normal unit vector
to 8Q in x'€0Q).

We start with the following technical lemma:

_Lemma 3.1, Let R>0, A(x, 0)=(A4,;,(*, 0))si<n,1<;<n with coefficients in
CP(B%), satisfying (hl) and (h3); moreover, let B(x, 0)=(B, (%, 0))i<cxsmn,i< <>
with order of B, ; not overcoming o,(0<c, <2m—1) and coefficients in C*~°x*#(B%);
we indicate with BY, ; the part of order o, of B, ;, B¥=(BY )i<xsmw1s;<n and assume
that (13) is satisfied in any point (x', 0) with |x'| <R.

Then, there exist differential operators A’(x, 8), BN(x, 8) satisfying (I1)-(13)
whose restrictions to B} are A(x, 8) and B(x, 8).

Proof. It is easily seen that A(x, d) and B(x, 0) are extensible to oper-
ators A'(x,d) and B’(x, ) defined on B},, and preserving the properties of
A(x, 3), B(x,d). Let 4&C=([0, 4 oo[), such that yn(r)=1 if 0<r<R, yr(r)=0

if r>R+€& and 0<y(r)<1 Vre[0, +oo[. Set ¢(r)=S'1]/~(s) ds. Then ¢pe
0

C=([0, +oo[), $(r)=7 if 0<r<R, $(r)<r Vr&[0, -+ o[, p(r)=C with C<R+&
if 7>R+¢6 Set ANx, 0)=A(d(|x|)| x| x, 8), B (x, 0)=B(¢(|x|)| x|~ x, 0)
(xR").

Lemma 3.2. Assume (I11)-(13) are satisfied. Let p>1 and ucs W*™*(Q)¥,
such that y(B(-, 0) u)=0. Then, there exists C>0 such that, if r>C,

[l z2@yx < Cr=2||(r*" exp (i6) —A( -, 9)) ull )7 ,
and, for 0<o<2m,
2]l g o) < Cr7=2" || (r* exp (0) — A+, 0)) ull 2 )7

Proof. Letx'€0Q. Then, there exist U neighbourhood of #’ in R”, R>0
and ®: U— B, diffeomorphism of class C*"*? such that ®(U NQ)= B} and
such that ®(U NaQ)={yEBy|y,=0}. We set Ayv=2A4(+,0) (vodD)od},
Byv=DB(+, 0) (vod®)o~!. We assume that the B(:, 0) is defined in a neighbour-
hood of 8Q with the same regularity of the coefficients. It is well known that
@ may be chosen in such a way that 4y and By satisfy the assumptions of 3.1,
so that they can be extended to operators A"(y, 3), B’\(y, 0) in the way describ-
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ed in 3.1. Let QS U,¢<s U, with U; domain of &, with the properties de-
scribed or U,=Q. Let {¢,|1<s<S} be a partition of unity subordinated to
this covering of Q. Assume that U is not contained in Q. Then v,=(¢,u)oP;*
satisfies

" €% v, — Ao, V,=(P, [)o @i +(A'u)o D!,
V(Ba, v5) = Y((B'u)o®3?),

with A4’ = (4};(%, 0))<i<y i< j<n» the order of Af;(x, 8) less than or equal
to 2m—1 and the coefficients of class CP(Q) vanishing out of U,, B'=
(B (%, 0))1<r<mn 15 j<n, the order of B (x, 0) less than or equal to o, —1(B?;(x, 8)=
0 if o,=0) and coefficients of class C?"~“A({2) vanishing out of U.

Now we think of y((B'u)o®;*) as extended with 0 to the whole R*-! If
1<A<mN, one has y((B},(+, 8) uo®:*) € W+="1-*""#( R*1), 50 that, using the
fact that if has a compact support, one has v((B3;(, 8) uo®;*)EBY"s " R*™Y),
so that, if 7<<2m—a,, by 4.5 (©*—A./)"” v((B{(+, 8) ue®@;') € L} R*™).

Using 3.1, we can extend Ay and By, in such a way to be able of applying
the machinery of the second section (whose notations we are going to use). By
2.16, we have

llogllx SC (= [1($s )o@ x 7" [[(Aw) o @7 | x+77" ||y (B'u)@Tlz,) -

Now we estimate |[v((B'u)o®:)|[z,.
If o,=2m—1, with the same method employed in 2.12 we have

7" =)W V(B (-, 0) ;00 l3cqr- < O 1Y (B (-, 0) ;007 1car-
SO v(Biy(+5 8) ;0@ || 5g oirr-1(>0) SCrx || BY(+, 8) ;007 |nye
(by 4.13)
<Cra|IBiy(+, 0) u;llsprea
<Cr ||u,-”a;r,>g=<a) .

Analogously, one has

[1(r*—A)M2 y(BS(+, 8) u;0@7)| 12pr-n < C (1™ a1 spr o+ el st 2ecan)
(0<E<2m—p) if 0<o, <2m—2.

So, we have, coming back to Q and summing up in s:
(10) el 2® SCr=*" || fll @ +77*" |[ullyzn-sa) 477 |lul| st e
mN oy 1
+ 2l ] -

With the same method, applying the last statement of 2.16,
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llullgan-s5 < Cr» = [r*" || fl| 1@y 477" |[ullyam-1a)¥ +77#* [[ul | st 220
+ 3 s
and, if O<o<p+1,
el g s SCr®[r=*" || fll22@% 77" |[u]lem -1y +77" | ul |t zecar
+ Bl ]

Assume, for example, max, o,=2m—1. For ¢=2m—14& we obtain, if 7 is
large,

14| | 53z 1+ 22
SCP I fllsr@m +77 lullgem-10@y 7 +77* 42 | ||| g ey

2 PO | poyrer ] -
o, S2m-2 s

Substituting this estimate in (10) we obtain easily

lleell 2@y S CLr=*" || fll sy +7=*" |[ullyem-1c@rm 47747 ||| 2 e

4+ 3 0 |ul|poareq)F]
o, S2m-2 1.0

lleellgem-2c)x < Crom=2 [r=*" || fl s2c@ym 477" ||l lwem-rar ¥ +77 " ||t | st 2

+ X ’J"_lnu”Bl"'};:'(n)N]
O'Aszm—z .
and, if O<o<p—1,

”u”B‘{,,,,(o)NSCrf[r—zm [ fllz2e@)® 477" ||u] | rom-1qyo 47+ ”“”Bf_l’(n)”

+ X3 7 |ull goarea)¥] -
o,\S2m-2 1,

Iterating the method (eliminating the strongest norms first) after a finite num-

ber of passages one obtains the desired estimate, taking into account the fact that
p+1 can be chosen arbitrarily near 2m (owing to 2.18).

Thoerem 3.3. Assume (I11)-(I3) are satisfied. If 1<p<<- oo, set

D(4,) = lusW*mHQ)¥|v(B(-, 0) u)=0} ,
Ayu= A(x,0)u.

Then:

(a) A, is closable in L\(Q)";

(b) the closure of A, does not depend on p;

if A, is this closure,

(c) D(A)S Neso BIT(Q)N;

(d) ifueD(A,), N€C, Re A=>0 and | \| is sufficiently large, f=(\—A4,) u,
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el zy@>x <C M7 1 fllzradw
ll#l]5g ¥ <C [N [ fllp@x i 0<o<2m;

(e) #f max, 0, <2m—2,
D(4,) = {u€BiL(Q)"|7(B(+, 0) u) = 0, A(+, 0) uc L (Q)"};

(f) A, is the infinitesimal generator of an analytic semigroup in L}(Q)V.

Proof. From [3] one has that for any p>1 A4, is the infinitesimal gener-
ator of an analytic semigroup in L?(Q)¥ and it is easily seen that, if 1<p<p'<
+o00, 4y is closable in L?(Q)¥ and its closure is 4,. This implies that the
closure of the graph of 4, in LY(Q)¥ x L}Q)" is the same for any p>1.

Now, fix p>1. Then, by 3.2, if Re x>0 and || is sufficiently large,
(p—A4,)~! is extensible to a linear bounded operator R,(u) € -L(LY(Q)", BT (Q)")
for any o<<2m and

L) [|[R(p)lci@™)<C | | [IRy(p)llL£LHQ) B (@)F) < C | | /Em=1

It is immediately seen that {R,(u)/Re x>0, |u| >C} is a pseudoresolvent and
from the first estimate in (11) and [20] VIII.4, lemma I’, one has that Ker (R(u))

NR(Ry(u))=10}. However, it is clear that R(R,(x)) is dense in LYQ)¥ and
this implies that R;(x) is injective and there exists a linear operator A4, such that
R(u)=(p—A4,)"". From this (a)-(d) and (f) follow easily. (e) follows from
4.14.

ReMARk 3.4. In case max, o,=2m—1, if u€D(4,), the boundary condition
v ( ﬁ B, ; u;)=0 may be intended in the following sense: fix a point ¥’ €3£ and
ji=1

a local change of variable @ of class C*"*# such that, if U is the domain of &,
®(U) is of the form V x]—T, T[(T>0), (U NQ)={yed(U)|y,>0}, DU
NaQ)={ye®(U)|y,=0} and the transformed operators A, and B, satisfy
the assumptions of 3.1. Then, By(uo®™?) has a sectional trace in V"X {0} equal
to 0.

RemARk 3.5. The method employed can be used to study boundary value
problems for elliptic systems in spaces which are different from L!. For exam-
ple with an analogous method one can study problems in spaces of Borel meas-
ures (taking into account that the space of finite Borel measures M(R") is includ-
ed in the space B .(R") (see [15] 2) and in L*(R") (using spaces B .). In
each case one can prove results of generation of semigroups which are not
strongly continuous in 0, because the domains of the infinitesimal generators are
not dense.

4. Appendix: Besov spaces Bf,

In this appendix we collect for convenience some results concerning Besov



ON ErLipPTIC SYSTEMS IN L! 425

spaces BY ((1<¢< 4 o0) which were used in the previous paragraphs. Most of
these results are only stated without proof, as they are already present in the
literature.

DrrINITION 4.1. Let a€ R, 0<a<l1, 1<g< 40, We set
BY o(R): = e L(R") |supsepmo |1 ~#I1 u(-+B)—2u-+u(- =) 1<+ oo},
(B = e LR || (I +m)—2u-+u(- —h)llsqm) 1] =0 dh <+ o}

R
Let a>1.

B (R"): = {uc W@ (R"|VBEN: with |B|=[a]" 8PusB}(R"}.

These spaces will be always considered with their natural norms ||-[|{ ,:

all$ o = ]y 1
+2ip1-1a1- SUPserm\@) | 2] ™* |8 u(- +h)—28% u+0° u(- —h)||gm »
lll$ o = Iellpto™.1cg
+ Sipt-rar=( | (108 (- +1) 20 u-+8 (- — )l 1cgm)" | ] == )
),

In case 0<{a} <1 equivalent norms can be obtained replacing 8%u(--%)—
20P 0P u( - —h) with 0P u(+-h)—8Pu (see [17] 2.5.12).

Thoerem 4.2. For any a>0 there exist C>0, NEN such that, for any
meEOy, for any f EBY (R"),

IF-{mEf)[2,e<C suppicn,ccrr(1+ | #|*) PV | 8% m(%)] || fII%.q -
Proof. It is a particular case of [4].

Theorem 4.3. Let a,BER, a>0, a+B>0; then, u—(1—A)"*?u is a
linear and topological isomorphism between B { ,(R") and B f(R").

Proof. See [15] 1, th. 8.
DrerFINITION 4.4. Let a€R, <0, a=8—1, with 8>0. We set
B (R"): ={u= (1—A)"v|veB] (R")}.

Owing to 4.3 this definition is independent of 8>0. So, if ®<0, we can
set

[[ull?,e: = “(1_A)(w—1)/2 um.q .

Proposition 4.5. Let o, BER, mcO,. There exist C>0, NEN such
that Vf € B} ((R")
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IE=HmEf)|IR, o< C sup gepr,imsn(l14|E])P~**M|0"m(E)| || fII%,q -

A consequence of 4.5 is that Yae R, B Nj u—>0%u is a linear bounded
operator from B { ,(R") to Bi'?(R").

For what concerns pointwise multipliers, we have the following result:

Proposition 4.6. (see [17] 2.8.2) Let a, BER, f>|a|. Then BC*(R")
is a space of pointwise multipliers for B ,(R").

Lemma 4.7. Let acBC¥R"), with >0, a(0)=0. If |a|<B, 1<¢<
+o0, uEB 1 ((R"), u(x)=0if |x| >R,

llaul2, e <o(R) [lullf,o+2(R) Il
with o(R) and y(R) indepedent of u and o(R)—0 (R—0).
Proof. See [5] prop. 4.2.

Proposition 4.8. Assume oy, t;E R, 1<q, ¢y, ;< -+ 0.
If ay<a, Br, (R")S By, (R").
If ¢<q, B‘f?qo(R")gB‘{? ql(R").
Ifao:*:ab GE]OJ 1[1
(Bioy (R"), By, (R"))e =B, (R"), with a=(1—0) ay+0a;
zf 9o, 411<+ , (B‘;?'Io(R”)) B?.llh(R”))[O]: ?.G(R“): with a=(1—0) a0+0al’ €I'l=
(1—0) g5*+0q1".
Finally, VN EN,, BY (RS WYY R")CBY.(R")

Proof. See [17] 2.3.2,2.4.2,2.4.7,2.5.7.

Proposition 4.9. Let A(x, 3)=(A4,,(x, 8))i<,j<v be a differential operator
valued matrix with coefficients in BC*(R") (8>0). Assume further that (h1), (h3)
are satisfied. Consider the problem

(12) Au—A(x, 8)u = f in R",

with AEC, Re A >0, f BT ((R")", with |a| <B. Then, there exists R>0 such
that, if || =R, the problem has a unique solution us Bi"**(R")V.

Proof. We start from the constant coefficient case; assume first that
A(0)=A¥9) and &[—=/2, z/2]. Then, for any £ R" and any r>0, with
(r, &)=%(0, 0), the matrix 7** ¢'*— A(£) is invertible. We set (r’” /0 — A(1€)) 1=
(aij(r, E)rsi,j<n- It is easily seen that ;; is homogeneous of order —2m in the
variables (7, £). Therefore, problem (12) has a unique solution # in S'(R")¥
and such a solution, owing to 4.5, belongs to Bi";**(R")". Moreover, if r>1,
we have the estimate
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(13) 7" |lullsg o>+l st scrmm < C Il fllse cam

which can be obtained by arguments similar to [6] proposition 2.3.

A simple perturbation argument gives the same result also in case A4(0)=
AY¥9).

Now we consider the case of variable coefficients. Using 4.7 and the same
method of (for example) [6] (lemma 2.4 and prop. 2.5) one obtains estimate (9)
in case ¢g=1 and the existence of a solution of (8) in the case of BC* coefficients.
A standard approximation argument allows to extend these results to the case
of coefficients in BC®. By interpolation the case g=1 follows.

DErINITION 4.10. Let Q be an open subset of R", € R, 1<g<+oc0. We
set

1.4Q) = {ula | uEBT (R")} .

B?,,(Q) is a Banach space with its natural topology of quotient space. We
have:

Proposition 4.11. Let Q, O be open subsets of R", ®: O—Q a diffeomor-
Dhism of class C*(p>1). Let ucB? (Q), with 0<a<p or <0, |a|+1<p and
supp(u) compact in ). Then, uo® is a well defined element of BT ,(O).

Proof. See [5] prop. 4.3.

Proposition 4.12. Let NEN. There exists a linear operator Py belonging
to L(B] (R%), BY ((R")) for any a€]—N, N[, such that Pyu| gn =u. Moreover,
if —l<a<l, given any element u BT (R%), there exists a unique element u,E

? «(R") such that u is the restriction of uy to R’ and the support of u, is contained
in the closure of R’;.

Proof. See [17] 3.3.4, 2.8.7. 'The uniqueness of %, can be obtained like in
[5] prop. 4.4.

With the help of 4.11 and 4.12 it is now easy to obtain natural extensions of
4.6, 4.8 and 4.12 itself to the case Q= R’ or a bounded open subset of R", with
boundary 9Q of class C* and Q lying on one side of 8Q. Moreover, using 4.11,
it is possible to define, by local charts, BY ,(0Q) for any € R, 1—p<a<p.
One has:

Proposition 4.13. Let a€R, 1<a<p. If u€Bi (Q), u has a trace on
0Q. Such a trace belongs to the space B1,'(0Q).

Proof. See [17] 3.3.3.

Now, (just with obvious modifications of the proof) one has the following
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variant of theorem 3.1 in [7]:

Proposition 4.14. Assume the assumptions (11)-(13) are satisfied. Let uc

17(Q)Y such that v(B(x', 8) #)=0 (1<q<+o0). Let AEC, Mu—A(x, ) u=f
in Q. Then there exists C(\, g)>0 independent of f such that

”“”Bi’_",,(}:")”ﬁc(h: q) (“f”B‘}_q(R")N‘f‘”u”B‘i_q(R”)N) .

The author is happy to thank Prof. H. Tanabe of Osaka University for ex-
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