ON ALGEBRAS WHICH RESEMBLE THE local Weyl algebra

Chang Woo HaNg, Masayoshi MIYANISHI, Kenji NISHIDA and De-Qi ZHANG

(Received April 11, 1991)

1. Introduction

Let K be an algebraically closed field of characteristic zero and let $\hat{\mathcal{O}}_{n}(K)=$ $K\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ be the formal power series ring over K in n variables. According to Bjork [1], we denote by $\hat{D}_{n}(K)$ the subring of $\operatorname{End}_{K}\left(\hat{O}_{n}(K)\right)$ generated over K by the left multiplications by elements of $\hat{\mathcal{O}}_{n}(K)$ and partial differentials $\partial_{i}=\partial / \partial x_{i}$,

$$
\hat{D}_{n}(K)=\hat{\mathcal{O}}_{n}(K)\left\langle\partial_{1}, \cdots, \partial_{n}\right\rangle
$$

where $\partial_{i} x_{j}-x_{j} \partial_{i}=\delta_{i j}$ (Kronecker's delta) and $\partial_{i} \partial_{j}=\partial_{j} \partial_{i}$. The ring $\hat{D}_{n}(K)$, called the local Weyl algebra, has the Σ-filtration $\left\{\Sigma_{v}\right\}_{0 \geq 0}$ such that $\Sigma_{0}=\widehat{\mathcal{O}}_{n}(K)$ and $\Sigma_{v}=\left\{\Sigma_{\alpha} f_{\alpha} \partial^{\alpha} ; f_{\alpha} \in \mathcal{O}_{n}(K)\right.$ and $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$ with $\left.|\alpha|=\alpha_{1}+\cdots+\alpha_{n} \leq v\right\}$ and that the associated graded ring $\operatorname{gr}_{\Gamma}\left(\hat{D}_{n}(K)\right)$ is a polynomial ring over $\hat{\mathcal{O}}_{n}(K)$ in n variables. Moreover, $\hat{D}_{n}(K)$ has weak global dimension n, i.e., w.gl.dim $\left(\hat{D}_{n}(K)\right)$ $=n$.

These are ring-theoretic, algebraic properties which the local Weyl algebra $\hat{D}_{n}(K)$ has. In the present article, we consider whether or not these properties are sufficient to characterize the ring $\hat{D}_{n}(K)$. For this purpose, we introduce the notion of pre- W-algebra and W-algebra (see below for the definition) and show that a W-algebra, which satisfies the above-listed properties $\hat{D}_{n}(K)$ has and one additional condition, i.e., $L=\Sigma_{1} / \Sigma_{0}$ is essentially abelian, is realized as a subalgebra of some $\hat{D}_{n}(K)$. Atter all, we are successful only in the case $n=1$. We are, however, convinced that our approach of computing the weak global dimension of a W-algebra will be useful to study locally a vector field at a smooth point on an algebraic variety.

We employ the terminology and notation in [1].

2. Structure theorems

To simplify the notation, we denote $\hat{\mathcal{O}}_{n}(K)$ by R. Let A be a (not necessarily commutaiive) K-algebra containing R generated by finitely many elements
over R. Consider the following three conditions on A :
(i) A has a Σ-filtration $\left\{\Sigma_{v}\right\}_{v \geq 0}$ such that $\Sigma_{v}(v \geq 0)$ is a two-sided R-submodule of $A, \Sigma_{0}=R, \Sigma_{1}$ generates A over $R, \Sigma_{v} \cdot \Sigma_{w} \subset \Sigma_{v+w}$ for any $v, w \geq 0$ and $A=\cup_{v \geq 0} \Sigma_{v} ;$
(ii) The associated graded ring $\operatorname{gr}_{\Sigma}(A):=\oplus_{v \geq 0} \Sigma_{v} / \Sigma_{v-1}$ is a polynomial ring $R\left[y_{1}, \cdots, y_{m}\right]$ in m variables;
(iii) w.gl.dim $(A)=n$.

If A satisfies the above conditions (i) and (ii), we call it a pre- W-algebra over R. We denote by L the free R-module $\Sigma_{1} / \Sigma_{0}=\bigoplus_{i=1}^{m} R y_{i}$.

Lemma 2.1. Let A be a pre-W-algebra over R. Then we have the following :
(1) Let Y_{1}, \cdots, Y_{m} be elements of Σ_{1} such that $y_{i} \equiv Y_{i}\left(\bmod \Sigma_{0}\right)$ for any i. Then A is generated by Y_{1}, \cdots, Y_{m} over R, which we write as $A=R\left\langle Y_{1}, \cdots, Y_{m}\right\rangle$.
(2) For any $y \in L$ and $a \in R$, definc $y[a]$ by;

$$
y[a]=Y a-a Y
$$

for $Y \in \Sigma_{1}$ with $y \equiv Y\left(\bmod \Sigma_{0}\right)$. Then $y[a]$ is independent of the choice of Y, and y is considered as a K-derivation on R. So, we have an R-linear map $\rho: L \rightarrow$ $\operatorname{Der}_{K}(R)$; we write $y[a]$ as $\rho(y)(a)$ as well and we use this map ρ in the subsequent discussions without referring explicitly to this lemma.
(3) Define a bracket product $[y, z]$ on L by

$$
[y, z] \equiv Y Z-Z Y \quad\left(\bmod \Sigma_{0}\right)
$$

for $Y, Z \in \Sigma_{1}$ with $y \equiv Y\left(\bmod \Sigma_{0}\right)$ and $z \equiv Z\left(\bmod \Sigma_{0}\right)$. Then $[y, z]$ is welldefined and ρ is a Lie-algebra homomorphism, i.e., $\rho([y, z])=[\rho(y), \rho(z)]$.

Proof. (1) For any $f \in A$, we define $\nu(f)$ as the smallest integer r with $f \in \Sigma_{r}$. If $\nu(f)=r$, there exists $F_{r}\left(y_{1}, \cdots, y_{m}\right) \in R\left[y_{1}, \cdots, y_{m}\right]_{r}=$ the r-th homogeneous part of $\operatorname{gr}_{\Sigma}(A)$ such that $f-F_{r}\left(Y_{1}, \cdots, Y_{m}\right) \in \Sigma_{r-1}$. By induction on $\nu(f)$, we can verify the assertion straightforwardly.
(2) Replace Y be $Y+b$ with $b \in R$. Then we have

$$
(Y+b) a-a(Y+b)=Y a-a Y
$$

whence $y[a]$ is independent of the choice of Y. Furthermore, we have

$$
\begin{aligned}
y[a b] & =Y(a b)-(a b) Y=(a Y+y[a]) b-a b Y \\
& =a(Y b-b Y)+y[a] b=a y[b]+y[a] b .
\end{aligned}
$$

So, $y[\quad]$ is a K-derivation on R.
(3) The assertion can be verified by a straightforward computation.
Q.E.D.

The structure of a pre- W-algebra over R is given in the following:
Theorem 2.2. (1) Let A be a pre-W-algebra over R. Let Y_{1}, \cdots, Y_{m} be elements of Σ_{1} as chosen in the previous lemma. Write

$$
\begin{equation*}
Y_{i} Y_{j}-Y_{j} Y_{i}=\sum_{k=1}^{m} \rho_{i j, k} Y_{k}+\sigma_{i j}, \quad 1 \leq i, j \leq m \tag{2.0}
\end{equation*}
$$

where $\rho_{i j, k}, \sigma_{i j} \in R$. Then we have the following equalities:

$$
\begin{align*}
& \sum_{l=1}^{m}\left(\rho_{i j, l} \rho_{l k, s}+\rho_{j k, l} \rho_{l i, s}+\rho_{k i, l} \rho_{l j, s}\right) \tag{2.1}\\
& \quad=y_{i}\left[\rho_{j k, s}\right]+y_{j}\left[\rho_{k i, s}\right]+y_{k}\left[\rho_{i j, s}\right], \quad 1 \leq i, j, k, s \leq m \\
& \sum_{l=1}^{m}\left(\rho_{i j, l} \sigma_{l k}+\rho_{j k, l} \sigma_{l i}+\rho_{k i, l} \sigma_{l j}\right) \\
& \quad=y_{i}\left[\sigma_{j k}\right]+y_{j}\left[\sigma_{k i}\right]+y_{k}\left[\sigma_{i j}\right], \quad 1 \leq i, j, k \leq m \\
& \rho_{i j, k}=-\rho_{j i, k}, \sigma_{i j}=-\sigma_{j i}, \quad 1 \leq i, j, k \leq m .
\end{align*}
$$

The elemenıs $\left\{\rho_{i j, k} ; 1 \leq i, j, k \leq m\right\}$ are determined uniquely by the Lie algebra L and the choice of R-free basis $\left\{y_{1}, \cdots, y_{m}\right\}$ of L.
(2) Suppose we are given as in Lemma 2.1 the Lie algebra L and an R-linear map $\rho: L \rightarrow \operatorname{Der}_{K} R$ which is a Lie-algebra homomorphism. For an R-free basis $\left\{y_{1}, \cdots, y_{m}\right\}$ of L, suppose we are given elements $\left\{\sigma_{i j} ; 1 \leq i, j \leq m\right\}$ satisfying the conditions (2.2) and (2.3) above. Then there exists a K-algebia A with a Σ filtration $\left\{\Sigma_{v}\right\}_{v \geq 0}$ such that
(i) A is generated over R by elements Y_{1}, \cdots, Y_{m};
(ii) The equalities (2.0)-(2.3) hold;
(iii) $\Sigma_{v}=\left\{\Sigma_{\alpha} f_{\alpha} Y^{\alpha} ; f_{\alpha} \in R, Y^{\alpha}=Y_{1}^{\alpha} \cdots Y_{m}^{\alpha_{m}},|\alpha| \leq v\right\}$ for any $v \geq 0$;
(iv) $\operatorname{gr}_{\Sigma}(A) \cong R\left[y_{1}, \cdots, y_{m}\right]:=$ the symmetric algebra of L over R.

Proof. (1) By the definition of $\left[y_{i}, y_{j}\right]$ in Lemma 2.1, $\left\{\rho_{i j, k} ; 1 \leq i, j, k \leq m\right\}$ are the multiplication constants of the Lie algebra L. Hence they are uniquely determined by the choice of the R-free basis $\left\{y_{1}, \cdots, y_{m}\right\}$ of L. If one chooses $\left\{Y_{1}, \cdots, Y_{m}\right\}$ as in Lemma 2.1, then $\left\{1, Y_{1}, \cdots, Y_{m}\right\}$ is an R-free basis of Σ_{1}. Then the equalities (2.1) and (2.2) follow from the Jacobi identity:

$$
\left[\left[Y_{i}, Y_{j}\right], Y_{k}\right]+\left[\left[Y_{j}, Y_{k}\right], Y_{i}\right]+\left[\left[Y_{k}, Y_{i}\right], Y_{j}\right]=0,
$$

where $\left[Y_{i}, Y_{j}\right]=Y_{i} Y_{j}-Y_{j} Y_{i}$.
(2) Let $\left\{Y_{1}, \cdots, Y_{m}\right\}$ be indeterminates and let A be the free K-algebra generated by Y_{1}, \cdots, Y_{m} over R modulo the two-sided ideal I generated by

$$
\left\{Y_{i} Y_{j}-Y_{j} Y_{i}-\sum_{k=1}^{m} \rho_{i j, k} Y_{k}-\sigma_{i j} ; 1 \leq i, j, k \leq m\right\}
$$

and

$$
\left\{Y_{i} f-f Y_{i}-\rho\left(y_{i}\right)(f) ; 1 \leq i \leq m, \forall f \in R\right\}
$$

We write $y_{i}[f]=\rho\left(y_{i}\right)(f)$ by identifying Y_{i} 's with y_{i} 's in L, We can employ the proof of the Poincare-Birkoff-Witt theorem (cf. Jacobson [2]) without major changes in the present situation to show that every element of A is written uniquely as a linear combination of standard monomials in Y_{1}, \cdots, Y_{m} with coefficients in R. In particular, the equalities (2.1) and (2.2) imply that Σ_{1} (with the notation in (iii)) is a free R-module generated by $1, Y_{1}, \cdots, Y_{m}$. Note that there is a surjective homomorphism $\theta: R\left[y_{1}, \cdots, y_{m}\right] \rightarrow \mathrm{gr}_{\Sigma}(A)$. Its kernel is generated by the relations $y_{i} y_{j}-y_{j} y_{i}$ and $y_{i} f-f y_{i}, 1 \leq i, j \leq m$. But these elements are already zero in $R\left[y_{1}, \cdots, y_{m}\right]$. Hence $\operatorname{gr}_{\Sigma}(A) \cong R\left[y_{1}, \cdots, y_{m}\right]$.
Q.E.D.

Let A be a pre- W-algebra over R. We are interested in the existence of an algebra homomorphism from A to the local Weyl algebra $\hat{D}_{n}(K)$, which is the identity homomorphism when restricted on the subalgebra R. We call it a K-algebra homomorphism over R.

Theorem 2.3. Let A be a pre-W-algebra over R. Then the following conditions on A are equivalent:
(1) There is a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_{n}(K)$ over R such that $\tilde{p}\left(\Sigma_{v}\right)$ $\subset \Sigma_{v}$ for all $v \geq 0$ and $\left.\tilde{\rho}\right|_{\Sigma_{1}}$ induces the Lie-algebra homomorphism $\rho: L:=\Sigma_{1} / \Sigma_{0} \rightarrow$ $\operatorname{Der}_{K}(R)(c f$. Lemma 2.1).
(2) There exists a lifting $\left\{Y_{1}, \cdots, Y_{m}\right\}$ of the R-free basis $\left\{y_{1}, \cdots, y_{m}\right\}$ in Σ_{1} for which $\sigma_{i j}=0,1 \leq i, j \leq m$.
(3) There exist $\left\{a_{i}\right\}_{1 \leq i \leq m}$ in R such that

$$
\begin{equation*}
\sigma_{i j}=\sum_{l=1}^{m} \rho_{i j, l} a_{l}+y_{j}\left[a_{i}\right]-y_{i}\left[a_{j}\right], \quad 1 \leq i, j \leq m . \tag{2.4}
\end{equation*}
$$

(4) There exists an R-free submodule \tilde{L} of Σ_{1} such that \tilde{L} is closed under the bracket product $[Y, Z]=Y Z-Z Y$ and the natural residue homomorphism $\pi: \Sigma_{1} \rightarrow L$ induces a Lie-algebra isomorphism $\left.\pi\right|_{\tilde{L}}: \widetilde{L} \rightarrow L$.

Proof.
$(1) \Rightarrow(2)$. Note that $\hat{D}_{n}(K)$ acts on R in the natural fashion. So, A acts on R via the homomorphism $\tilde{\rho}$. For $Y \in \Sigma_{1}$, let $a=\tilde{\rho}(Y) \cdot 1$ and let $Y^{\prime}=Y-a$. Then, since $\tilde{\rho}(Y) \in \Sigma_{1}:=\oplus_{i=1}^{n} R \partial / \partial x_{i}+R$, we know that $\tilde{\rho}\left(Y^{\prime}\right) \in \operatorname{Der}_{K}(R)$. In particular, $\tilde{\rho}\left(Y^{\prime}\right) \cdot 1=0$. Now, for the given lifting $\left\{Y_{1}, \cdots, Y_{m}\right\}$, we set $Y_{i}^{\prime}=$ $Y_{i}-\tilde{\rho}\left(Y_{i}\right) \cdot 1,1 \leq i \leq m$. Then $\left\{Y_{1}^{\prime}, \cdots, Y_{m}^{\prime}\right\}$ is a lifting of $\left\{y_{1}, \cdots, y_{m}\right\}$ in Σ_{1}. We assume from the beginning that $Y_{i}^{\prime}=Y_{i}, 1 \leq i \leq m$. Then the equality (2.0) implies $\sigma_{i j}=0(1 \leq i, j \leq m)$ because $\tilde{\rho}\left(Y_{i}\right) \in \operatorname{Der}_{K}(R)$.
(2) $\Rightarrow(3)$. Suppose $\left\{Y_{1}, \cdots, Y_{m}\right\}$ is the given lifting of $\left\{y_{1}, \cdots, y_{m}\right\}$ and $\left\{Y_{1}^{\prime}, \cdots, Y_{m}^{\prime}\right\}$ is a lifting for which $\sigma_{i j}^{\prime}=0$ when we write

$$
\begin{equation*}
Y_{i}^{\prime} Y_{j}^{\prime}-Y_{j}^{\prime} Y_{i}^{\prime}=\sum_{k=1}^{m} \rho_{i j, k} Y_{k}^{\prime}+\sigma_{i j}^{\prime}, \quad 1 \leq i, j \leq m \tag{2.0}
\end{equation*}
$$

Then $Y_{i}^{\prime}=Y_{i}+a_{i}$ with $a_{i} \in R$. Replacing Y_{i}^{\prime} in (2.0)' by this expression, we obtain the equality (2.4).
$(3) \Rightarrow(2)$. Conversely, if we are given $\left\{a_{i}\right\}_{1 \leq i \leq m}$ satisfying (2.4), set $Y_{i}^{\prime}=$ $Y_{i}+a_{i}$. Then $\left\{Y_{i}^{\prime}, \cdots, Y_{m}^{\prime}\right\}$ is a lifting of $\left\{y_{1}, \cdots, y_{m}\right\}$ for which $\sigma_{i j}^{\prime}=0$.
(2) \Rightarrow (4). Let $\left\{Y_{1}, \cdots, Y_{m}\right\}$ be as in (2) above. Let \tilde{L} be the R-submodule of Σ_{1} generated by Y_{1}, \cdots, Y_{m}. Then \tilde{L} is a free R-module. Since $\sigma_{i j}=0$, we readily verify that $[Y, Z] \in \tilde{L}$ for any $Y, Z \in \widetilde{L}$. Clearly, π induces an isomorphism between \tilde{L} and L.
(4) $\Rightarrow(1)$. Define $\tilde{\rho}: \tilde{L} \rightarrow \operatorname{Der}_{K}(R)$ by $\tilde{\rho}(Y)=\rho(\pi(Y))$. Extend this to Σ_{1} in a natural fashion by putting $\left.\tilde{\rho}\right|_{\Sigma_{0}}=\mathrm{id}_{R}$. Furthermore, we extend $\tilde{\rho}$ to the free K-algebra F generated over R by Y_{1}, \cdots, Y_{m} as follows. For an element $Y_{i_{1}} f_{i_{1}} \cdots Y_{i_{r}} f_{i_{r}}$ of F with $Y_{i_{j}} \in\left\{Y_{1}, \cdots, Y_{m}\right\}$ and $f_{i_{j}} \in R$, define

$$
Y_{i_{1}} f_{i_{1}} \cdots Y_{i_{r}} f_{i_{r}} \cdot(a)=y_{i_{1}}\left[f_{i_{1}}\left[y_{i_{2}}\left[\cdots\left[f_{i_{r}} a\right] \cdots\right]\right]\right],
$$

where $y_{i_{j}}=\pi\left(Y_{i_{j}}\right)$ and $f[b]:=f b \in R$. In view of (2) of Theorem 2.2, A is identified with the residue ring of F by the two-sided ideal I considered in Theorem 2.2. So, in order to have $\tilde{\rho}$ as above, we have only to show that

$$
y_{i}\left[y_{j}[a]\right]-y_{j}\left[y_{i}[a]\right]=\sum_{k=1}^{m} \rho_{i j, k} y_{k}[a] \quad \text { and } \quad y_{i}[f a]=f y_{i}[a]+y_{i}[f] a
$$

for $a \in R$. These equations hold, in fact, because $\rho: L \rightarrow \operatorname{Der}_{K}(R)$ being a Liealgebra homomorphism implies

$$
y_{i}\left[y_{j}[a]\right]-y_{j}\left[y_{i}[a]\right]=\left[y_{i}, y_{j}\right][a]=\sum_{k=1}^{m} \rho_{i j, k} y_{k}[a]
$$

and the second equality above.
Q.E.D.

If a pre- W-algebra A over R satisfies one of the equivalent conditions in Theorem 2.3, we call A a W-algebra over R.

Remark 2.4. (1) Suppose that $\rho: L \rightarrow \operatorname{Der}_{K}(R)$ is an isomorphism. Then, as an R-free basis $\left\{y_{1}, \cdots, y_{m}\right\}$ of L, we can take $y_{i}=\rho^{-1}\left(\partial / \partial x_{i}\right)$. Then $\rho_{i j, k}=0$ for all $1 \leq i, j, k \leq m$. So the case with all $\rho_{i j, k}=0$ can take place. We then say that L is essentially abelian.
(2) Suppose L is essentially abelian. Let $\left\{y_{1}, \cdots, y_{m}\right\}$ be an R-free basis of L such that $\left[y_{i}, y_{j}\right]=0,1 \leq i, j \leq m$ and let $\left\{Y_{1}, \cdots, Y_{m}\right\}$ be such that $y_{i} \equiv Y_{i}$ $\left(\bmod \Sigma_{0}\right)$ and $Y_{i} Y_{j}-Y_{j} Y_{i}=\sigma_{i j} \in R . \quad$ Suppose we can take $\sigma_{i j}=c_{i j} \in K^{*}=K-$ (0) for $1 \leq i, j \leq m$ and $i \neq j$ and that $\rho\left(y_{i}\right)(\mathscr{M}) \subset \mathscr{M}$, where \mathscr{M} is the maximal ideal of R. Then we cannot find $\left\{a_{i}\right\}_{1 \leq i \leq m}$ so that the equality (2.4) holds. There exists a K-algebra A over R satisfying these conditions. In fact, we take $m=n, \rho: L \rightarrow \operatorname{Der}_{K}(R)$ to be a homomorphism such that $\rho\left(y_{i}\right)=\partial / \partial x_{i}, 1 \leq i \leq n$, and A to be the residue ring of a free K-algebra F over R generated by Y_{1}, \cdots, Y_{n} modulo the two-sided ideal I as considered in Theorem 2.2, (2). Then ρ cannot
be extended to a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \tilde{D}_{n}(K)$ over R as considered in Theorem 2.3.

3. Case L is essentially abelian

We begin with the following:
Lemma 3.1. Let A be a W-algebra over R with a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_{n}(K)$ over R which is an extension of the Lie-algebra homomorphism ρ : $L \rightarrow \operatorname{Der}_{K}(R)$. Then we have w.gl. $\operatorname{dim}(A) \geq n$.

Proof. Note that any element ξ of A can be expressed as $\xi=\Sigma_{\alpha} f_{\alpha} Y^{\alpha}$, where $f_{\alpha} \in R$ and $Y^{\alpha}=Y_{1}^{\alpha} \cdots Y_{m}^{\alpha_{m}}$ (cf. the equality $Y a-a Y=y[a]$ in Lemma 2.1). Furthermore, this expression is unique. Indeed, if we have a nontrivial expression $\Sigma_{\alpha} f_{\alpha} Y^{\alpha}=0$ then this yields a homogeneous nontrivial relation

$$
\sum_{|\alpha|=v} f_{\alpha} y^{\alpha}=0, \quad y^{\alpha}=y_{1}^{\alpha} \cdots y_{m}^{\alpha_{m}^{\alpha}}
$$

where $v=\max \left\{|\alpha| ; f_{\alpha} \neq 0\right\}$. This contradicts the hypothesis that $\operatorname{gr}_{\Sigma}(A)$ is a polynomial ring in y_{1}, \cdots, y_{m} over R. Hence A is a free R-module, whence A is R-flat as a left R-module. Similarly, ξ can be expressed uniquely as $\xi=\Sigma_{\beta} Y^{\beta} g_{\beta}$. So, A is R-flat as a right R-module. Hence A is R-flat as a ring. In view of Björk [1, Cor.2.9, p.42], we have
(*) $\quad \mathrm{w} \cdot \operatorname{dim}_{R}\left(A \otimes_{R} M\right) \leq \mathrm{w} \cdot \operatorname{dim}_{A}\left(A \otimes_{R} M\right)$
for any left R-module M. Take an R-module $K=R / \mathscr{M}$ with $\mathscr{M}=\left(x_{1}, \cdots, x_{n}\right) R$. Then, by the theory of syzyzy, we know that $\operatorname{w.dim}_{R}(K)=n$; in fact, $\operatorname{Tor}_{n}^{R}(K, K)$ $=K \neq(0)$. Then the above inequality ($*$) implies that $w \cdot \operatorname{dim}_{A}\left(A \otimes_{R} K\right) \geq n$. Hence w.gl.dim $(A) \geq n$.
Q.E.D.

We shall be concerned with the condition w.gl.dim $(A)=n$ for a W-algebra over R.

Theorem 3.2. Let A be a W-algebra over R with a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_{n}(K)$ over R. Suppose that L is essentially abelian and A has $\mathrm{w} \cdot \mathrm{gl} \cdot \operatorname{dim}(A)=n$. Then $\tilde{\rho}$ is an injection.

Proof. Let $\tilde{\rho}_{1}:=\tilde{\rho} \mid \tilde{L}$, where \tilde{L} is an R-free submodule of Σ_{1} isomorphic to L as a Lie algebra (cf. Theorem 2.3). Then there exists an R-free basis $\left\{Y_{1}, \cdots, Y_{m}\right\}$ of \tilde{L} such that $Y_{i} Y_{j}=Y_{j} Y_{i}$ for $1 \leq i, j \leq m$. Let $\tilde{L}_{0}=\oplus_{i=1}^{m} K Y_{i}$ and let $Q=\operatorname{Ker}\left(\tilde{\rho}_{1} \mid \tilde{L}_{0}\right)$. Then $\tilde{L}_{0} \cong Q \oplus \tilde{\rho}_{1}\left(\tilde{L}_{0}\right)$ is a direct sum as Lie algebras and Q is contained in the center of A. Let B be the R-subalgebra of $\hat{D}_{n}(K)$ generated by $\tilde{\rho}_{1}\left(\tilde{L}_{0}\right)$ and let J be the two-sided ideal of A generated by Q. Then $B \cong A \mid J$ and B is a W-algebra over R. Indeed, we may take $\left\{Y_{1}, \cdots, Y_{m}\right\}$ so that $\left\{Y_{r+1}, \cdots, Y_{m}\right\}$ is a K-basis of Q. Let $\bar{Y}_{i}=\tilde{\rho}_{1}\left(Y_{i}\right), 1 \leq i \leq r$. Then B is
generated by $\bar{Y}_{1}, \cdots, \bar{Y}_{r}$ over R which act on R via the derivations $\delta_{i}=y_{i}[]$, $1 \leq i \leq r$. Note that $\left\{\bar{Y}_{1}, \cdots, \bar{Y}_{r}\right\}$ are linearly independent over R. So, $r \leq n$. We claim:

Lemma 3.3. $\left\{\delta_{1}, \cdots, \delta_{r}\right\}$ are algebraically independent over R. Namely, if $\Sigma_{\gamma} f_{\gamma} \delta^{\gamma}=0$ with $f_{\gamma} \in R$ and $\delta^{\gamma}=\delta_{1}^{\gamma_{1} \cdots \delta_{r}^{\gamma_{r}}}$ then $f_{\gamma}=0$ for all γ.

Proof. Denote by $Q(R)$ the quotient field of R. We can find $\Delta_{1}, \cdots, \Delta_{r} \in$ $\oplus_{i=1}^{r} Q(R) \delta_{i}$ satisfying the following conditions:
(1) $\oplus_{i=1}^{r} Q(R) \delta_{i}=\oplus_{i=1}^{r} Q(R) \Delta_{i}$;
(2) We can express $\Delta_{i}=\sum_{j=1}^{n} a_{i j} \partial_{j}$ with $a_{i j} \in R$ and $\partial_{j}=\partial / \partial x_{j}$, and if we define s_{i} as $\min \left\{j ; a_{i j} \neq 0\right\}$ then $s_{1}<s_{2}<\cdots<s_{r}$.
Suppose we have a nontrivial relation $\Sigma_{\gamma} f_{\gamma} \delta^{\gamma}=0$. Let $v=\max \left\{|\gamma| ; f_{\gamma} \neq 0\right\}$. Expressing δ_{i} as a $Q(R)$-linear combination of Δ_{j} 's and substituting it for δ_{i} in $\Sigma_{\gamma} f_{\gamma} \delta^{\gamma}=0$, we obtain a nontrivial relation $\Sigma_{\gamma} g_{\gamma} \Delta^{\gamma}=0$ with $\max \left\{|\gamma| ; g_{\gamma} \neq 0\right\}=$ v. Expressing then Δ^{γ} in terms of $\partial^{\beta}=\partial_{1}^{\beta} \cdots \partial_{n}^{\beta}$, we obtain

$$
\begin{equation*}
\sum_{|\gamma|=v}\left(g_{\gamma} \prod_{i=1}^{r}\left(a_{i s_{i}}\right)^{\gamma_{i}}\right) \partial^{\tilde{\gamma}}+\cdots=0 \tag{*}
\end{equation*}
$$

where $\tilde{\gamma}$, as an n-tuple, has γ_{i} at the s_{i}-th entry for $1 \leq i \leq r$ and 0 elsewhere if $\gamma=\left(\gamma_{1}, \cdots, \gamma_{r}\right)$. Among g_{γ} 's with $|\gamma|=v$ and $g_{\gamma} \neq 0$, let $\left(\alpha_{1}, \cdots, \alpha_{r}\right)$ be the smallest with respect to the lexicographic relation: $\left(\gamma_{1}, \cdots, \gamma_{r}\right) \leq\left(\gamma_{1}^{\prime}, \cdots, \gamma_{r}^{\prime}\right)$ if and only if $\gamma_{1}=\gamma_{1}^{\prime}, \cdots, \gamma_{t-1}=\gamma_{t-1}^{\prime}, \gamma_{t} \leq \gamma_{t}^{\prime}$. Then $\left(g_{\alpha} \Pi_{i=1}^{r}\left(a_{i s_{i}}\right)^{\alpha_{i}}\right) \partial^{\tilde{\alpha}}$ has no other terms in $(*)$ to cancel with. This is a contradiction. Q.E.D.

Proof of Theorem 3.2 resumed. The above lemma implies that B is isomorphic to a W-algebra over R generated by Y_{1}, \cdots, Y_{r}. Since any element ξ of A is expressed uniquely in the form

$$
\begin{equation*}
\xi=\sum_{\gamma} f_{\gamma} Y^{\gamma}+\eta, \quad f_{\gamma} \in R \quad \text { and } \quad \eta \in J \tag{**}
\end{equation*}
$$

Now we can easliy show that $A \cong B\left[Y_{r+1}, \cdots, Y_{m}\right]$, a polynomial ring in Y_{r+1}, \cdots, Y_{m} over B (cf. the above expression (**) of ξ). By Björk [1, Th. 3.4, p.43], we have w.gl. $\operatorname{dim}(A)=$ w.gl.dim $(B)+(m-r) \geq n+m-r$ (cf. Lemma 3.1). By the hypothesis w.gl.dim $(A)=n$, we have $m=r$. This implies $J=(0)$. Hence $A \cong B$.
Q.E.D.

A W-algebra A over R is called a W-subalgebra of $\hat{D}_{n}(K)$ provided $\tilde{\rho}$ is injective.

Theorem 3.4. There is a one-to-one correspondence between the set of W subalgebras of $\hat{D}_{n}(K)$ and the set of R-submodules \widetilde{L} of $\operatorname{Der}_{K}(R)$ satisfying the conditions:
(L-1) $\quad \tilde{L}$ is a free R-submodule of $\operatorname{Der}_{K}(R)$;
(L-2) \tilde{L} is closed under the bracket product of $\operatorname{Der}_{K}(R)$.
Proof. Let A be a W-subalgebra of $\hat{D}_{n}(K)$. Then we can find an R free submodule \tilde{L} of Σ_{1} which is isomorphic to $L:=\Sigma_{1} / \Sigma_{0}$. Since $\tilde{\rho}$ is injective, so is $\rho: L \rightarrow \operatorname{Der}_{K}(R)$. Hence \tilde{L} is an R-free submodule of $\operatorname{Der}_{K}(R)$. Since $\rho \cdot(\pi \mid \tilde{L})$ is a Lie-algebra homomorphism, \tilde{L} is closed under the bracket product of $\operatorname{Der}_{K}(R)$ (cf. Theorem 2.3). Conversely, let \widetilde{L} be an R-submodule of $\operatorname{Der}_{K}(R)$ satisfying the conditions (L-1) and (L-2). Let $\left\{Y_{1}, \cdots, Y_{m}\right\}$ be an R-free basis of \tilde{L}. Then we have:
(1) $Y_{i} Y_{j}-Y_{j} Y_{i}=\sum_{k=1}^{m} \rho_{i j, k} Y_{k}, 1 \leq i, j \leq m$,
(2) $Y_{i} f-f Y_{i}=Y_{i}[f]$ for $f \in R$ and $1 \leq i \leq m$.

Construct a K-algebra A over R as in Theorem 2.2, (2). Then the natural K-algebra homomorphism $A \rightarrow \hat{D}_{n}(K)$ over R is injective (cf. the proof of Lemma 3.3).
Q.E.D.

A W-subalgebra A of $\widehat{D}_{n}(K)$ is said to be of maximal rank if $\operatorname{rank} \widetilde{L}=n$. We shall consider the case $n=1$. Then L is essentially abelian. Hence there exists a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_{1}(K)$ over R which must be injective by virtue of Theorem 3.4. We set $Y=Y_{1}$, a free generator of the R module \tilde{L} (cf. Theorem 2.3). Then we have $Y x-x Y=f$, where $f=x^{\gamma} u$ with $u \in R^{*}$. Replacing Y by $u^{-1} Y$, we may assume that $f=x^{r}$. We shall show:

Lemma 3.5. $\operatorname{Tor}_{2}^{A}(K, K)=K$ if $r \geq 2$, while it is zero if $r=1$. $\operatorname{Tor}_{1}^{A}(K, K)=K$ if $r=1$.

Proof. Suppose $r>0$. Then K is a two-sided A-module. As a right A-module K has the following free A-module resolution:

$$
0 \rightarrow e_{2} A \xrightarrow{\varphi_{1}} e_{1} A \oplus e_{1}^{\prime} A \xrightarrow{\varphi_{0}} e_{0} A \xrightarrow{\varepsilon} K \rightarrow 0,
$$

where ε is the natural residue homomorphism and $\varphi_{i}(i=0,1)$ is given as:

$$
\varphi_{0}\left(e_{1}\right)=e_{0} Y, \quad \varphi_{0}\left(e_{1}^{\prime}\right)=e_{0} x \quad \text { and } \quad \varphi_{1}\left(e_{2}\right)=e_{1} x-e_{1}^{\prime}\left(Y+x^{r-1}\right) .
$$

Take the tensor product of this sequence with a left A-module $K=A v$ to obtain the complex:

$$
0 \rightarrow e_{2} A \otimes_{A} A v \xrightarrow{\bar{\varphi}_{1}}\left(e_{1} A \otimes_{A} A v\right) \oplus\left(e_{1}^{\prime} A \otimes_{A} A v\right) \xrightarrow{\bar{\varphi}_{0}} e_{0} A \otimes_{A} A v \rightarrow 0,
$$

where we can identify $e_{i} A \otimes_{A} A v$ with $e_{i} \otimes K v$ for $e_{i}=e_{0}, e_{1}, e_{1}^{\prime}$ and e_{2}. Then it is clear that $\overline{\mathscr{P}}_{1}=\overline{\mathcal{P}}_{0}=0$ if $r \geq 2$. Hence $\operatorname{Tor}_{2}^{A}(K, K)=K$ if $r \geq 2$. If $r=1$, then $\bar{\rho}_{1}\left(e_{2} \otimes v\right)=-e_{1}^{\prime} \otimes v$, whence $\bar{\rho}_{1}$ is injective. So, $\operatorname{Tor}_{2}^{A}(K, K)=0$ if $r=1$. If $r=1, \operatorname{Tor}_{1}^{A}(K, K)=K$ because $\bar{\varphi}_{0}=0$.
Q.E.D.

Corollary 3.6. Let A be a W-subalgebra of $\hat{D}_{1}(K)$ with w.gl.dim $(A)=1$. Then $A=\widehat{D}_{1}(K)$.

Proof. With the same notations as in Lemma 3.5, it suffices to show that w.gl. $\operatorname{dim}(A)=2$ if $r=1$. Suppose $r=1$ and consider the following exact sequence

$$
0 \rightarrow e_{2} A \xrightarrow{\varphi_{1}} e_{1} A \oplus e_{1}^{\prime} A \xrightarrow{\varphi_{0}} \operatorname{Im} \varphi_{0} \rightarrow 0 .
$$

Suppose that w.gl.dim $(A)=1$. Then $\operatorname{Im} \varphi_{0}$ is a projective A-module in view of the free A-module resolution of K given in the proof of Lemma 3.5. So, the above sequence must split. Hence there exists an A-homomorphism $\psi: e_{1} A \oplus e_{1}^{\prime} A \rightarrow e_{2} A$ such that $\psi \varphi_{1}=i d_{e_{2} A}$, Write $\psi\left(e_{1}\right)=e_{2} a$ and $\psi\left(e_{1}^{\prime}\right)=e_{2} b$ for some a, b of A. Then we have $a x-b(Y+1)=1$. We claim, however, that $A x+A(Y+1)$ is a proper left ideal of A. Indeed, $A x=x A$ (cf. Lemma 3.7 below) and $A / A x$ is isomorphic to a polynomial ring $K[Y]$. Hence $A / A x+A(Y+1)=$ K and our claim is proved. This is a contradiction. Consequently, we have w.gl.dim $(A)=2$.
Q.E.D.

We still remain in the case $n=r=1$. A simple right or left A-module M is said to be unfaithful if $\operatorname{ann}_{A}(M) \neq 0$. For $\alpha \in K$, define $K_{\alpha}=A / x A+(Y-\alpha) A$. Then we have the following:

Lemma 3.7. The following assertions hold true:
(1) K_{α} is a simple right A-module as well as a simple left A-module.
(2) $K_{\alpha} \cong K_{\beta}$ if and only if $\alpha=\beta$.
(3) Every unfaithful simple right or left A-module is isomorphic to K_{α} for some $\alpha \in K$.
(4) Let S_{A} and ${ }_{A} T$ be unfaithful simple right and left A-modules, respectively. Then $\operatorname{Tor}_{1}^{A}(S, T)=0$.

Proof. The first three assertions can be proved as in the case of a skew polynomial ring or in the case of the universal enveloping algebra of a twodimensional Lie algebra over K. For the convenience of the readers, we shall sketch the proof.
(1) By the relation $Y x-x Y=x$, we have

$$
(Y-\alpha) x-x(Y-\alpha)=x \quad \text { for } \quad \alpha \in K
$$

This implies that

$$
x A=A x \quad \text { and } \quad x A+(Y-\alpha) A=A x+A(Y-\alpha)
$$

Since $K_{\alpha} \cong K[Y] /(Y-\alpha), K_{\alpha}$ is simple as right and left A-modules.
(2) This easily follows from the first assertion.
(3) Since $x A \subset \operatorname{ann}_{A}\left(K_{\alpha}\right), K_{\alpha}$ is unfaithful. Let I be a nonzero two-sided
ideal of A. Then $x^{n} \in I$ for some n. Indeed, let ξ be a nonzero element of I and write it as

$$
\xi=\sum_{i=0}^{r} f_{i} Y^{i} \quad \text { with } \quad f_{i} \in R \quad \text { and } \quad f_{r} \neq 0
$$

Then $\xi x-x \xi=r x f_{r} Y^{r-1}+$ (terms of lower degree) is an element of I. Since $r x f_{r} \neq 0$, we can continue this step of finding an element of I with lower degree in Y. After the r-steps repeated, we find an element $x^{r} f_{r}$ of I. Multiplying to this element a unit in R, we find $x^{r} \in I$. Let S be an unfaithful simple right A-module. Set $I=\operatorname{ann}_{A}(S) \neq 0$. Then $x^{n} \in I$ and $x^{n-1} \notin I$ for some n. Since $S x^{n-1} \neq 0$, there exists $s \in S$ such that $s x^{n-1} \neq 0$. Since S is simple, we have $S=s x^{n-1} A=s A x^{n-1}$, whence $S x=s A x^{n}=0$. Hence $x \in I$. So, $x A \subset I$. It is clear that I is a prime ideal of A in the sense that $J_{1} J_{2} \subset I$ for two-sided ideals J_{1}, J_{2} of A implies $J_{1} \subset I$ or $J_{2} \subset I$. Let $\bar{A}=A / x A \cong K[Y]$ and \bar{I} the image of I in \bar{A}. Since \bar{I} is a prime ideal of $K[Y]$, we have $\bar{I}=(Y-\alpha) K$ for some $\alpha \in K$. Hence $I=x A+(Y-\alpha) A$ and $S \cong A / I=K_{\alpha}$. A similar argument applies to a simple left A-module.
(4) In order to prove the assertion, we have to show

$$
\operatorname{Tor}_{1}^{A}\left(K_{\alpha}, K_{\beta}\right)=0 \quad \text { for } \quad \alpha, \beta \in K
$$

We can easily show this result by replacing Y by $Y-\alpha$ in the proof of Lemma 3.5.
Q.E.D.

If $n \geq 2$, we know little on W-subalgebras of $\widehat{D}_{n}(K)$ even if it is of maximal rank. We shall give two partial results.

Proposition 3.8. Let A be a W-subalgebra of maximal rank of $\widehat{D}_{n}(K)$ corresponding to a Lie subalgebra $\widetilde{L}=\bigoplus_{i=1}^{n} R Y_{i}$ with $Y_{i}=x_{i}^{r_{i}} \partial / \partial x_{i}$ and $r_{i} \geq 1$. Then we have

$$
\mu:=\max \left\{v ; \operatorname{Tor}_{v}^{A}(K, K) \neq 0\right\}=2 \#\left\{i ; r_{i} \geq 2\right\}+\#\left\{i ; r_{i}=1\right\} .
$$

Hence $r_{i}=1$ for all i provided w.gl. $\operatorname{dim}(A)=n$.
Proof. Let S_{i} be the free algebra generated by Y_{i} over a one-dimensional polynomial ring $K\left[x_{i}\right]$ modulo the two-sided ideal generated by $Y_{i} x_{i}-x_{i} Y_{i}=x_{i}^{r}$. Since $Y_{i} Y_{j}=Y_{j} Y_{i}$ and $x_{i} Y_{j}=Y_{j} x_{i}$ if $i \neq j, A$ is isomorphic to

$$
\left(S_{1} \otimes_{K} S_{2} \otimes_{K} \cdots \otimes_{K} S_{n}\right) \otimes_{K\left[x_{1}, \cdots, x_{n}\right]} R
$$

when $S_{1} \otimes_{K} \cdots \otimes_{K} S_{n}$ is regarded as an algebra over $K\left[x_{1}, \cdots, x_{n}\right]$. Consider a complex

$$
\left(\tilde{C}_{i}^{i}\right): 0 \rightarrow e_{2}^{(i)} S_{i} \xrightarrow{\varphi_{1}} e_{1}^{(i)} S_{i} \oplus e_{1}^{\prime(i)} S_{i} \xrightarrow{\varphi_{0}} e_{0}^{(i)} S_{i} \xrightarrow{\varepsilon} K \rightarrow 0,
$$

which is defined in the same fashion as in the proof of Lemma 3.5 with A replaced by S_{i}. It is a resolution of the two-sided S_{i}-module K by free right S_{i} modules. The complex $\tilde{C}^{\cdot}:=\left(\tilde{C}_{1}^{\cdot} \otimes_{K} \cdots \otimes_{K} \tilde{C}_{n}^{\cdot}\right) \otimes_{K\left[x_{1}, \cdots, x_{n}\right]} R$ is a resolution of the two-sided A-module K by free right A-modules. Let C_{i}^{*} (resp. C^{*}) be the complex obtained from \tilde{C}_{i}^{\cdot} (resp. \tilde{C}^{\bullet}) by replacing K by 0 . Then, taking the tensor products with the left A-module K, we obtain $\bar{C}^{\cdot}:=C^{\bullet} \otimes_{A} K \cong \bar{C}_{i} \otimes_{K} \cdots$ $\otimes_{K} \bar{C}_{n}$, where $\bar{C}_{i}=C_{i}^{*} \otimes_{A} K . \quad$ By the Künneth formula for homologies, we have

$$
\operatorname{Tor}_{v}^{A}(K, K) \cong \oplus_{v_{1}+\cdots+v_{n}=v} \operatorname{Tor}_{v_{1}}^{S_{1}}(K, K) \otimes_{K} \cdots \otimes_{K} \operatorname{Tor}_{v_{n}}^{S_{n}}(K, K)
$$

Hence we obtain the stated formula in view of Lemma 3.5.
Q.E.D.

Proposition 3.9. Let A be a W-subalgebra of maximal rank of $\hat{D}_{2}(K)$ corresponding to a Lie subalgebra $\tilde{L}=R Y_{1}+R Y_{2}$ with $Y_{1}=h \partial / \partial x_{i}$, where $h=x_{1} f+$ $x_{2} g \in R x_{1}+R x_{2}$. Suppose that h is a homogeneous polynomial in x_{1} and x_{2}. Then $\operatorname{Tor}_{3}^{A}(K, K) \neq 0$ and $\operatorname{Tor}_{4}^{A}(K, K)=0$.

Proof. We have the following relations:

$$
\begin{aligned}
& Y_{1} Y_{2}-Y_{2} Y_{1}=-h_{x_{2}} Y_{1}+h_{x_{1}} Y_{2} \\
& Y_{1} x_{1}-x_{1} Y_{1}=h=Y_{2} x_{2}-x_{2} Y_{2} \\
& Y_{1} x_{2}-x_{2} Y_{1}=0=Y_{2} x_{1}-x_{1} Y_{2},
\end{aligned}
$$

where $h_{x_{i}}=\partial h / \partial x_{i}$. Construct a complex of right A-modules:

$$
\begin{aligned}
0 \rightarrow e_{3} A \xrightarrow{\varphi_{2}} & e_{2} A \oplus e_{2}^{\prime} A \oplus e_{2}^{\prime \prime} A \oplus e_{2}^{\prime \prime \prime} A \xrightarrow{\varphi_{1}} \\
& e_{1} A \oplus e_{1}^{\prime} A \oplus e_{1}^{\prime \prime} A \oplus e_{1}^{\prime \prime \prime} A \xrightarrow{\varphi_{0}} e_{0} A \xrightarrow{\varepsilon} K \rightarrow 0,
\end{aligned}
$$

where:
(0) K is the two-sided A-module with $x_{i} \cdot 1=Y_{i} \cdot 1=0$ for $i=1,2$;
(i) $\varepsilon\left(e_{0}\right)=1$;
(ii) $\varphi_{0}\left(e_{1}\right)=e_{0} Y_{1}, \varphi_{0}\left(e_{1}^{\prime}\right)=e_{0} x_{1}, \varphi_{0}\left(e_{1}^{\prime \prime}\right)=e_{0} Y_{2}, \varphi_{0}\left(e_{1}^{\prime \prime \prime}\right)=e_{0} x_{2}$;
(iii) $\varphi_{1}\left(e_{2}\right)=e_{1} x_{1}-e_{1}^{\prime}\left(Y_{1}+f\right)-e_{1}^{\prime \prime} g, \quad \varphi_{1}\left(e_{2}^{\prime}\right)=-e_{1}^{\prime} f+e_{1}^{\prime \prime} x_{2}-e_{1}^{\prime \prime \prime}\left(Y_{2}+g\right)$,

$$
\varphi_{1}\left(e_{2}^{\prime \prime}\right)=e_{1} x_{2}-e_{1}^{\prime \prime \prime} Y_{1}, \quad \varphi_{1}\left(e_{2}^{\prime \prime \prime}\right)=-e_{1}^{\prime} Y_{2}+e_{1}^{\prime \prime} x_{1}
$$

(iv) $\varphi_{2}\left(e_{3}\right)=e_{2} x_{2}\left(Y_{2}+g+h_{x_{2}}\right)+e_{2}^{\prime} x_{1}\left(Y_{1}+f+h_{x_{1}}\right)-e_{2}^{\prime \prime} x_{1}\left(Y_{2}+g+h_{x_{2}}\right)-$ $e_{2}^{\prime \prime \prime} x_{2}\left(Y_{1}+f+h_{x_{1}}\right)$.
It is straightforward to show that this complex is a resolution of K by right free A-modules. The stated result follows from this observation.
Q.E.D.

References

[1] J.E. Björk: Rings of differential operators, North-Holland, Amsterdam, Oxford, New York, 1979.
[2] N. Jacobson: Lie algebras, Dover, New York, 1979.

Chang Woo Hang
Department of Mathematics
Dong-A University
Pusan, Korea
Masayoshi Miyanishi and De-Qi Zhang
Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Kenji Nishida
Department of Mathematics
College of General Education
Nagasaki University
Nagasaki 852

