DIVISIBILITY CONDITIONS ON SIGNATURES OF FIXED POINT SETS

Sung Sook KIM

(Received June 12, 1991)

Let G denote the cyclic group of order p, where p is an odd prime. In [6], we constructed a smooth G-action on some $\boldsymbol{Z}_{\boldsymbol{q}}$-homology sphere such that the fixed point set is a closed connected $4 r$-dimensional manifold with nonzero Pontryagin numbers, where q is an odd prime distinct from p.

In this paper we take some preliminary steps towards studying the divisibility conditions on the characteristic numbers of the fixed point set of a G-action on a \boldsymbol{Z}_{q}-homology sphere. One reason for interest in this topic is that the image of the fixed point set of a G-action on a \boldsymbol{Z}_{q}-homology sphere in $\Omega_{*}^{S O} /$ torsion is completely determined by these divisibility conditions. For some time it has been known that nontrivial conditions appear (compare [5]; [2]). Perhaps the simplest divisibility condition involves the signature of the fixed point set. If G acts smoothly and preserving orientation on a closed oriented even dimensional \boldsymbol{Z}_{q}-homology sphere, then the signature of the fixed point set must be even because the Euler characteristic number is 2 by the Lefschetz fixed point theorem and the signature and Euler characteristic number of a closed oriented manifold are always congruent modulo 2.

Our first theorem is the following, which is proved by using the G-signature theorem.

Theorem 1. Let X be a smooth closed oriented manifold of even dimension such that $H^{(\operatorname{dim} X) / 2}(X ; \boldsymbol{Q})=0$. If the fixed point set F of a smooth G-action on X is 4-dimensional, then
$4 \mid \operatorname{Sign} F$, when $p>3$ and
$16 \mid \operatorname{Sign} F$, when $p=3$

Following Kawakubo [5] we say that a smooth G-action is regular if the normal G vector bundle of the fixed point set is decomposed by only one eigenbundle; i.e. it is of the form $\xi_{m} \otimes t^{m}$ for some $m\left(1 \leq m \leq \frac{p-1}{2}\right)$, where ξ_{m} is a complex vector bundle with trivial G-action and t^{m} is the complex 1-dimensional

[^0]G-module on which a fixed generator of G acts as multiplication by $\zeta^{m}\left(\zeta=e^{2 \pi i / p}\right)$. Note that any G-action is regular in case $p=3$.

Kawakubo [5] showed by using G-bordism theory that for a regular G action on a closed smooth orientable manifold $X, \operatorname{Sign} F \equiv \operatorname{Sign} X(\bmod p)$ provided $2(p-1)>\operatorname{dim} X$, where F denotes the G-fixed point set. If X is, in particular, a \boldsymbol{Z}_{q}-homology sphere, then $\operatorname{Sign} X=0$; so this gives a divisibility condition on $\operatorname{Sign} F$ provided $2(p-1)>\operatorname{dim} X$. In this paper we obtain divisibility conditions even for $2(p-1)<\operatorname{dim} X$. So it would be interesting io compare Kawakubo's result for the following theorem, which is proved by using the the AtiyahSinger index theorem with a Dirac operator (i.e. the $\hat{\mathscr{4}}$-genus).

Theorem 2. Let X be a smooth closed Spin manifold of even dimension such that the rational first Pontryagin class vanishes and $H^{1}(X ; Z)=0$. If F is the 4-dimensional fixed point set of a smooth regular G-action on X, then

$$
4 \cdot p^{[(\operatorname{dim} x) / 2(p-1)]} \mid \operatorname{Sign} F .
$$

In [2] tom Dieck obtains formal equivariant integrality theorems that can, in principle, be translated into divisibility conditions for characteristic numbers of unitary G-manifolds. A precise understanding of the relationship between these results and Theorem 2 would be enlightening.

Acknowledgmen rs. I would like to thank Professor Reinhard Schultz for his invaluable advice. I am indebted to Professor Mikiya Masuda for his encouragement and helpful conversations.

1. Divisibility by using G-signature formula

In this section, we prove Theorem 1 by using the Atiyah-Singer G-signature formula. Decompose the normal G-vector bundle ξ of F into eigenbundles as follows; $\xi=\oplus_{k=1}^{(p-1) / 2} \xi_{k} \oplus_{C} t^{k}$.

By the \mathcal{F}-signature theorem, we have the following formula.

$$
\begin{equation*}
\operatorname{Sign}(g, X)=\text { Constant }\left\langle\mathcal{L}(F) \prod_{k=1}^{(p-1) / 2} \prod_{j} \frac{e^{x_{k_{j}}} \zeta^{k}+1}{e^{x_{k_{j}}} \zeta^{k}-1},[F]\right\rangle \tag{1.1}
\end{equation*}
$$

where $\mathcal{L}(F)$ denotes the Atiyah-Singer L-class (page 577 of [1]) of the bundle tangent to $F,[F]$ denotes the fundamental class of $F,\langle\cdot, \cdot\rangle$ is the natural Kronecker pairing between cohomology and homology, and the symbols $x_{k_{j}}$ have the usual interpretation as roots of the total Chern class of ξ_{k} such that the total Chern class of ξ_{k} is $c\left(\xi_{k}\right)=\Pi_{j}\left(1+x_{k_{j}}\right)$. Since we assume $H^{(\operatorname{dim} X) / 2}(X ; \boldsymbol{Q})=$ $0, \operatorname{Sign}(g, X)=0$. This yields the following Lemma:

Lemma 1.1. Let F^{4} be as in Theorem 1 and let $\xi=\bigoplus_{k=1}^{(p-1) / 2} \xi_{k} \otimes t^{k}$ be the decomposition as above. Then (1.1) reduces to the following equation.

$$
\begin{equation*}
-\frac{1}{4} \operatorname{Sign} F=\sum_{k=1}^{(\phi-1) / 2} \frac{\zeta^{k}+\zeta^{-k}}{\left(\zeta^{k}-\zeta^{-k}\right)^{2}} p_{1}\left(\xi_{k}\right)[F]+2\left(\sum_{k=1}^{(\phi-1) / 2} \frac{1}{\zeta^{k}-\zeta^{-k}} c_{1}\left(\xi_{k}\right)\right)^{2}[F] . \tag{1.2}
\end{equation*}
$$

Proof. Since $\operatorname{dim} F=4, c_{i}\left(\xi_{k}\right)$ vanishes for $i>2$. Hence we can write $c\left(\xi_{k}\right)=\left(1+x_{k_{1}}\right)\left(1+x_{k_{2}}\right)$. Then it follows from (1.1) that

$$
\begin{aligned}
\operatorname{Sign}(g, X)= & \operatorname{Constant} \times \mathcal{L}(F) \stackrel{\left(p^{(p-1) / 2}\right.}{\prod_{k=1}}\left[\left(\frac{\zeta^{k} e^{x_{k_{1}}}+1}{\zeta^{k} e^{k_{1}}-1}\right)\left(\frac{\zeta^{k} e^{x_{k_{2}}}+1}{\zeta^{k} e^{x_{k_{2}}-1}}\right)\right][F] \\
= & \operatorname{Constant} \times \mathcal{L}(F) \prod_{k=1}^{(p-1) / 2}\left[1-\frac{2 \zeta^{k}}{\zeta^{2 k}-1} c_{1}\left(\xi_{k}\right)\right. \\
& \left.+\frac{\zeta^{k}}{\left(\zeta^{k}-1\right)^{2}}\left(c_{1}\left(\xi_{k}\right)^{2}-2 c_{2}\left(\xi_{k}\right)\right)+\frac{\left(2 \zeta^{k}\right)^{2}}{\left(\zeta^{2 k}-1\right)^{2}} c_{2}\left(\xi_{k}\right)\right][F],
\end{aligned}
$$

where $\mathcal{L}(F)=1+\frac{p_{1}(F)}{12}$. By Hirezebruch signature theorem we have $\mathcal{L}(F)[F]$ $=\frac{1}{4} \operatorname{Sign} F$. Since $\operatorname{Sign}(g, X)=0$, the above equation reduces to

$$
\begin{aligned}
0= & \frac{1}{4} \operatorname{Sign}(F)+\prod_{k=1}^{(p-1) / 2}\left[1-\frac{2 \zeta^{k}}{\zeta^{2 k}-1} c_{1}\left(\xi_{k}\right)\right. \\
& \left.+\frac{\zeta^{k}}{\left(\zeta^{k}-1\right)^{2}}\left(c_{1}\left(\xi_{k}\right)^{2}-2 c_{2}\left(\xi_{k}\right)\right)+\frac{\left(2 \zeta^{k}\right)^{2}}{\left(\zeta^{2 k}-1\right)^{2}} c_{2}\left(\xi_{k}\right)\right][F] \\
= & \frac{1}{4} \operatorname{Sign}(F)+\left[\sum_{k=1}^{(p-1) / 2} \frac{\zeta^{k}}{\left(\zeta^{k}-1\right)^{2}} p_{1}\left(\xi_{k}\right)+\sum_{k=1}^{(p-1) / 2} \frac{\left(2 \zeta^{k}\right)^{2}}{\left(\zeta^{2 k}-1\right)^{2}} c_{2}\left(\xi_{k}\right)\right. \\
& \left.+\sum_{k=1}^{(p-1 / 2)}\left(\frac{2 \zeta^{k}}{\zeta^{2 k}-1}\right)\left(\frac{2 \zeta^{j}}{\zeta^{2 j}-1}\right) c_{1}\left(\xi_{k}\right) c_{1}\left(\xi_{j}\right)\right][F] .
\end{aligned}
$$

Since $p_{1}\left(\xi_{k}\right)=c_{1}\left(\xi_{k}\right)^{2}-2 c_{2}\left(\xi_{k}\right)$ by an elementary calculation we have the formula (1.2).
Q.E.D.

Mulitply both sides of the above equation (1.2) by

$$
\prod_{k=1}^{(p-1) / 2}\left(\zeta^{k}-\zeta^{-k}\right)^{2}=(-1)^{(p-1) / 2} p \quad \text { (see page } 72 \text { of [7]). }
$$

Then the right hand side becomes a linear combination of $\zeta^{k}+\zeta^{-k}(1 \leq k \leq$ $(p-1) / 2)$ over \boldsymbol{Z} because it is invariant under the complex conjugation $\zeta \rightarrow \zeta^{-1}$, and $p_{1}\left(\xi_{k}\right)[F]$ and $c_{1}\left(\xi_{j}\right) c_{1}\left(\xi_{k}\right)[F]$ are both integers. This means that $p / 4$ Sign $\boldsymbol{F} \in \boldsymbol{Z}\left[\zeta+\zeta^{-1}\right] \cap \boldsymbol{Q}$. However it is well known that $\boldsymbol{Z}\left[\zeta+\zeta^{-1}\right] \cap \boldsymbol{Q}=\boldsymbol{Z}$, and therefore $p / 4 \operatorname{Sign} F \in \boldsymbol{Z}$. Since p is an odd prime it follows that $4 \mid \operatorname{Sign} F$.

Consider the equation (1.2) when $p=3$. Then $k=1$, and an elementary calculation shows that (1.2) becomes

$$
\operatorname{Sign} F=\frac{16}{15} c_{2}(\xi)[F]
$$

and consequently 16/Sign F.

2. Divisibility by using the श्र्रि-genus

In this section, we prove Theorem 2 by using the index theorem for the Dirac operator. Consider the Spin^{c}-structure P of X determined by a Spin structure (i.e. the Spin c-structure with trivial first Chern class). Since $H^{1}(X ; \boldsymbol{Z})$ $=0$ by assumption, the G-action on X lifts to a G action on P [4]. Therefore we can apply the Atiyah-Singer formula for index D, where D is the Dirac operator associated with the Spin c-structure P. In our case $c_{1}(P)=0$ and ξ is of the form $\xi_{m} \otimes t^{m}$ by assumption that the action is regular, so the formula reduces to the following equation:

$$
\begin{equation*}
(\operatorname{Index}(D))(\zeta)=(-1)^{(\operatorname{dim} X) / 2} \hat{\mathfrak{U}}(F) \zeta^{\lambda} \prod_{k} \frac{1}{e^{x_{m_{k}} / 2}-e^{x_{m_{k}} / 2} \zeta^{-m}}[F] \tag{2.1}
\end{equation*}
$$

(see [3]) where $\hat{\mathfrak{A}}(F)=1-1 / 24 p_{1}(F)$, the symbols $x_{m_{k}}$ have the usual interpretation as formal two-dimensional cohomology classes such that $c\left(\xi_{m}\right)=\Pi_{k}\left(1+x_{m_{k}}\right)$, and $[F]$ denotes the fundamental class of F as before.

Let $d=\operatorname{dim}_{C} \xi$. Then

$$
\begin{aligned}
\prod_{k} & \frac{1}{e^{x_{m_{k} / 2}-e^{x_{m_{k} / 2}} \zeta^{-m}}} \\
= & \frac{1}{\left(1-\zeta^{-m}\right)^{d}} \prod_{k}\left(1-\frac{1}{2}\left(\frac{1+\zeta^{-m}}{1-\zeta^{-m}}\right) x_{m_{k}}+\frac{1}{4}\left(\left(\frac{1+\zeta^{-m}}{1-\zeta^{-m}}\right)^{2}-\frac{1}{2}\right) x_{m_{k}}^{2}\right) \\
= & \frac{1}{\left(1-\zeta^{-m}\right)^{d}}\left(1-\frac{1}{2}\left(\frac{1+\zeta^{-m}}{1-\zeta^{-m}}\right) c_{1}(\xi)+\frac{1}{4}\left(\left(\frac{1+\zeta^{-m}}{1-\zeta^{-m}}\right)^{2}-\frac{1}{2}\right) p_{1}(\xi)\right. \\
& \left.\quad+\frac{1}{4}\left(\frac{1+\zeta^{-m}}{1-\zeta^{-m}}\right)^{2} c_{2}(\xi)\right)
\end{aligned}
$$

Multiply the above equation by $\hat{2}(F)=1-1 / 24 p_{1}(F)=1+1 / 24 p_{1}(\xi)$ and evaluate it on $[F]$ (note that $p_{1}(F)+p_{1}(\xi)=i^{*} p_{1}(X)=0$ by assumption). Then we obtain

$$
\begin{equation*}
\frac{1}{\left(1-\zeta^{-m}\right)^{d+2}}\left(\frac{1}{4}\left(\left(1+\zeta^{-m}\right)^{2}-\frac{1}{3}\right) p_{1}(\xi)+\frac{1}{4}\left(1+\xi^{-m}\right)^{2} c_{2}(\xi)\right)[F] \tag{2.2}
\end{equation*}
$$

We note that the left hand side of (2.1) is an element of the ring $\boldsymbol{Z}[\zeta]$. Let $z=\zeta^{-m}$. Then (2.1) becomes

$$
\begin{aligned}
& 12\left(b_{1}+b_{1} z+b_{2} z^{2}+\cdots+b_{p-1} z^{p-1}\right)(1-z)^{d+2} \\
& \quad=\left(3(1+z)^{2}-1\right) p_{1}(\xi)[F]+3(1+z)^{2} c_{2}(\xi)[F]
\end{aligned}
$$

with integers $b_{i}(1 \leq i \leq p-1)$.
Since $p_{1}(\xi)[F]=-p_{1}(F)[F]=-3 \operatorname{Sign} F$ we have

$$
4\left(b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{p-1} z^{p-1}\right)(1-z)^{d+2}
$$

$$
\begin{align*}
= & \left(1-3(1+z)^{2}\right) \operatorname{Sign} F+(1+z)^{2} c_{2}(\xi)[F] \tag{2.3}\\
= & \left(-2 \operatorname{Sign} F+c_{2}(\xi)[F]\right)+\left(2 c_{2}(\xi)[F]-6 \operatorname{Sign} F\right) z \\
& +\left(c_{2}(\xi)[F]-3 \operatorname{Sign} F\right) z^{2} .
\end{align*}
$$

Write $d+2=r(p-1)+s$, where $0 \leq s<p-1 . \quad$ Since $(1-z)^{p-1} \equiv 0(\bmod p)$ we have

$$
\begin{equation*}
p^{r} \mid(1-z)^{d+2}=\left((1-z)^{p-1}\right)^{r}(1-z)^{s} . \tag{2.4}
\end{equation*}
$$

On the other hand

$$
d+2=\frac{\operatorname{dim} X-4}{2}+2=\frac{\operatorname{dim} X}{2}
$$

So

$$
\begin{equation*}
r=\frac{\operatorname{dim} X-2 s}{2(p-1)}=\left[\frac{\operatorname{dim} X}{2(p-1)}\right] \tag{2.5}
\end{equation*}
$$

It follows from (2.3) and (2.4) that

$$
4 p^{\gamma} \mid\left(c_{2}(\xi)[F]-2 \operatorname{Sign} F\right)
$$

and

$$
4 p^{\prime} \mid\left(c_{2}(\xi)[F]-3 \operatorname{Sign} F\right) .
$$

Therefore

$$
4 p^{r} \mid \operatorname{Sign} F
$$

This together with (2.5) proves Theorem 2.

References

[1] M.F. Atiyah and I.M. Singer: The index of elliptic operators, III, Ann. of Math. 87 (1968), 546-604.
[2] T. tom Dieck: Bordism of G-manifolds and integrality theorems, Topology 9 (1970), 345-358.
[3] A. Hattori: Spin ${ }^{c}$-structures and S^{1}-actions, Inventiones Math. 48 (1978), 7-31.
[4] A. Hattori and T. Yoshida: Lifting compact group actions in fiber bundles, Japan J. Math. 2, No. 1 (1976), 13-25.
[5] K. Kawakubo: The index and the Todd genus of \boldsymbol{Z}_{p}-actions, Amer. J. Math. 97 (1975), 182-204.
[6] S.S. Kim: Characteristic numbers and group actions on homology spheres, Ph. D. Thesis, Purdue University, 1988.
[7] I.N. Stewart and D.O. Tall: Algebraic Number Theory (second edition), Chapman and Hall, New York, 1987.

Department of Mathematics
Paichai University
Taejon, (302-735),
Korea

[^0]: The author was partially supported by KOSEF Grant 913-0103-015-2.

