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1. Introduction

In this paper, we consider a complex abstract Wiener space (CAWS) (B,H,μ),
that is a triplet of a complex separable Banach space By a complex separable
Hubert space H which is densely and continuously imbedded in B and a Borel
probability measure μ on B such that

(1.1) \Bexp(V^RtB<z,φ>B*)μ(dz) = txp(-±-\\φ\\2

H*) for <p(=B*(ZH*.

Moreover, we assume that a strictly positive self-adjoint operator A on 7/*

is given and 5 * c C M ( i ) = Π Dom(/) . Then we can define DAp(z)=
n = l

(λ/ZθVA)Dp(z) for pϊΞ@{B: E), ^-valued polynomial functional on B.
i/-derivative D is a fundamental tool in Malliavin's calculs ([6]), but here

we consider DA instead of Z), because we keep quantum field theoretical models

in mind. In fact, —D^DA=dT(AφA), a free Hamiltonian for a complex Bose

field (and its anti-particle field).
Following [3] and [4], we regard B as an infinite dimensional manifold with

cotangent space (H*)c on each z^B. Consequently its exterior product bundle
becomes BxA(H%)c and the space of its ZΛsections becomes L2(B, μ: A(H%)C),
i.e. the space of Λ(//|)c-valued L2-functions on B or L2(B, μ)®A(H$)c, a
tensor product of the Bosonic Fock space and the Fermionic Fock space. On

this space we define an exterior derivative dA using DA. Then —(dfdA+dAdf)

=dT(A@A)@dK{A@A), a free Hamiltonian for an N=2 supersymmetric
quantum field.

As in the finite dimensional case, dA is decomposed as dA=dA+dAi and
Laplace-Beltrami operators QΛ and ΠΛ are defined as 0,4=929,4+3^92 and
Π^=S*S^+^A^Ay respectively. Since (51—0, dA defines an elliptic complex
and (^-cohomology groups can be defined as &p

A

 q(B)=Ker(dA\Ap

2>
9(B))l

), where AP

2>\B)=L2(B, μ: Ap>«(H%)c)y the space of square in-
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tegrable (p, g^-forms.
First we show that de Rham-Hodge-Kodaira's decomposition for Kp

2'
q(B)

holds, that is

(1.2) Λ{ '(J5) = lm(dA\Ap

2^\B))®Im(di\Ap

2'
q(B))^p

A'
9

where 5 i f=Ker(Π^| Ap

2'
q(B)), the space of harmonic (p, g)-forms (our discussion

is restricted to the ZΛcase). From this we conclude that ξ>A9(B)=f)p

A'
g and it

will be shown by using the expression — D Λ = ^ Γ ( J ) Θ < / Λ ( ^ Ϊ ) , that ΐ)p

A'
9= {0}, if

q^ί and ψA'°=Hol2(B: Ap>%m)c)y where Hol2(5: Λ°'*(i/f)c) is the set of square
integrable holomorphic forms.

We start with a complex separable Hubert space H, but we regard this as
a real separable Hubert space (this space is denoted by HR) and consider (H%)c>
a complexification of its adjoint space i/*. (H%)c is decomposed as (i/f) c=
i/*©J7*, but the inner product of//* induced from (i/*)c is slightly different
from original one. We sum up these algebraic fundamentals in Appendix A.
In Appendix B we state some elementary facts about the Wick product for a
complex Gaussian system.

Finally, the author would like to thank Professor I. Shigekawa for help
and encouragement.

2. Complex abstract Wiener space

In this section we define a modified Ornstein-Uhlenbeck operator on a
CAWS and show that it equals to the free Hamiltonian.

Let (B,H> μ) be a CAWS as in the section 1 and A be a strictly positive self-
adjoint operator on i/*. Then it can be easily shown that {Zθ\ ί G 5 * } is a com-
plex Gaussian system satisfying

(2.1)

(2.2)

where Zθ is a complex random variable on B defined as Zθ(z)=B(zy θyB*, Zv is
a complex conjugate of Zv and E stands for the integration under μ.

We assume that B*aC°°(A) without loss of generality. In fact, let a be a
Hilbert-Schmidt operator on H* and set K=e~Aa. We define (u, v)B=(Ku,
Kv)Hy | | tt | | i=(a, u)ψ for UyV^H and denote the completion of H with respect
to \\'\\H as B. Then (B, \\ \\B) becomes a complex Banach space and there
exists a Borel probability measure μ on B such that

(2.3) j ^ e x p t v ^ ϊ Re5<#, φ>B*) μ{dz) = e x p ( — I \\φ\\2

H*) for φ(=B*c:H*.
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and moreover B*<^e-Aa{H)aG00{A).
A (complex-valued) polynomial functional on B is a mapping p: B->C writ-

ten as

(2.4) p{z) = P(Zβp), -,Zκ{z), Zh(z), - , Ztn{z))

where n^N, ^ , - , ^ 6 5 * , P is a polymomial of 2#-arguments with com-
plex coefficients. If p is written in the form

(2-5) j>(*) = P ( Z ^ ) , . . , Z , » )

p is called a holomorphic polynomial functional on JS.

We denote by S(B: C) and ^ ( J S : C) the set of polynomials and holomor-
phic polynomials on By respectively. Moreover, for a complex separable Hubert
space E, we set £>(B: E)=S>(B: C)®E9 &h(B\ E)=S>

h(B: C)®E (algebraic ten-
sor product) and call them the space of E-valued polynomial functίonals and E-
valued holomorphic polynomial functionals, respectively. For p^3?(B: £), its
H-derivative at z^B is defined as follows

(2.6) <Dp(z),h> = -j-p(z+th)\t=0 for
at

Dp(z) is an element of (H%)C®E. Since (H%)C®E={H*®E)®(H*®E), we set

Vp{z) to be an H*®E component and Vp(^) to be an H*®E component.

As mentioned in the section 1, we use slightly modified derivative instead

of //-derivative as follows,

(2.7) DAp(z) = (VAφVA) Dp(z) ptΞ&(B: C).

For the definiton of \/Λ see (A.6). We have chosen B so that B*aO°°(A), so

Dp(z)<BC°°(A) and (VAφ^A)Dp(z) is well defined. DAP(z) is decomposed as

£>AP(Z)=VAP(*)®VAP(Z) where VAρ(z)=VA Vp(z), VAp(z)=^AvAp(2). We
denote adjoint operators of V^ and VΛ in L2(B, μ: E) by VS and vS, respectively.
Their explicit formulas for Wick polynomials are given as follows.

Proposition 2.1. For θly •••, θn, TJ1} •••, ηm, ζ<Ξ:B*, it holds that

(2.8) V :̂ Zθr.ZθZvr.ZVm: = Σ : Z^

tn

(2.10) V2: Zβl-'ZββVl-ZVm: ζ = 2:2

(2.11) Vί:Z^» Z , , Z v . Z, β : f =

Proof. As in the real case, it can be easily shown that
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VAP(ZβZβ) = £

β) = Σ - ^ - (Z,Zt)VAΘf

= -2 Σ 1

= -2 Σ I?

where I\Z^Z§) = P{Zht^9Z9nfZh9^9Z§a)G^(B:C)9ζ^B* (see e.g. [6]).
Combining this with (2.2) (B.3)~(B.6), we can prove (2.8)~2.11). Π

Therefore V* and V? are densely defined operators, so V^ and VΛ are
closable and we denote their closures by the same symbols.

Next we obtain the kernel of ψA.

Proposition 2.2. It holds that

(2.12) Ker (VA) = Hoi2 (B: E)

where Hol\B: E) is the closure ofgh(B: E) in L\By μ: E).

Proof. We give a proof for E=C. General cases can be proved similarly.
First we introduce some notations. Let {θn}n=ι be an ONB of H*.

SI = {β=(n i ) r- iezy I Σ n , < o o } , Z+ = {0,1, 2, 3, - },Σ

W... = Π (»/ wy!)-"2: Π Z;>Z;j:, n,

SXW = {β=(»y)7-i e f t I n, = 0 if j >N},

PN: L2(B, μ)->LN orthogonal projection,

pN: R*->[θly •••, ΘN] orthogonal projection,

where [•] stands for the linear span and —1| ||2 means the closure in L2(B, μ).
{W«, J »,me=9i forms an ONB of L2(By μ), so PN converges strongly to the identity
and it holds that

(2.13) PNoVί Wn>Jj = 2 2(0*, Aθjl

k

where 6k=(0, •••, 0 ϊ, 0, —)eSC, and moreover PN®pN°VΛ=ψAoPN.
If F e K e r ^ ^ ^ I m ^ ) " 1 - , then for n, « ε ! ( ^ e {1-iV},
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0 =

= {VA°PNF, WnJ,) =

= 2 Σ (Aθjt θk)

Since A is strictly positive, we have

(F, Wn,u+9k) = 0 , n,menN, ke{l-N}9

Thus we have Fe[WΛβ0\nGΪlϊ\-" "* = &k(B: C ) I N | 2 = H o l 2 ( 5 : C) and hence
Ker(vΛ)cHol 2(fi:C).

Conversely it is easy to see that Hol2(B: C)C Ker (VΛ) This completes
the proof. •

We set

(2.14) LA = -VSV^ LA = -Vm .

Then LA and LA are negative self-adjoint operators on L\By μ). Let us show
that LA and LA -correspond to the Hamiltonian for complex Bosons and their anti-
particles, respectively.

DEFINITION 2.3. Bosonic second quantized operator of A and A on L\By μ)
is defined on the Wick polynomials as follows

(2.15) dΓ(A): Zθl-ZθnZVl-ZVm: = £ : Z^-Z^-Ztβ^-Z^.

(2.16) dΓ(A): Zθl-ZθZvr.ZVm: = £ : Z^Z,Z^ZA^Z^
y=i

where θly •••, ^n, ηly •••, τjm^B*. dT(A) and dΓ(^4) are essentially self-adjoint
on the space of the Wick polynomials and we denote its closure by the same
symbol (see e.g. [2]).

Theorem 2.4. It holds that

(2.17) LA = -2dT(A) LA = -2dT(A).

Proof. To prove (2.17), it is enough to show that

LAp = - 2 dΓ(A)p LAp = - 2 dT{ A)p

for a Wick polynomial p= : Zβ l ZdwZτ,1 Zr?w : . By Proposition 2.1,

LA\ Zθl "ZθnZVl" ZVtn: = —VAVA: ZΘj"'ZθnZrii"'Zr]m:

= — Σ V^: Zθl 'Zθj' 'ZθnZVl ZVm: \/AΘ = — 2 Σ ^AθjZθ1'"Zθj-^ZθnZVl^'ZVfn:
y=i y=i
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The latter can be proved similarly. •

3. An exterior product bundle

Let us define an exterior product bundle over a CAWS. To do this, let
CO

A(Ht)c= 0 An(H$)c where An(H$)c is an anti-symmetric part of rc-tensor pro-
«=o

duct of {H%)c and its inner product is given by

(3.1) (<*,v) = ~(o>,v)mH*Ry for

where ('^"(i/*)0 is the natural inner product on ®"(H$)C. We define an exterior

product of ω e Λ ' ^ ί ) ' and veA'(Ht)' by

(3.2)

where <-Λn+m is an (n-\-m)-th normalized anti-symmetrization defined by

(3.3) < ' V®ω l l) Vn\

WesetAp-%Hi)c=A"H*AAqH*. Then

(3.4) A"(mγ = φ

Exterior derivative dA=dA-{-BA on polynomial functional is defined as follows

(3.5) dAω = (n+ί) Jln+1DAω

(3.6)

(3.7)

for w G S 5 ^ : . ^ ^ ! ) ' ) . We denote adjoint operators of dA and dA in

L2(5, /Λ: A(H$)C) by 32 and 32, respectively. Then it holds as in the real case

([3])

(3.8) 9Λ/(*)0IΛ-Λ ΘPA ^Λ Λ ηt = VΛf(s)Λ 0,Λ Λ

(3.9) ^ / ( ^ Λ Λ ^ Λ ^ Λ Λ ^ = Vx/(^)Λ ^ Λ Λ 0,Λ ̂ Λ Λ 9,

(3.10) θ ϊ / ί ^ Λ Λ ^Λ ^Λ Λ 9, = Σ ( - l ) y

Λ ΘPΛ

(3.11) ^ / ( ^ Λ Λ ΘPA ̂ Λ Λ ̂  = Σ ί - I Γ ^ V ^ / ^ ^ Λ Λ θt

A 9iΛ —Λ
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?: C), θι, •••, ^ , 97χ, •••, ^ E ί * . Thus 95 and 9^ are densely defin-
ed operators and so dA and BA are closable. We denote their closures by the
same symbols. Then we easily have the following.

Proposition 3.1. It holds that

(3.12) d\ = 0

and

(3.13) d2

A = 0 δi = 0 QA^A+^A^A = 0

(3.14) 9ϊ2 = 0 9Ϊ2 = O 8}9i+9ί8ί = 0.

Laplace-Beltrami operators Π^ and ΠΛ are defined as follows

(3.15) aA = ί

Then ΠΛ and Π^ are positive self-adjoint operators on Dom(3i49S)Π
D o m ( 9 ^ ) and Dom(a^f) Π Dom(3$BA)y respectively ([1]). We will show that
•Λ and ΠΛ correspond to the free Hamiltonian of supersymmetric particle field
and its antiparticle field, respectively.

DEFINITION 3.2. Fermionic second quantized operators of A and A respec-
tively, on A(H%)C are defined as follows

(3.16) dA(A)θ1A-A ΘPA ^Λ Λ vq = Έθ1A-A ΘJΛ-ΛAΘ,

A tfiΛ Λ ηq

(3.17) dA^Θ.A-A ΘPA ViΛ Λ 9 f = Σ ^ Λ Λ ^Λf lΛ Λ
i = i

AηjA-A vq

where (9̂  ~-,θpyVl, - ^ ^ E β * . Then rfΛ(^4) and ^Λ(J) are essentially self-
CO m^

adjoint on φ Λ Λ ( J B * ® 5 * ) (algebraic sense) ([2]). We denote their closures by
» = 0

the same symbols.

Theorem 3.3. It holds that

(3.18) DΛ = -LA+2 dA(A) = 2(dT(A)+dA(A))

(3.19) D^ = -L-Λ+2 dA{A) = 2(dT(A)+dA(A))

Proof. To prove (3.18), it is enough to show that

OA- Z9l'"ZβMZril"'Z1lm: ω1/\"ΆωpA^iA"Ά^ς

= 2(dΓ(A)+dA(A)):Zθl >-ZθβVι --ZVm:ω1A- 'AωpAζ1A -Aζq
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for θx, —, θn, ηlt —, ηm, a>2, •-, ωp, ξlt —, ξt^B*

pΛ?1 Λ

P

P

ΛfiΛ Λ

dA

tdA .Zh—ZββVl ZV

= Σ Vί(:Z^ Z,J| . Za i iZ v. Z,1.:

» p

ΣΣ(-1)J

Λ^Λ Λl

y:Z^AωjZθl Zθk. ZθβVl Zγι^

ΛfiΛ Λff.

Thus (3.20) holds. (3.19) can be proved similarly. •

4. dA-cohomology group of a complex abstract Wiener space

In this section we shall define S^-cohomology group and determine their
structure. First we shall define (py g'J-harmonic forms and prove de Rham-
Hodge-Kodaira's decomposition. From this decomposition it is clear that
S^-cohomology groups are isomorphic to the spaces of harmonic forms and so
their structure can be determined completely.

DEFINITION 4.1. We set

(4.1) ψA

 9 = Ker(Π^)

and call its element a harmonic (p, q)-formy where {Z\A'9 is the restriction of Π^ to
M>'(B)=LXBf μ: A
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We shall determine the structure of ί)p

A'
9

Proposition 4.2.

(4.2) W
(Hol2(5:Λ>'°(#*)C) for ? = 0 .

Proof. For q> 1, from (3.19),

ΠpAq=~LA+2dΓ(A)q.

Thus \Z\PA'9 is a strictly positive definite self-adjoint operator and Ker(Π£'β)=
{0}. For ? = 0 , from (3.19) and (2.12)

μ: Λ^°(i/?)c). D

Now we can show de Rham-Hodge-Kodaira's decomposition. It is easy
to show the following lemma, so we omit the proof.

Lemma. Let M be a complex separable Hubert space, A be a self-adjoint
operator on Si and σ(\A\)be the spectrum of \ A|. //σ(|A\)\{0}C[m, oo) for a
positive constant m, then A has a closed range.

Theorem 4.3. Kp

2'
q(B) is orthogonally decomposed as follows

(4.3) Λf (5)

where Ψχq is the restriction of BA to Ap

2>
q(B) and W'q is the restriction of dί to

Ap

2'
q+1(B). We set lm(ΨA>

q-ι)= {0} ifq=O.

Proof. From Theorem 3.3, σ(D^'9)\{0} C[m, oo) where m=inf σ(A)>0.
Thus from the above lemma,

Λf OB) = Ker(Πi ?)ΘIm(Π^ 5) = %

For ?=(), Πfc^Bϊ' W , thus Im(Π^°)Clm(δr °). On the other hand, since

Al'\B)=Keτφp

A-
0)φlmφψ 0) and Ker(ΠV)=Ker(3V), we have Im(Π^°)=

Im(3$' °). Therefore, Im(D^β)=Iπi(8ί* 0) and Λ! ° ( B ) = ^ 0ΘIm(32* °).

Next we show (4.3) for q>\. We note Qί(1=W *Sίi1+^ίt~1W t~1 and

hence lm(apAi)Clm{Bip't)®lm(Bp

A-
q-1). On the other hand, since A{ f ( β ) =

Ker(31 «) Π KerίSJ' - ^ e M δ ί ' JφImίS^ -1) and Ker(Π^ ') = Ker(%«) Π
"1), we have ImtD'/j^Im^^JΘIm^/- 1). Therefore,

^ ' " 1 ) a n d A5 «(B)=WΘIm(gi' )ΘIm(% -1). D

We define 3^-cohomology group as follows

(4.4) φ* (B)
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From Theorem 4.3, Ktτ(9Jίη=lmφίp^=Im{Ψj(q-1)®ψjί9. Therefore &p

A>
q{B)

~ψA'
q and thus the following theorem can be obtained.

Theorem 4.4. It holds that

(4.5) ®A^=\Ho\%B:Ap>\Hi)c) for q=0.

Appendix A The fundamentals concerning the complexification

of a complex separable Hubert space

Let if be a complex separable Hubert space with inner product ( )H and

{en}n=i be its ONB. The adjoint space of H> denoted by i/*, is a space of C-

linear continuous functional on H and becomes a complex separable Hubert

space with the following inner rpoduct:

H becomes a real separable Hubert space with respect to the following inner

product,

(A.2) (χ,y)R

We denote this real Hubert space by HR. HR has a natural complex structure

/defined by Jx=V— lx for x^HR. Then it holds that J2= — ly J is skew-

adjoint and {eH9JeM}ΐmi is an ONB of HR.

The adjoint space of HRy denoted by i/*, is a space of Λ-linear continuous

functionals on HR and becomes a real separable Hubert space with respect to

the following inner product:

(A.3) (φ, y]r)H*R = Σ {<&, eM> < ψ , *„>+<<?>, Jen

for φ,

A complex structure / ' on H% is defined by ζj'φ, x>=(φ,Jx> for

XEΞHR.

Let (H%)e=HR®C, the complexification of i / | . An inner product on (H%)c

is given by (φ®^,ψ®w)(H*ι)c = (φ,'ψ)H*tzW for φyΛlr^H*yz,w^C, which is

extended by the Λ-linearlity in each argument. Then (H^)c becomes a complex

separable Hubert space with respect to this inner product. (i/*)c is naturally

regarded as a space of C-valued i?-linear functionals on HR by ζφ®zy #)>—

ζ<py xyz. Then its inner product is also given by

(A.4) (ξ,v)(H%y = Σ Kξ,eny<v,eny+^Jeny<v,Jeny} for ξ,ηtΞ{H%)c.
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Λ-linear operator / ' can be extended to a C-lineaf operator on (i/*)c by

J'{φ®z)=(J'φ)®z. We note that J'2= — l and ]' is skew-adjoint on (Hf)c.

Thus {H%)c is orthogonally decomposed as a sum of Ker(/'—λ/—1) and

Ker(/'+\/—1), where Ker(/'—\/—l)=H*> the space of C-linear continuous

functionals on HR and Ker(/ '+\/—1)=/?*, the space of anti C-linear con-

tinuous functionals on HR.

Complex conjugate on {H%)° is given by φ®z—φ®z. Then ζφ®z, #>=
Ksp®zy X

s} for x^HR, so if 0Gi/*, then 5 G H * and vice versa.
We note difference between the inner product on H* induced from (H$)c

and the original one. For #,

(A.5) (θ, V\H*Y = Σ {<<?, *„> <9, e»>+<^, J

= 2 Σ { < 0 , 0 <π, en>} = 2((9,97)^*.

Thus if {<9Λ>~=i is an ONB of H*9 then {-y= θny -j=9n}ϊml becomes an ONB of

For an operator C on //*, we define an operator C on i/* as follows:

(A.6) <Cζ,x> = <Cζ7x> for

Complex conjugate defines anti-unitary isomorphism from H* to 5 * . Thus
C and C are anti-uintarily isomorphic and if C is self-adjoint, then C is also
self-adjoint and they are isomorphic.

Appendix B Complex Gaussian random variables and Wick product

Let Z=X-\-\/ —\Y be a complex random variable with mean 0. We call
Z a complex Gaussian random variable if X and Y are independent and identical-
ly distributed Gaussian random variables. This is equivalent to stating that

£[exp(\/^=:TRe(αZ))]=exp(-— \a\2E[ZZ]) for any a^C.
4

Complex random variables Zλ*"Zn are called jointly complex Gaussian ran-
dom variables if for any α f α^GC, <x>-&\Λ \~ocnZn becomes a complex Gaus-
sian random variable.

Proposition B.I. Let Zx,~,Zn Wλ, --->Wm be jointly complex Gaussian
random variables. Then it holds that

(B.I) E[Z1'"ZuWl-'Wu^ = Q if

(B.2) E[Z1-Z,W1-Wn]= Σ
σe©.



244 T . NlSHIMURA

where @rt denotes the permutation group on n letters.

For jointly complex Gaussian random variables Zj, •••,£», Wly •••, Wmy we

define their Wick product: Zx ^ZnWι" Wm\ by induction with respect to (n, m)

as follows,

(B.3) :Zι-Z.Wι. Wm:

= Zn :Z1~.Zn-1W1-Wm: - ±E[ZnW^ :Z1-Zn.1W1-Wj-Wm:

(B.4) :Z1-ZnW1-'Wm:

= Wm :Zι-ZnWι-Wm.ι: - ±E[ZkWm] :Z1~-Zk...ZβWι~ Wm-ι:

where ά denotes a is deleted. From this definition we can show that for jointly

complex Gaussian random variables Zj Zv,

(B.5) - | _ :Zΐi-ZϊZΐi-Zϊ>: = n$ :Zn

1ι-Z*}r1:.Z!i>Z7i-Z?>:,

(B.6) 4r- :Z;i- Z;vZΓi Z*v: = JM tZJi-Z^ZΓi-Z^-'-Z^: ,

dZ

(B.7) £ [:Z?i Z^Zfi Z™v:] = 0

and moreover the following can be proven.

Proposition B.2. (a) For jointly complex Gaussian random variables Zγ\

- zί\\ wγ\ -, wϊi, z?\ ••', z%, w?\»., ivy
(B.8) £[:Z (

1

1 )-Z<1

I'lT
(

1

1 )-l? r (

M

1

1

): :Z[2)-Z%W[2)-W%:] = 0

(b) For jointly complex Gaussian random variables Zl} , Z v ίwt:Λ £λ<z£ (Zt ,

(B.9) (:Zϊi-Zt>Z?i-Z?Ί, \Z[i-Z!?Z\ι-Z*?)L*

X, F)I2=JE'[X Ϋ] ybr complex random variables X and Y.

The proof is similar to the real case. See [5].
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