EXTERIOR PRODUCT BUNDLE OVER COMPLEX ABSTRACT WIENER SPACE

Takashi NISHIMURA

(Received April 9, 1991)

1. Introduction

In this paper, we consider a complex abstract Wiener space (CAWS) (B, H, μ), that is a triplet of a complex separable Banach space B, a complex separable Hilbert space H which is densely and continuously imbedded in B and a Borel probability measure μ on B such that

$$
\begin{equation*}
\int_{B} \exp \left(\sqrt{-1} \operatorname{Re}_{B}\langle z, \varphi\rangle_{B^{*}}\right) \mu(d z)=\exp \left(-\frac{1}{4}\|\varphi\|_{B^{*}}^{2}\right) \quad \text { for } \varphi \in B^{*} \subset H^{*} \tag{1.1}
\end{equation*}
$$

Moreover, we assume that a strictly positive self-adjoint operator A on H^{*} is given and $B^{*} \subset C^{\infty}(A)=\bigcap_{n=1}^{\infty} \operatorname{Dom}\left(A^{n}\right)$. Then we can define $D_{A} p(z)=$ $(\sqrt{A} \oplus \sqrt{\bar{A}}) D p(z)$ for $p \in \mathscr{P}(B: E), E$-valued polynomial functional on B.
H-derivative D is a fundamental tool in Malliavin's calculs ([6]), but here we consider D_{A} instead of D, because we keep quantum field theoretical models in mind. In fact, $\frac{1}{2} D_{A}^{*} D_{A}=d \Gamma(A \oplus \bar{A})$, a free Hamiltonian for a complex Bose field (and its anti-particle field).

Following [3] and [4], we regard B as an infinite dimensional manifold with cotangent space $\left(H_{R}^{*}\right)^{c}$ on each $z \in B$. Consequently its exterior product bundle becomes $B \times \Lambda\left(H_{R}^{*}\right)^{c}$ and the space of its L^{2}-sections becomes $L^{2}\left(B, \mu: \Lambda\left(H_{R}^{*}\right)^{c}\right)$, i.e. the space of $\Lambda\left(H_{R}^{*}\right)^{c}$-valued L^{2}-functions on B or $L^{2}(B, \mu) \otimes \Lambda\left(H_{R}^{*}\right)^{c}$, a tensor product of the Bosonic Fock space and the Fermionic Fock space. On this space we define an exterior derivative d_{A} using D_{A}. Then $\frac{1}{2}\left(d_{A}^{*} d_{A}+d_{A} d_{A}^{*}\right)$ $=d \Gamma(A \oplus \bar{A}) \oplus d \Lambda(A \oplus \bar{A})$, a free Hamiltonian for an $N=2$ supersymmetric quantum field.

As in the finite dimensional case, d_{A} is decomposed as $d_{A}=\partial_{A}+\bar{\partial}_{A}$, and Laplace-Beltrami operators \square_{A} and \square_{A} are defined as $\square_{A}=\partial_{A}^{*} \partial_{A}+\partial_{A} \partial_{A}^{*}$ and $\square_{A}=\bar{\partial}_{A}^{*} \bar{\partial}_{A}+\bar{\partial}_{A} \bar{\partial}_{A}^{*}$, respectively. Since $\bar{\partial}_{A}^{2}=0, \bar{\partial}_{A}$ defines an elliptic complex and $\bar{\partial}_{A}$-cohomology groups can be defined as $\mathfrak{S}_{A}^{p, q}(B)=\operatorname{Ker}\left(\bar{\partial}_{A} \mid \Lambda_{2}^{p, q}(B)\right) /$ $\operatorname{Im}\left(\bar{\partial}_{A} \mid \Lambda_{2}^{p, q-1}(B)\right)$, where $\Lambda_{2}^{p, q}(B)=L^{2}\left(B, \mu: \Lambda^{p, q}\left(H_{R}^{*}\right)^{c}\right)$, the space of square in-
tegrable (p, q)-forms.
First we show that de Rham-Hodge-Kodaira's decomposition for $\Lambda_{2}^{p, q}(B)$ holds, that is

$$
\begin{equation*}
\Lambda_{q}^{p, q}(B)=\operatorname{Im}\left(\bar{\partial}_{A} \mid \Lambda_{2}^{p, q-1}(B)\right) \oplus \operatorname{Im}\left(\bar{\partial}_{A}^{*} \mid \Lambda_{2}^{p, q}(B)\right) \oplus \mathfrak{h}_{A}^{p, q} \tag{1.2}
\end{equation*}
$$

where $\mathfrak{G}_{A_{i}}^{p, q}=\operatorname{Ker}\left(\square_{A} \mid \Lambda_{2}^{p, q}(B)\right)$, the space of harmonic (p, q)-forms (our discussion is restricted to the L^{2}-case). From this we conclude that $\mathfrak{S}_{A}^{p, q}(B)=\mathfrak{h}_{A}^{p_{A}^{q}}$ and it will be shown by using the expression $\frac{1}{2} \bar{\square}_{A}=d \Gamma(\bar{A}) \oplus d \Lambda(\bar{A})$, that $\mathfrak{G}_{A}^{p, q}=\{0\}$, if $q \leqq 1$ and $\mathfrak{G}_{A}^{p, 0}=\operatorname{Hol}^{2}\left(B: \Lambda^{p, 0}\left(H_{R}^{*}\right)^{c}\right)$, where $\operatorname{Hol}^{2}\left(B: \Lambda^{o, q}\left(H_{R}^{*}\right)^{c}\right)$ is the set of square integrable holomorphic forms.

We start with a complex separable Hilbert space H, but we regard this as a real separable Hilbert space (this space is denoted by H_{R}) and consider $\left(H_{R}^{*}\right)^{c}$, a complexification of its adjoint space $H_{R}^{*} . \quad\left(H_{R}^{*}\right)^{c}$ is decomposed as $\left(H_{R}^{*}\right)^{c}=$ $H^{*} \oplus \bar{H}^{*}$, but the inner product of H^{*} induced from $\left(H_{R}^{*}\right)^{c}$ is slightly different from original one. We sum up these algebraic fundamentals in Appendix A. In Appendix B we state some elementary facts about the Wick product for a complex Gaussian system.

Finally, the author would like to thank Professor I. Shigekawa for help and encouragement.

2. Complex abstract Wiener space

In this section we define a modified Ornstein-Uhlenbeck operator on a CAWS and show that it equals to the free Hamiltonian.

Let (B, H, μ) be a CAWS as in the section 1 and A be a strictly positive selfadjoint operator on H^{*}. Then it can be easily shown that $\left\{Z_{\theta} \mid \theta \in B^{*}\right\}$ is a complex Gaussian system satisfying

$$
\begin{array}{ll}
E\left[\left|Z_{\theta}\right|^{2}\right]=\left\|Z_{\theta}\right\|_{H^{*}}^{2} & \theta \in H^{*} \\
E\left[Z_{\theta} \bar{Z}_{\eta}\right]=(\theta, \eta)_{H^{*}} & \theta, \eta \in H^{*} \tag{2.2}
\end{array}
$$

where Z_{θ} is a complex random variable on B defined as $Z_{\theta}(z)={ }_{B}\langle z, \theta\rangle_{B^{*}}, \bar{Z}_{\eta}$ is a complex conjugate of Z_{η} and E stands for the integration under μ.

We assume that $B^{*} \subset C^{\infty}(A)$ without loss of generality. In fact, let α be a Hilbert-Schmidt operator on H^{*} and set $K=e^{-A} \alpha$. We define $(u, v)_{B}=(K u$, $K v)_{H},\|u\|_{B}^{2}=(u, u)_{B}^{1 / 2}$ for $u, v \in H$ and denote the completion of H with respect to $\|\cdot\|_{H}$ as B. Then $\left(B,\|\cdot\|_{B}\right)$ becomes a complex Banach space and there exists a Borel probability measure μ on B such that

$$
\begin{equation*}
\int_{B} \exp \left(\sqrt{-1} \operatorname{Re}_{B}\langle z, \varphi\rangle_{B^{*}}\right) \mu(d z)=\exp \left(-\frac{1}{4}\|\varphi\|_{H^{*}}^{2}\right) \quad \text { for } \varphi \in B^{*} \subset H^{*} \tag{2.3}
\end{equation*}
$$

and moreover $B^{*} \subset e^{-A} \alpha(H) \subset C^{\infty}(A)$.
A (complex-valued) polynomial functional on B is a mapping $p: B \rightarrow C$ written as

$$
\begin{equation*}
p(z)=P\left(Z_{\theta_{1}}(z), \cdots, Z_{\theta_{n}}(z), \bar{Z}_{\theta_{1}}(z), \cdots, \bar{Z}_{\theta_{n}}(z)\right) \tag{2.4}
\end{equation*}
$$

where $n \in \boldsymbol{N}, \theta_{1}, \cdots, \theta_{n} \in B^{*}, P$ is a polymomial of $2 n$-arguments with complex coefficients. If p is written in the form

$$
\begin{equation*}
p(z)=P\left(Z_{\theta_{1}}(z), \cdots, Z_{\theta_{n}}(z)\right) \tag{2.5}
\end{equation*}
$$

p is called a holomorphic polynomial functional on B.
We denote by $\mathscr{P}(B: C)$ and $\mathscr{P}_{h}(B: C)$ the set of polynomials and holomorphic polynomials on B, respectively. Moreover, for a complex separable Hilbert space E, we set $\mathscr{P}(B: E)=\mathscr{P}(B: C) \otimes E, \mathscr{P}_{h}(B: E)=\mathscr{P}_{h}(B: C) \otimes E$ (algebraic tensor product) and call them the space of E-valued polynomial functionals and E valued holomorphic polynomial functionals, respectively. For $p \in \mathscr{P}(B: E)$, its H-derivative at $z \in B$ is defined as follows

$$
\begin{equation*}
\langle D p(z), h\rangle=\left.\frac{d}{d t} p(z+t h)\right|_{t=0} \quad \text { for } \quad h \in H . \tag{2.6}
\end{equation*}
$$

$D p(z)$ is an element of $\left(H_{R}^{*}\right)^{c} \otimes E$. Since $\left(H_{R}^{*}\right)^{c} \otimes E=\left(H^{*} \otimes E\right) \oplus\left(\bar{H}^{*} \otimes E\right)$, we set $\nabla p(z)$ to be an $H^{*} \otimes E$ component and $\bar{\nabla} p(z)$ to be an $\bar{H}^{*} \otimes E$ component.

As mentioned in the section 1, we use slightly modified derivative instead of H-derivative as follows,

$$
\begin{equation*}
D_{A} p(z)=(\sqrt{A} \oplus \sqrt{\bar{A}}) D p(z) \quad p \in \mathscr{P}(B: C) \tag{2.7}
\end{equation*}
$$

For the definiton of $\sqrt{\bar{A}}$ see (A.6). We have chosen B so that $B^{*} \subset C^{\infty}(A)$, so $D p(z) \in C^{\infty}(A)$ and $(\sqrt{A} \oplus \sqrt{\bar{A}}) D p(z)$ is well defined. $D_{A} P(z)$ is decomposed as $D_{A} p(z)=\nabla_{A} p(z) \oplus \bar{\nabla}_{A} p(z)$ where $\nabla_{A} p(z)=\sqrt{A} \nabla p(z), \bar{\nabla}_{A} p(z)=\sqrt{\bar{A}} \bar{\nabla}_{A} p(z)$. We denote adjoint operators of ∇_{A} and $\bar{\nabla}_{A}$ in $L^{2}(B, \mu: E)$ by ∇_{A}^{*} and ∇_{A}^{*}, respectively. Their explicit formulas for Wick polynomials are given as follows.

Proposition 2.1. For $\theta_{1}, \cdots, \theta_{n}, \eta_{1}, \cdots, \eta_{m}, \zeta \in B^{*}$, it holds that

$$
\begin{align*}
& \nabla_{A}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}:=\sum_{j=1}^{n}: Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{l}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \sqrt{A} \theta_{j} \tag{2.8}\\
& \bar{\nabla}_{A}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\theta_{1}} \cdots \bar{Z}_{\eta_{m}}:=\sum_{j=1}^{m}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \hat{Z}_{\eta_{j}} \cdots \bar{Z}_{\eta_{m}}: \overline{\sqrt{A} \theta_{j}} \\
& \nabla_{A}^{*}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \zeta=2: Z_{V_{\bar{A}}} Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \bar{Z}_{\bar{A} \zeta} Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}:
\end{align*}
$$

Proof. As in the real case, it can be easily shown that

$$
\begin{gathered}
\nabla_{A} P\left(Z_{\theta} \bar{Z}_{\theta}\right)=\sum_{j=1}^{n} \frac{\partial P}{\partial z_{j}}\left(Z_{\theta} \bar{Z}_{\theta}\right) \sqrt{A} \theta_{j} \\
\bar{\nabla}_{A} P\left(Z_{\theta} \bar{Z}_{\theta}\right)=\sum_{j=1}^{n} \frac{\partial P}{\partial \bar{z}_{j}}\left(Z_{\theta} \bar{Z}_{\theta}\right) \overline{\sqrt{A} \theta_{j}} \\
\nabla_{A}^{*} P\left(Z_{\theta} \bar{Z}_{\theta}\right) \zeta=-2 \sum_{j=1}^{n} \frac{\partial P}{\partial z_{j}}\left(Z_{\theta} \bar{Z}_{\theta}\right)\left(\zeta, \sqrt{A} \theta_{j}\right)_{H^{*}}+2 Z_{V_{\bar{A} \zeta}} P\left(Z_{\theta} \bar{Z}_{\theta}\right) \\
\bar{\nabla}_{A}^{*} P\left(Z_{\theta} \bar{Z}_{\theta}\right) \zeta=-2 \sum_{j=1}^{n} \frac{\partial P}{\partial \bar{z}_{j}}\left(Z_{\theta} \bar{Z}_{\theta}\right)\left(\sqrt{A} \theta_{j}, \zeta\right)_{H^{*}}+2 \bar{Z}_{V_{\bar{A} \zeta} \zeta}\left(P\left(Z_{\theta} \bar{Z}_{\theta}\right)\right.
\end{gathered}
$$

where $P\left(Z_{\theta}, \bar{Z}_{\theta}\right)=P\left(Z_{\theta_{1}}, \cdots, Z_{\theta_{n}}, \bar{Z}_{\theta_{1}}, \cdots, \bar{Z}_{\theta_{n}}\right) \in \mathscr{P}(B: C), \zeta \in B^{*}$ (see e.g. [6]). Combining this with (2.2) (B.3) $\sim($ B.6), we can prove (2.8) ~ 2.11).

Therefore ∇_{A}^{*} and $\bar{\nabla}_{A}^{*}$ are densely defined operators, so ∇_{A} and $\bar{\nabla}_{A}$ are closable and we denote their closures by the same symbols.

Next we obtain the kernel of $\bar{\nabla}_{A}$.

Proposition 2.2. It holds that

$$
\begin{equation*}
\operatorname{Ker}\left(\bar{\nabla}_{A}\right)=\operatorname{Hol}^{2}(B: E) \tag{2.12}
\end{equation*}
$$

where $\operatorname{Hol}^{2}(B: E)$ is the closure of $\mathscr{P}_{h}(B: E)$ in $L^{2}(B, \mu: E)$.
Proof. We give a proof for $\boldsymbol{E}=\boldsymbol{C}$. General cases can be proved similarly. First we introduce some notations. Let $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ be an ONB of H^{*}.

$$
\begin{aligned}
& \mathfrak{A}=\left\{n=\left(n_{j}\right)_{j=1}^{\infty} \in Z_{+}^{N} \mid \sum_{j=1}^{\infty} n_{j}<\infty\right\}, \quad Z_{+}=\{0,1,2,3, \cdots\}, \\
& W_{n, m}=\prod_{j=1}^{\infty}\left(n_{j}!m_{j}!\right)^{-1 / 2}: \prod_{j=1}^{\infty} Z_{\theta_{j}}^{n_{j}} \bar{Z}_{\theta_{j}}^{m_{j}}:, \quad n, m \in \mathfrak{A}, \\
& \mathfrak{A}_{N}=\left\{n=\left(n_{j}\right)_{j=1}^{\infty} \in \mathfrak{A}^{\infty} \mid n_{j}=0 \quad \text { if } j>N\right\}, \\
& L_{N}=\left[W_{n, m} \mid n, m \in \mathfrak{A}_{N}\right]^{-1 \cdot \|_{2}}, \\
& P_{N}: L^{2}(B, \mu) \rightarrow L_{N} \text { orthogonal projection, } \\
& p_{N}: \bar{H}^{*} \rightarrow\left[\theta_{1}, \cdots, \theta_{N}\right] \text { orthogonal projection, }
\end{aligned}
$$

where $[\cdot]$ stands for the linear span and $-\|\cdot\|_{2}$ means the closure in $L^{2}(B, \mu)$. $\left\{W_{n, m}\right\}_{n, m \in \Omega}$ forms an ONB of $L^{2}(B, \mu)$, so P_{N} converges strongly to the identity and it holds that

$$
\begin{equation*}
P_{N} \circ \bar{\nabla}_{A}^{*} W_{n, m} \bar{\theta}_{j}=\sum_{k=1}^{N} 2\left(\theta_{k}, A \theta_{j}\right)_{H^{*}}\left(m_{k}+1\right)^{1 / 2} W_{n, m+\varepsilon_{k}} \quad n, m \in \mathfrak{A}_{N} \tag{2.13}
\end{equation*}
$$

where $\varepsilon_{k}=(0, \cdots, 0 \stackrel{k}{1}, 0, \cdots) \in \mathfrak{Y}$, and moreover $P_{N} \otimes p_{N} \circ \bar{\nabla}_{A}=\bar{\nabla}_{A} \circ P_{N}$.
If $F \in \operatorname{Ker}\left(\bar{\nabla}_{A}\right)=\operatorname{Im}\left(\bar{\nabla}_{A}^{*}\right)^{\perp}$, then for $n, m \in \mathfrak{Q}_{N}, j \in\{1 \cdots N\}$,

$$
\begin{aligned}
0 & =\left(\bar{\nabla}_{A} F, W_{n, m} \bar{\theta}_{j}\right)=\left(P_{N} \otimes p_{N} \circ \bar{\nabla}_{A} F, W_{n, m} \bar{\theta}_{j}\right) \\
& =\left(\bar{\nabla}_{A} \circ P_{N} F, W_{n, m} \bar{\theta}_{j}\right)=\left(F, P_{N} \circ \bar{\nabla}_{A}^{*} W_{n, m} \bar{\theta}_{j}\right) \\
& =2 \sum_{k=1}^{N}\left(A \theta_{j}, \theta_{k}\right)_{H^{*}}\left(m_{k}+1\right)^{1 / 2}\left(F, W_{n, m+e_{k}}\right)
\end{aligned}
$$

Since A is strictly positive, we have

$$
\left(F, W_{n, m+\varepsilon_{k}}\right)=0, \quad n, m \in \mathfrak{A}_{N}, \quad k \in\{1 \cdots N\}, \quad N \in N .
$$

Thus we have $F \in\left[W_{n, 0} \mid n \in \mathfrak{R}\right]^{-\|\cdot\|_{2}}=\overline{\mathscr{P}_{h}(B: C)}{ }^{\|\cdot\|_{2}}=\operatorname{Hol}^{2}(B: C)$ and hence $\operatorname{Ker}\left(\bar{\nabla}_{h}\right) \subset \operatorname{Hol}^{2}(B: C)$.

Conversely it is easy to see that $\operatorname{Hol}^{2}(B: C) \subset \operatorname{Ker}\left(\bar{\nabla}_{A}\right)$. This completes the proof.

We set

$$
\begin{equation*}
L_{A}=-\nabla_{A}^{*} \nabla_{A} \quad L_{\bar{A}}=-\bar{\nabla}_{A}^{*} \bar{\nabla}_{A}^{*} . \tag{2.14}
\end{equation*}
$$

Then L_{A} and $L_{\bar{A}}$ are negative self-adjoint operators on $L^{2}(B, \mu)$. Let us show that L_{A} and $L_{\bar{A}}$-correspond to the Hamiltonian for complex Bosons and their antiparticles, respectively.

Definition 2.3. Bosonic second quantized operator of A and \bar{A} on $L^{2}(B, \mu)$ is defined on the Wick polynomials as follows

$$
\begin{align*}
& d \Gamma(A): Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}:=\sum_{j=1}^{n}: Z_{\theta_{1}} \cdots Z_{A \theta_{j}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \tag{2.15}\\
& d \Gamma(\bar{A}): Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}:=\sum_{j=1}^{m}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{A \eta_{j}} \cdots \bar{Z}_{\eta_{m}}: \tag{2.16}
\end{align*}
$$

where $\theta_{1}, \cdots, \theta_{n}, \eta_{1}, \cdots, \eta_{m} \in B^{*} . d \Gamma(A)$ and $d \Gamma(\bar{A})$ are essentially self-adjoint on the space of the Wick polynomials and we denote its closure by the same symbol (see e.g. [2]).

Theorem 2.4. It holds that

$$
\begin{equation*}
L_{A}=-2 d \Gamma(A) \quad L_{\bar{A}}=-2 d \Gamma(\bar{A}) \tag{2.17}
\end{equation*}
$$

Proof. To prove (2.17), it is enough to show that

$$
L_{A} p=-2 d \Gamma(A) p \quad L_{\bar{A}} p=-2 d \Gamma(\bar{A}) p
$$

for a Wick polynomial $p=: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}:$. By Proposition 2.1,

$$
\begin{aligned}
& L_{A}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}:=-\nabla_{A}^{*} \nabla_{A}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \\
= & -\sum_{j=1}^{n} \nabla_{A}^{*}: Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{j}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \sqrt{ } \bar{A} \theta_{j}=-2 \sum_{j=1}^{n}: Z_{A \theta_{j}} Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{j}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \\
= & -2 d \Gamma(A): Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: .
\end{aligned}
$$

The latter can be proved similarly.

3. An exterior product bundle

Let us define an exterior product bundle over a CAWS. To do this, let $\Lambda\left(H_{R}^{*}\right)^{c}=\bigoplus_{n=0}^{\infty} \Lambda^{n}\left(H_{R}^{*}\right)^{c}$ where $\Lambda^{n}\left(H_{R}^{*}\right)^{c}$ is an anti-symmetric part of n-tensor product of $\left(H_{R}^{*}\right)^{c}$ and its inner product is given by

$$
\begin{equation*}
(\omega, \eta)=\frac{1}{n!}(\omega, \eta)_{\otimes^{n}\left(H_{R}^{*}\right)^{c}} \quad \text { for } \quad \omega, \eta \in \Lambda^{n}\left(H_{R}^{*}\right)^{c}, \tag{3.1}
\end{equation*}
$$

where $(\cdot)_{\otimes^{n}\left(H_{R}^{*}\right)^{c}}$ is the natural inner product on $\otimes^{n}\left(H_{R}^{*}\right)^{c}$. We define an exterior product of $\omega \in \Lambda^{n}\left(H_{R}^{*}\right)^{c}$ and $\eta \in \Lambda^{n}\left(H_{R}^{*}\right)^{c}$ by

$$
\begin{equation*}
\omega \wedge \eta=\frac{(n+m)!}{n!m!} A_{n+m} \omega \otimes \eta \tag{3.2}
\end{equation*}
$$

where \mathcal{A}_{n+m} is an $(n+m)$-th normalized anti-symmetrization defined by

$$
\begin{equation*}
\mathcal{A}_{n}\left(\omega_{1} \otimes \cdots \otimes \omega_{n}\right)=\frac{1}{n!} \sum_{\sigma \in \Theta_{n}} \operatorname{sgn}(\sigma) \omega_{\sigma_{1}} \otimes \cdots \otimes \omega_{\sigma_{n}} \tag{3.3}
\end{equation*}
$$

We set $\Lambda^{p, q}\left(H_{R}^{*}\right)^{c}=\Lambda^{p} H^{*} \Lambda \Lambda^{q} \bar{H}^{*}$. Then

$$
\begin{equation*}
\Lambda^{n}\left(H_{R}^{*}\right)^{c}=\underset{p+q+n}{\oplus} \Lambda^{p, q}\left(H_{R}^{*}\right)^{c} \tag{3.4}
\end{equation*}
$$

Exterior derivative $d_{A}=\partial_{A}+\bar{\partial}_{A}$ on polynomial functionals is defined as follows

$$
\begin{align*}
& d_{A} \omega=(n+1) \mathcal{A}_{n+1} D_{A} \omega \tag{3.5}\\
& \partial_{A} \omega=(n+1) \mathcal{A}_{n+1} \nabla_{A} \omega \tag{3.6}\\
& \dot{\partial}_{A} \omega=(n+1) \mathcal{A}_{n+1} \bar{\nabla}_{A} \omega \tag{3.7}
\end{align*}
$$

for $\omega \in \mathscr{P}\left(B: \Lambda^{n}\left(H_{R}^{*}\right)^{c}\right)$. We denote adjoint operators of ∂_{A} and ∂_{A} in $L^{2}\left(B, \mu: \Lambda\left(H_{R}^{*}\right)^{c}\right)$ by ∂_{A}^{*} and $\bar{\partial}_{A}^{*}$, respectively. Then it holds as in the real case ([3])
(3.9) $\bar{\partial}_{A} f(z) \theta_{1} \wedge \cdots \wedge \theta_{p} \wedge \bar{\eta}_{q} \wedge \cdots \wedge \bar{\eta}_{q}=\bar{\nabla}_{A} f(z) \wedge \theta_{1} \wedge \cdots \wedge \theta_{p} \wedge \bar{\eta}_{1} \wedge \cdots \wedge \bar{\eta}_{q}$
(3.11) $\bar{\partial}_{A}^{*} f(z) \theta_{1} \wedge \cdots \wedge \theta_{p} \wedge \bar{\eta}_{1} \wedge \cdots \wedge \bar{\eta}_{q}=\sum_{j=1}^{q}(-1)^{p+j-1} \bar{\nabla}_{A}^{*}\left(f(z) \bar{\eta}_{j}\right) \theta_{1} \wedge \cdots \wedge \theta_{p}$

$$
\wedge \bar{\eta}_{1} \wedge \cdots \wedge \hat{\bar{\eta}}_{j} \wedge \cdots \wedge \bar{\eta}_{q}
$$

where $f \in \mathscr{P}(B: \boldsymbol{C}), \theta_{1}, \cdots, \theta_{p}, \eta_{1}, \cdots, \eta_{q} \in B^{*}$. Thus ∂_{A}^{*} and ∂_{A}^{*} are densely defined operators and so ∂_{A} and $\bar{\partial}_{A}$ are closable. We denote their closures by the same symbols. Then we easily have the following.

Proposition 3.1. It holds that

$$
\begin{equation*}
d_{A}^{2}=0 \tag{3.12}
\end{equation*}
$$

and

$$
\begin{array}{lll}
\partial_{A}^{2}=0 & \bar{\partial}_{A}^{2}=0 & \partial_{A} \bar{\partial}_{A}+\bar{\partial}_{A} \bar{\partial}_{A}=0 \\
\bar{\partial}_{A}^{* 2}=0 & \bar{\partial}_{A}^{* 2}=0 & \partial_{A}^{*} \bar{\partial}_{A}^{*}+\bar{\partial}_{A}^{*} \partial_{A}^{*}=0 . \tag{3.14}
\end{array}
$$

Laplace-Beltrami operators \square_{A} and $\bar{\square}_{A}$ are defined as follows

$$
\begin{equation*}
\square_{A}=\partial_{A} \partial_{A}^{*}+\partial \partial_{A}^{*} \partial_{A}, \quad \square_{A}=\bar{\partial}_{A} \bar{\partial}_{A}^{*}+\bar{\partial}_{A}^{*} \bar{\partial}_{A} . \tag{3.15}
\end{equation*}
$$

Then \square_{A} and \square_{A} are positive self-adjoint operators on $\operatorname{Dom}\left(\partial_{A} \partial_{A}^{*}\right) \cap$ $\operatorname{Dom}\left(\partial_{A}^{*} \partial_{A}\right)$ and $\operatorname{Dom}\left(\bar{\partial}_{A} \bar{\partial}_{A}^{*}\right) \cap \operatorname{Dom}\left(\bar{\partial}_{A}^{*} \bar{\partial}_{A}\right)$, respectively ([1]). We will show that \square_{A} and \square_{A} correspond to the free Hamiltonian of supersymmetric particle field and its antiparticle field, respectively.

Definition 3.2. Fermionic second quantized operators of A and \bar{A} respectively, on $\Lambda\left(H_{R}^{*}\right)^{c}$ are defined as follows

$$
\begin{array}{r}
d \Lambda(A) \theta_{1} \wedge \cdots \wedge \theta_{p} \wedge \bar{\eta}_{1} \wedge \cdots \wedge \bar{\eta}_{q}=\sum_{j=1}^{p} \theta_{1} \wedge \cdots \wedge \theta_{j} \wedge \cdots \wedge A \theta_{p} \\
\wedge \bar{\eta}_{1} \wedge \cdots \wedge \bar{\eta}_{q} \\
d \Lambda(\bar{A}) \theta_{1} \wedge \cdots \wedge \theta_{p} \wedge \bar{\eta}_{1} \wedge \cdots \wedge \bar{\eta}_{q}=\sum_{j=1}^{q} \theta_{1} \wedge \cdots \wedge \theta_{p} \wedge \bar{\eta} \wedge \cdots \wedge \tag{3.17}\\
\bar{A}_{\bar{\eta}_{j}} \wedge \cdots \wedge \bar{\eta}_{q}
\end{array}
$$

where $\theta_{1}, \cdots, \theta_{p}, \eta_{1}, \cdots, \eta_{q} \in B^{*}$. Then $d \Lambda(A)$ and $d \Lambda(\bar{A})$ are essentially selfadjoint on $\bigoplus_{n=0}^{\infty} \Lambda^{n}\left(B^{*} \oplus \bar{B}^{*}\right)$ (algebraic sense) ([2]). We denote their closures by the same symbols.

Theorem 3.3. It holds that

$$
\begin{align*}
& \square_{A}=-L_{A}+2 d \Lambda(A)=2(d \Gamma(A)+d \Lambda(A)) \tag{3.18}\\
& \bar{\square}_{A}=-L_{\bar{A}}+2 d \Lambda(\bar{A})=2(d \Gamma(\bar{A})+d \Lambda(\bar{A})) \tag{3.19}
\end{align*}
$$

Proof. To prove (3.18), it is enough to show that

$$
\begin{aligned}
& \square_{A}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \bar{\xi}_{1} \wedge \cdots \wedge \bar{\xi}_{q} \\
= & 2(d \Gamma(A)+d \Lambda(A)): Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \bar{\xi}_{1} \wedge \cdots \wedge \bar{\xi}_{q}
\end{aligned}
$$

for $\theta_{1}, \cdots, \theta_{n}, \eta_{1}, \cdots, \eta_{m}, \omega_{1}, \cdots, \omega_{p}, \xi_{1}, \cdots, \xi_{q} \in B^{*}$.

$$
\begin{aligned}
& \partial_{A} \partial_{A}^{*}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \bar{\xi}^{1} \wedge \cdots \wedge \bar{\xi}_{q} \\
&= \partial_{A} \sum_{j=1}^{p}(-1)^{j-1} \nabla_{A}^{*}\left(: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{j}\right) \omega_{1} \wedge \cdots \wedge \hat{\omega}_{j} \wedge \cdots \wedge \omega_{p} \wedge \bar{\xi}_{1} \wedge \cdots \wedge \xi_{q} \\
&= \partial_{A} \sum_{j=1}^{p}(-1)^{j-1} 2: Z_{V_{\bar{A}_{m_{j}}}} Z_{\theta_{1}} \cdots Z_{\eta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{1} \wedge \cdots \wedge \hat{\omega}_{j} \wedge \cdots \wedge \omega_{p} \wedge \bar{\xi}_{1} \wedge \cdots \wedge \bar{\xi}_{q} \\
&= 2 \sum_{j=1}^{p}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{1} \wedge \cdots \wedge A \omega_{j} \wedge \cdots \wedge \omega_{p} \wedge \xi_{1} \wedge \cdots \wedge \xi_{q} \\
&+ \sum_{k=1}^{n}(-1)^{j-1}: Z_{v_{\bar{A}_{\omega j}}} Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{k}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \sqrt{A} \theta_{k} \wedge \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \cdots \wedge \omega_{p} \\
& \wedge \xi_{1} \wedge \cdots \wedge \xi_{q}
\end{aligned}
$$

$$
\partial_{A}^{*} \partial_{A}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \xi_{1} \wedge \cdots \wedge \xi_{q}
$$

$$
=\partial_{A}^{*} \sum_{k=1}^{n}: Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{k}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \sqrt{A} \theta_{k} \wedge \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \xi_{1} \wedge \cdots \wedge \xi_{q}
$$

$$
=\sum_{k=1}^{n} \nabla_{A}^{*}\left(: Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{k}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \sqrt{A} \theta_{k}\right) \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \xi_{1} \wedge \cdots \wedge \xi_{q}
$$

$$
+\sum_{k=1}^{n} \sum_{j=1}^{p}(-1)^{j} \nabla_{A}^{*}\left(: Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{k}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{j}\right) \sqrt{A} \theta_{k} \wedge \omega_{1} \wedge \cdots \wedge \hat{\omega}_{j} \wedge \cdots \wedge \omega_{p}
$$

$$
\wedge \bar{\xi}_{1} \wedge \cdots \wedge \xi_{q}
$$

$$
=2 \sum_{k=1}^{n}: Z_{\theta_{1}} \cdots Z_{A \theta_{k}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \omega_{1} \wedge \cdots \wedge \omega_{p} \wedge \xi_{1} \wedge \cdots \wedge \xi_{q}
$$

$$
+2 \sum_{k=1}^{n} \sum_{j=1}^{p}(-1)^{j}: Z_{V_{\bar{A} \omega_{j}}} Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{k}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}}: \sqrt{A} \theta_{k} \wedge \omega_{1} \wedge \cdots \wedge \hat{\omega}_{j} \wedge \cdots \wedge \omega_{p}
$$

$$
\wedge \xi_{1} \wedge \cdots \wedge \xi_{q}
$$

Thus (3.20) holds. (3.19) can be proved similarly.

4. $\overline{\boldsymbol{\partial}}_{A}$-cohomology group of a complex abstract Wiener space

In this section we shall define $\bar{\partial}_{A}$-cohomology group and determine their structure. First we shall define (p, q)-harmonic forms and prove de Rham-Hodge-Kodaira's decomposition. From this decomposition it is clear that $\bar{\partial}_{A^{\prime}}$-cohomology groups are isomorphic to the spaces of harmonic forms and so their structure can be determined completely.

Definition 4.1. We set

$$
\begin{equation*}
\mathfrak{G}_{A}^{p, q}=\operatorname{Ker}\left(\bar{\square}_{A}^{p, q}\right) \tag{4.1}
\end{equation*}
$$

and call its element a harmonic (p, q)-form, where $\bar{\square}_{A}^{p, q}$ is the restriction of \square_{A} to $\Lambda_{2}^{p, q}(B)=L^{2}\left(B, \mu: \Lambda^{p, q}\left(H_{R}^{*}\right)^{c}\right)$.

We shall determine the structure of $\mathfrak{G}_{A}^{p, q}$

Proposition 4.2.

$$
\mathfrak{G}_{A}^{p, q}= \begin{cases}\{0\} & \text { for } \quad q \geq 1, \tag{4.2}\\ \operatorname{Hol}^{2}\left(B: \Lambda^{p, 0}\left(H_{R}^{*}\right)^{c}\right) & \text { for } \quad q=0 .\end{cases}
$$

Proof. For $q \geq 1$, from (3.19),

$$
\square_{A}^{D_{q} q}=-L_{A}+2 d \Gamma(A)_{q} .
$$

Thus $\square_{A}^{p, q}$ is a strictly positive definite self-adjoint operator and $\operatorname{Ker}\left(\square_{A}^{p, q}\right)=$ $\{0\}$. For $q=0$, from (3.19) and (2.12)

$$
\operatorname{Ker}\left(\square_{A}^{p, q}\right)=\operatorname{Ker}\left(L_{A}\right)=\operatorname{Ker}\left(\nabla_{A}\right)=\operatorname{Hol}^{2}\left(B, \mu: \Lambda^{p, 0}\left(H_{R}^{*}\right)^{c}\right) .
$$

Now we can show de Rham-Hodge-Kodaira's decomposition. It is easy to show the following lemma, so we omit the proof.

Lemma. Let \mathcal{H} be a complex separable Hilbert space, A be a self-adjoint operator on \mathcal{H} and $\sigma(|A|)$ be the spectrum of $|A|$. If $\sigma(|A|) \backslash\{0\} \subset[m, \infty)$ for a positive constant m, then A has a closed range.

Theorem 4.3. $\quad \Lambda_{2}^{p, q}(B)$ is orthogonally decomposed as follows

$$
\begin{equation*}
\Lambda_{2}^{p, q}(B)=\operatorname{Im}\left(\bar{\partial}_{A}^{p, q-1}\right) \oplus \operatorname{Im}\left(\bar{\partial}_{A}^{* p, q}\right) \oplus \mathfrak{h}_{A}^{p, q} \tag{4.3}
\end{equation*}
$$

where $\bar{\partial}_{A}^{p, q}$ is the restriction of $\bar{\partial}_{A}$ to $\Lambda_{2}^{p, q}(B)$ and $\bar{\partial}_{A}^{* p, q}$ is the restriction of $\bar{\partial}_{A}^{*}$ to $\Lambda_{2}^{p, q+1}(B)$. We set $\operatorname{Im}\left(\bar{\partial}_{A}^{b, q-1}\right)=\{0\}$ if $q=0$.

Proof. From Theorem 3.3, $\sigma\left(\square_{A}^{p, q}\right) \backslash\{0\} \subset[m, \infty)$ where $m=\inf \sigma(A)>0$. Thus from the above lemma,

$$
\Lambda_{2}^{p, q}(B)=\operatorname{Ker}\left(\bar{\square}_{A}^{p, q}\right) \oplus \operatorname{Im}\left(\bar{\square}_{A}^{q, q}\right)=\mathfrak{h}_{A}^{p, q} \oplus \operatorname{Im}\left(\bar{\square}_{A}^{p, q}\right) .
$$

For $q=0, \bar{\square}_{A}^{p, 0}=\bar{\partial}_{A}^{\neq p, 0} \bar{\partial}_{A}^{b, 0}$, thus $\operatorname{Im}\left(\bar{\square}_{A}^{p, 0}\right) \subset \operatorname{Im}\left(\bar{\partial}_{A}^{\not p, 0}\right)$. On the other hand, since $\Lambda_{2}^{p, 0}(B)=\operatorname{Ker}\left(\bar{\partial}_{A}^{b, 0}\right) \oplus \overline{\operatorname{Im}\left(\bar{\partial}_{A}^{p, 0,0}\right)}$ and $\operatorname{Ker}\left(\bar{\square}_{A}^{p, 0}\right)=\operatorname{Ker}\left(\bar{\partial}_{A}^{b, 0}\right)$, we have $\operatorname{Im}\left(\bar{\square}_{A}^{p, 0}\right)=$ $\overline{\operatorname{Im}\left(\partial_{A}^{* p, 0}\right)}$. Therefore, $\operatorname{Im}\left(\bar{\square}_{A}^{p, 0}\right)=\operatorname{Im}\left(\partial_{A}^{* p, 0}\right)$ and $\Lambda_{2}^{p, 0}(B)=\mathfrak{G}_{A}^{p, 0} \oplus \operatorname{Im}\left(\partial_{A}^{* p, 0}\right)$.

Next we show (4.3) for $q \geq 1$. We note $\bar{\square}_{A}^{p, q}=\bar{\partial}_{A}^{* p, q} \bar{\partial}_{A}^{p, q}+\bar{\partial}_{A}^{p, q-1} \bar{\partial}_{A}^{* p, q-1}$ and hence $\operatorname{Im}\left(\bar{\square}_{A}^{p, q}\right) \subset \operatorname{Im}\left(\bar{\partial}_{A}^{* p, q}\right) \oplus \operatorname{Im}\left(\bar{\partial}_{A}^{p, q-1}\right)$. On the other hand, since $\Lambda_{2}^{p, q}(B)=$ $\operatorname{Ker}\left(\bar{\partial}_{A}^{\phi, q}\right) \cap \operatorname{Ker}\left(\bar{\partial}_{A}^{* p, q-1}\right) \oplus \overline{\operatorname{Im}\left(\bar{\partial}_{A}^{* p, q}\right)} \oplus \overline{\operatorname{Im}\left(\bar{\partial}_{A}^{\phi, q-1}\right)} \quad$ and $\quad \operatorname{Ker}\left(\bar{\square}_{A}^{p, q}\right)=\operatorname{Ker}\left(\bar{\partial}_{A}^{\phi, q}\right) \cap$ $\operatorname{Ker}\left(\bar{\partial}_{A}^{* p, q-1}\right)$, we have $\operatorname{Im}\left(\bar{\square}_{A}^{p, q}\right)=\overline{\operatorname{Im}\left(\bar{\partial}_{A}^{* p, q}\right)} \oplus \overline{\operatorname{Im}\left(\bar{\partial}_{A}^{p, q-1}\right)}$. Therefore, $\operatorname{Im}\left(\bar{\square}_{A}^{p, q}\right)=$ $\operatorname{Im}\left(\bar{\partial}_{A}^{* p, q}\right) \oplus \operatorname{Im}\left(\bar{\partial}_{A}^{p, q-1}\right)$ and $\Lambda_{2}^{p, q}(B)=\mathfrak{h}_{A}^{p, q} \oplus \operatorname{Im}\left(\bar{\partial}_{A}^{* p, q}\right) \oplus \operatorname{Im}\left(\bar{\partial}_{A}^{b, q-1}\right)$.

We define $\bar{\partial}_{A^{-}}$-cohomology group as follows

$$
\begin{equation*}
\mathfrak{S}_{A}^{p, q}(B)=\operatorname{Ker}\left(\widetilde{\partial}_{A}^{b, q}\right) / \operatorname{Im}\left(\bar{\partial}_{A}^{b, q-1}\right) . \tag{4.4}
\end{equation*}
$$

From Theorem 4.3, $\operatorname{Ker}\left(\bar{\partial}_{A}^{b, q}\right)=\operatorname{Im}\left(\bar{\partial}_{A}^{* p, q}\right)^{\perp}=\operatorname{Im}\left(\bar{\partial}_{A}^{p, q-1}\right) \oplus \mathfrak{h}_{A}^{p, q} . \quad$ Therefore $\mathfrak{S}_{A}^{p, q}(B)$ $=\mathfrak{h}_{A}^{p, q}$ and thus the following theorem can be obtained.

Theorem 4.4. It holds that

$$
\mathfrak{S}_{A}^{p, b}(B)= \begin{cases}\{0\} & \text { for } q \geq 1, \tag{4.5}\\ \operatorname{Hol}^{2}\left(B: \Lambda^{p, 0}\left(H_{R}^{*}\right)^{c}\right) & \text { for } q=0 .\end{cases}
$$

Appendix A The fundamentals concerning the complexification of a complex separable Hilbert space

Let H be a complex separable Hilbert space with inner product ($)_{H}$ and $\left\{e_{n}\right\}_{n=1}^{\infty}$ be its ONB. The adjoint space of H, denoted by H^{*}, is a space of \boldsymbol{C} linear continuous functionals on H and becomes a complex separable Hilbert space with the following inner rpoduct:

$$
\begin{equation*}
(\theta, \eta)_{H^{*}}=\sum_{n=1}^{\infty}\left\langle\theta, e_{n}\right\rangle \overline{\left\langle\eta, e_{n}\right\rangle} \quad \text { for } \quad \theta, \eta \in H^{*} \tag{A.1}
\end{equation*}
$$

H becomes a real separable Hilbert space with respect to the following inner product,

$$
\begin{equation*}
(x, y)_{R}=\operatorname{Re}(x, y)_{H} \tag{A.2}
\end{equation*}
$$

We denote this real Hilbert space by $H_{R} . \quad H_{R}$ has a natural complex structure J defined by $J x=\sqrt{-1} x$ for $x \in H_{R}$. Then it holds that $J^{2}=-1, J$ is skewadjoint and $\left\{e_{n}, J e_{n}\right\}_{n=1}^{\infty}$ is an ONB of H_{R}.

The adjoint space of H_{R}, denoted by H_{R}^{*}, is a space of \boldsymbol{R}-linear continuous functionals on H_{R} and becomes a real separable Hilbert space with respect to the following inner product:

$$
\begin{align*}
&(\varphi, \psi)_{H_{R}^{*}}=\sum_{n=1}^{\infty}\left\{\left\langle\varphi, e_{n}\right\rangle\left\langle\psi, e_{n}\right\rangle+\left\langle\varphi, J e_{n}\right\rangle\left\langle\psi, J e_{n}\right\rangle\right\} \tag{A.3}\\
& \text { for } \varphi, \psi \in H_{R}^{*} .
\end{align*}
$$

A complex structure J^{\prime} on H_{R}^{*} is defined by $\left\langle J^{\prime} \varphi, x\right\rangle=\langle\varphi, J x\rangle$ for $\varphi \in H_{R}^{*}$, $x \in H_{R}$.

Let $\left(H_{R}^{*}\right)^{c}=H_{R} \otimes \boldsymbol{C}$, the complexification of H_{R}^{*}. An inner product on $\left(H_{R}^{*}\right)^{c}$ is given by $(\rho \otimes z, \psi \otimes w)_{\left(H_{R}^{*}\right)}=(\varphi, \psi)_{H_{R}^{*}} z \bar{w}$ for $\varphi, \psi \in H_{R}^{*}, z, w \in \boldsymbol{C}$, which is extended by the \boldsymbol{R}-linearlity in each argument. Then $\left(H_{R}^{*}\right)^{c}$ becomes a complex separable Hilbert space with respect to this inner product. ($\left.H_{R}^{*}\right)^{c}$ is naturally regarded as a space of \boldsymbol{C}-valued \boldsymbol{R}-linear functionals on H_{R} by $\langle\varphi \otimes \boldsymbol{z}, \boldsymbol{x}\rangle=$ $\langle\varphi, x\rangle z$. Then its inner product is also given by

$$
\begin{equation*}
(\xi, \eta)_{\left(H_{R}^{*}\right)^{c}}=\sum_{n=1}^{\infty}\left\{\left\langle\xi, e_{n}\right\rangle \overline{\left\langle\eta, e_{n}\right\rangle}+\left\langle\xi, J e_{n}\right\rangle \overline{\left\langle\eta, J e_{n}\right\rangle}\right\} \quad \text { for } \quad \xi, \eta \in\left(H_{R}^{*}\right)^{c} . \tag{A.4}
\end{equation*}
$$

\boldsymbol{R}-linear operator J^{\prime} can be extended to a \boldsymbol{C}-linear operator on $\left(H_{R}^{*}\right)^{c}$ by $J^{\prime}(\varphi \otimes z)=\left(J^{\prime} \varphi\right) \otimes z$. We note that $J^{\prime 2}=-1$ and J^{\prime} is skew-adjoint on $\left(H_{R}^{*}\right)^{c}$. Thus $\left(H_{R}^{*}\right)^{c}$ is orthogonally decomposed as a sum of $\operatorname{Ker}\left(J^{\prime}-\sqrt{-1}\right)$ and $\operatorname{Ker}\left(J^{\prime}+\sqrt{-1}\right)$, where $\operatorname{Ker}\left(J^{\prime}-\sqrt{-1}\right)=H^{*}$, the space of \boldsymbol{C}-linear continuous functionals on H_{R} and $\operatorname{Ker}\left(J^{\prime}+\sqrt{-1}\right)=\bar{H}^{*}$, the space of anti \boldsymbol{C}-linear continuous functionals on H_{R}.

Complex conjugate on $\left(H_{R}^{*}\right)^{c}$ is given by $\overline{\varphi \otimes z}=\varphi \otimes \bar{z}$. Then $\langle\overline{\varphi \otimes z}, x\rangle=$ $\langle\varphi \otimes z, x\rangle$ for $x \in H_{R}$, so if $\theta \in H^{*}$, then $\bar{\theta} \in \bar{H}^{*}$ and vice versa.

We note difference between the inner product on H^{*} induced from $\left(H_{R}^{*}\right)^{c}$ and the original one. For $\kappa, \eta \in H^{*}$,

$$
\begin{align*}
(\theta, \eta)_{\left(H_{R}^{*}\right) c} & =\sum_{n=1}^{\infty}\left\{\left\langle\theta, e_{n}\right\rangle \overline{\left\langle\eta, e_{n}\right\rangle}+\left\langle\theta, J e_{n}\right\rangle \overline{\left\langle\eta, J e_{n}\right\rangle}\right\} \tag{A.5}\\
& =2 \sum_{n=1}^{\infty}\left\{\left\langle\theta, e_{n}\right\rangle \overline{\left\langle\eta, e_{n}\right\rangle}\right\}=2(\theta, \eta)_{H^{*}} .
\end{align*}
$$

Thus if $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ is an ONB of H^{*}, then $\left\{\frac{1}{\sqrt{2}} \theta_{n}, \frac{1}{\sqrt{2}} \bar{\theta}_{n}\right\}_{n=1}^{\infty}$ becomes an ONB of $\left(H_{R}^{*}\right)^{c}$.

For an operator C on H^{*}, we define an operator \bar{C} on \bar{H}^{*} as follows:

$$
\begin{equation*}
\langle\bar{C} \zeta, x\rangle=\overline{\langle C \zeta, x\rangle} \quad \text { for } \quad \zeta \in \bar{H}^{*}, x \in H_{R} . \tag{A.6}
\end{equation*}
$$

Complex conjugate defines anti-unitary isomorphism from H^{*} to \bar{H}^{*}. Thus C and \bar{C} are anti-uintarily isomorphic and if C is self-adjoint, then \bar{C} is also self-adjoint and they are isomorphic.

Appendix B Complex Gaussian random variables and Wick product

Let $Z=X+\sqrt{-1} Y$ be a complex random variable with mean 0 . We call Z a complex Gaussian random variable if X and Y are independent and identically distributed Gaussian random variables. This is equivalent to stating that $E[\exp (\sqrt{-1} \operatorname{Re}(a Z))]=\exp \left(-\frac{1}{4}|a|^{2} E[Z \bar{Z}]\right)$ for any $a \in \boldsymbol{C}$.

Complex random variables $Z_{1} \cdots Z_{n}$ are called jointly complex Gaussian random variables if for any $\alpha_{1} \cdots \alpha_{n} \in \boldsymbol{C}, \alpha_{1} Z_{1}+\cdots+\alpha_{n} Z_{n}$ becomes a complex Gaussian random variable.

Proposition B.1. Let $Z_{1}, \cdots, Z_{n} \quad W_{1}, \cdots, W_{m}$ be jointly complex Gaussian random variables. Then it holds that

$$
\begin{align*}
& E\left[Z_{1} \cdots Z_{n} \bar{W}_{1} \cdots \bar{W}_{m}\right]=0 \quad \text { if } n \neq m \tag{B.1}\\
& E\left[Z_{1} \cdots Z_{n} \bar{W}_{1} \cdots \bar{W}_{n}\right]=\sum_{\sigma \in \mathbb{C}_{n}} E\left[Z_{1} \bar{W}_{\sigma_{1}}\right] \cdots E\left[Z_{n} \bar{W}_{\sigma_{n}}\right] \tag{B.2}
\end{align*}
$$

where \mathfrak{S}_{n} denotes the permutation group on n letters.
For jointly complex Gaussian random variables $Z_{1}, \cdots, Z_{n}, W_{1}, \cdots, W_{m}$, we define their Wick product: $Z_{1} \cdots Z_{n} \bar{W}_{1} \cdots \bar{W}_{m}$: by induction with respect to (n, m) as follows,

$$
\begin{align*}
& : Z_{1} \cdots Z_{n} \bar{W}_{1} \cdots \bar{W}_{m}: \tag{B.3}\\
= & Z_{n}: Z_{1} \cdots Z_{n-1} \bar{W}_{1} \cdots \bar{W}_{m}:-\sum_{j=1}^{m} E\left[Z_{n} \bar{W}_{j}\right]: Z_{1} \cdots Z_{n-1} \bar{W}_{1} \cdots \hat{\bar{W}}_{j} \cdots \bar{W}_{m}:
\end{align*}
$$

$$
\begin{align*}
& : Z_{1} \cdots Z_{n} W_{1} \cdots W_{m}: \tag{B.4}\\
= & W_{m}: Z_{1} \cdots Z_{n} \bar{W}_{1} \cdots \bar{W}_{m-1}:-\sum_{k=1}^{n} E\left[Z_{k} \bar{W}_{m}\right]: Z_{1} \cdots \hat{Z}_{k} \cdots Z_{n} \bar{W}_{1} \cdots \bar{W}_{m-1}:
\end{align*}
$$

where $\hat{\alpha}$ denotes α is deleted. From this definition we can show that for jointly complex Gaussian random variables $Z_{1} \cdots Z_{\nu}$,

$$
\begin{align*}
& E\left[: Z_{1}^{n_{1}} \cdots Z_{\nu}^{n_{\nu}} \bar{Z}_{1}^{m_{1}} \cdots \bar{Z}_{\nu}^{m_{\nu}}:\right]=0 \tag{B.6}
\end{align*}
$$

and moreover the following can be proven.
Proposition B.2. (a) For jointly complex Gaussian random variables $Z_{1}^{(1)}$, $\cdots Z_{n_{1}}^{(1)}, W_{1}^{(1)}, \cdots, W_{m_{1}}^{(1)}, Z_{1}^{(2)}, \cdots, Z_{n_{2}}^{(2)}, W_{1}^{(2)}, \cdots, W_{m_{2}}^{(2)}$

$$
\begin{equation*}
E\left[: Z_{1}^{(1)} \cdots Z_{n_{1}}^{(1)} \bar{W}_{1}^{(1)} \cdots \bar{W}_{m_{1}}^{(1)}:: Z_{1}^{(2)} \cdots Z_{n_{2}}^{(2)} \bar{W}_{1}^{(2)} \cdots \bar{W}_{m_{2}}^{(2)}:\right]=0 \tag{B.8}
\end{equation*}
$$

if $n_{1} \neq n_{2}$ or $m_{1} \neq m_{2}$,
(b) For jointly complex Gaussian random variables Z_{1}, \cdots, Z_{ν} such that $\left(Z_{i}, Z_{j}\right)_{L^{2}}$ $=\delta_{i, j}$ for $1 \leq i, j \leq \nu$

$$
\begin{align*}
& \left(: Z_{1}^{n_{1} \cdots} Z_{\nu}^{n_{\nu}} \bar{Z}_{1}^{m_{1}} \cdots \bar{Z}_{\nu}^{m_{\nu}}:,: Z_{1}^{\left.l_{1} \cdots Z_{\nu}^{l_{\nu}} \bar{Z}_{1}^{k_{1}} \cdots \bar{Z}_{\nu}^{k_{\nu}}\right)_{L^{2}}}\right. \tag{B.9}\\
= & \delta_{n_{1}, l_{1}} \cdots \delta_{n_{\nu}, l_{\nu}} \delta_{m_{1}, k_{1}} \cdots \delta_{m_{\nu}, k_{\nu}} n_{1}!\cdots n_{\nu}!m_{1}!\cdots m_{\nu}!
\end{align*}
$$

where $(X, Y)_{L^{2}}=E[X \bar{Y}]$ for complex random variables X and Y.
The proof is similar to the real case. See [5].

References

[1] A. Arai: Path integral representation of the index of Kahler-Dirac operators on an infinite dimensional manifold, J. Funct. Anal., 82 (1989), 330-369.
[2] M. Reed and B. Simon: Methods of Modern Mathematical Physics I, Academic Press, New York, 1972.
[3] I. Shigekawa: De Rham-Hodge-Kodaira's decomposition on an abstract Wiener space, J. Math. Kyoto Univ. 26 (1986), 191-202.
[4] I. Shigekawa: Ito-Wiener expansions of holomorphic functions on the complex Wiener space, in: Stochastic Analysis, ed. E. Mayer-Wolf et al, Academic Press, San Diego, 1991.
[5] B. Simon: The $\mathrm{P}(\varphi)_{2}$ Euclidean (Quantum) Field Theory, Princeton Univ. Press, Princeton, NJ, 1974.
[6] S. Watanabe: Lectures on Stochastic Differential Equations and Malliavin's Calculus, Tata Institute of Fundamental Research, Springer-Verlag, Berlin-Hei-delberg-New York, 1984.
[7] R.O. Wells: Differential Analysis on Complex Manifolds, Springer-Verlag, Ber-lin-Heidelberg-New York, 1980.

