REDUCIBILITY AND ORDERS OF PERIODIC AUTOMORPHISMS OF SURFACES

Yasushi KASAHARA

(Received May 13, 1991)

Introduction

Det Σ_{g} be a closed oriented surface of genus $g \geq 2$. By an automorphism of Σ_{g}, we mean an element of the mapping class group \mathscr{M}_{g} of Σ_{g}, which is the group of all isotopy classes of orientation preserving diffeomorphisms of Σ_{g}. The Nielsen-Thurston theory classifies the automorphisms of Σ_{g} into the following three types ([11]); (i) periodic, (ii) reducible, and (iii) pseudo-Anosov (the necessary definitions will be recalled in $\S 1$).

It is easy to see that the types (i) and (ii) have some overlap, although the type (iii) does not have any intersection with (i) nor (ii). The geometric characterization of this overlap was first obtained by Gilman [2] (Proposition 2.1). Recently, the author obtained the same characterization by a different approach making use of hyperbolic geometry ([4]).

In this paper, we apply the geometric characterization to consider the relationship between reducibility and orders of periodic automorphisms of Σ_{g}. Intuitively speaking, periodic automrophisms would tend to be irreducible when their orders grow since the number of components of an essential 1submanifold, which should be invariant under reducible autuomorphisms, is known to be at most $3 g-3$.

Recalling some definitions and necessary results, we shall proceed to justify the naive argument above by getting both the minimum order of periodic and irreducible automorphisms and the maximum order of periodic and reducible ones. The main result is given in $\S 4$. While the former value is obtained as a direct consequence of the geometric characterization, the latter requires some complicated calculations, all of which are elementary, however.
'The author would like to express his sincere gratitude to Professor Shigeyuki Morita and Professor Sadayoshi Kojima for their suggestions and encouragements. He is also grateful to Professor Shigenori Matsumoto and Professor Yukio Matsumoto for their advices.

The author should acknowledge the referee unknown to him for pointing out that the geometric characterization is contained in a work of J. Gilman.

1. The geometric characterization

We first recall some definitions mainly from [1] and [9]. An automorphism of Σ_{g} is periodic if it has finite order in the group \mathscr{M}_{g}. Let $f \in \mathscr{M}_{g}$ be a periodic automorphism of order $N>1$. By the Nielsen realization theorem, there exists a diffeomorphism $f: \Sigma_{g} \rightarrow \Sigma_{g}$ representing f such that the N-th iteration f^{N} is the identity ([5], [7]). We call f simply a realization of f . The diffeomorphism f induces an effective \boldsymbol{Z}_{N}-action on $\boldsymbol{\Sigma}_{g}$, and the quotient space, denoted by O_{f}, has naturally a structure of hyperbolic orbifold. Such an orbifold is topologically characterized by the genus of the underlying surface $\left|O_{f}\right|$, which is closed and orientable, and the cone type singular points $x_{1}, x_{2}, \cdots, x_{n}$, with their indices m_{1}, \cdots, m_{n}, respectively. For convenience, we write $O_{f}=\Sigma_{\gamma}$ $\left(m_{1}, \cdots, m_{n}\right)$ where γ is the genus of $\left|O_{f}\right|$. We also write $O_{f}=S^{2}\left(m_{1}, \cdots, m_{n}\right)$ when $\gamma=0$.

Let $\pi: \Sigma_{g} \rightarrow O_{f}$ denote the canonical projection. Then we have the so-called Riemann-Hurwitz formula:

$$
\begin{equation*}
\frac{2-2 g}{N}=2-2 \gamma+\sum_{i=1}^{n}\left(\frac{1}{m_{i}}-1\right) . \tag{1.1}
\end{equation*}
$$

For more details of the orbifold, see [9], [10, chapter 13].
The orbifold type of O_{f} and the projection $\pi: \Sigma_{g} \rightarrow O_{f}$ does not depend on the choice of the realization f. In fact, making use of the main theorem of Nielsen [8], for any other realization f^{\prime}, it can be seen that there exists an orientation preserving homemorophism $h: \Sigma_{g} \rightarrow \Sigma_{g}$ such that $f^{\prime}=h \circ f \circ h^{-1}([6])$. Henceforth, we shall denote O_{f} by O_{f} with some realization f specified, which would make no confusions.

An essential 1-submanifold of Σ_{g} is a disjoint union of simple closed curves in Σ_{g} each component of which does not bound a disk in Σ_{g}, and no two components of which are homotopic. An automorphism of Σ_{g} is reducible if it has a representative which leaves some essential 1 -submanifold of Σ_{g} invariant. An irreducible automorphism is the one which is not reducible.

The next theorem, which characterizes the reducibility of a periodic automorphism $f \in \mathscr{M}_{\mathcal{g}}$, was first given by Gilman [2].

Proposition 1.1. A periodic automorphism $\mathfrak{f} \in \mathscr{M}_{g}$ is irreducible if and only if the underlying surface of its quotient orbifold O_{f} is homeomorphic to the two-sphere S^{2} and the singular locus of O_{f} consists of three cone points.

2. Cyclic orbifolds

In this section, we recall Harvey's result on cyclic orbiofolds. By a \boldsymbol{Z}_{N}-cyclic orbifold, we mean a quotient orbifold O_{f} where f is an orientation preserving periodic diffeomorphism of order N on some closed orientable surface Σ. The
next theorem gives a necessary and sufficient condition for a two-orbifold to be \boldsymbol{Z}_{N}-cyclic one. Let M denote the least common multiple of $\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$, and M_{i} denote $\operatorname{lcm}\left(m_{1}, \cdots, \hat{m}_{i}, \cdots, m_{n}\right)$ where \hat{m}_{i} indicates that m_{i} is omitted.

Proposition 2.1. (Harvey [3]).
A hyperbolic two-orbifold $\Sigma_{\gamma}\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ is Z_{N}-cyclic if and only if the following conditions are satisfied:
(i) the lcm-condition: $M_{i}=M(i=1,2, \cdots, n)$,
(ii) M divides N, and if $\gamma=0, M=N$,
(iii) $n \neq 1$, and if $\gamma=0, n \geq 3$,
(iv) if $2 \mid M$, then the number of m_{i}^{\prime} 's divisible by the maximum power of 2 dividing M is even.

Therefore, for any periodic automorphism $\mathfrak{f} \in \mathscr{M}_{g}$ of order N, the quotient orbifold O_{f} must satisfy the conditions (i)-(iv).

Conversely, given any hyperbolic orbifold $O=\Sigma_{\gamma}\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ satisfying (i)-(i), we can construct a periodic automorphism of order N. In fact, Proposition 2.1 assures that there exists a certain closed orientable surface Σ and an effective \boldsymbol{Z}_{N}-action on Σ such that the quotient orbifold $\Sigma / \boldsymbol{Z}_{N}$ is isomorphic to O. The genus g of Σ is uniquely determined by the Riemann-Hurwitz formula (1.1):

$$
\begin{equation*}
g=1+N(\gamma-1)+\frac{1}{2} N \sum_{i=1}^{n}\left(1-\frac{1}{m_{i}}\right) \tag{2.1}
\end{equation*}
$$

Any generator of the \boldsymbol{Z}_{N}-action is the one we need.
Table 1

Example	O	order	genus of Σ
2.2	$S^{2}(2,2,2 g, 2 g)$	$2 g$	g
2.3	$S^{2}(2 g+1,2 g+1,2 g+1)$	$2 g+1$	g
2.4	$S^{2}(g+1,2 g+2,2 g+2)$	$2 g+2$	g
2.5	$S^{2}(2,2, g+1, g+1)(g:$ even $)$	$2 g+2$	g

Table 2
Periodic automorphisms on Σ of order

Example	O	genus of Σ
2.6	$S^{2}\left(p_{1}, p_{1}, N, N\right)$	$\frac{N}{p_{1}}\left(p_{1}-1\right)$
2.7	$S^{2}\left(p_{1}, p_{2}, p_{3}, N\right)\left(N=p_{1} p_{2} p_{3}\right)$	$N-\frac{1}{2}\left(\frac{N}{p_{1}}+\frac{N}{p_{2}}+\frac{N}{p_{3}}+\frac{1}{N}\right)$
2.8	$S^{2}\left(p_{1}, p_{1}, \frac{N}{p_{1}}, \frac{N}{p_{1}}\right)\left(r_{1}=1, k \geq 2\right)$	$\left(\frac{N}{p_{1}}-1\right)\left(p_{1}-1\right)$

Now, we give some examples of periodic automorphism of surface Σ by this construction in Tables 1 and 2. The reducibility of each automorphism would be seen directly by Proposition 1.1. The examples will assure later that our estimation for order will be best possible.

Remark 2.9. Note that the periodic automorphisms given in each example may not be unique even if up to power. In fact, an effective \boldsymbol{Z}_{N}-action on $\boldsymbol{\Sigma}_{g}$ coresponds to a pair of a possible \boldsymbol{Z}_{N}-cyclic orbifold O and an epimorphism of the orbifold fundamental group of O to \boldsymbol{Z}_{N} preserving torsion order ([8], [3]). In general, such epimorphisms may not be unique.

Remark 2.10. Example 2.5 was given in [12], which deals with periodic and reducible automorphisms with a connected essential 1 -submanifold invariant.

3. Minimum genus of periodic and reducible automorphisms

Now, we begin to estimate orders of periodic automorphisms. In this section, we establish the following crucial step:

Theorem 3.1. Let N be an integer ≥ 2 with prime decomposition $p_{1}^{r}{ }_{1} \cdots p_{k}^{r}{ }^{k}$ where each p_{i} is prime, each $r_{i} \geq 1$, and $p_{1}<p_{2}<\cdots<p_{k}$. Then, the minimum genus $g_{\min }(N)$ of surfaces which admit a periodic and reducible automorphism of order N is given by
(i) $g_{\min }(N)=\max \left\{2,\left(p_{1}-1\right) \frac{N}{p_{1}}\right\}$, if $r_{1}>1$ or N is prime,
(ii)

$$
\begin{aligned}
g_{\min }(N) & =N-\frac{1}{2}\left(\frac{N}{p_{1}}+\frac{N}{p_{2}}+\frac{N}{p_{3}}-1\right), \quad \text { if } N=p_{1} p_{2} p_{5} \\
\text { and } p_{3} & \leq \frac{p_{1} p_{2}-2 p_{1}+1}{p_{2}-p_{1}},
\end{aligned}
$$

(iii) $g_{\min }(N)=\left(p_{1}-1\right)\left(\frac{N}{p_{1}}-1\right)$, otherwise.

To prove Theorem 3.1, except only for $N=2$, it is sufficient to estimate the value of g in (2.1) where the orbifold $\Sigma_{\gamma}\left(m_{1}, \cdots, m_{n}\right)$ varies all \boldsymbol{Z}_{μ}-cyclic orbifolds with $\gamma \neq 0$ or $n \neq 3$ by the argument after Proposition 2.1. The exceptional case $N=2$ is considered in the beginning of the proof. The estimation for general case is divided into five cases according to the number n of the cone singular points; $n=0,2,3,4$, and ≥ 5. Most of the difficulty lies in the case $n=4$.

Proof of Theorem 3.1. Let first $N=2$. Since we restrict our attention to the case $g \geq 2$, we should have $g_{\min }(2) \geq 2$. Furthermore, it is well known that any involution on Σ_{g} is reducible (see also Theorem 4.1 (I), the proof of which is independent of this section). Hence, we have $g_{\min }(2)=2$ as stated.

Now, we shall consider in turn the lower bound for g in (2.1). We may assume $N \geq 3$.
(I) $n=0$: Equation (2.1) is $g=1+N(\gamma-1)$. The lower bound is $N+1$ since we consider only the case $g \geq 2$.
(II) $n=2$: Equation (2.1) is $g=1+N \gamma-\frac{1}{2} N\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) . \quad$ This implies $\gamma>0$ since $g \geq 2$. Therefore $g \geq 1+N-\frac{N}{p_{1}}=1+N\left(1-\frac{1}{p_{1}}\right)$ (because $m_{i} \geq p_{1}$).
(III) $n=3$: In this case, $g=1+N\left(\gamma+\frac{1}{2}\right)-\frac{N}{2}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) . \quad$ By Proposition 1.1, we obtain $\gamma>0$. Therefore $g \geq 1+\frac{3}{2}\left(N-\frac{N}{p_{1}}\right)$ (because $\gamma \geq 1$,
$m_{i} \geq p_{1}$).
(IV) $n=4$: By equation (2.1), $g=1+N(\gamma+1)-\frac{1}{2} N A_{4}$ where $A_{4}=\frac{1}{m_{1}}+$ $\frac{1}{m_{2}}+\frac{1}{m_{3}}+\frac{1}{m_{4}}$.

If $\gamma>0$, then g has the lower bound $1+2\left(N-\frac{1}{p_{1}}\right)$ when $\gamma=1$ and each $m_{i}=\boldsymbol{p}_{1}$. This is larger than the minimum in the case of (II).

If $\gamma=0$, then $g=1+N-\frac{N}{2} A_{4}$. In this case, the bound for g corresponds to the upper bound for $A_{4}=\frac{1}{m_{1}}+\cdots+\frac{1}{m_{4}}$. The $l c m$-condition for (m_{1}, \cdots, m_{4}) is $\operatorname{lcm}\left(m_{2}, m_{3}, m_{4}\right)=\operatorname{lcm}\left(m_{3}, m_{4}, m_{1}\right)=\operatorname{lcm}\left(m_{4}, m_{1}, m_{2}\right)=\operatorname{lcm}\left(m_{1}, m_{2}, m_{3}\right)=N$.

We define a function $A_{n}: \boldsymbol{N}^{n} \rightarrow \boldsymbol{Q}$ by

$$
A_{n}\left(m_{1}, \cdots, m_{n}\right)=\sum_{i=1}^{n} \frac{1}{m_{i}} \text { for }\left(m_{1}, \cdots, m_{n}\right) \in N^{n}
$$

For an arbitrary subset F_{n} of \boldsymbol{N}^{n}, we write $\Delta_{n}\left(F_{n}\right)=\max _{F_{n}} A_{n}$. We also write $E_{n}=\left\{\left(m_{1}, \cdots, m_{n}\right) \in N^{n} ; m_{i} \geq 2, M_{i}=N\right.$ for each $\left.i=1,2, \cdots, n\right\}$, and $\Delta_{n}=\Delta_{n}\left(E_{n}\right)$.

The upper bound for A_{4}, denoted by Δ_{4}, is given by the next theorem. Recall that the prime decomposition of N is given by $p_{1}^{r_{1}} p_{2}^{\gamma_{2}} \cdots p_{k}^{\gamma_{k}}$ where $p_{1}<p_{2}$ $<\cdots<p_{k}$.

Theorem 3.2.
(i) if $r_{1}>1$ or N is prime, then

$$
\Delta_{4}=\frac{1}{p_{1}}+\frac{1}{p_{1}}+\frac{1}{N}+\frac{1}{N} .
$$

(ii) if $N=p_{1} p_{2} p_{3}$ and $p_{3} \leq \frac{p_{1} p_{2}-2 p_{1}+1}{p_{2}-p_{1}}$, then

$$
\Delta_{4}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}+\frac{1}{N} .
$$

(iii) otherwise, we have

$$
\Delta_{4}=\frac{1}{p_{1}}+\frac{1}{p_{1}}+\frac{p_{1}}{N}+\frac{p_{1}}{N}
$$

For an integer $N>1$, we denote by $f(N)$ the excepted value for Δ_{4}.
Remark 3.3. In case (ii), the condition that $p_{3} \leq \frac{p_{1} p_{2}-2 p_{1}+1}{p_{2}-p_{1}}$ is equivalent to that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}+\frac{1}{N} \geq \frac{1}{p_{1}}+\frac{1}{p_{1}}+\frac{p_{1}}{N}+\frac{p_{1}}{N}$. Therefore, $f(N) \geq \frac{1}{p_{1}}+\frac{1}{p_{1}}+\frac{p_{1}}{N}+$ $\frac{p_{1}}{N}$ if $r_{1}=1$ and N is not prime.

Proof. At first, we see that there exists an element of E_{4} attaining $f(N)$ by putting $\left(m_{1}, \cdots, m_{4}\right)=\left(p_{1}, p_{1}, N, N\right),\left(p_{1}, p_{2}, p_{3}, N\right),\left(p_{1}, p_{1}, \frac{N}{p_{1}}, \frac{N}{p_{1}}\right)$ corresponding to cases (i), (ii), (iii), respectively. So, it is sufficient to prove $\Delta_{4} \leq f(N)$.

If N is a power of a prime $p_{1}^{\gamma_{1}}$, at least two of m_{i} 's should be equal to N for any $\left(m_{1}, \cdots, m_{4}\right) \in E_{4}$. We may assume that m_{1} and m_{2} are equal to N without loss of generality. Since $\left(N, N, m_{3}, m_{4}\right) \in E_{4}$ for any m_{3} and m_{4} which divide N and are larger than 1 , we have $\Delta_{4}\left(E_{4}\right)=\frac{1}{N}+\frac{1}{N}+\max \left(\frac{1}{m_{3}}+\frac{1}{m_{4}}\right)=\frac{1}{N}+\frac{1}{N}+\frac{1}{p_{1}}+$ $\frac{1}{p_{1}}$, which is equal to $f(N)$.

Hereafter, we may assume $k \geq 2$. We denote by E_{4}^{α} the subset of E_{4} :

$$
E_{4}^{\alpha}=\left\{\left(m_{1}, \cdots, i_{i_{4}}\right) \in E_{4} ; m_{1}=\alpha\right\}
$$

Thus, $E_{4}=\bigcup_{\alpha} E_{4}^{\alpha}$, and $\Delta_{4}\left(E_{4}\right)=\max _{\alpha} \Delta_{4}\left(E_{4}^{\alpha}\right)$. For $\left(m_{1}, \cdots, m_{4}\right) \in E_{4}$, suppose that none of $m_{i}^{\prime}{ }^{\alpha}$ s is prime. Then we have $m_{i} \geq p_{1}^{2} \geq 2 p_{1}$. Therefore, $A_{4}=\sum_{i=1}^{4} \frac{1}{m_{i}} \leq \frac{2}{p_{1}}$, which is less than $f(N)$ by Remark 3.3. Hence, we have $\Delta_{4}=\max _{1 \leq i \leq k} \Delta_{4}\left(E_{4_{i}^{p}}\right)$. Therefore the calculation of Δ_{4} is reduced to that of $\Delta_{4}\left(F_{4}^{p_{i}}\right)^{\prime}$ s.

The next theorem is fundamenal.
Proposition 3.4. (Harvey [3]).
(a) Let $R_{L}=\{(x, y) ; x, y \in N, \operatorname{lcm}(x, y)=L\}$. Then,

$$
\Delta_{2}\left(R_{L}\right)=\max _{R_{L}}\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{L} .
$$

(b) Let $R_{L}^{\prime}=\left\{(x, y) \in R_{L} ; x>1, y>1\right\}$ for $L=p_{1}^{l} \cdots p_{\lambda}{ }_{\lambda}>1$ where $p_{1}{ }_{1}{ }^{1} \cdots p_{\lambda}{ }^{l}{ }^{\lambda}$ is the prime decomposition and $p_{1}<\cdots<p_{\lambda}$. Then $\Delta_{2}\left(R_{L}^{\prime}\right)$ is given by

$$
\Delta_{2}\left(R_{L}^{\prime}\right)= \begin{cases}\frac{1}{p_{1}}+\frac{p_{1}}{L}, & \text { if } l_{1}=1 \text { and } L \text { is not prime } \\ \frac{1}{p_{1}}+\frac{1}{L}, & \text { if } l_{1}>1 \text { or } I_{1} \text { is prime }\end{cases}
$$

(c)

$$
\Delta_{3}\left(E_{3}\right)= \begin{cases}\frac{1}{N}+\frac{1}{p_{1}}+\frac{p_{1}}{N}, & \text { if } r_{1}=1 \text { and } N \text { is not prime } \\ \frac{1}{N}+\frac{1}{N}+\frac{1}{p_{1}}, & \text { if } r_{1}>1 \text { or } N \text { is prime }\end{cases}
$$

The calculation of $\Delta_{4}\left(E_{4}^{p_{i}}\right)$ is divided into two cases according to $r_{i}>1$ or $r_{i}=1$, and subcases indicated.
(α) Assume that $r_{i}>1$. Since ($\left.p_{i}, m_{2}, m_{3}, m_{4}\right) \in E_{4}^{p_{i}}$ if and only if $\left(m_{2}, m_{3}, m_{4}\right)$ $\in E_{3}$, we can apply Proposition 3.4 (c) to obtain $\Delta_{4}\left(E_{4}^{p_{i}}\right)=\frac{1}{p_{i}}+\Delta_{3}\left(E_{3}\right) \leq f(N)$
(note that N is not a prime since $k \geq 2$).
(β) Suppose next that $r_{i}=1$. We denote F_{1}^{i}, F_{2}^{i} by subsets of $E_{4}^{p_{i}}$:

$$
\begin{gathered}
F_{1}^{i}=\left\{\left(m_{1}, \cdots, m_{4}\right) \in E_{4}^{p_{i}} ; \operatorname{lcm}\left(m_{2}, m_{3}\right)=\operatorname{lcm}\left(m_{2}, m_{4}\right)=\operatorname{lcm}\left(m_{3}, m_{4}\right)=N\right\} \\
F_{2}^{i}=\left\{\left(m_{1}, \cdots, m_{4}\right) \in E_{4}^{p_{i}} ; \operatorname{lcm}\left(m_{2}, m_{3}\right)=\operatorname{lcm}\left(m_{2}, m_{4}\right)=N, \operatorname{lcm}\left(m_{3}, m_{4}\right)=\frac{N}{p_{i}}\right\} .
\end{gathered}
$$

Then, considering the $l c m$-condition for $E_{4}^{p_{i}}$, we can check that any $\left(m_{1}, \cdots, m_{4}\right) \in$ $E_{4}^{\phi_{i}}$ can be transformed to an element of F_{1}^{i} or F_{2}^{i} by permuting the m_{i} 's adequately. Therefore, we have $\Delta_{4}\left(E_{4}^{b_{i}}\right)=\max \left(\Delta_{4}\left(F_{1}^{i}\right), \Delta_{4}\left(F_{2}^{i}\right)\right)$. For F_{1}^{i}, as in case (α), we can apply Proposition 3.4 (c) to obtain $\Delta_{4}\left(F_{i}^{i}\right)=\frac{1}{p_{i}}+\Delta_{3}\left(F_{3}\right) \leq f(N)$.

Now, we have reduced the estimation of $\Delta_{4}\left(E_{4}^{i_{i}}\right)$ to that of $\Delta_{4}\left(F_{2}^{i}\right)$. For any divisor m of N, we denote by $P(m)$ the minimum positive integer satisfying $\operatorname{lcm}(m, P(m))=N$. If $m=p_{1}^{a} p_{2}^{a} \cdots p_{k}^{a}$ buch that $a_{i_{1}}<r_{i_{1}}, \cdots, a_{i_{s}}<r_{i_{s}}$, and $a_{j}=r_{j}$ for any $j \neq i_{1}, \cdots, i_{s}$, then $P(m)=\prod_{i=1}^{s} p_{i}^{r_{i}}$. Suppose that $\left(m_{1}, \cdots, m_{4}\right) \in F_{2}^{i}$. We write $P=P\left(m_{2}\right)$. Then it holds that $p_{i} X P$ since $p_{i} \mid m_{2}$ and $r_{i}=1$. We can also see that $P=1$ if and only if $m_{2}=N$. Therefore, F_{2}^{i} separates into $G_{1}^{i} \cup G_{2}^{i}$ where

$$
\begin{aligned}
& G_{1}^{i}=\left\{\left(p_{i}, m_{2}, m_{3}, m_{4}\right) \in F_{2}^{i} ; P\left(m_{2}\right)>1\right\}, \\
& G_{2}^{i}=\left\{\left(p_{i}, m_{2}, m_{3}, m_{4}\right) \in F_{2}^{i} ; m_{2}=N\right\} .
\end{aligned}
$$

Hence, we have $\Delta_{4}\left(F_{2}^{i}\right)=\max \left(\Delta_{4}\left(G_{1}\right), \Delta_{4}\left(G_{2}\right)\right)$.
For $\left(p_{i}, m_{2}, m_{3}, m_{4}\right) \in G_{1}$, the $l c m$-condition requires that $P \mid m_{3}$, and $P \mid m_{4}$. So we can write $m_{3}=P m_{3}^{\prime}$ and $m_{4}=P m_{4}^{\prime}$. Then, $\operatorname{lcm}\left(m_{3}, m_{4}\right)=\frac{N}{p_{i}}$ if and only if $\operatorname{lcm}\left(m_{3}^{\prime}, m_{4}^{\prime}\right)=\frac{N}{P p_{i}}$. Therefore,

$$
\Delta_{4}\left(G_{1}\right)=\frac{1}{p_{i}}+\max _{\substack{p_{i}\left|m_{2}, m_{2}\right| N, m_{2} \neq N}}\left(\frac{1}{m_{2}}+\frac{1}{P\left(m_{2}\right)} l_{c m}\left(m_{2}^{\prime}, m_{3}^{\prime}\right)=N / P p_{i}\left(\frac{1}{m_{2}^{\prime}}+\frac{1}{m_{3}^{\prime}}\right)\right) .
$$

By Proposition 3.4 (a) together with $P\left(m_{2}\right)>1$, we have

$$
\Delta_{4}\left(G_{1}\right)=\frac{1}{p_{i}}+\frac{p_{i}}{N}+\max _{\substack{p_{i}\left|m_{2}, m_{2}\right| N, m_{2} \neq N}}\left(\frac{1}{m_{2}}+\frac{1}{P\left(m_{2}\right)}\right)
$$

If $p_{j} \mid m_{2}$ and $p_{j}^{r_{j}} X m_{2}$, then $P\left(m_{2}\right)=P\left(m_{2}^{\prime}\right)$ for $m_{2}^{\prime}=\frac{m_{2}}{p_{j}}$, and $\frac{1}{m_{2}^{\prime}}+\frac{1}{P\left(m_{2}^{\prime}\right)}>\frac{1}{m_{2}}+\frac{1}{P\left(m_{2}\right)}$. Therefore, $\frac{1}{m_{2}}+\frac{1}{P\left(m_{2}\right)}$ has the maximum value when m_{2} is a product of $p_{j}^{r} ;$'s and then P is equal to $\frac{N}{m_{2}}$. Therefore,

$$
\begin{aligned}
\max \left(\frac{1}{m_{2}}+\frac{1}{P\left(m_{2}\right)}\right) & =\underset{\substack{\left.p_{i}\left|m_{2}, m_{2}\right| N, m_{2} \neq N, m_{2} \text { is a product of } p_{j}^{r}, \mathrm{~s}\right)}}{ }\left(\frac{1}{m_{2}}+\frac{m_{2}}{N}\right) \\
& \leq \max _{\substack{\left.p_{1} \leq m_{2} \leq N / p_{1} \\
m_{2} \text { is a product of } p_{j}^{r} ; \mathrm{s}\right)}}\left(\frac{1}{m_{2}}+\frac{m_{2}}{N}\right) \\
& =\frac{1}{q_{1}}+\frac{q_{1}}{N},
\end{aligned}
$$

where $q_{1}=\min _{1 \leq j \leq k} p_{j}^{r}$. Hence, we obtain

$$
\begin{equation*}
\Delta_{4}\left(G_{1}\right) \leq \frac{1}{p_{i}}+\frac{p_{i}}{N}+\frac{1}{q_{1}}+\frac{q_{1}}{N} \tag{3.1}
\end{equation*}
$$

If $r_{1}=1$, then $q_{1}=p_{1}$, and the right-hand term is less than or equal to $f(N)$.
If $r_{1}>1$, then we have $f(N)-\left(\frac{1}{p_{i}}+\frac{p_{i}}{N}+\frac{1}{q_{1}}+\frac{q_{1}}{N}\right)=\left\{\left(\frac{1}{p_{1}}+\frac{1}{N}\right)-\left(\frac{1}{p_{i}}+\frac{p_{i}}{N}\right)\right\}$ $+\left\{\left(\frac{1}{p_{1}}+\frac{1}{N}\right)-\left(\frac{q_{1}}{N}+\frac{1}{q_{1}}\right)\right\} \geq 0$. Therefore, we have $\Delta_{4}\left(G_{1}\right) \leq f(N)$ by (3.1).

Now, we estimate $\Delta_{4}\left(G_{2}\right)$. By definition,

$$
\Delta_{4}\left(G_{2}\right)=\frac{1}{p_{i}}+\frac{1}{N}+\max _{\substack{\left.m_{3}>1 m_{4}>1 \\ l_{c m}\left(m_{3}, m_{4}\right)=\frac{N}{p_{i}}\right)}}\left(\frac{1}{m_{3}}+\frac{1}{m_{4}}\right) .
$$

Since $\frac{N}{p_{i}}>1$, we can apply Proposition 3.4 (b) to obtain
$\Delta_{4}\left(G_{2}\right)=$

$$
\left\{\begin{array}{l}
\frac{1}{p_{i}}+\frac{1}{N}+\frac{1}{p_{1}}+\frac{p_{1} p_{i}}{N}, \quad \text { if } i \geq 2, r_{1}=1, \text { and } \frac{N}{p_{i}} \text { is not prime } \tag{a}\\
\frac{1}{p_{i}}+\frac{1}{N}+\frac{1}{p_{1}}+\frac{p_{i}}{N}, \quad \text { if } i \geq 2 \text { and }\left(r_{1}>1 \text { or } \frac{N}{p_{i}} \text { is prime }\right) \\
\frac{1}{p_{1}}+\frac{1}{N}+\frac{1}{p_{2}}+\frac{p_{1} p_{2}}{N}, \quad \text { if } i=1, r_{1}=1, r_{2}=1, \text { and } \frac{N}{p_{i}} \text { is not prime } \\
\frac{1}{p_{1}}+\frac{1}{N}+\frac{1}{p_{2}}+\frac{p_{1}}{N}, \quad \text { if } i=1, r_{1}=1, \text { and }\left(r_{2}>1 \text { or } \frac{N}{p_{1}} \text { is prime }\right)
\end{array}\right.
$$

(note that we have assumed $r_{i}=1$). Now, we estimate these values in turn.
(a) Since $\left(\frac{1}{p_{2}}+\frac{p_{1} p_{2}}{N}\right)-\left(\frac{1}{p_{i}}+\frac{p_{1} p_{i}}{N}\right)=\frac{1}{p_{2} p_{i} N}\left(p_{i}-p_{2}\right)\left(N-p_{1} p_{2} p_{i}\right) \geq 0$, we have $\Delta_{4}\left(G_{2}\right) \leq \frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{N}+\frac{p_{1} p_{2}}{N}$. If $N=p_{1} p_{2} p_{3}$, then the right- hand term is less than or equal to $f(N)$ (Remark 3.3).

Now, suppose that $N \neq p_{1} p_{2} p_{3}$. Since $r_{i}=1$, we have $k \geq 3$, and then $N \geq p_{1} p_{2}^{2} p_{i}$. Hence, we have

$$
\begin{aligned}
& \quad f(N)-\Delta_{4}\left(G_{2}\right)=\frac{1}{p_{1} p_{i} N}\left\{\left(p_{i}-p_{1}\right) N+p_{1} p_{i}\left(2 p_{1}-p_{1} p_{i}-1\right)\right\} \\
& \left(\because N \geq p_{1} p_{2}^{2} p_{i}\right) \geq \frac{1}{N}\left\{p_{i}\left(p_{2}^{2}-p_{1}\right)-p_{1}\left(p_{2}^{2}-1\right)+p_{1}-1\right\} \\
& \left(\because p_{i} \geq p_{2}\right) \quad \geq \frac{1}{N}\left\{p_{2}^{3}-p_{1}\left(p_{2}-1\right)\left(p_{2}+2\right)-1\right\} \\
& \left(\because p_{1} \leq p_{2}-1\right) \quad \geq \frac{3}{N}\left(p_{2}-1\right)>0 .
\end{aligned}
$$

Therefore, $\Delta_{4}\left(G_{2}\right)<f(N)$.
(b) Since $\frac{1}{p_{i}}+\frac{p_{i}}{N} \leq \frac{1}{p_{1}}+\frac{1}{N}$, we obtain $\Delta_{4}\left(G_{2}\right) \leq 2\left(\frac{1}{p_{1}}+\frac{1}{N}\right)=f(N)$.
(c) In this case, we have $\Delta_{4}\left(G_{2}\right) \leq f(N)$ as in case (a) putting $i=2$.
(d) It holds that $\Delta_{4}\left(G_{2}\right)=\frac{1}{p_{1}}+\frac{1}{N}+\frac{1}{p_{2}}+\frac{p_{1}}{N}<2\left(\frac{1}{p_{1}}+\frac{p_{1}}{N}\right) \leq f(N)$.

We have proven that $\Delta_{4} \leq f(N)$, which completes the proof of Theorem 3.2.

Hence $g_{\min }(N)$ does not exceed the expected value for it when $n=4$ and $\gamma=0$ also.
(V) $n \geq 5$: We shall prove that any genus g in this case is larger than the expected value for $g_{\min }(N)$. Suppose to the contrary that the genus for a $Z_{N^{-}}$ cyclic orbifold $\Sigma_{\gamma}\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ where $n \geq 5$ is smaller than or equal to the expected value. Then, together with Remark 3.3, we have $\frac{2 g-2}{N}=2 \gamma-2+\sum_{i=1}^{n}$ $\left(1-\frac{1}{m_{i}}\right) \leq 2-\frac{2}{p_{1}}-\frac{2}{N}$. This inequality fails when $\gamma>1$. Now suppose that $\gamma=1$. Then, $\sum_{i=1}^{n}\left(1-\frac{1}{m_{i}}\right) \leq 2-\frac{2}{p_{1}}-\frac{2}{N}$, which is impossible since $m_{i} \geq p_{1}$ and $n \geq 5$. Therefore, the only possibility is $\gamma=0$. Thus,

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{m_{i}} \geq n-4+\frac{2}{p_{1}}+\frac{2}{N} . \tag{3.2}
\end{equation*}
$$

On the other hand, each $m_{i} \geq p_{1}$, and at least two of the m_{i} 's ≥ 3 since the m_{i} 's
must satisfy the $l c m$-condition and $N \geq 3$. Therefore, we have $\frac{n-2}{p_{1}}+\frac{2}{3} \geq \sum_{i=1}^{n}$ $\frac{1}{m_{i}} \geq n-4+\frac{2}{p_{1}}+\frac{2}{N}$.

If $p_{1} \geq 3$, we obtain $n \leq 5-\frac{3}{N}$, which contradicts to $n \geq 5$. Therefore, the only possibility is $p_{1}=2$, and then $n=5$. Even in this case, at least three of the m_{i} 's must be equal to 2 . Then, the cyclic condition for $S^{2}\left(2,2,2, m_{4}, m_{5}\right)$ together with $N \geq 3$ implies $\frac{1}{m_{4}}+\frac{1}{m_{5}} \leq \frac{1}{2}$, which contradicts to (3.2).

By now, we have proved that $g_{\min }(N)$ is not less than the expected value for it. Furthermore, the examples given in Table 2 assure that they certainly coincide. This completes the proof of Theorem 3.1.

Remark 3.5. In cases (i) and (iii) of Theorem 3.1, with some exceptions, the above result is just the twice of the minimum genus for periodic but not necessarily reducible automorphism of the same order ([3]). The only exceptions are $N=2,3,4,6$. The exceptions $N=3,4,6$ occur since we are concerned with $g \geq 2$ as same as [3]. The exception $N=2$ occurs since $S^{2}(2,2,2)$ is not cyclic (the cyclic condition (iv) fails).

4. Orders of periodic automorphisms

In this section, we show
Theorem 4.1. Let $\mathfrak{f} \in \mathscr{M}_{g}$ be a periodic automorphism of order N. Then, the followings hold:
(I) if f is irreducible, then $N \geq 2 g+1$,
(II) if f is reducible, then $N \leq 2 g+2$;
furthermore, if the genus g is odd, then $N \leq 2 g$.
All the inequalities are best possible. That is to say, there certainly exists a periodic automorphism of Σ_{g} having os order the value of the right-hand term of each inequality, with required reducibility equipped.

Remark 4.2. By this result, the periodic automorphism of Σ_{g} of the maximum order $4 g+2$ (see [3]) must be irreducible.

Proof. The result (I) is a direct consequence of Proposition 1.1 as shown bellow. Let $\mathfrak{f} \in \mathscr{M}_{g}$ be a periodic and irreducible automorphism of order N. Then, by Proposition 1.1, the quotient orbifold O_{f} is of type $S^{2}\left(m_{1}, m_{2}, m_{3}\right)$ with each $m_{i} \leq N$. Applying $m_{i} \leq N$ to the Riemann-Hurwitz formula (1.1), we directly have $N \geq 2 g+1$. Example 2.3 assures the best possibility.

Now, we shall prove (II). Let N be the order of a periodic and reducible automorphism of Σ_{g}, with the same prime decomposition in Theorem 3.1. The proof of the first part is based on the observation $g \geq g_{\min }(N)$ and divided into the same subcases of Theorem 3.1.
(i) $r_{1}>1$ or N is prime: By Theorem 3.1, we obtain $g \geq \frac{N}{p_{1}}\left(p_{1}-1\right)$. Therefore, $N \leq \frac{g}{p_{1}-1}+g$. Since $p_{1} \geq 2$, we obtain $N \leq 2 g$.
(ii) $N=p_{1} p_{2} p_{3}$ and $p_{3} \leq \frac{p_{1} p_{2}-2 p_{1}+1}{p_{2}-p_{1}}$: By Theorem 3.1, we obtain $g \geq$ $N-\frac{1}{2}\left(\frac{N}{p_{1}}+\frac{N}{p_{2}}+\frac{N}{p_{3}}-1\right)$. Since $\frac{\partial}{\partial p_{2}}\left(\frac{p_{1} p_{2}-2 p_{1}+1}{p_{2}-p_{1}}\right)<0, \quad$ and $\quad p_{2}<p_{3} \leq$ $\frac{p_{1} p_{2}-2 p_{1}+1}{p_{2}-p_{1}}$, we have $p_{1} \geq 5$. Therefore,

$$
\begin{equation*}
g \geq \frac{7}{10} N+\frac{1}{2} \tag{4.1}
\end{equation*}
$$

Hence, we have $N \leq \frac{10}{7}\left(g-\frac{1}{2}\right)<2 g$.
(iii) otherwise: By Theorem 3.1, we obtain $g \geq\left(p_{1}-1\right)\left(\frac{N}{p_{1}}-1\right)$. Therefore $N \leq \frac{p_{1} g}{p_{1}-1}+p_{1}$. We shall see this implies $N \leq 2 g+2$. Suppose to the contrary that $N>2 g+2$. Then we have $\left(2-p_{1}\right)\left(\frac{g}{p_{1}-1}-1\right)>0$. If $p_{1}=2$, then clearly this ineçuality fails. If $p_{1}>2$, then we obtain $\frac{g}{p_{1}-1}-1<0$ since $2-p_{1}<$ 0 . Hence $g<p_{1}-1$. On the other hand, by Theorem 3.1, we have $g \geq\left(p_{1}-1\right)$ $\left(\frac{N}{p_{1}}-1\right)$, which yields a contradiction since N is not a prime. This completes the first part of (II). The best possibility for even genus is assured by Example 2.5 .

We next remark that no closed surface Σ_{g} admits any periodic and reducible automorphism of order $2 g+1$. This can be seen by estimating the minimum genus $g_{\min }(2 g+1)$, by Theorem 3.1, to be greater than g. We omit the detailed calculation since it is similar to the one given above to show $N \leq 2 g+2$.

We shall next see that Σ_{g} admits no periodic and reducible automorphisms of order $2 g+2$ if the genus g is odd. In fact, if g is odd, the minimum genus $g_{\min }(2 g+2)$ is $g+1$ by Theorem 3.1 since $2^{2} \mid 2 g+2$. This completes the last part of (ii). The best possibility is assured by Example 2.2.

Remark 4.3. Theorem 4.1 shows that given a periodic automorphism of Σ_{g}, its order almost determines its reducibility. In fact, the determination by order is complete if the genus g is odd. Even if g is even, it is only the order $2 g+2$ that fails to determine the reducibility because the order $2 g+1$ does not occur in reducible case by the argument in the proof above. It is seen that the failure does always occur, however, in view of both Examples 2.4 and 2.5.

Appendix-the case $g=1$.

The main Theorem 4.1 holds for the case $g=1$, which might be well known. This is to be checked in view of Table 3, which lists up the whole quotient orbifolds of 'the actions on Σ_{1} of finite cyclic groups which descend injectively into \mathscr{M}_{1} (note that Proposition 1.1 still holds for the case $g=1$).

Table 3

Cyclic quotients of Σ_{1}	
Order	Quotient orbifold
2	$S^{2}(2,2,2,2)$
3	$S^{2}(3,3,3)$
4	$S^{2}(2,4,4)$
6	$S^{2}(2,3,6)$

Table 3 was obtained through a computer-aided calculation based on Harvey's cyclic condition (given in Proposition 2.1). We remark that Theorem 4.1 itself was first observed for the cases $g=2-44$ through such computer-aided calculations.

References

[1] A.J. Casson and S.A. Bleiler: "Automorphisms of surfaces after Nielsen and Thurston," Cambridge University Press, Cambridge, 1988.
[2] J. Gilman: Structures of elliptic irreducible subgroups of the modular group, Proc. London Math. Soc. (3) 47 (1983), 27-42.
[3] W.J. Harvey: Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford (2) 17 (1966), 86-97.
[4] Y. Kasahara: Master thesis, Dept. Math. Tokyo Inst. Tech. (1990).
[5] S.P. Kerckhoff: The Nielsen realization problem, Ann. Math. 117 (1983), 235265.
[6] Y. Matsumoto: Personal communication.
[7] J. Nielsen: Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1942), 23-115.
[8] J. Nielsen: Die Struktur periodischer Transformationen von Flächen, Math.-fys. Medd. Danske Vid. Selsk. 15 (1937), 1-77.
[9] P. Scott: The geometry of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
[10] W.P. Thurston: "The geometry and topology of three-manifolds," Lecture Notes, Princeton Univ., 1979.
[11] W.P. Thurston: On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), 417-431.
[12] S. Wang: Essential invariant circles of surface automorphisms of finite order, in "Differential geometry and topology," Lecture Notes in Math., 1369, SpringerVerlag, Berlin, 1989, 275-285.

Department of Mathematics Tokyo Institute of Technology
Oh-okayama, Meguro
Tokyo 152
Japan

